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ABSTRACT

This study presents a neural data assimilation system based on a variational au-
toencoder (VAE) for improving sea ice forecasts in high-resolution numerical
models. We propose a multi-field assimilation approach that simultaneously pro-
cesses several physical fields, leveraging a modern VAE architecture enhanced
with pixel-wise self-attention mechanisms to capture complex spatial and cross-
field correlations. Our method is validated using real-world satellite observations
(Sentinel-3 SRAL and AMSR2) and operational data from the NEMO ocean
model with integrated sea ice component (SI3). Results demonstrate that the
framework effectively assimilates sparse and noisy observations, reducing errors
in sea ice concentration estimates and improving forecast accuracy. Crucially,
we demonstrate the compatibility of the neural assimilation solution with the
NEMO restart mechanism, enabling seamless integration into operational fore-
casting pipelines. This work bridges the gap between machine learning-based
assimilation and practical ocean modeling, offering a scalable, non-Gaussian al-
ternative to traditional methods like 3D-VAR.

1 INTRODUCTION

Significant trend in Earth Sciences is the growing interest in the Arctic region, driven by the rapid
decline in sea ice cover (Babb et al., 2023) and the profound environmental, economic, and geopo-
litical changes this entails (Kortsch et al., 2015; Shu et al., 2023; Dvoynikov et al., 2021). Numerical
models in the Arctic and Antarctic regions are notoriously harder to run and calibrate (Pan et al.,
2023; Allende et al., 2024). Sea ice forecasting requires considering the entangled relationships
between wind, ocean physics, and plastic deformations inside the ice itself to be relevant. These
forecasts hold practical value for ice-impeded navigation in addition to scientific value.

Naturally, Earth Sciences move towards increasing the resolution of climate models (Moreno-
Chamarro et al., 2025; Olason et al., 2021; Selivanova et al., 2024) and expanding the volume of
accumulated observational data (Copernicus Climate Change Service (C3S); National Aeronautics
and Space Administration) in order to improve the prediction of the extreme events and circulations.
This trend is driven by advances in computational power, improved satellite and sensor technologies.

Numerical models are a cornerstone in ocean simulation, incorporating modern knowledge about
the complex physical processes that govern ocean dynamics. Because of the chaos, inherent to all
such models, small uncertainty of the initial conditions grows to unpredictable model behavior in a
few days horizons of simulation. Data assimilation is a necessary tool to condition these numerical
models on observations and improve their quality. Classical data assimilation algorithms rely on the
assumptions of linear model dynamics and Gaussian noise. However, as the resolution of the model
increases, these assumptions become less valid, which requires a departure from these constraints to
better capture the complexities of high-resolution systems (Carrassi et al., 2018).

The data assimilation task can be formulated as the process of iterative updating of the physical
fields of the model xb (background) based on the observed data y. The target is to get closer to an
unknown true state of the fields xa (analysis) (Bannister, 2008a;b). The data assimilation process
must account for the spatial and temporal relationship of the physical fields.

There are several approaches to data assimilation. Non-neural approaches will be called in our text
classical data assimilation methods. In most cases, it comes down to filtering techniques such as
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Best Linear Unbiased Estimator (BLUE) and Kalman Filter (KF) (Kalman, 1960; Jazwinski, 1970;
Evensen, 1994; 2003) or to the optimization of a cost function as 3 and 4-Dimensional Variational
(3D-VAR, 4D-VAR) (Bannister, 2008a;b; Courtier et al., 1998; Rabier et al., 2000) data assimilation.
Neural networks have shown a remarkable ability to learn complex and non-linear relationships
between physical fields in oceanography (Zhao et al., 2024). There are several studies that combine
traditional data assimilation algorithms and modern neural networks (Blanke et al., 2024; Arcucci
et al., 2021; Penny et al., 2022; Cai et al., 2024; Tian, 2024; Hatfield et al., 2021; Mack et al., 2020;
Peyron et al., 2021; Farchi et al., 2021; Barthelemy et al., 2022; Melinc & Zaplotnik, 2024).

Most existing data assimilation models focus mainly on simplified systems and benchmark exam-
ples, such as the Lorenz-63 or Lorenz-96 systems (Blanke et al., 2024; Arcucci et al., 2021; Penny
et al., 2022; Tian, 2024; Peyron et al., 2021; Farchi et al., 2021). These toy models serve as foun-
dational testbeds for evaluating the performance of assimilation techniques due to their ability to
capture essential features of chaotic dynamics while remaining computationally tractable. However,
their simplicity often limits the direct applicability of these methods to more complex, real-world
systems characterized by high dimensionality and intricate spatial correlations.

Observation data can be sparse and contain errors and inaccuracies. The true values of the physical
field are unknown, as are the true values of the model and the observation error. We should use some
estimation for calculation and validation. This is especially noticeable when calculating the matrix
B. Classical data assimilation algorithms operate under Gaussian assumptions. For example, the ice
concentration field has a significantly non-Gaussian error distribution, while the Ensemble Kalman
Filter EnKF was used to assimilate this field (Lisæter et al., 2003).

1.1 3D-VAR AND 4D-VAR

This is family of iterative data assimilation algorithms that are based on cost function optimization.
Cost function for 3D-VAR is

J(x) = (x− xb)
TB−1(x− xb) + (y −Hx)TR−1(y −Hx) (1)

where B is a background error covariance matrix, R is an observation error covariance matrix, and
H is the forward operator. For 4D-VAR the model operator M is added:

J(x0) = (x0 − xb)
TB−1(x0 − xb) +

N∑
i=1

(y −H(xi))
TR−1(y −H(xi)) (2)

where x0 = x(t0) are the physical fields at the beginning of the assimilation window and
xi = x(ti) = (

∏i
k=1 Mk)x(t0). It can be shown that Kalman Filter minimizes the same func-

tion (Brasseur, 2006).

1.2 ARTIFICIAL NEURAL NETWORKS FOR DATA ASSIMILATION

An alternative to classical data assimilation schemes is the integration of artificial neural networks
(ANNs) to replace or enhance components of traditional systems. There are two main strategies
for incorporating ANNs into data assimilation. The first involves using a neural network to distill
classical methods (Arcucci et al., 2021; Farchi et al., 2021; Zavala-Romero et al., 2025), such as
3D-Var, 4D-Var, and ETKF, capturing their key features in a more computationally efficient form.
The second approach integrates ANNs directly into the assimilation process by replacing specific
components of traditional algorithms (Penny et al., 2022; Tian, 2024; Hatfield et al., 2021; Mack
et al., 2020; Peyron et al., 2021; Barthelemy et al., 2022; Melinc & Zaplotnik, 2024), potentially im-
proving adaptability and providing more accurate error estimates. The second approach is of greater
interest because it enables a more flexible and adaptive data assimilation process. By replacing key
components of traditional algorithms with ANNs, we can take advantage of their ability to learn
complex non-linear relationships within the data. This has the potential to improve accuracy, reduce
computational costs, and enhance robustness in dynamically changing ice conditions.

Classical data assimilation algorithms face two major challenges. The first is the use of the covari-
ance matrix, which can be extremely large and may fail to capture nonlinear interactions between
variables. The second is the dynamical operator, which is either computationally expensive or based
on overly simplistic approximations.
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Figure 1: Area of interest for this work.
Blue is the simulation area of NEMO model.

Figure 2: Cumulative distribution functions (CDFs)
of sea ice concentration from different data sources.

The variational autoencoder (VAE) is widely used as a replacement or complement to the covariance
matrix, enabling dimensionality reduction while preserving complex variable interactions. VAEs
impose constraints on data distribution, making them particularly suitable for physical data fields
with nonlinear dependencies. In (Mack et al., 2020), a VAE is applied within the 3D-Var algorithm
to reduce the dimensionality of physical fields while capturing intervariable relationships, tested on
pollution data from Elephant and Castle, London. In (Peyron et al., 2021), the ensemble Kalman
filter is applied in the latent space of an autoencoder and tested on the Lorenz-96 model. In (Melinc
& Zaplotnik, 2024), an autoencoder completely replaces the covariance matrix in the 3D-Var algo-
rithm. The approach is tested on temperature data at the 850-hPa pressure level from the ERA5
reanalysis. The latter study is conceptually similar to our work but considers only a single physical
field and does not assess the possibility of restarting the model with the assimilated field.

This paper makes the following contributions:

1. We propose a new data assimilation algorithm that works with multiple geophysical fields
by leveraging VAE architecture with self-attention layers in the latent space.

2. We test our algorithm on different setups and show that it outperforms the baselines: clas-
sical 3D-VAR and a VAE-based approach (Melinc & Zaplotnik, 2024).

3. We integrated our algorithm inside the operational forecasting ocean model Nucleus for
European Modeling of the Ocean (NEMO) to assimilate real sattelite observations. We
have shown that neural network based data assimilation improves the forecasts quality.

2 DATA

The area of interest for this work is the Barents Sea and the Kara Sea (see Figure 1). The Kara and
Barents Seas are not covered with multi-year ice de Gelis et al. (2021). For the selected region of
the Kara Sea, the freeze-up begins rapidly in December, with melting in April. The selected region
of the Barents Sea has a completely open sea throughout most of the year.

3 MODEL

3.1 BACKGROUND

As an assimilation background we use ocean data that are generated by our production numerical
forecasting system that consists of numerical Weather Research and Forecasting model (WRF) and
Nucleus for European Modeling of the Ocean (NEMO) of version 4.0 with integrated Sea Ice Mod-
eling Integrated Initiative (SI3). Spatial resolution of the modeling dataset is around 3-4 km, we
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used ORCA12 grid and Drakkar configuration that is considered state of the art for high resolution
ocean modeling. Since NEMO requires atmosphere forcing we also used these data as additional
features (these data are generated by the atmosphere model Weather Research and Forecasting WRF
of version 4.4). For the period of interest, the dataset contains daily prediction of the next 72 hours
for ocean and atmosphere variables. Data range from 2015 to 2023. In this study, we focus on three
key fields: the sea ice concentration field (where data assimilation is performed), the sea ice thick-
ness field, and the sea ice temperature field. Data from 2015 to 2021 (inclusive) are used to compute
statistical properties and train the variational autoencoder (VAE). 2022 and 2023 are reserved for
validating the accuracy of field reconstruction and conducting data assimilation experiments.

3.2 OBSERVATIONS

The following observational data was considered:

1. Sentinel-3 Altimetry (SRAL) Sea Ice Thematic Product Aublanc et al. (2025). The dataset
includes satellite tracks with an along-track resolution of up to 330 meters. The variable
”sea ice concentration 20 ku” provides ice concentration data and is available as an auxil-
iary product. The primary data source is the OSI-430-a product, which has a 2-day latency
and a spatial resolution of 25 km. Therefore, greater scientific interest lies in the vari-
able ”surf type class 20 ku”, which characterizes surface type (open ocean, floes, lead,
unclassified) based on sea ice concentration and waveform peakiness, and the variable
”freeboard 20 ku” (radar freeboard). In future product versions, the latter is planned to
be converted into ice thickness.

2. ASI AMSR2 Spreen et al. (2008) sea ice concentration data. These data have a spatial
resolution of 6.25 km and are available in near-real time (NRT) with a latency about 25
hours. A key advantage of AMSR2 is its all-weather, day-and-night operational capability,
enabled by passive microwave measurements. However, a known limitation is the reduced
accuracy in sea ice concentration retrieval during melt seasons due to changes in surface
emissivity caused by snow and ice melt Pang et al. (2018).

We have determined that the most promising problem to address is the assimilation of data tracks,
especially since Sentinel-3 is expected to enhance its thematic product on sea ice with ice thickness
information. For model-to-model assimilation, we use sea ice concentration data from a different
model year, selected along SRAL tracks. For satellite-to-model assimilation, we employ AMSR2
sea ice concentration data along SRAL tracks, adjusted using the surf type class 20 ku flag: values
are set to zero for the ”open ocean” class, while for ”floes” and ”lead” classes with zero concentra-
tion, the nearest non-zero value is assigned.

3.3 VALIDATION

For model-to-model assimilation, the model fields corresponding to the dates of the assimilation
tracks are used for validation and comparison. For satellite-to-model assimilation, AMSR2 data
serve as the validation data set.

3.4 DATA ANALYSIS

To compare sea ice concentration data from different sources along the Sentinel-3 track between De-
cember 2019 and April 2020, their cumulative distribution functions (CDF) should be analyzed (Fig.
2). Data were collected for identical dates and identical spatial domains in all sources. The NEMO
model (blue line) exhibits a lower probability of zero ice concentration compared to AMSR2 (green
line), indicating systematic overestimation of ice cover in the model output. The SRAL-derived
’sea ice concentration 20 ku’ variable (orange line) shows markedly different slope characteristics
than both NEMO and AMSR2. This divergence stems from the coarse resolution of OSI-430-a
product (source of this variable), which introduces spatial averaging effects that increase the number
of intermediate values.

4
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Figure 3: Variational Autoencoder architecture. Figure 4: Example of VAE data reconstruction.

4 MODEL

In the 3D-VAR algorithm, spatial relationships between the components of a field, as well as inter-
field correlations, are represented in the background error covariance matrix. In this study, we
propose using a variational autoencoder (Kingma & Welling, 2014) to capture and represent these
patterns. A related approach was previously applied to temperature data at the 850-hPa pressure level
from the ERA5 reanalysis, as reported in (Melinc & Zaplotnik, 2024). We used the VAE architecture
from (Melinc & Zaplotnik, 2024) as our baseline, denoting it as base vae 1f . In our work, we
employ a different autoencoder architecture and perform experiments using both single-field and
multi-field datasets. The architecture we propose is inspired by the VAE architectures widely used
in stable diffusion models Rombach et al. (2022), which have demonstrated strong generative and
representation learning capabilities. The main characteristics of our architecture 3 are as follows:
(1) the latent space is implemented as a feature map rather than a vector, (2) ResNet-based blocks
are used throughout the encoder and decoder, and (3) attention mechanisms are introduced in the
middle layers to enhance feature interaction.

We conducted experiments with a date-conditioned autoencoder where: dates were converted to
day-of-year (DOY) values. DOY was encoded as a cyclic variable using sine/cosine transformation:
(sin(2π ·DOY/366), cos(2π ·DOY/366)) which are transformed by the linear layer and concate-
nated with in the latent space.

4.1 TRAINING

The variational autoencoder learns to reconstruct fields using the reparameterization trick. Mean
squared error (MSE) is used as the reconstruction loss, while the KL divergence is computed for the
Gaussian case (Kingma & Welling, 2014). We also experimented with the addition of a discriminator
and SSIM loss, but it did not produce significant improvements.

We used the Lion optimizer (Chen et al., 2023) for training, as it demonstrated a more stable con-
vergence in our experiments. Missing data (over land) are filled with physically adequate values.

4.2 ASSIMILATION

For the baseline data assimilation experiment, we employed a 3D-VAR scheme 3d var. The back-
ground error covariance matrix B was modeled using a fifth-order quasi-Gaussian function (Gaspari
& Cohn, 1999) with a length scale of 100 km.

The latent space assimilation algorithm (Algorithm 1) is presented below. The key feature of the
algorithm: assimilation is performed in the autoencoder’s latent space. The latent space field is
adjusted via backpropagation to ensure the reconstructed (analysis) field better approximates the
observational data.

It is important to discuss the features of the Loss function. The loss function consists of three terms:
(1) the observation error, (2) the background field error, and (3) the latent-space error. The second
and third terms serve as regularizations to prevent a significant deviation from the model’s original
field and are assigned smaller weighting coefficients.

Loss(xa, y, xb, z, z0) = wyMSE(H(xa), y)

+wbMSE(xa, xb) + wzMSE(z, z0)
(3)

5
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Algorithm 1 Latent Space Assimilation (LSA)

Require: Encoder and Decoder - part of pretrained VAE, Loss - error function
Input: xb - background fields, y - observations
Output: xa - analysis fields

Encode background: z0 ← Encoder(xb)
Initialize optimizable latent: z ← z0 (requires gradient)

for iteration i=0 to N do
Decode current latent: xa ← Decoder(z)
Compute loss: Ltotal ← Loss(xa, y, xb, z, z0)
Compute gradient: ∇zLtotal

Update latent: optimization step
end forreturn xa ← Decoder(z)

Figure 5: MAE metric values for vae 4f model from different physical fields by day of the year on
the left. Sea Ice Concentration assimilation example for 12.04 using vae 4f model on the right.

Given the slow evolution of ice concentration (typically < 1% daily change), we tested assimilation
of the prior three days data.

5 EXPERIMENTS

Since we aimed at improving the quality of our forecasting system in the real world through sentinel
3 SRAL assimilation, we organized our framework as follows. First, we evaluated the quality of
the VAE reconstruction. Secondly, we experimented with model-to-model assimilation to tune out
probable overfitting and deal with general architecture search. After that we tested the best resulting
models on real-world data and tested our assimilation model inside NEMO forecasting pipeline.

The VAE should reconstruct the fields reasonably well, though perfect accuracy is not the goal, as
VAEs inherently balance reconstruction fidelity against the dimensionality of the compressed repre-
sentation (i.e., latent space sparsity). The goal of the model-to-model assimilation is to estimate the
quality of assimilation in neutral setting. Since observation data and model data are noisy and usu-
ally distributed differently, thus introducing bias in the quality of assimilation. Model-to-model, on
the other hand, demonstrates the quality of assimilation in the physics-driven process that is repre-
sented by the numerical model inside NEMO. For the forecasting pipeline, let’s call this assimilation
scheme production data assimilation.

5.1 RECONSTRUCTION ERROR

The model was trained on data from 2015 to 2021 and 2022 was used for validation. The fol-
lowing fields were utilized: siconc (sea ice concentration), sithic (sea ice thickness), sitemp (sea

6
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ice temperature) and sosstsst (sea surface temperature). An example of sea ice concentration field
reconstruction is shown in Figure 4. The results are presented in Table 1 .

The evaluation metrics used are MAE (Mean Absolute Error) and MSE (Mean Squared Error). MAE
estimates the average error magnitude, while MSE penalizes larger errors more heavily and smaller
errors less severely due to its quadratic nature. The results are presented in Table 1. Features of
the architecture and naming of models: *f - shows how many physical fields are fed to the model
input. d* the latent space is transformed by a linear layer from a feature map into a vector with the
specified number of features. m the sitemp field is replaced by the sosstsst field, emb - a condition
for the day of the year is added, c* - the number of feature maps in the latent space, 1 by default.

Table 1: VAE reconstruction quality assessment

Model siconc sithic sitemp sosstsst
name MAE MAE MAE MAE

base vae 1f 0.028± 0.002 - - -
vae 1f 0.008± 0.001 - - -

vae 1f d512 0.023± 0.002 - - -
vae 3f 0.023± 0.002 0.083± 0.006 0.094± 0.007 -

vae 3f emb 0.026± 0.002 0.090± 0.007 0.093± 0.008 -
vae 3f m 0.015± 0.001 0.024± 0.002 - 0.252± 0.006

vae 3f m emb 0.016± 0.001 0.026± 0.002 - 0.254± 0.007
vae 4f 0.024± 0.002 0.083± 0.006 0.085± 0.007 0.265± 0.008

vae 4f emb 0.032± 0.002 0.099± 0.008 0.083± 0.007 0.267± 0.008
vae 4f c2 0.018± 0.001 0.029± 0.002 0.062± 0.005 0.210± 0.005

vae 4f c2 emb 0.017± 0.001 0.031± 0.002 0.061± 0.005 0.186± 0.003

5.2 QUALITY ESTIMATION

5.2.1 MODEL TO MODEL ASSIMILATION

In this experiment, our objective was to analyze the ability of a trained VAE to capture relationships
between values and physical fields. Unfortunately, we do not know the true field values at each time
step: The model contains computational errors and depends on the initial initialization, which also
introduces uncertainties. Satellite data have measurement errors and interpretation challenges.

Therefore, we conclude that it is necessary to verify the assimilation of the model data into the
model data. We sample see ice concentration data along the SRAL tracks from the NEMO forecast
for next year ỹ = xi+365[mask] and assimilate them into current data xi. To evaluate performance,
we compare the post-assimilation fields with the prediction of the model xi+365 (see Algorithm 2).
Since we treat NEMO numerical modeling as physics-based, we expect that a higher quality model
will assimilate data closer to the NEMO output.

Algorithm 2 Model-to-model (M2M) data assimilation

Require: {x1, x2, ..., xn} - NEMO simulation fields, {y1, y2, ..., yn} - AMSR corrected by SRAL
data
for day in assimilation cycle do

Create mask: mask = yi is not None
Sample observation: ỹi = xi+365[mask]
Make assimilation: xa

i = LSA(xi, ỹi)
Make validation: xi and xa

i vs xi+365

end for

Examples of model-in-model assimilation for 3d var vae 4f are illustrated in figures in 7. Only sea
ice concentration values are assimilated. It can be seen that vae 4f not only yields a lower error but
also produces a sharper ice-water boundary, while 3d var tends to smooth it. The vae 4f results
show that when the concentration of ice decreases, the thickness of the ice in the same region also

7
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Table 2: Model to model assimilation result: average MAE

Model name siconc sithic sitemp sosstsst
background 0.112± 0.002 0.242± 0.005 0.67± 0.04 0.86± 0.03

3d var 0.052± 0.001 - - -
base vae 1f 0.080± 0.002 - - -

vae 1f 0.051± 0.001 - - -
vae 1f d512 0.053± 0.001 - - -

vae 3f 0.060± 0.001 0.172± 0.004 0.63± 0.04 -
vae 3f emb 0.057± 0.001 0.167± 0.004 0.64± 0.04 -
vae 3f m 0.061± 0.001 0.200± 0.004 - 0.84± 0.05

vae 3f m emb 0.062± 0.001 0.213± 0.004 - 0.811± 0.045
vae 4f 0.0481± 0.0009 0.152± 0.003 0.615± 0.036 0.732± 0.039

vae 4f emb 0.0493± 0.0009 0.158± 0.004 0.608± 0.035 0.663± 0.031
vae 4f c2 0.0508± 0.0010 0.168± 0.003 0.616± 0.035 0.739± 0.034

vae 4f c2 emb 0.0504± 0.0009 0.176± 0.003 0.608± 0.035 0.724± 0.037

decreases, while both the temperature of the ice and the temperature of the ocean increase. These
patterns align with the target fields and maintain physical consistency with the model. This clearly
shows that the VAE successfully captures not only relationships within individual physical variables
but also the cross-correlations between different physical parameters.

Figure 5 shows the MSE and MAE metric values for data assimilation using the vae 4f model,
applied to the fields of ice concentration, ice thickness, ice temperature and upper-layer water tem-
perature over different days of the year. The data is interrupted in mid-July when the ice in the
Barents and Kara Seas completely melts. It is evident that the ice concentration and thickness fields
are well-correlated, whereas the ice and water temperature fields show weaker dependence on the
ice concentration. Furthermore, Table 2 present the MAE metrics for assimilation across different
models. We observe that the incorporation of temperature fields improves the accuracy of the ice
concentration and thickness assimilation. The vae 4f model was selected as the primary because of
its best performance in capturing the relationship between ice concentration and thickness.

5.2.2 SAT TO MODEL ASSIMILATION

The next step was data assimilation of AMSR2 ice concentration data corrected by SRAL surface
type. We evaluated the quality of assimilation against the AMSR2 data and corrected AMSR2 data
that had not yet been assimilated. The assimilation scheme works as follows.

Algorithm 3 Satellite-to-model (S2M) data assimilation

Require: {x1, x2, ..., xn} - NEMO simulation fields, {y1, y2, ..., yn} - AMSR corrected by SRAL
data, {v1, v2, ..., vn} - AMSR data.
for day in assimilation cycle do

Make assimilation: xa
i = LSA(xi, yi)

Make validation: xi and xa
i vs vi and yi+1

end for

The assimilation results for the SRAL-corrected AMSR2 sea ice concentration data are presented in
the Table 3. Although the vae 3f emb model showed slightly better metrics, we selected the vae 4f
model for the final experiment. This decision is based on its superior performance in capturing ice
thickness variations in the M2M experiment, coupled with the fact that the difference in results for
this experiment is within the margin of error. Samples of assimilation results are in Appendix A.3.

5.3 PRACTICAL APPLICATION

In the last experiment, we integrate the results of the satellite data assimilation into the NEMO
pipeline using the restart mechanism. The model restart-ice fields were modified using the sicon
(sea ice concentration) and sithic (sea ice thickness) fields, which assimilated satellite data via the

8
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Table 3: Satellite to model assimilation result

Model AMSR2 AMSR2 corrected (track)
name MSE MAE MSE MAE

background 0.027± 0.002 0.049± 0.002 0.028± 0.002 0.050± 0.003
3d var 0.013± 0.001 0.037± 0.002 0.019± 0.002 0.044± 0.002

base vae 1f 0.019± 0.001 0.045± 0.002 0.021± 0.002 0.051± 0.003
vae 1f 0.014± 0.001 0.034± 0.002 0.019± 0.002 0.040± 0.002

vae 1f d512 0.012± 0.001 0.033± 0.002 0.017± 0.002 0.041± 0.002
vae 3f 0.012± 0.001 0.033± 0.002 0.017± 0.002 0.040± 0.002

vae 3f emb 0.012± 0.001 0.032± 0.002 0.017± 0.002 0.039± 0.002
vae 3f m 0.014± 0.001 0.034± 0.002 0.018± 0.002 0.043± 0.002

vae 3f m emb 0.013± 0.001 0.036± 0.002 0.018± 0.002 0.044± 0.002
vae 4f 0.013± 0.001 0.033± 0.002 0.018± 0.002 0.041± 0.002

vae 4f emb 0.012± 0.001 0.039± 0.002 0.018± 0.002 0.046± 0.002
vae 4f c2 0.014± 0.001 0.033± 0.002 0.019± 0.002 0.040± 0.002

vae 4f c2 emb 0.013± 0.001 0.033± 0.002 0.019± 0.002 0.041± 0.002

vae 4f model. The sitemp (ice surface temperature) and sosstsst (sea surface temperature) fields
were deliberately excluded, as they demonstrated a weaker correlation with the assimilated values.
The restart data is modified as told in appendix A.1.

The experiment was organized as follows. A specific date was selected. For this date, data assim-
ilation was performed and the restart file was modified. Subsequently, a 5-day forecast was run
using the NEMO model. The forecast results were then compared with the corresponding AMSR2
data for those days. The outcome of this comparison is presented in the Figure 8. Metrics for the
experiments are in Table 4.

The experiment demonstrated the feasibility of using fields processed by neural network-based data
assimilation within the NEMO computational model for forecasting. The predictions generated by
this approach are physically consistent and show good agreement with satellite observations.

Table 4: Application result: MAE with AMSR2 (20-02-2025)

Experiment 1 day 2 day 3 day 4 day 5 day
model 0.142 0.123 0.081 0.084 0.081

model+assimilation 0.079 0.086 0.063 0.072 0.072

6 CONCLUSION

This work is devoted to multi-field data assimilation by neural networks as an alternative to classical
approaches. For this we used a variational autoencoder with self-attention layers that helped us
to account to cross-corelation between the physics fields. We have shown that such an approach
surpasses in terms of quality both classical approach 3D-VAR and the competing approaches from
literature based on similar ideas.

Also we tested our approach on the real operative sea ice forecasting workflow in Arctic based on
Nucleus for European Modelling of the Ocean (NEMO) state-of-the-art oceam modeling framework.
We have shown that assimilation of real sattelite data in the model quickly improves the model
quality, so our approach has strong practical applications.

Possible direction of our approach improvement would be to correct not only a single snapshot
but a whole time series in order to assure physical consistency of the forecasts dynamics. The
may challenge here lies in learning a good evolution operator for the whole bunch of participating
physical fields. In order to improve quality of forecasts even further it would make sense not only to
assimilate sea ice data but also to correct atmosphere forcing and increase domain of simulations to
capture more oceanic and atmospheric processes in the Arctic.

9
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A APPENDIX

A.1 ALGORITHM OF MODIFICATION OF RESTARTS IN THE NEMO OCEAN MODEL

With initial restart files, written by the ocean model and new assimilated fields that came out of
assimilation algorithm following was applied:

1. The sicon concentration values were clipped to the [0, 1] range to ensure physical con-
sistency. Values below 0.01 were treated as zero, and a mask was created based on this
threshold to distinguish ice from open water. The corrected sicon data is written to the a i
variable.

2. Ice thickness and concentration are used to calculate the ice volume per unit area v i, using
the formula v i = a i · sithic.

3. Since snow cannot lie on water, the snow volume per unit area (v s) and the ice concentra-
tion (a i) from the restart file are used to calculate the snow thickness. This snow thickness
is then multiplied by the new ice concentration (a i): v s = v s[rest]·a i

a i[rest] .

4. The snwice mass and snwice mass b values were recalculated from v i and v s using
the average densities of sea ice and snow.
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5. The salinity variable sv i is recalculated for the new ice volume v i. A value of 7.4 psu
was assigned for newly formed ice.

6. The values of e s l01, e i l01, and e i l02 are recalculated proportionally to v s and v i
taking into account the heat capacity and latent heat of fusion for snow and ice.

7. The internal stress variables stress1 i, stress2 i, and stress12 i are recalculated propor-
tionally to the ice volume v i.

8. The oa i value is scaled proportionally with a i.
9. The ocean state components of the restart file were left unmodified, as the change in ice

concentration was not substantial.

A.2 ADDITIONAL ASSIMILATION PROCESS ILLUSTRATIONS

These are examples of assimilated sea ice fields for model-to-model assimilation experiments and
sat-to-model experiments.

Figure 6: Results M2M assimilation for 12 April with use 3d var model. sicinc− sea ice concentra-
tion. Columns: background − initial values, assimilation result − M2M output, target − reference
values, background error = background − target (initial field deviation), assimilation error = as-
similation result − target (post assimilation deviation), change = assimilation result − background
(assimilation induced adjustment).

A.3 THE USE OF LARGE LANGUAGE MODELS (LLMS)

The text in the paper was initially written by humans and then sent to LLM in the process to suggest
stylistic improvements and to correct grammar and punctuation mistakes.
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Figure 7: Results M2M assimilation for 30 May with use vae 4f model. Rows: siconc − sea ice
concentration, sithic − sea ice thickness, sosstsst − sea surface temperature. Columns: background
− initial values, assimilation result − M2M output, target − reference values, background error =
background − target (initial field deviation), assimilation error = assimilation result − target (post
assimilation deviation), change = assimilation result − background (assimilation induced adjust-
ment).
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Figure 8: NEMO model prediction results. The forecast was initialized on February 22, 2023, and
run for 5 days. Top row: Ice concentration values predicted by the model without data assimilation.
Middle row: Ice concentration values predicted by the model with data assimilation (assimilation
was performed only on the initial day). Bottom row: Reference AMSR2 satellite ice concentration
data for comparison.
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