
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

AGENTGYM: EVALUATING AND EVOLVING
LARGE LANGUAGE MODEL-BASED AGENTS
ACROSS DIVERSE ENVIRONMENTS

Anonymous authors
Paper under double-blind review

ABSTRACT

Large language models (LLMs), with their generalized capabilities, are consid-
ered as a promising foundation to build generally-capable agents that can handle
multi-turn decision-making tasks across various interactive environments. Pre-
vious attempts typically gather expert-provided trajectories and have LLM-based
agents imitate these trajectories step-by-step. However, this supervised fine-tuning
approach depends heavily on human supervision, limiting scalability and restrict-
ing the agent’s exploration and learning in the environments. In this paper, we
take the first step towards developing generally-capable LLM-based agents that
can explore and evolve themselves across diverse environments. To achieve this,
we identify a trinity of ingredients: 1) diverse interactive environments for agent
exploration, 2) a trajectory set to equip agents with basic capabilities and prior
knowledge, and 3) an effective and scalable approach for agent improvement
across environments. We propose AGENTGYM, a new interactive framework fea-
turing various real-world scenarios and environments for broad, unified, real-time,
and concurrent agent exploration. AGENTGYM also includes a database with ex-
panded instructions, high-quality trajectories, and a benchmark suite. Next, we
investigate the potential of agent self-evolution across various environments with
a derived exploration-learning method named AGENTEVOL. Experimental results
show that the evolved agents can achieve results comparable to SOTA models. We
will release the code, dataset, benchmark, and checkpoints.

1 INTRODUCTION

Developing agents capable of performing a wide spectrum of tasks across various environments
at human-level has been a long-standing goal for AI community (Wooldridge & Jennings, 1995;
Silver et al., 2017; 2018; Reed et al., 2022; Xi et al., 2023). Large language models (LLMs) are
considered a promising foundation for constructing such generalist agents due to their generalized
abilities (OpenAI, 2023; Anthropic, 2024; Anil et al., 2023), and many efforts have been made in
this realm to train generally-capable LLM-based agents (Xi et al., 2023; Wang et al., 2024b).

Previous work involves recruiting human experts to interact with various environments to collect
high-quality multi-turn trajectories, which are then used to train agents to imitate these trajectories
step by step through behavioral cloning (BC) 1. This method, while effective, requires skilled anno-
tators and significant financial resources, making it hard to scale (Yang et al., 2024). Moreover, such
a paradigm may encounter bottlenecks in performance and adaptability due to insufficient explo-
ration of the environment (Aksitov et al., 2023). Another line of research allows LLM-based agents
to improve themselves based on environmental feedback (i.e., self-improvement), reducing reliance
on human supervision while enriching exploration of the environment (Zhou et al., 2024; Tao et al.,
2024; Song et al., 2024). Yet, they typically train agents in isolated environments, and the resulted
specialist agents are limited to narrow tasks.

In this paper, we take the initial step to explore the potential of self-evolution in generally-capable
LLM-based agents across various environments. We expect to let the agents first perform imitation

1In LLM field, the term behavioral cloning can be understood as supervised fine-tuning (SFT).

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

Supervisor

Student

Strong Agent

Behavioral cloning from expert trajectories Self-evolution based on environmental feedback

Weak Agent

Classroom Wild Environment

exploration

feedback

Figure 1: An illustration of self-evolution for generally-capable LLM-based agents in our paper.
The agent first imitates human behavior and then performs exploration and learning across various
environments and tasks to evolve itself.

and then interact with the environment to evolve themselves just like the way humans learn and
develop (Standish, 2003; Taylor et al., 2016; Fan et al., 2022; Team et al., 2024), as shown in Figure
1. To achieve this research goal, we identify three key pillars. First, diverse environments and tasks
that allow the agents to explore dynamically and comprehensively, rather than being confined to an
isolated world (Standish, 2003; Langdon, 2005; Taylor et al., 2016; Fan et al., 2022). Second, a
trajectory set to train a base agent with preliminary abilities and prior knowledge. This facilitates
further exploration as in diverse, complex environments, it would be extremely inefficient for an
agent to learn everything from scratch through trial and error (Fan et al., 2022; Song et al., 2024).
Third, an effective and scalable method for the agents to perform self-improvement across diverse
environments and tasks. This involves how the agent interacts with the environment and how it
utilizes the feedback to improve itself (Yang et al., 2024; Aksitov et al., 2023).

Considering the three pillars, we present AGENTGYM (see Figure 2), a new framework designed
to comprehensively evaluate and develop generally-capable LLM-based agents. Our main contribu-
tions are:

1. An interactive framework that includes diverse scenarios and environments for LLM-based
agents. AGENTGYM offers convenient APIs through HTTP services, standardizing task specifica-
tions, environment settings, and the observation/action spaces for agents. Within this framework,
we have implemented a unified interface for multi-round interactions and real-time feedback across
different environments to support holistic evaluation, trajectory collection, and agent exploration.
For comprehensiveness, AGENTGYM identifies 7 real-world scenarios critical for evaluating and
developing agents, i.e., web navigating, text games, house-holding tasks, digital games, embodied
tasks, tool-using, and programming. Specifically, it encompasses 14 environments and 89 tasks, with
high flexibility for further expansion. The diversity of AGENTGYM not only challenges the agents’
multitasking abilities but also enhances their adaptability and practicality in real-world applications,
laying the foundation for more robust and versatile LLM-based agents.

2. Expanded instructions, benchmark suite, and high-quality trajectories across environ-
ments. We collect instructions from various environments and tasks, expanding them through
rule-based strategies and AI-based techniques such as self-instruct (Wang et al., 2023b) and in-
struction evolution (Xu et al., 2023). Subsequently, we leverage several principles to construct a
benchmark suite named AGENTEVAL to comprehensively evaluate LLM-based agents. Next, we
use a gather-and-filter pipeline to get a trajectory set named AGENTTRAJ. The set is used to train a
base agent with basic capabilities and prior knowledge, bootstrapping further agent exploration and
learning. For a fair comparison, we also collect a larger trajectory set AGENTTRAJ-L with the same
pipeline to train an agent that serves as the performance upper bound achievable through SFT/BC.
Note that AGENTTRAJ-L is an extension of AGENTTRAJ and we will release it as well.

3. Investigation of self-evolution for LLM-based agents across various environments with
AGENTEVOL method. Starting from the base agent, we explore its potential of self-improvement
across various environments with a proposed method named AGENTEVOL, which is derived based
on the classical RL as Inference framework (Dayan & Hinton, 1997). We then implement it in an

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

AGENTGYM

2. Behavioral Clone

4. Multi-task
Evaluation

3. Exploring &
Learning

Env Servers

Base

Tool Using

Movie Weather

TodoList Sheet

TextCraft
WebArena

WebShop BabyAI ALFWorld

ScienceWorld

BIRD-SQL

MAZE

Trajectory
Formats

Env Clients

Imitation

AgentEvol

Performance

Single Task

Multi-Tasks

General Data

Reasoning and Acting

Instruction: Find me a
pillow with blue and…
Thought: I think I should
search for pillows…
Action: search[pillow]
Observation: Results:
[Sep] Item 1 [Sep] …

General Domain Chat

Instruction: Hello! Can
you translate this into
Chinese for me?
Response: Sure! Here's
the translation…

Evolve

Exploration

Feedback

Wordle

Web
WebShop
WebArena

Embodied
ALFWorld

ScienceWorld
BabyAI

Game
TextCraft

MAZE / Wordle

Tool
Weather / Todo

Academia
Movie / Sheet

Code
BIRD-SQL

HTTP

HTTP

HTTP

HTTP

HTTP

1. Data Prepare

Figure 2: Overview of the AGENTGYM framework. It covers fourteen environments spanning di-
verse scenarios. It adopts a decoupled client-server architecture for unified and concurrent agent-
environment interaction. AGENTGYM also includes expanded instructions, a comprehensive bench-
mark suite AGENTEVAL, and the high quality trajectory set AGENTTRAJ (-L). We also derive
and implement an exploration-learning method named AGENTEVOL to explore the agent’s self-
evolution across various environments.

exploration-learning paradigm in practice. We focus on whether agents can evolve themselves when
facing previously unseen tasks and instructions, where they need to perform exploration and learn-
ing. Experimental results demonstrate that the self-evolution process is highly effective, with agents
achieving performance on par with or even surpassing SOTA models.

In summary, we propose AGENTGYM (See Figure 2 for an overview), a comprehensive frame-
work that includes an interactive platform covering diverse scenarios, a benchmark suite AGEN-
TEVAL, and two trajectory sets AGENTTRAJ and AGENTTRAJ-L. We also derive and implement
an exploration-learning method AGENTEVOL to explore self-evolution in LLM-based agents across
various environments. We will release the whole suite, implementations, and checkpoints. We hope
AGENTGYM will help the community to develop better generalist LLM-based agents.

2 AGENTGYM: FRAMEWORK ARCHITECTURE, INSTRUCTION SET,
BENCHMARK SUITE, AND TRAJECTORY SET

Table 1: Comparison of AGENTGYM with other agent
frameworks covers several aspects: the number of en-
vironments, presence of an interactive platform and its
usage, availability of trajectory sets, support for evolu-
tion, and the evolution mode.

Frameworks Env. Inter. Plat. Traj. Evol.

AgentBench (Liu et al., 2023a) 8 Eval No No
AgentBoard Ma et al. (2024) 12 Eval No No
AgentOhana (Zhang et al., 2024) 10 No Yes No
Pangu-Agent Christianos et al. (2023) 6 No Yes Single-Env
AGENTGYM (Ours) 14 Eval & Train Yes Multi-Env

AGENTGYM is a framework built for
the community to facilitate the evalua-
tion, training, and evolution of generally-
capable LLM-based agents. It features di-
verse interactive environments and tasks
with ReAct format (Yao et al., 2023). It
supports real-time feedback and concur-
rency, and is easily scalable and extend-
able. The comparison between AGENT-
GYM and other LLM-based agent frame-
works is demonstrated in Table 1.

2.1 DIVERSE TARGETED ENVIRONMENTS AND TASKS FOR LLM-BASED AGENTS.

To ensure the comprehensiveness of the framework, we identify 7 real-world scenarios essential for
evaluating and developing agents’ capabilities, including web navigating, text games, house-holding
tasks, digital games, embodied tasks, tool-using, and programming. These scenarios are represented
by 14 environments and 89 tasks in our framework, as shown in Table 2. We further elaborate on
the motivation for selecting these diverse environments from two perspectives.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

Table 2: Statistics of AGENTGYM, including scenarios, count of task types, evaluation metric, in-
struction set size, evaluation set size, trajectory set size (AGENTTRAJ and AGENTTRAJ-L), and the
average interactive rounds of each environment in AGENTTRAJ-L.

Env. Scenario Task Num. Eval. Metric Inst. Size Eval. Size Traj. Size Traj-L Size Rounds

WebArena (WA, Zhou et al. 2023a) Web Navigating 3 Success rate 812 20 0 0 −
WebShop (WS, Yao et al. 2022) Web Navigating 1 Success rate 6910 200 1000 3930 5.1
MAZE (MZ, Abdulhai et al. 2023b) Text Game 1 Success rate 240 25 100 215 4.3
Wordle (WD, Abdulhai et al. 2023b) Text Game 1 Success rate 980 25 500 955 4.3
ALFWorld (ALF, Shridhar et al. 2021) House-holding 6 Success rate 3827 200 500 2420 13.3
SciWorld (Sci, Wang et al. 2022) Embodied Tasks 30 Reward 2320 200 1000 2120 19.9
BabyAI (Baby, Chevalier-Boisvert et al. 2019) Embodied Tasks 40 Reward 900 90 400 810 5.7
TextCraft (TC, Prasad et al. 2023) Digital Game 1 Success rate 544 100 300 374 8.0
Tool-Weather (WT, Ma et al. 2024) Tool Use 1 Success rate 331 20 160 311 5.5
Tool-Movie (MV, Ma et al. 2024) Tool Use 1 Success rate 235 20 100 215 4.0
Tool-Academia (AM, Ma et al. 2024) Tool Use 1 Success rate 20 20 0 0 −
Tool-Sheet (ST, Ma et al. 2024) Tool Use 1 Reward 20 20 0 0 −
Tool-TODOList (TL, Ma et al. 2024) Tool Use 1 Success rate 155 20 70 135 5.6
BIRD (BD, Zheng et al. 2023a) Programming 1 Success rate 3200 200 2000 3000 1.0

Total − 89 − 20494 1160 6130 14485 −

Starting from the definition of an LLM-based agent. An LLM-based agent refers to an agent
with a decision-making core based on a large language model, extending its input and action
(Wooldridge & Jennings, 1995; Xi et al., 2023; Wang et al., 2024b). Consequently, the capabili-
ties required for an LLM-based agent include:

• Input Side. An effective agent must demonstrate the ability to process diverse textual
observations, such as plain text, HTML, code, etc. Thus, the environments and tasks in
AGENTGYM are designed to encompass a wide range of input types. For instance, we
include textual environments (ALF, TC), web-based environments (WS, WA), and coding
environments (BD).

• Decision-making Side. At the core of an LLM-based agent lies its reasoning, planning
and environmental understanding capabilities. Therefore, the tasks within AGENTGYM are
crafted to be challenging and rigorous. For example, in the WS task, when interacting with
a web page containing many products, an LLM-based agent needs to guide its next actions
through reasoning and information extraction. Similarly, in the Sci task, an agent needs
to read manuals, find raw materials, and synthesize items when facing observations from
different rooms. These tasks demand not only basic common knowledge but also advanced
planning and situational understanding capabilities.

• Action Side. An LLM-based agent’s outputs can take various forms, such as plain text,
code, API calls and embodied actions. As a result, the environments must be equipped
to accommodate and process these different types of actions. For example, WT and MV
environments offer a variety of tool-calling APIs for the agent; the DB environment requires
the generation of SQL code; Baby and ALF involve embodied actions, while WD focuses
on producing plain text output.

Starting from the expectation for an LLM-based agent. An LLM-based agent is expected to
tackle complex, long-term, multi-turn sequential decision-making tasks by dynamically interacting
with the environment (Yao et al., 2023; Sumers et al., 2024; Zhou et al., 2024). In this context,
the environments and tasks included in AGENTGYM are designed to embody these characteristics.
Specifically, the tasks require multiple rounds of interaction with the environment, and the context
length is usually longer than those of LLM’s Q&A or reasoning tasks. To accomplish these tasks,
the agent needs to process not only instructions but also inputs derived from historical information
and current observations. From this perspective, AGENTGYM is an framework specifically designed
for LLM-based agents.

2.2 FRAMEWORK ARCHITECTURE AND DATABASE CONSTRUCTION.

We employ a decoupled architecture in AGENTGYM to facilitate standardized and scalable agent-
environment interactions. It supports functions like creating environments, retrieving observations
and performing actions via HTTP-based communication. See Appendix C for more details.

Regarding database construction, we first gather 20, 494 instructions using rule-based generation
and self-instruction techniques. Then, we construct a benchmark suite with a size of 1, 160 named

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

AGENTEVAL to holistically evaluate the capabilities of LLM-based agents. As for the trajectory set,
we collect and filter 6, 130 high-quality trajectories from 11 environments with various strategies,
including but not limited to crowdsourcing and annotations by SOTA models (e.g., GPT-4-Turbo).
This set, named AGENTTRAJ, is used to train a base agent with preliminary abilities and prior
knowledge. For a fair comparison, we also perform the same annotation pipeline on all instructions
to get AGENTTRAJ-L, which represents the performance upper bound of BC. More collection and
annotating details are presented in Appendix B and D.

3 EVOLVING OF LLM-BASED AGENTS ACROSS VARIOUS ENVIRONMENTS

In this section, we explore the potential of agents to evolve themselves across multiple environ-
ments. We begin by training a base agent using BC to equip it with basic interaction capabilities.
Then, based on the RL as Inference theory (Dayan & Hinton, 1997), we derive and implement an
exploration-learning method, AGENTEVOL, for multi-turn interaction scenarios, enabling agents to
improve themselves across various environments. The method is summarized in Algorithm 1.

3.1 PRELIMINARIES

We define the collection of environments as E . For a specific e ∈ E , we formalize the agent task
in the environment as a partially observable Markov decision process (POMDP) (U ,S,A,O, T , r)e
with instruction space U , state space S, action space A, observation space O, deterministic state
transition function T : S ×A → S, and reward function r : S ×A → R.

Given a task instruction u in environment e, the LLM-based agent parameterized by θ generates an
action a1 ∼ πθ(·|e, u) based on its policy πθ. Then, the state space is transitioned to s1 ∈ S,
and the agent receives feedback o1 ∈ O. Subsequently, the agent interacts with the environ-
ment until the task ends or exceeds the maximum number of steps. We adopt ReAct (Yao et al.,
2023) to model the outputs of agent, where the LLM-based agent generates a reasoning thought be-
fore outputting an action. Thus, at time step t, given the history and current feedback, the agent
generates the thought ht+1 ∼ πθ(·|e, u, h1, a1, o1, ..., ht, at, ot) first and the subsequent action
at+1 ∼ πθ(·|e, u, h1, a1, o1, ..., ht, at, ot, ht+1). Hence, the trajectory can be represented as:

τ = (h1, a1, o1, ..., oT−1, hT , aT) ∼ πθ(τ |e, u), (1)

πθ(τ |e, u) =
T∏

t=1

πθ(ht, at|e, u, ct−1) =

T∏
t=1

πθ(at|e, u, ct−1, ht) · πθ(ht|e, u, ct−1), (2)

where T is the number of interaction rounds, and ct−1 = (h1, a1, o1, ..., ht−1, at−1, ot−1) represents
the interactive history up to t−1. The final reward r(e, u, τ) ∈ [0, 1] is computed after the interaction
ends or the maximum interactive round number is met.

3.2 BEHAVIORAL CLONING WITH COLLECTED TRAJECTORIES

In diverse and complex environments, learning everything from scratch through trial and error is
inefficient for LLM-based agents due to the vast action space of language space and the varying
prior knowledge across different environments (Fan et al., 2022; Song et al., 2024). Hence, we
employ the behavioral cloning (BC) method to train a base agent using AGENTTRAJ, providing
it with basic interaction capability and prior knowledge. Specifically, BC fine-tunes LLM-based
agents by having them mimic the expert trajectories step-by-step. In practice, we expect the agent
to generate both appropriate thought h and action a. So we maximize the following objective:

JBC(θ) = E(e,u,τ)∼Ds

[
log πθ(τ |e, u)

]
= E(e,u,τ)∼Ds

T∑
t=1

[
log πθ(at|e, u, ct−1, ht) + log πθ(ht|e, u, ct−1)

]
.

(3)

Note that we include a general domain dataset Dgeneral as in Zeng et al. (2023) to maintain the
agent’s ability in language understanding and generation. And the resulting agent πθbase

serves as a
starting point for later exploration and learning across diverse environments.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

3.3 EVOLUTION THROUGH EXPLORATION AND LEARNING

To achieve self-evolution, agents need to explore environments, receive feedback, and improve
themselves based on the feedback, as humans do (Standish, 2003; Taylor et al., 2016; Fan et al.,
2022; Team et al., 2024). More importantly, the agents may face previously unseen tasks and in-
structions during exploration. Standard reinforcement learning (RL) algorithms, such as Proximal
Policy Optimization (PPO) (Schulman et al., 2017), are worth considering due to their excellent per-
formance in alignment of LLMs (Bai et al., 2022). However, in the setting of multi-turn decision-
making for LLM-based agents, PPO faces significant challenges, e.g., large action space, long in-
teraction chains and sparse reward signals, leading to high computational complexity and training
instability (Huang et al., 2022; Zheng et al., 2023b; Xi et al., 2024).

Hence, we draw inspiration from the well-established connection between RL and probabilistic
inference, i.e., RL as Inference (Dayan & Hinton, 1997; Levine & Koltun, 2013; Neumann, 2011;
Rawlik et al., 2013; Abdolmaleki et al., 2018; Singh et al., 2023), and derive the exploration-learning
method called AGENTEVOL for evolution in multi-turn decision-making scenarios, which involves
agents alternating between exploration and learning across various environments.

Theoretical foundation: learning from the estimated optimal policy using the classical RL as
Inference framework. We view RL as an inference problem within a specific probabilistic model
(Dayan & Hinton, 1997). Differing from traditional RL formulations that focus on identifying a
trajectory that maximizes the expected reward, inference-based approaches start with an optimal
distribution over trajectories. Following previous work (Toussaint, 2009; Levine & Koltun, 2013;
Abdolmaleki et al., 2018), we initially define P (O = 1) to represent the event of “obtained optimal
policy by maximum expected rewards” or “achieving success in the RL task”, which can be calcu-
lated by integrating the optimal policy probability at each sampling point. Given the policy agent
πθ, the optimal policy can be obtained by maximizing:

logPπθ
(O = 1) = log

∫
πθ(τ)p(O = 1|τ)dτ. (4)

However, the above optimization process is difficult to proceed directly due to the fact that LLM-
based agents require token-wise feedback to perform gradient updates. In this paper, we alternatively
construct the variational lower bound of Eq.4 by introducing an estimation function q on the optimal
policy. With Jensen’s inequality, we soon have:

log

∫
πθ(τ)p(O = 1|τ)dτ = logEq(τ)[

πθ(τ)

q(τ)
p(O = 1|τ)] ≥ Eq[log

πθ(τ)

q(τ)
p(O = 1|τ)]

= Eq[log p(O = 1|τ)]− KL[q(τ)||πθ(τ)] = J (q, πθ),

(5)

where πθ is the trajectory distribution induced by the agent, and q(τ) is a variational distribution.

Due to the monotonicity of the logarithmic function, by maximizing the lower bound J (q, πθ), we
can obtain a policy with an expected return higher than before. Generally, our framework can be
divided into two steps of loop iteration. The first part of J (q, πθ) can be explained as estimating the
optimal policy distribution on the sampled trajectories by maximizing the expected reward over the
state space. The second part relates to updating the current agent’s parameters θ towards the optimal
policy q, thus completing the optimization of one single iteration. In analogy to SGD (Robbins &
Monro, 1951), the estimation process introduces noise to the policy optimization due to the presence
of unseen decision-making trajectories. This error gradually decreases as the optimization proceeds
and converges to zero when the current agent becomes optimal (Dayan & Hinton, 1997).

In AGENTEVOL, we refer to the two steps as Exploration step and Learning step like Singh et al.
(2023). Specifically, with current agent parameters θm and the variational distribution qm, at ex-
ploration step, the estimation of optimal policy q is updated by maximizing the expected reward:
qm+1 = argmaxq J (q, πθm). As maxq J (q, πθm) = minq[KL(q(τ)∥p(O = 1|τ)πθm(τ))], we
have qm+1 ∝ p(O = 1|τ)πθm(τ). This step is equivalent to evaluating the likelihood that the
samples generated from the current agent’s policy achieve best rewards, and observe the returns of
q by empirically estimating on a pre-constructed training set. And at learning step, we optimize
J (qm+1, πθ) by updating θ. This process is similar to learning a new distribution sampled from the
optimal policy on the original training data. Since the first term of J (qm+1, πθ) relates only to q as

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

Algorithm 1: AGENTEVOL

Input: Initialized policy LLM-based agent πθ, environment set E , trajectory subset Ds, full
instruction set Q, reward function r.

Procedure Behavioral cloning:
Maximize objective JBC(θ) = E(e,u,τ)∼Ds

[
log πθ(τ |e, u)

]
to get πθbase

;

Procedure Evolution :
πθ1 ← πθbase

;
for iteration m = 1 to M do

// Perform Exploration Step
Dm =

⋃
e∈E De

m, where De
m = {(e, uj , τ j) |uj ∼ Qe, τ

j ∼ πθm(τ |e, uj)}|D
e
m|

j=1 ;
Compute reward for Dm with r;
Dm ← Dm ∪ Ds;
// Perform Learning Step
Maximize objective JEvol(θ) = E(e,u,τ)∼Dm

[r(e, u, τ) log πθ(τ |e, u)] to get πθm+1 ;
end

well as τ , the training objective is equivalent to measuring the KL divergence between the estimated
policy qm+1(·) and the current policy πθ(·) over all training samples. We finally derive:

θm+1 := argmin
θ

KL[qm+1(τ)∥πθ(τ)] = argmin
θ

∑
τ

−qm+1(τ) log πθ(τ). (6)

This involves optimizing a weighted negative log-likelihood function based on qm+1, which adjusts
the agent policy to increase the likelihood of generating higher-reward trajectories, thereby improv-
ing the agent’s performance.
Practical implementation for evolving LLM-based agents. In our LLM-based agent setting,
the trajectory is conditioned on the environment e and instruction u. Considering our non-negative
reward function r(e, u, τ), we can get P (O|e, u, τ) ∝ r(e, u, τ) (Singh et al., 2023). Consequently,
qm+1(τ |e, u) ∝ r(e, u, τ) · πθm(τ |e, u). Thus, the policy update in the learning is:

θm+1 := argmin
θ

∑
τ

−(r(e, u, τ) · πθ(τ |e, u)) log πθ(τ |e, u)

= argmax
θ

Ee∈E,u∼Qe,τ∼πθm (τ |e,u)[r(e, u, τ) log πθ(τ |e, u)].
(7)

This can be viewed as a supervised fine-tuning objective weighted by reward. This approach uses
the fixed policy agent from the previous iteration to sample data, thereby separating data collection
and policy optimization. This decoupled process can improve the training stability (Zelikman et al.,
2022; Singh et al., 2023).

Now we describe the two steps of evolution part in AGENTEVOL in practice:

Exploration Step. In the m-th exploring iteration, for each environment e, we have an instruction
set Qe which is larger than that used in the BC phase, allowing us to investigate agents
evolving to unseen tasks and instructions. The current policy agent interacts with this en-
vironment, generating a collection of interaction trajectories De

m = {(e, uj , τ j) |uj ∼
Qe, τ

j ∼ πθm(τ |e, uj)}|D
e
m|

j=1 . Subsequently, based on the reward function of the environ-
ment, we calculate the reward r(e, u, τ) for each trajectory. The generated dataset from
each environment is then merged, resulting in Dm =

⋃
e∈E De

m. Note that we also include
the original trajectory set in Section 3.2 for the learning step, i.e., Dm = Dm

⋃
Ds.

Learning Step. In the m-th learning iteration, we utilize the dataset Dm obtained
from the exploration step to fine-tune the agent with the objective JEvol(θ) =
E(e,u,τ)∼Dm

[r(e, u, τ) log πθ(τ |e, u)] to get πθm+1 . We also include the general domain
dataset as in the BC phase. We optimize the initial agent πθ at each iteration, aiming to
minimize overfitting and prevent drift from the base agent. In this learning step, the agent is
improved, similar to previous work done on LLM reasoning Zelikman et al. (2022); Singh
et al. (2023); Aksitov et al. (2023).

By alternating between the two steps, empirical results show that the method facilitates the evolution
of an LLM-based agent across both seen and unseen tasks and instructions.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

Table 3: Evaluating results on diverse tasks. BCbase means the agent trained with AGENTTRAJ, pro-
viding a base agent with basic ability and prior knowledge. BClarge means the agent that performs
BC on AGENTTRAJ-L, representing the performance upper limit of BC in this paper. Our evolution
method, AGENTEVOL, outperforms BClarge on most tasks and environments through exploration
and learning. The best performance of each part is highlighted in bold.

Method WS ALF TC Sci Baby MZ WD WT MV TL BD

Close-sourced Models & Agents
DeepSeek-Chat 11.00 51.00 23.00 16.80 45.67 4.00 24.00 70.00 70.00 75.00 13.50
Claude-3-Haiku 5.50 0.00 0.00 0.83 1.93 4.00 16.00 55.00 50.00 65.00 13.50
Claude-3-Sonnet 1.50 13.00 38.00 2.78 79.25 0.00 36.00 65.00 80.00 80.00 17.00
GPT-3.5-Turbo 12.50 26.00 47.00 7.64 71.36 4.00 20.00 25.00 70.00 40.00 12.50
GPT-4-Turbo 15.50 67.50 77.00 14.38 72.83 68.00 88.00 80.00 95.00 95.00 16.00

Open-sourced Models & Agents
Llama2-Chat-7B 0.50 2.00 0.00 0.83 0.23 0.00 0.00 0.00 0.00 0.00 1.50
Llama2-Chat-13B 1.00 3.50 0.00 0.83 0.10 0.00 0.00 0.00 0.00 0.00 1.50
AgentLM-7B 36.50 71.00 4.00 1.63 0.49 12.00 4.00 0.00 5.00 15.00 5.00
AgentLM-13B 39.50 73.00 0.00 2.75 0.45 8.00 0.00 10.00 5.00 5.00 3.00
AgentLM-70B 49.50 67.00 4.00 10.68 0.66 8.00 4.00 0.00 0.00 40.00 7.50

Ours
BCbase 66.50 77.50 44.00 26.42 69.31 12.00 12.00 25.00 5.00 45.00 8.00
BClarge 73.50 83.00 60.00 74.47 74.19 12.00 36.00 45.00 5.00 65.00 8.50
AGENTEVOL 76.50 88.00 64.00 38.00 82.70 12.00 12.00 25.00 60.00 70.00 9.00

4 EXPERIMENTS AND DISCUSSION

4.1 EXPERIMENTAL SETUP

Environments and Tasks. We explore the self-evolution of LLM-based agents with the AGENT-
GYM framework. Main experiments cover the following environments: WS, ALF, Sci, Baby, TC,
BD, MZ, WD, TL, WT, and MV. Note that instructions used in BC are fewer than those in evolution,
to study the agent’s ability to generalize when performing exploration.

Baselines. We include closed-source models like GPT-3.5-Turbo (Ouyang et al., 2022), GPT-4-
Turbo (OpenAI, 2023), Claude 3 (Anthropic, 2024), and DeepSeek-Chat (DeepSeek-AI, 2024). We
also include open-source models like Llama-2-Chat (Touvron et al., 2023), and agents trained on
expert trajectories, i.e., AgentLM (Zeng et al., 2023). For a fair comparison, we include a baseline
that performs BC on AGENTTRAJ-L, serving as the maximum performance achievable through BC.

Implementation Details. Experiments are conducted with eight A100-80GB GPUs. Our main
backbone model is Llama-2-Chat-7B. Different environment services are deployed on different ports
of the same server. We set the iteration number M to 4. Each instruction is sampled once during
the evolution process for efficiency. Note that some environments provide dense rewards r ∈ [0, 1],
while others give only binary feedback r ∈ {0, 1}. For simplicity and consistency, we follow
previous work (Singh et al., 2023) and use binary rewards. We set r = 0 for trajectories where
r < 1, while for those with r = 1, we keep it unchanged. See Appendix E for more implementation
details. Detailed prompts for each environment are in Appendix G.

4.2 MAIN RESULTS

Experiment results in Table 3 demonstrate that: (1) While closed-source models perform well, even
SOTA closed-source models like GPT-4-Turbo fail to achieve satisfactory performance on all tasks,
highlighting the need for developing more capable agents. (2) Open-source models, represented by
Llama2-Chat, perform poorly on all tasks, highlighting the importance of the initialization step of
BC. (3) Models trained on agent trajectories, like AgentLM (Zeng et al., 2023), can perform on par
with GPT-4-Turbo on many tasks, particularly the 70B version. However, they do not match perfor-
mance on tasks like TextCraft (Prasad et al., 2023) or SciWorld (Wang et al., 2022), which can be at-
tributed to the lack of training data. (4) The agent trained on AGENTTRAJ-L ,i.e., BClarge, achieves
excellent performance, matching or even surpassing SOTA models, showing that it is a strong base-
line. (5) AGENTEVOL, despite having limited trajectories for imitation, surpasses BClarge and
SOTA models on many tasks like WebShop (Yao et al., 2022), ALFWorld (Shridhar et al., 2021) and
BabyAI (Chevalier-Boisvert et al., 2019), validating the superiority and promise of agent evolution.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

M = 1 M = 2 M = 3 M = 4 M = 5
Iteration Number (M)

20

30

40

50

60

70

80

90

Pe
rfo

rm
an

ce

Strategy 1: merging current trajectories with initial trajectory set
Strategy 2: merging current trajectories with previous round's trajectories

AlfWorld
BabyAI

TextCraft
Sciworld

Figure 3: Ablation on data merging strategies
and iteration number M .

WS ALF Baby0

20

40

60

80

Pe
rfo

rm
an

ce

15.5

67.5
72.8

18.9

68.5

82.5

73.5

83.0

74.2

68.0

83.5

69.8

76.5

88.0
82.7

GPT-4-Turbo GPT-4-Turbo + LLM-Planner BClarge PPO AgentEvol

Figure 4: Comparison with other exploration-
based methods.

Moreover, we report the number of interactive rounds required by different models to solve the task,
in order to demonstrate the efficiency of AGENTEVOL (Appendix F.1). We also conduct experiments
to explore evolution in isolated environments (Appendix F.4) and perform case study (Appendix F.6).

4.3 DISCUSSION & ANALYSIS

Ablation on data merging strategies and iteration number M . In our experiments, we merge
the trajectories sampled during each iteration with the initial trajectories for training, rather than
merging it with the trajectories generated in the previous iteration. Here, we conduct an ablation
study to show the impact of this merging strategy and the iteration number M . Experimental results
in Figure 3 show that merging with the initial data provides more stable improvements, while merg-
ing with the trajectories from the previous iteration leads to performance fluctuations, possibly due
to overfitting (Yuan et al., 2023b; Singh et al., 2023). Additionally, as M increases, performance
improves but gradually converges in later iterations. So we choose M = 4 to balance performance
and efficiency. More ablation studies can be found in Appendix F.2.

Comparison with other exploration-based methods. The AGENTEVOL method explores and
learns through interactions with environments. For comparison, we include two additional methods:
online RL method PPO (Schulman et al., 2017) and prompt-based method LLM-Planner (Song et al.,
2023). PPO employs the same backbone as AGENTEVOL, Llama-2-Chat-7B, whereas LLM-Planner
is implemented with GPT-4-Turbo to showcase its effectiveness. We run PPO in the isolated environ-
ment, as it tends to experience training instability and show poorer performance when applied across
multiple environments. Results in Figure 4 show that (1) LLM-Planner outperforms GPT-4-Turbo
but falls short on WS, and overall, it doesn’t surpass AGENTEVOL. (2) PPO performs well but lags
behind AGENTEVOL by a significant margin. These findings indicate that AGENTEVOL consistently
improves performance for smaller open-source models compared to larger SOTA models.

Evolution with both successful and failed trajectories. In the learning step, we only utilize
the sampled trajectories with high rewards (success) and do not use failed trajectories. Inspired
by previous work (Mitra et al., 2024; Hosseini et al., 2024; Song et al., 2024; Yang et al., 2024;
Wang et al., 2023a), we explore whether failed trajectories can be included for better evolution.
Specifically, we construct pairs of successful and failed trajectories and optimize the agent using the
DPO method (Rafailov et al., 2023), which fits models to the pair-wise dataset (Wang et al., 2023a;
Mitra et al., 2024; Lai et al., 2024). Results in Table 4 show that using both types of trajectories can
still bring about evolutionary effects, but the performance is not as good as our method, indicating
that preference optimization in multi-task setting is more challenging compared to single-task (Mitra
et al., 2024; Song et al., 2024). In the future, we hope to explore more advanced algorithms and
methods to make full use of all trajectories for comprehensive evolution.

Effectiveness on different models. To demonstrate the generalizability of our method across
different backbone models, we conduct experiments on Llama-2-13B (Touvron et al., 2023) and
DeepSeek-Coder-1.3B (Guo et al., 2024). The experimental results in Table 5 show that our AGEN-
TEVOL maintains its evolutionary capabilities across different backbone models, achieving perfor-
mance that is comparable to or surpasses BClarge.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

Table 4: Experiments on evolution with both
successful and failed trajectories.

Method WS ALF Baby TC

BCbase 66.5 77.5 69.3 44.0
AGENTEVOL 77.0 88.0 82.9 65.0
DPO with failed traj 75.0 86.5 78.3 58.0

Table 5: Effectiveness of AGENTEVOL on
different models.

Model Method WS ALF Baby TC

DeepSeek-Coder-1.3B BCbase 54.0 33.0 68.9 31.0
BClarge 65.0 62.5 73.8 37.0
AGENTEVOL 67.5 54.5 77.3 38.0

Llama2-Chat-13B BCbase 65.5 81.5 76.6 59.0
BClarge 74.0 85.0 81.1 61.0
AGENTEVOL 78.5 89.5 86.8 71.0

5 RELATED WORK

With the development of LLMs (OpenAI, 2023; Anil et al., 2023), developing agents based on them
has become an important research direction (Xi et al., 2023; Wang et al., 2024b). These agents
are typically designed to perform multi-turn decision-making tasks (Yao et al., 2023; Aksitov et al.,
2023; Chen et al., 2023). To evaluate these agents, researchers have proposed various benchmarks
(Yao et al., 2022; Liu et al., 2023a; Ma et al., 2024; Zhou et al., 2023b). Our benchmark AGENTE-
VAL covers more diverse scenarios and environments, providing a more comprehensive evaluation.

Closed-source LLMs, equipped with prompting methods like ReAct (Yao et al., 2023) and PlanAct
(Liu et al., 2023b), can achieve great performance in agent tasks, while agents based on open-source
methods perform poorly on these tasks (Liu et al., 2023a; Christianos et al., 2023). To address this
challenge, a series of work collects expert trajectories from diverse environments and tasks and trains
LLM-based agents through behavioral cloning (Zeng et al., 2023; Chen et al., 2023; 2024; Zhang
et al., 2024). However, obtaining these expert trajectories is often costly and they lack sufficient
exploration of the environment (Yang et al., 2024; Aksitov et al., 2023).

Another line of work trains LLM-based agents based on environmental feedback, referred to as in-
teractive learning methods (Zhou et al., 2024; Christianos et al., 2023; Song et al., 2024; Abdulhai
et al., 2023a). Specifically, they involve training LLMs or agents through exploration and learning.
As a representative method, RL has succeeded in LLM alignment (Askell et al., 2021; Bai et al.,
2022; Ouyang et al., 2022; Zheng et al., 2023b; Wang et al., 2024a), and has been introduced to
reasoning and agent tasks, achieving excellent results (Xi et al., 2024; Luong et al., 2024; Zhou
et al., 2024; Christianos et al., 2023). However, in our multi-environment scenarios, reward con-
sistency and training stability can become problematic (Zhou et al., 2024; Song et al., 2024; Cao
et al., 2024). Another line of work uses self-evolution/self-improvement, where the model explores
the environment to obtain high-reward trajectories and fine-tunes itself based on these trajectories,
achieving promising performance in reasoning, coding, and web tasks (Gülçehre et al., 2023; Singh
et al., 2023; Zelikman et al., 2022; Yuan et al., 2023a; Aksitov et al., 2023; Yang et al., 2024; Song
et al., 2024; Tao et al., 2024; Tian et al., 2024; Lai et al., 2024). However, like RL-based methods,
these works only explore within a single environment. With AGENTGYM, our work explores agent
evolution using AGENTEVOL method, conducting exploration across multiple environments.

6 CONCLUSION

In this work, we present a new framework named AGENTGYM that encompasses 14 interactive
environments and 89 tasks, covering 7 key scenarios for agent evaluation and development. It also
includes expanded instructions, a comprehensive benchmark named AGENTEVAL, and trajectory
sets called AGENTTRAJ and AGENTTRAJ-L. Additionally, we derive and implement an exploration-
learning method AGENTEVOL to investigate the self-evolution of LLM-based agents across multiple
environments. Empirical results demonstrate the effectiveness of the framework and the method. We
also perform sufficient ablation and analysis to investigate how the method works. We hope our work
can help the AI community develop more advanced generalist LLM-based agents.

ETHICS STATEMENT

AGENTGYM and AGENTEVOL facilitate the self-evolution of generally-capable agents, and our
focus is on the self-evolution of decision-making capabilities, but it is crucial to consider safety and
ethical issues during usage. Agents must not be allowed to violate human values. Therefore, it is

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

essential to strengthen supervision and regulation when eliciting agents’ self-evolution capabilities.
In the future, we hope to improve the framework’s functionality to align agents with human values.

REPRODUCIBILITY STATEMENT

We upload anonymized versions of our data and code in a Zip file with a Readme file. We have
listed our implementation details in Section 4.1 and Appendix E. We will release the code, dataset,
benchmark, and checkpoints.

REFERENCES

Abbas Abdolmaleki, Jost Tobias Springenberg, Yuval Tassa, Rémi Munos, Nicolas Heess, and Mar-
tin A. Riedmiller. Maximum a posteriori policy optimisation. In 6th International Conference
on Learning Representations, ICLR 2018, Vancouver, BC, Canada, April 30 - May 3, 2018,
Conference Track Proceedings. OpenReview.net, 2018. URL https://openreview.net/
forum?id=S1ANxQW0b.

Marwa Abdulhai, Isadora White, Charlie Snell, Charles Sun, Joey Hong, Yuexiang Zhai, Kelvin
Xu, and Sergey Levine. LMRL gym: Benchmarks for multi-turn reinforcement learning with
language models. CoRR, abs/2311.18232, 2023a. doi: 10.48550/ARXIV.2311.18232. URL
https://doi.org/10.48550/arXiv.2311.18232.

Marwa Abdulhai, Isadora White, Charlie Snell, Charles Sun, Joey Hong, Yuexiang Zhai, Kelvin Xu,
and Sergey Levine. Lmrl gym: Benchmarks for multi-turn reinforcement learning with language
models, 2023b.

Renat Aksitov, Sobhan Miryoosefi, Zonglin Li, Daliang Li, Sheila Babayan, Kavya Kopparapu,
Zachary Fisher, Ruiqi Guo, Sushant Prakash, Pranesh Srinivasan, Manzil Zaheer, Felix X. Yu,
and Sanjiv Kumar. Rest meets react: Self-improvement for multi-step reasoning LLM agent.
CoRR, abs/2312.10003, 2023. doi: 10.48550/ARXIV.2312.10003. URL https://doi.org/
10.48550/arXiv.2312.10003.

Rohan Anil, Sebastian Borgeaud, Yonghui Wu, Jean-Baptiste Alayrac, Jiahui Yu, Radu Soricut, Jo-
han Schalkwyk, Andrew M. Dai, Anja Hauth, Katie Millican, David Silver, Slav Petrov, Melvin
Johnson, Ioannis Antonoglou, Julian Schrittwieser, Amelia Glaese, Jilin Chen, Emily Pitler, Tim-
othy P. Lillicrap, Angeliki Lazaridou, Orhan Firat, James Molloy, Michael Isard, Paul Ronald
Barham, Tom Hennigan, Benjamin Lee, Fabio Viola, Malcolm Reynolds, Yuanzhong Xu, Ryan
Doherty, Eli Collins, Clemens Meyer, Eliza Rutherford, Erica Moreira, Kareem Ayoub, Megha
Goel, George Tucker, Enrique Piqueras, Maxim Krikun, Iain Barr, Nikolay Savinov, Ivo Dani-
helka, Becca Roelofs, Anaı̈s White, Anders Andreassen, Tamara von Glehn, Lakshman Yagati,
Mehran Kazemi, Lucas Gonzalez, Misha Khalman, Jakub Sygnowski, and et al. Gemini: A fam-
ily of highly capable multimodal models. CoRR, abs/2312.11805, 2023. doi: 10.48550/ARXIV.
2312.11805. URL https://doi.org/10.48550/arXiv.2312.11805.

Anthropic. The claude 3 model family: Opus, sonnet, haiku. https://www-cdn.anthropic.
com/de8ba9b01c9ab7cbabf5c33b80b7bbc618857627/Model_Card_Claude_
3.pdf, 2024.

Amanda Askell, Yuntao Bai, Anna Chen, Dawn Drain, Deep Ganguli, Tom Henighan, Andy Jones,
Nicholas Joseph, Benjamin Mann, Nova DasSarma, Nelson Elhage, Zac Hatfield-Dodds, Danny
Hernandez, Jackson Kernion, Kamal Ndousse, Catherine Olsson, Dario Amodei, Tom B. Brown,
Jack Clark, Sam McCandlish, Chris Olah, and Jared Kaplan. A general language assistant as a
laboratory for alignment. CoRR, abs/2112.00861, 2021. URL https://arxiv.org/abs/
2112.00861.

Yuntao Bai, Andy Jones, Kamal Ndousse, Amanda Askell, Anna Chen, Nova DasSarma, Dawn
Drain, Stanislav Fort, Deep Ganguli, Tom Henighan, Nicholas Joseph, Saurav Kadavath, Jack-
son Kernion, Tom Conerly, Sheer El Showk, Nelson Elhage, Zac Hatfield-Dodds, Danny Her-
nandez, Tristan Hume, Scott Johnston, Shauna Kravec, Liane Lovitt, Neel Nanda, Catherine
Olsson, Dario Amodei, Tom B. Brown, Jack Clark, Sam McCandlish, Chris Olah, Benjamin

11

https://openreview.net/forum?id=S1ANxQW0b
https://openreview.net/forum?id=S1ANxQW0b
https://doi.org/10.48550/arXiv.2311.18232
https://doi.org/10.48550/arXiv.2312.10003
https://doi.org/10.48550/arXiv.2312.10003
https://doi.org/10.48550/arXiv.2312.11805
https://www-cdn.anthropic.com/de8ba9b01c9ab7cbabf5c33b80b7bbc618857627/Model_Card_Claude_3.pdf
https://www-cdn.anthropic.com/de8ba9b01c9ab7cbabf5c33b80b7bbc618857627/Model_Card_Claude_3.pdf
https://www-cdn.anthropic.com/de8ba9b01c9ab7cbabf5c33b80b7bbc618857627/Model_Card_Claude_3.pdf
https://arxiv.org/abs/2112.00861
https://arxiv.org/abs/2112.00861

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Mann, and Jared Kaplan. Training a helpful and harmless assistant with reinforcement learning
from human feedback. CoRR, abs/2204.05862, 2022. doi: 10.48550/ARXIV.2204.05862. URL
https://doi.org/10.48550/arXiv.2204.05862.

Meng Cao, Lei Shu, Lei Yu, Yun Zhu, Nevan Wichers, Yinxiao Liu, and Lei Meng. DRLC: rein-
forcement learning with dense rewards from LLM critic. CoRR, abs/2401.07382, 2024. doi: 10.
48550/ARXIV.2401.07382. URL https://doi.org/10.48550/arXiv.2401.07382.

Baian Chen, Chang Shu, Ehsan Shareghi, Nigel Collier, Karthik Narasimhan, and Shunyu Yao. Fire-
act: Toward language agent fine-tuning. CoRR, abs/2310.05915, 2023. doi: 10.48550/ARXIV.
2310.05915. URL https://doi.org/10.48550/arXiv.2310.05915.

Zehui Chen, Kuikun Liu, Qiuchen Wang, Wenwei Zhang, Jiangning Liu, Dahua Lin, Kai Chen, and
Feng Zhao. Agent-flan: Designing data and methods of effective agent tuning for large language
models. CoRR, abs/2403.12881, 2024. doi: 10.48550/ARXIV.2403.12881. URL https://
doi.org/10.48550/arXiv.2403.12881.

Maxime Chevalier-Boisvert, Dzmitry Bahdanau, Salem Lahlou, Lucas Willems, Chitwan Saharia,
Thien Huu Nguyen, and Yoshua Bengio. Babyai: A platform to study the sample efficiency
of grounded language learning. In 7th International Conference on Learning Representations,
ICLR 2019, New Orleans, LA, USA, May 6-9, 2019. OpenReview.net, 2019. URL https:
//openreview.net/forum?id=rJeXCo0cYX.

Filippos Christianos, Georgios Papoudakis, Matthieu Zimmer, Thomas Coste, Zhihao Wu, Jingxuan
Chen, Khyati Khandelwal, James Doran, Xidong Feng, Jiacheng Liu, Zheng Xiong, Yicheng
Luo, Jianye Hao, Kun Shao, Haitham Bou-Ammar, and Jun Wang. Pangu-agent: A fine-tunable
generalist agent with structured reasoning. CoRR, abs/2312.14878, 2023. doi: 10.48550/ARXIV.
2312.14878. URL https://doi.org/10.48550/arXiv.2312.14878.

Peter Dayan and Geoffrey E Hinton. Using expectation-maximization for reinforcement learning.
Neural Computation, 9(2):271–278, 1997.

DeepSeek-AI. Deepseek-v2: A strong, economical, and efficient mixture-of-experts language
model, 2024.

Linxi Fan, Guanzhi Wang, Yunfan Jiang, Ajay Mandlekar, Yuncong Yang, Haoyi Zhu, An-
drew Tang, De-An Huang, Yuke Zhu, and Anima Anandkumar. Minedojo: Building
open-ended embodied agents with internet-scale knowledge. In Sanmi Koyejo, S. Mo-
hamed, A. Agarwal, Danielle Belgrave, K. Cho, and A. Oh (eds.), Advances in Neural
Information Processing Systems 35: Annual Conference on Neural Information Process-
ing Systems 2022, NeurIPS 2022, New Orleans, LA, USA, November 28 - December
9, 2022, 2022. URL http://papers.nips.cc/paper_files/paper/2022/
hash/74a67268c5cc5910f64938cac4526a90-Abstract-Datasets_and_
Benchmarks.html.

Çaglar Gülçehre, Tom Le Paine, Srivatsan Srinivasan, Ksenia Konyushkova, Lotte Weerts, Abhishek
Sharma, Aditya Siddhant, Alex Ahern, Miaosen Wang, Chenjie Gu, Wolfgang Macherey, Arnaud
Doucet, Orhan Firat, and Nando de Freitas. Reinforced self-training (rest) for language modeling.
CoRR, abs/2308.08998, 2023. doi: 10.48550/ARXIV.2308.08998. URL https://doi.org/
10.48550/arXiv.2308.08998.

Daya Guo, Qihao Zhu, Dejian Yang, Zhenda Xie, Kai Dong, Wentao Zhang, Guanting Chen, Xiao
Bi, Y Wu, YK Li, et al. Deepseek-coder: When the large language model meets programming–the
rise of code intelligence. arXiv preprint arXiv:2401.14196, 2024.

Arian Hosseini, Xingdi Yuan, Nikolay Malkin, Aaron C. Courville, Alessandro Sordoni, and
Rishabh Agarwal. V-star: Training verifiers for self-taught reasoners. CoRR, abs/2402.06457,
2024. doi: 10.48550/ARXIV.2402.06457. URL https://doi.org/10.48550/arXiv.
2402.06457.

Shengyi Huang, Rousslan Fernand Julien Dossa, Antonin Raffin, Anssi Kanervisto, and Weixun
Wang. The 37 implementation details of proximal policy optimization. The ICLR Blog Track
2023, 2022.

12

https://doi.org/10.48550/arXiv.2204.05862
https://doi.org/10.48550/arXiv.2401.07382
https://doi.org/10.48550/arXiv.2310.05915
https://doi.org/10.48550/arXiv.2403.12881
https://doi.org/10.48550/arXiv.2403.12881
https://openreview.net/forum?id=rJeXCo0cYX
https://openreview.net/forum?id=rJeXCo0cYX
https://doi.org/10.48550/arXiv.2312.14878
http://papers.nips.cc/paper_files/paper/2022/hash/74a67268c5cc5910f64938cac4526a90-Abstract-Datasets_and_Benchmarks.html
http://papers.nips.cc/paper_files/paper/2022/hash/74a67268c5cc5910f64938cac4526a90-Abstract-Datasets_and_Benchmarks.html
http://papers.nips.cc/paper_files/paper/2022/hash/74a67268c5cc5910f64938cac4526a90-Abstract-Datasets_and_Benchmarks.html
https://doi.org/10.48550/arXiv.2308.08998
https://doi.org/10.48550/arXiv.2308.08998
https://doi.org/10.48550/arXiv.2402.06457
https://doi.org/10.48550/arXiv.2402.06457

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Hanyu Lai, Xiao Liu, Iat Long Iong, Shuntian Yao, Yuxuan Chen, Pengbo Shen, Hao Yu, Hanchen
Zhang, Xiaohan Zhang, Yuxiao Dong, and Jie Tang. Autowebglm: Bootstrap and reinforce A
large language model-based web navigating agent. CoRR, abs/2404.03648, 2024. doi: 10.48550/
ARXIV.2404.03648. URL https://doi.org/10.48550/arXiv.2404.03648.

WB Langdon. Pfeiffer–a distributed open-ended evolutionary system. In AISB, volume 5, pp. 7–13.
Citeseer, 2005.

Sergey Levine and Vladlen Koltun. Variational policy search via trajectory optimization. Advances
in neural information processing systems, 26, 2013.

Xiao Liu, Hao Yu, Hanchen Zhang, Yifan Xu, Xuanyu Lei, Hanyu Lai, Yu Gu, Hangliang Ding,
Kaiwen Men, Kejuan Yang, Shudan Zhang, Xiang Deng, Aohan Zeng, Zhengxiao Du, Chenhui
Zhang, Sheng Shen, Tianjun Zhang, Yu Su, Huan Sun, Minlie Huang, Yuxiao Dong, and Jie Tang.
Agentbench: Evaluating llms as agents. CoRR, abs/2308.03688, 2023a. doi: 10.48550/ARXIV.
2308.03688. URL https://doi.org/10.48550/arXiv.2308.03688.

Zhiwei Liu, Weiran Yao, Jianguo Zhang, Le Xue, Shelby Heinecke, Rithesh Murthy, Yihao Feng,
Zeyuan Chen, Juan Carlos Niebles, Devansh Arpit, Ran Xu, Phil Mui, Huan Wang, Caim-
ing Xiong, and Silvio Savarese. BOLAA: benchmarking and orchestrating llm-augmented au-
tonomous agents. CoRR, abs/2308.05960, 2023b. doi: 10.48550/ARXIV.2308.05960. URL
https://doi.org/10.48550/arXiv.2308.05960.

Trung Quoc Luong, Xinbo Zhang, Zhanming Jie, Peng Sun, Xiaoran Jin, and Hang Li. Reft: Rea-
soning with reinforced fine-tuning, 2024.

Chang Ma, Junlei Zhang, Zhihao Zhu, Cheng Yang, Yujiu Yang, Yaohui Jin, Zhenzhong Lan,
Lingpeng Kong, and Junxian He. Agentboard: An analytical evaluation board of multi-turn
LLM agents. CoRR, abs/2401.13178, 2024. doi: 10.48550/ARXIV.2401.13178. URL https:
//doi.org/10.48550/arXiv.2401.13178.

Arindam Mitra, Hamed Khanpour, Corby Rosset, and Ahmed Awadallah. Orca-math: Unlocking
the potential of slms in grade school math. CoRR, abs/2402.14830, 2024. doi: 10.48550/ARXIV.
2402.14830. URL https://doi.org/10.48550/arXiv.2402.14830.

Gerhard Neumann. Variational inference for policy search in changing situations. In Lise Getoor and
Tobias Scheffer (eds.), Proceedings of the 28th International Conference on Machine Learning,
ICML 2011, Bellevue, Washington, USA, June 28 - July 2, 2011, pp. 817–824. Omnipress, 2011.
URL https://icml.cc/2011/papers/441_icmlpaper.pdf.

OpenAI. GPT-4 technical report. CoRR, abs/2303.08774, 2023. doi: 10.48550/ARXIV.2303.08774.
URL https://doi.org/10.48550/arXiv.2303.08774.

Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida, Carroll L. Wainwright, Pamela Mishkin,
Chong Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, John Schulman, Jacob Hilton,
Fraser Kelton, Luke Miller, Maddie Simens, Amanda Askell, Peter Welinder, Paul F. Christiano,
Jan Leike, and Ryan Lowe. Training language models to follow instructions with human feed-
back. In Sanmi Koyejo, S. Mohamed, A. Agarwal, Danielle Belgrave, K. Cho, and A. Oh (eds.),
Advances in Neural Information Processing Systems 35: Annual Conference on Neural Informa-
tion Processing Systems 2022, NeurIPS 2022, New Orleans, LA, USA, November 28 - December
9, 2022, 2022. URL http://papers.nips.cc/paper_files/paper/2022/hash/
b1efde53be364a73914f58805a001731-Abstract-Conference.html.

Jan Peters and Stefan Schaal. Reinforcement learning by reward-weighted regression for operational
space control. In Zoubin Ghahramani (ed.), Machine Learning, Proceedings of the Twenty-Fourth
International Conference (ICML 2007), Corvallis, Oregon, USA, June 20-24, 2007, volume 227
of ACM International Conference Proceeding Series, pp. 745–750. ACM, 2007. doi: 10.1145/
1273496.1273590. URL https://doi.org/10.1145/1273496.1273590.

Archiki Prasad, Alexander Koller, Mareike Hartmann, Peter Clark, Ashish Sabharwal, Mohit
Bansal, and Tushar Khot. Adapt: As-needed decomposition and planning with language mod-
els. CoRR, abs/2311.05772, 2023. doi: 10.48550/ARXIV.2311.05772. URL https://doi.
org/10.48550/arXiv.2311.05772.

13

https://doi.org/10.48550/arXiv.2404.03648
https://doi.org/10.48550/arXiv.2308.03688
https://doi.org/10.48550/arXiv.2308.05960
https://doi.org/10.48550/arXiv.2401.13178
https://doi.org/10.48550/arXiv.2401.13178
https://doi.org/10.48550/arXiv.2402.14830
https://icml.cc/2011/papers/441_icmlpaper.pdf
https://doi.org/10.48550/arXiv.2303.08774
http://papers.nips.cc/paper_files/paper/2022/hash/b1efde53be364a73914f58805a001731-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2022/hash/b1efde53be364a73914f58805a001731-Abstract-Conference.html
https://doi.org/10.1145/1273496.1273590
https://doi.org/10.48550/arXiv.2311.05772
https://doi.org/10.48550/arXiv.2311.05772

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Rafael Rafailov, Archit Sharma, Eric Mitchell, Christopher D. Manning, Stefano Ermon, and
Chelsea Finn. Direct preference optimization: Your language model is secretly a reward model.
In Alice Oh, Tristan Naumann, Amir Globerson, Kate Saenko, Moritz Hardt, and Sergey Levine
(eds.), Advances in Neural Information Processing Systems 36: Annual Conference on Neural
Information Processing Systems 2023, NeurIPS 2023, New Orleans, LA, USA, December 10 -
16, 2023, 2023. URL http://papers.nips.cc/paper_files/paper/2023/hash/
a85b405ed65c6477a4fe8302b5e06ce7-Abstract-Conference.html.

Konrad Rawlik, Marc Toussaint, and Sethu Vijayakumar. On stochastic optimal control and re-
inforcement learning by approximate inference (extended abstract). In Francesca Rossi (ed.),
IJCAI 2013, Proceedings of the 23rd International Joint Conference on Artificial Intelligence,
Beijing, China, August 3-9, 2013, pp. 3052–3056. IJCAI/AAAI, 2013. URL http://www.
aaai.org/ocs/index.php/IJCAI/IJCAI13/paper/view/6658.

Scott E. Reed, Konrad Zolna, Emilio Parisotto, Sergio Gómez Colmenarejo, Alexander Novikov,
Gabriel Barth-Maron, Mai Gimenez, Yury Sulsky, Jackie Kay, Jost Tobias Springenberg, Tom
Eccles, Jake Bruce, Ali Razavi, Ashley Edwards, Nicolas Heess, Yutian Chen, Raia Hadsell,
Oriol Vinyals, Mahyar Bordbar, and Nando de Freitas. A generalist agent. Trans. Mach. Learn.
Res., 2022, 2022. URL https://openreview.net/forum?id=1ikK0kHjvj.

Herbert Robbins and Sutton Monro. A stochastic approximation method. The annals of mathemati-
cal statistics, pp. 400–407, 1951.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
optimization algorithms. arXiv preprint arXiv:1707.06347, 2017.

Mohit Shridhar, Xingdi Yuan, Marc-Alexandre Côté, Yonatan Bisk, Adam Trischler, and Matthew J.
Hausknecht. Alfworld: Aligning text and embodied environments for interactive learning. In
9th International Conference on Learning Representations, ICLR 2021, Virtual Event, Austria,
May 3-7, 2021. OpenReview.net, 2021. URL https://openreview.net/forum?id=
0IOX0YcCdTn.

David Silver, Julian Schrittwieser, Karen Simonyan, Ioannis Antonoglou, Aja Huang, Arthur Guez,
Thomas Hubert, Lucas Baker, Matthew Lai, Adrian Bolton, Yutian Chen, Timothy P. Lilli-
crap, Fan Hui, Laurent Sifre, George van den Driessche, Thore Graepel, and Demis Hassabis.
Mastering the game of go without human knowledge. Nat., 550(7676):354–359, 2017. doi:
10.1038/NATURE24270. URL https://doi.org/10.1038/nature24270.

David Silver, Thomas Hubert, Julian Schrittwieser, Ioannis Antonoglou, Matthew Lai, Arthur Guez,
Marc Lanctot, Laurent Sifre, Dharshan Kumaran, Thore Graepel, et al. A general reinforcement
learning algorithm that masters chess, shogi, and go through self-play. Science, 362(6419):1140–
1144, 2018.

Avi Singh, John D. Co-Reyes, Rishabh Agarwal, Ankesh Anand, Piyush Patil, Xavier Garcia, Pe-
ter J. Liu, James Harrison, Jaehoon Lee, Kelvin Xu, Aaron Parisi, Abhishek Kumar, Alex Alemi,
Alex Rizkowsky, Azade Nova, Ben Adlam, Bernd Bohnet, Gamaleldin F. Elsayed, Hanie Sedghi,
Igor Mordatch, Isabelle Simpson, Izzeddin Gur, Jasper Snoek, Jeffrey Pennington, Jiri Hron,
Kathleen Kenealy, Kevin Swersky, Kshiteej Mahajan, Laura Culp, Lechao Xiao, Maxwell L.
Bileschi, Noah Constant, Roman Novak, Rosanne Liu, Tris Warkentin, Yundi Qian, Yamini
Bansal, Ethan Dyer, Behnam Neyshabur, Jascha Sohl-Dickstein, and Noah Fiedel. Beyond human
data: Scaling self-training for problem-solving with language models. CoRR, abs/2312.06585,
2023. doi: 10.48550/ARXIV.2312.06585. URL https://doi.org/10.48550/arXiv.
2312.06585.

Chan Hee Song, Jiaman Wu, Clayton Washington, Brian M Sadler, Wei-Lun Chao, and Yu Su.
Llm-planner: Few-shot grounded planning for embodied agents with large language models. In
Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 2998–3009,
2023.

Yifan Song, Da Yin, Xiang Yue, Jie Huang, Sujian Li, and Bill Yuchen Lin. Trial and error:
Exploration-based trajectory optimization for LLM agents. CoRR, abs/2403.02502, 2024. doi: 10.
48550/ARXIV.2403.02502. URL https://doi.org/10.48550/arXiv.2403.02502.

14

http://papers.nips.cc/paper_files/paper/2023/hash/a85b405ed65c6477a4fe8302b5e06ce7-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2023/hash/a85b405ed65c6477a4fe8302b5e06ce7-Abstract-Conference.html
http://www.aaai.org/ocs/index.php/IJCAI/IJCAI13/paper/view/6658
http://www.aaai.org/ocs/index.php/IJCAI/IJCAI13/paper/view/6658
https://openreview.net/forum?id=1ikK0kHjvj
https://openreview.net/forum?id=0IOX0YcCdTn
https://openreview.net/forum?id=0IOX0YcCdTn
https://doi.org/10.1038/nature24270
https://doi.org/10.48550/arXiv.2312.06585
https://doi.org/10.48550/arXiv.2312.06585
https://doi.org/10.48550/arXiv.2403.02502

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

Russell K Standish. Open-ended artificial evolution. International Journal of Computational Intel-
ligence and Applications, 3(02):167–175, 2003.

Theodore R. Sumers, Shunyu Yao, Karthik Narasimhan, and Thomas L. Griffiths. Cognitive
architectures for language agents. Trans. Mach. Learn. Res., 2024, 2024. URL https:
//openreview.net/forum?id=1i6ZCvflQJ.

Zhengwei Tao, Ting-En Lin, Xiancai Chen, Hangyu Li, Yuchuan Wu, Yongbin Li, Zhi Jin, Fei
Huang, Dacheng Tao, and Jingren Zhou. A survey on self-evolution of large language models.
arXiv preprint arXiv:2404.14387, 2024.

Tim Taylor, Mark A. Bedau, Alastair Channon, David H. Ackley, Wolfgang Banzhaf, Guillaume
Beslon, Emily L. Dolson, Tom Froese, Simon J. Hickinbotham, Takashi Ikegami, Barry Mc-
Mullin, Norman H. Packard, Steen Rasmussen, Nathaniel Virgo, Eran Agmon, Edward Clark,
Simon McGregor, Charles Ofria, Glen E. P. Ropella, Lee Spector, Kenneth O. Stanley, Adam
Stanton, Christopher Steven Timperley, Anya E. Vostinar, and Michael J. Wiser. Open-ended
evolution: Perspectives from the OEE workshop in york. Artif. Life, 22(3):408–423, 2016. doi:
10.1162/ARTL\ A\ 00210. URL https://doi.org/10.1162/ARTL_a_00210.

SIMA Team, Maria Abi Raad, Arun Ahuja, Catarina Barros, Frederic Besse, Andrew Bolt, Adrian
Bolton, Bethanie Brownfield, Gavin Buttimore, Max Cant, Sarah Chakera, Stephanie C. Y. Chan,
Jeff Clune, Adrian Collister, Vikki Copeman, Alex Cullum, Ishita Dasgupta, Dario de Cesare,
Julia Di Trapani, Yani Donchev, Emma Dunleavy, Martin Engelcke, Ryan Faulkner, Frankie Gar-
cia, Charles Gbadamosi, Zhitao Gong, Lucy Gonzalez, Kshitij Gupta, Karol Gregor, Arne Olav
Hallingstad, Tim Harley, Sam Haves, Felix Hill, Ed Hirst, Drew A. Hudson, Jony Hudson,
Steph Hughes-Fitt, Danilo J. Rezende, Mimi Jasarevic, Laura Kampis, Nan Rosemary Ke,
Thomas Keck, Junkyung Kim, Oscar Knagg, Kavya Kopparapu, Andrew K. Lampinen, Shane
Legg, Alexander Lerchner, Marjorie Limont, Yulan Liu, Maria Loks-Thompson, Joseph Marino,
Kathryn Martin Cussons, Loic Matthey, Siobhan Mcloughlin, Piermaria Mendolicchio, Hamza
Merzic, Anna Mitenkova, Alexandre Moufarek, Valéria Oliveira, Yanko Gitahy Oliveira, Hannah
Openshaw, Renke Pan, Aneesh Pappu, Alex Platonov, Ollie Purkiss, David P. Reichert, John
Reid, Pierre Harvey Richemond, Tyson Roberts, Giles Ruscoe, Jaume Sanchez Elias, Tasha
Sandars, Daniel P. Sawyer, Tim Scholtes, Guy Simmons, Daniel Slater, Hubert Soyer, Heiko
Strathmann, Peter Stys, Allison C. Tam, Denis Teplyashin, Tayfun Terzi, Davide Vercelli, Bo-
jan Vujatovic, Marcus Wainwright, Jane X. Wang, Zhengdong Wang, Daan Wierstra, Duncan
Williams, Nathaniel Wong, Sarah York, and Nick Young. Scaling instructable agents across
many simulated worlds. CoRR, abs/2404.10179, 2024. doi: 10.48550/ARXIV.2404.10179. URL
https://doi.org/10.48550/arXiv.2404.10179.

Ye Tian, Baolin Peng, Linfeng Song, Lifeng Jin, Dian Yu, Haitao Mi, and Dong Yu. To-
ward self-improvement of llms via imagination, searching, and criticizing. arXiv preprint
arXiv:2404.12253, 2024.

Marc Toussaint. Robot trajectory optimization using approximate inference. In Andrea Pohoreckyj
Danyluk, Léon Bottou, and Michael L. Littman (eds.), Proceedings of the 26th Annual Interna-
tional Conference on Machine Learning, ICML 2009, Montreal, Quebec, Canada, June 14-18,
2009, volume 382 of ACM International Conference Proceeding Series, pp. 1049–1056. ACM,
2009. doi: 10.1145/1553374.1553508. URL https://doi.org/10.1145/1553374.
1553508.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Niko-
lay Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, et al. Llama 2: Open founda-
tion and fine-tuned chat models. arXiv preprint arXiv:2307.09288, 2023.

Binghai Wang, Rui Zheng, Lu Chen, Yan Liu, Shihan Dou, Caishuang Huang, Wei Shen, Senjie Jin,
Enyu Zhou, Chenyu Shi, Songyang Gao, Nuo Xu, Yuhao Zhou, Xiaoran Fan, Zhiheng Xi, Jun
Zhao, Xiao Wang, Tao Ji, Hang Yan, Lixing Shen, Zhan Chen, Tao Gui, Qi Zhang, Xipeng Qiu,
Xuanjing Huang, Zuxuan Wu, and Yu-Gang Jiang. Secrets of RLHF in large language models
part II: reward modeling. CoRR, abs/2401.06080, 2024a. doi: 10.48550/ARXIV.2401.06080.
URL https://doi.org/10.48550/arXiv.2401.06080.

15

https://openreview.net/forum?id=1i6ZCvflQJ
https://openreview.net/forum?id=1i6ZCvflQJ
https://doi.org/10.1162/ARTL_a_00210
https://doi.org/10.48550/arXiv.2404.10179
https://doi.org/10.1145/1553374.1553508
https://doi.org/10.1145/1553374.1553508
https://doi.org/10.48550/arXiv.2401.06080

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

Lei Wang, Chen Ma, Xueyang Feng, Zeyu Zhang, Hao Yang, Jingsen Zhang, Zhiyuan Chen,
Jiakai Tang, Xu Chen, Yankai Lin, Wayne Xin Zhao, Zhewei Wei, and Jirong Wen. A
survey on large language model based autonomous agents. Frontiers Comput. Sci., 18(6):
186345, 2024b. doi: 10.1007/S11704-024-40231-1. URL https://doi.org/10.1007/
s11704-024-40231-1.

Peiyi Wang, Lei Li, Liang Chen, Feifan Song, Binghuai Lin, Yunbo Cao, Tianyu Liu, and Zhi-
fang Sui. Making large language models better reasoners with alignment. arXiv preprint
arXiv:2309.02144, 2023a.

Ruoyao Wang, Peter A. Jansen, Marc-Alexandre Côté, and Prithviraj Ammanabrolu. Scienceworld:
Is your agent smarter than a 5th grader? In Yoav Goldberg, Zornitsa Kozareva, and Yue Zhang
(eds.), Proceedings of the 2022 Conference on Empirical Methods in Natural Language Process-
ing, EMNLP 2022, Abu Dhabi, United Arab Emirates, December 7-11, 2022, pp. 11279–11298.
Association for Computational Linguistics, 2022. doi: 10.18653/V1/2022.EMNLP-MAIN.775.
URL https://doi.org/10.18653/v1/2022.emnlp-main.775.

Yizhong Wang, Yeganeh Kordi, Swaroop Mishra, Alisa Liu, Noah A. Smith, Daniel Khashabi, and
Hannaneh Hajishirzi. Self-instruct: Aligning language models with self-generated instructions. In
Anna Rogers, Jordan L. Boyd-Graber, and Naoaki Okazaki (eds.), Proceedings of the 61st Annual
Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), ACL 2023,
Toronto, Canada, July 9-14, 2023, pp. 13484–13508. Association for Computational Linguistics,
2023b. doi: 10.18653/V1/2023.ACL-LONG.754. URL https://doi.org/10.18653/
v1/2023.acl-long.754.

Michael J. Wooldridge and Nicholas R. Jennings. Intelligent agents: theory and practice. Knowl.
Eng. Rev., 10(2):115–152, 1995. doi: 10.1017/S0269888900008122. URL https://doi.
org/10.1017/S0269888900008122.

Zhiheng Xi, Wenxiang Chen, Xin Guo, Wei He, Yiwen Ding, Boyang Hong, Ming Zhang, Jun-
zhe Wang, Senjie Jin, Enyu Zhou, Rui Zheng, Xiaoran Fan, Xiao Wang, Limao Xiong, Yuhao
Zhou, Weiran Wang, Changhao Jiang, Yicheng Zou, Xiangyang Liu, Zhangyue Yin, Shihan
Dou, Rongxiang Weng, Wensen Cheng, Qi Zhang, Wenjuan Qin, Yongyan Zheng, Xipeng
Qiu, Xuanjing Huan, and Tao Gui. The rise and potential of large language model based
agents: A survey. CoRR, abs/2309.07864, 2023. doi: 10.48550/ARXIV.2309.07864. URL
https://doi.org/10.48550/arXiv.2309.07864.

Zhiheng Xi, Wenxiang Chen, Boyang Hong, Senjie Jin, Rui Zheng, Wei He, Yiwen Ding, Shichun
Liu, Xin Guo, Junzhe Wang, Honglin Guo, Wei Shen, Xiaoran Fan, Yuhao Zhou, Shihan Dou,
Xiao Wang, Xinbo Zhang, Peng Sun, Tao Gui, Qi Zhang, and Xuanjing Huang. Training
large language models for reasoning through reverse curriculum reinforcement learning. CoRR,
abs/2402.05808, 2024. doi: 10.48550/ARXIV.2402.05808. URL https://doi.org/10.
48550/arXiv.2402.05808.

Can Xu, Qingfeng Sun, Kai Zheng, Xiubo Geng, Pu Zhao, Jiazhan Feng, Chongyang Tao, and
Daxin Jiang. Wizardlm: Empowering large language models to follow complex instructions.
CoRR, abs/2304.12244, 2023. doi: 10.48550/ARXIV.2304.12244. URL https://doi.org/
10.48550/arXiv.2304.12244.

Zonghan Yang, Peng Li, Ming Yan, Ji Zhang, Fei Huang, and Yang Liu. React meets actre: When
language agents enjoy training data autonomy. CoRR, abs/2403.14589, 2024. doi: 10.48550/
ARXIV.2403.14589. URL https://doi.org/10.48550/arXiv.2403.14589.

Shunyu Yao, Howard Chen, John Yang, and Karthik Narasimhan. Webshop: Towards scal-
able real-world web interaction with grounded language agents. In Sanmi Koyejo, S. Mo-
hamed, A. Agarwal, Danielle Belgrave, K. Cho, and A. Oh (eds.), Advances in Neural
Information Processing Systems 35: Annual Conference on Neural Information Process-
ing Systems 2022, NeurIPS 2022, New Orleans, LA, USA, November 28 - December 9,
2022, 2022. URL http://papers.nips.cc/paper_files/paper/2022/hash/
82ad13ec01f9fe44c01cb91814fd7b8c-Abstract-Conference.html.

16

https://doi.org/10.1007/s11704-024-40231-1
https://doi.org/10.1007/s11704-024-40231-1
https://doi.org/10.18653/v1/2022.emnlp-main.775
https://doi.org/10.18653/v1/2023.acl-long.754
https://doi.org/10.18653/v1/2023.acl-long.754
https://doi.org/10.1017/S0269888900008122
https://doi.org/10.1017/S0269888900008122
https://doi.org/10.48550/arXiv.2309.07864
https://doi.org/10.48550/arXiv.2402.05808
https://doi.org/10.48550/arXiv.2402.05808
https://doi.org/10.48550/arXiv.2304.12244
https://doi.org/10.48550/arXiv.2304.12244
https://doi.org/10.48550/arXiv.2403.14589
http://papers.nips.cc/paper_files/paper/2022/hash/82ad13ec01f9fe44c01cb91814fd7b8c-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2022/hash/82ad13ec01f9fe44c01cb91814fd7b8c-Abstract-Conference.html

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

Shunyu Yao, Jeffrey Zhao, Dian Yu, Nan Du, Izhak Shafran, Karthik R. Narasimhan, and Yuan
Cao. React: Synergizing reasoning and acting in language models. In The Eleventh International
Conference on Learning Representations, ICLR 2023, Kigali, Rwanda, May 1-5, 2023. OpenRe-
view.net, 2023. URL https://openreview.net/pdf?id=WE_vluYUL-X.

Zheng Yuan, Hongyi Yuan, Chengpeng Li, Guanting Dong, Chuanqi Tan, and Chang Zhou.
Scaling relationship on learning mathematical reasoning with large language models. CoRR,
abs/2308.01825, 2023a. doi: 10.48550/ARXIV.2308.01825. URL https://doi.org/10.
48550/arXiv.2308.01825.

Zheng Yuan, Hongyi Yuan, Chengpeng Li, Guanting Dong, Chuanqi Tan, and Chang Zhou. Scal-
ing relationship on learning mathematical reasoning with large language models. arXiv preprint
arXiv:2308.01825, 2023b.

Eric Zelikman, Yuhuai Wu, Jesse Mu, and Noah D. Goodman. Star: Bootstrapping reasoning with
reasoning. In Sanmi Koyejo, S. Mohamed, A. Agarwal, Danielle Belgrave, K. Cho, and A. Oh
(eds.), Advances in Neural Information Processing Systems 35: Annual Conference on Neural
Information Processing Systems 2022, NeurIPS 2022, New Orleans, LA, USA, November 28 - De-
cember 9, 2022, 2022. URL http://papers.nips.cc/paper_files/paper/2022/
hash/639a9a172c044fbb64175b5fad42e9a5-Abstract-Conference.html.

Aohan Zeng, Mingdao Liu, Rui Lu, Bowen Wang, Xiao Liu, Yuxiao Dong, and Jie Tang. Agenttun-
ing: Enabling generalized agent abilities for llms. CoRR, abs/2310.12823, 2023. doi: 10.48550/
ARXIV.2310.12823. URL https://doi.org/10.48550/arXiv.2310.12823.

Jianguo Zhang, Tian Lan, Rithesh Murthy, Zhiwei Liu, Weiran Yao, Juntao Tan, Thai Hoang, Liang-
wei Yang, Yihao Feng, Zuxin Liu, et al. Agentohana: Design unified data and training pipeline
for effective agent learning. arXiv preprint arXiv:2402.15506, 2024.

Lianmin Zheng, Wei-Lin Chiang, Ying Sheng, Siyuan Zhuang, Zhanghao Wu, Yonghao
Zhuang, Zi Lin, Zhuohan Li, Dacheng Li, Eric P. Xing, Hao Zhang, Joseph E. Gonzalez,
and Ion Stoica. Judging llm-as-a-judge with mt-bench and chatbot arena. In Alice Oh,
Tristan Naumann, Amir Globerson, Kate Saenko, Moritz Hardt, and Sergey Levine (eds.),
Advances in Neural Information Processing Systems 36: Annual Conference on Neural In-
formation Processing Systems 2023, NeurIPS 2023, New Orleans, LA, USA, December 10
- 16, 2023, 2023a. URL http://papers.nips.cc/paper_files/paper/2023/
hash/91f18a1287b398d378ef22505bf41832-Abstract-Datasets_and_
Benchmarks.html.

Rui Zheng, Shihan Dou, Songyang Gao, Yuan Hua, Wei Shen, Binghai Wang, Yan Liu, Senjie
Jin, Qin Liu, Yuhao Zhou, Limao Xiong, Lu Chen, Zhiheng Xi, Nuo Xu, Wenbin Lai, Minghao
Zhu, Cheng Chang, Zhangyue Yin, Rongxiang Weng, Wensen Cheng, Haoran Huang, Tianxiang
Sun, Hang Yan, Tao Gui, Qi Zhang, Xipeng Qiu, and Xuanjing Huang. Secrets of RLHF in large
language models part I: PPO. CoRR, abs/2307.04964, 2023b. doi: 10.48550/ARXIV.2307.04964.
URL https://doi.org/10.48550/arXiv.2307.04964.

Shuyan Zhou, Frank F. Xu, Hao Zhu, Xuhui Zhou, Robert Lo, Abishek Sridhar, Xianyi Cheng,
Yonatan Bisk, Daniel Fried, Uri Alon, and Graham Neubig. Webarena: A realistic web environ-
ment for building autonomous agents. CoRR, abs/2307.13854, 2023a. doi: 10.48550/ARXIV.
2307.13854. URL https://doi.org/10.48550/arXiv.2307.13854.

Xuhui Zhou, Hao Zhu, Leena Mathur, Ruohong Zhang, Haofei Yu, Zhengyang Qi, Louis-Philippe
Morency, Yonatan Bisk, Daniel Fried, Graham Neubig, and Maarten Sap. SOTOPIA: interactive
evaluation for social intelligence in language agents. CoRR, abs/2310.11667, 2023b. doi: 10.
48550/ARXIV.2310.11667. URL https://doi.org/10.48550/arXiv.2310.11667.

Yifei Zhou, Andrea Zanette, Jiayi Pan, Sergey Levine, and Aviral Kumar. Archer: Training language
model agents via hierarchical multi-turn RL. CoRR, abs/2402.19446, 2024. doi: 10.48550/
ARXIV.2402.19446. URL https://doi.org/10.48550/arXiv.2402.19446.

17

https://openreview.net/pdf?id=WE_vluYUL-X
https://doi.org/10.48550/arXiv.2308.01825
https://doi.org/10.48550/arXiv.2308.01825
http://papers.nips.cc/paper_files/paper/2022/hash/639a9a172c044fbb64175b5fad42e9a5-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2022/hash/639a9a172c044fbb64175b5fad42e9a5-Abstract-Conference.html
https://doi.org/10.48550/arXiv.2310.12823
http://papers.nips.cc/paper_files/paper/2023/hash/91f18a1287b398d378ef22505bf41832-Abstract-Datasets_and_Benchmarks.html
http://papers.nips.cc/paper_files/paper/2023/hash/91f18a1287b398d378ef22505bf41832-Abstract-Datasets_and_Benchmarks.html
http://papers.nips.cc/paper_files/paper/2023/hash/91f18a1287b398d378ef22505bf41832-Abstract-Datasets_and_Benchmarks.html
https://doi.org/10.48550/arXiv.2307.04964
https://doi.org/10.48550/arXiv.2307.13854
https://doi.org/10.48550/arXiv.2310.11667
https://doi.org/10.48550/arXiv.2402.19446

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

A LIMITATIONS

This paper proposes a new framework named AGENTGYM. It includes an interactive platform with
diverse environments and tasks, an agent benchmark AGENTEVAL, and two collections of expert
trajectories AGENTTRAJ and AGENTTRAJ-L. Additionally, we introduce a novel algorithm, AGEN-
TEVOL, to explore the evolutionary capabilities of generally-capable LLM-based agents. Despite
the contributions and the fact that our method performs well, our work still has some limitations.
Firstly, for computational efficiency, we do not perform multiple samplings in each iteration. How-
ever, in the analysis in Section 4.3, we find that more sampling leads to better results, although the
improvement is not significant. In the future, we hope to increase the number of samples K to a
larger value when sufficient computational resources are available, to explore the upper limits of our
method. Secondly, although we validate the effectiveness of our method on three different models
(Llama2-Chat-7B, Llama-2-Chat-13B, and DeepSeek-Coder-1.3B), we hope to verify it on stronger
and larger base models in the future to explore the potential for building more generally-capable
agents.

B DETAILS OF ENVIRONMENTS IN AGENTGYM

WebShop (WS) (Yao et al., 2022). WebShop is an interactive web environment for web shopping.
The agents are given instructions, and need to buy a product that matches the specifications. The
agents can click a button on the webpage or search for something by the search engine. WebShop
contains 12k instructions and provides over one million real products from amazon.com. We select
6910 instructions. For AGENTTRAJ, we collect 1000 trajectories with SOTA models (700) and
human annotations (300). For AGENTTRAJ-L, we collect 3930 trajectories with SOTA models
(3430) and human annotations (500). We take the success rate as the evaluation metric and set the
maximum round to 10.2

WebArena (WA) (Zhou et al., 2023a). WebArena is a realistic and reproducible web environ-
ment. It contains four categories: E-commerce platforms, social forum platforms, collaborative
development platforms, and content management systems. It supports 12 different web browsing
actions. The observation space consists of a web page URL, the opened tabs, and the web page
content. Completing tasks in this highly realistic environment requires the agent to possess strong
memory, high-level planning, common sense, and reasoning abilities. The reward from the environ-
ment is consistent with the original paper. We filter 20 evaluating test instances from the original
dataset for three main sub-tasks: Information-seeking, Site Navigation, and Content & configuration
operation. We take the success rate as the evaluation metric and set the maximum round to 25.3

MAZE (MZ) (Abdulhai et al., 2023b). MAZE is a word game. Agents, acting as players, can
know their own position, the goal position, and the directions where there are walls around them.
Agents decide to move one square in one of four directions (up, down, left, or right) each time,
receiving a reward of -1 for every move until they reach the goal position. We use GPT-4-Turbo to
add thoughts to the trajectories sampled by LMRL-Gym and create our dataset. For AGENTTRAJ,
we include 100 trajectories. For AGENTTRAJ-L, we include 215 trajectories. We take the success
rate as the evaluation metric and set the maximum round to 15.4

Wordle (WD) (Abdulhai et al., 2023b). Wordle is a word-guessing game that tests agents’ ability
to reason at the level of individual letters. Agents guess the target word from a given vocabulary con-
taining some five-letter words. After each guess, agents are told whether each letter in the guessed
word is in the target word and whether its position is correct and receive a reward of -1 for each step
until they guess the target word or run out of attempts. We take the success rate as the evaluation
metric and set the maximum round to 8. We also use GPT-4-Turbo to add thoughts to the trajectories
sampled by LMRL-Gym. For AGENTTRAJ, we include 500 trajectories. For AGENTTRAJ-L, we
include 955 trajectories.

2https://github.com/princeton-nlp/WebShop/blob/master/LICENSE.md
3https://github.com/web-arena-x/webarena/blob/main/LICENSE
4https://github.com/abdulhaim/LMRL-Gym/blob/main/LICENSE

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

ALFWorld (ALF) (Shridhar et al., 2021). ALFWorld is a household environment based on
TextWorld, where agents need to explore rooms and use common sense reasoning to execute tasks.
The action space of ALFWorld includes picking up and placing items, observing surroundings, us-
ing furniture, and more. The environment provides feedback on the execution of actions based on
predefined logic. We take the success rate as the evaluation metric and set the maximum round
to 30. ALFWorld has six types of tasks. We get 3827 instructions from the original work. For
AGENTTRAJ, we collect 500 trajectories with SOTA models(400) and human annotations (100).
For AGENTTRAJ-L, we collect 2420 trajectories with SOTA models(1920) and human annotations
(500). 5

SciWorld (Sci) (Wang et al., 2022). ScienceWorld is a benchmark for testing agents’ scientific
reasoning abilities in a new interactive text environment at the standard elementary science curricu-
lum level. ScienceWorld includes 30 types of tasks, such as using measurement instruments and
conducting mechanics experiments. Its action space is task-related, with the environment simulator
providing the effects of actions. Because the ScienceWorld repository provides golden paths and
existing models cannot achieve high performance, we use GPT-4-Turbo to generate thoughts for
golden paths of 22 types of interactions that are not too long. For AGENTTRAJ, we include 1000
trajectories. For AGENTTRAJ-L, we include 2120 trajectories. We take reward as the evaluation
metric and set the maximum round to 30.6

BabyAI (Baby) (Chevalier-Boisvert et al., 2019). The BabyAI platform is an interactive grid
world simulator with 40 instruction-following tasks where the agent is asked to interact with ob-
jects. The agent has a limited 7x7 sight of view and can only operate objects in front. The original
implementation of BabyAI presents observations in the form of images and low-level actions like
”move forward” and ”turn left”. The implementation from AgentBoard converts graphic obser-
vations into textual instructions and expands the action space with high-level actions like ”pickup
green key 1” and“go through blue locked door 2”. The agent receives a non-zero reward discounted
by the number of steps when reaching the goal, and 0 otherwise. For AGENTTRAJ, we annotate
400 trajectories of 18 out of all 40 tasks with SOTA models. For AGENTTRAJ-L, we annotate 810
trajectories with SOTA models. We take reward as the evaluation metric and set the maximum round
to 20.7

TextCraft (TC) (Prasad et al., 2023). Similar to WordCraft, TextCraft is a text-only environ-
ment for crafting Minecraft items. This environment constructs a crafting tree based on Minecraft’s
crafting recipes, comprising 544 nodes, each representing a target item. In TextCraft, each task pro-
vides a specific target item alongside a list of crafting commands generated by the tree. These tasks
are structured compositionally, incorporating crafting recipes of varying complexity ranging from
1 to 4 steps. The environment supports three valid actions: craft <item> using <ingredients>,
get <item>, and inventory. Each round, the environment checks the agent’s actions and returns
the execution state. Apart from craftable items and their ingredients, all other items are obtainable
from the environment. Agents can get a reward of 1 only upon successfully crafting the target item.
We select 100 tasks for the test set and use the remaining tasks for training. For AGENTTRAJ, we
annotate 300 trajectories with SOTA models (254) and human annotation (46), with every action in
the trajectories verified by the environment. For AGENTTRAJ-L, we annotate 374 trajectories with
SOTA models (299) and human annotation (75). We take the success rate as the evaluation metric
and set the maximum round to 20.8

Weather (WT) (Ma et al., 2024). The Weather Environment allows LLM agents to utilize a
weather tool to access data on temperature, precipitation, and air quality for various locations and
time periods. It includes 18 different actions that agents can use to achieve weather-related objec-
tives. This environment leverages Python code to integrate the Open-Meteo API and implement the
necessary functions. If the agent’s final answer matches the reference answer, it receives a reward of
1; otherwise, it receives a reward of 0. We expand the original dataset of 20 queries to a total of 331

5https://github.com/alfworld/alfworld/blob/master/LICENSE
6https://github.com/allenai/ScienceWorld/blob/main/LICENSE
7https://github.com/mila-iqia/babyai/blob/master/LICENSE
8https://github.com/archiki/ADaPT/blob/main/LICENSE

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

queries by using GPT-3.5-Turbo and GPT-4-Turbo for augmentation using self-instruct and instruc-
tion evolution. Finally, we select 20 questions as the evaluating set, leaving the remaining questions
as the training set. For AGENTTRAJ, we annotate 160 trajectories with SOTA models (140) and
human annotators (20). We also refine the annotations with human review to ensure accuracy. For
AGENTTRAJ-L, we annotate 311 trajectories with SOTA models (230) and human annotators (81).
We take the success rate as the evaluation metric and set the maximum round to 10.9

Movie (MV) (Ma et al., 2024). The Movie Environment grants LLM agents to utilize the movie
tool for accessing cinematic data, including film details, personnel, and production companies. It
offers 16 distinct actions that agents can use to achieve various movie-related objectives. This tool
integrates the API and data from The Movie Database, implementing the necessary functions to
establish its capabilities. If the agent’s final answer matches the reference answer, it receives a
reward of 1; otherwise, it receives a reward of 0. To enhance the dataset, we expand the original
20 questions to 235 by using GPT-3.5-Turbo and GPT-4-Turbo for query augmentation. GPT-4-
Turbo is employed to annotate 100 trajectories in AGENTTRAJ, and the annotations are further
corrected through human annotations to ensure accuracy. We also use GPT-4-Turbo to annotate 215
trajectories for AGENTTRAJ-L. We select 20 questions for the evaluating set, with the remaining
questions designated as the training set. We take the success rate as the evaluation metric and set the
maximum round to 12.

Academia (AM) (Ma et al., 2024). The Academia Environment equips LLM agents with the aca-
demic tools to query information related to computer science research, including academic papers
and author details. It offers 7 different actions for achieving various academic research objectives.
During its development, it utilizes data from the Citation Network Dataset, crafts the necessary
functions, and subsequently constructs the Academia tool. If the agent’s final answer matches the
reference answer, it receives a reward of 1; otherwise, it receives a reward of 0. The original 20
questions are used as the evaluating set. We take the success rate as the evaluation metric and set the
maximum round to 12.

TODOList (TL) (Ma et al., 2024). The TodoEnvironment enables LLM agents to query and
amend personal agenda data through the todo tool, offering 11 different actions. This tool is imple-
mented based on the TodoList API. If the agent’s final answer or operations matches the reference
ones, it receives a reward of 1; otherwise, it receives a reward of 0. To enhance the dataset, we ex-
pand the original 20 questions to 155 using GPT-3.5-Turbo and GPT-4-Turbo for data augmentation.
For AGENTTRAJ, we annotate 70 trajectories with GPT-4-Turbo. For AGENTTRAJ-L, we annotate
the queries to get 135 trajectories with GPT-4-Turbo (96) and human annotators (39). The annota-
tions are further refined by human review to ensure accuracy. Finally, we select 20 questions for the
evaluating set, with the remaining questions designated as the training set. We take the success rate
as the evaluation metric and set the maximum round to 15.

Sheet (ST) (Ma et al., 2024). The Sheet Environment allows LLM agents to use the sheet tool to
access and modify spreadsheet data, providing 20 different actions for operating on an Excel sheet.
This tool is built upon the Google Sheets API. The reward returned by the environment is based on
the similarity between the table manipulated by the agent and the reference table, with a value range
of [0, 1]. The original 20 questions are used as the evaluating set. We take reward as the evaluation
metric and set the maximum round to 15.

BIRD (BD) (Zheng et al., 2023a). Code ability is a crucial aspect of capability for LLM-based
agents. In this environment, we focus on database management ability. We wrap the BIRD-SQL
dataset and provide a unified API for agents to interact with. BIRD-SQL is a bench for large-
scale database-grounded text-to-SQL evaluation. It requires the agent to query a database using
a SELECT statement to get the correct answer. It contains 9428 unique problems with a golden
answer for training. We select 3200 of them as the instruction set. For AGENTTRAJ, we employ
GPT-4-Turbo to add thoughts for 2000 of the training set problems. For AGENTTRAJ-L, we employ

9https://github.com/hkust-nlp/AgentBoard. The codebase is licensed under an Apache-2.0 License and the
dataset is licensed under a GNU General Public License, version 2.

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

Figure 5: An illustration of the architecture of AGENTGYM.

GPT-4-Turbo to add thoughts for 3000 of the training set problems. We take success rate as the
evaluation metric and the maximum round is 1 as BD is a single-round programming task.10

C FRAMEWORK ARCHITECTURE OF AGENTGYM

We adopt a decoupled architecture to construct the agent-environment interaction framework, as
illustrated in Figure 5 in Appendix C. Specifically, recognizing the distinct dependencies present
in different environments, AGENTGYM deploys separate services for each environment in a user-
friendly manner to prevent conflicts. These environments are implemented to offer standardized
and parallelizable functions, such as /createEnv to create an environment, /observation to
obtain the current observation from the environment, /available actions to retrieve the cur-
rently available actions, /step to perform an action, and /reset to reset the environment. Clients
communicate with the servers via HTTP protocol. At the core of this architecture is the controller,
which facilitates interactions between agents and environmental services, providing a unified and
encapsulated interface for agents to invoke environmental functions or operations. Additionally, we
implement user-friendly components such as the evaluator, trainer, and data collection pipeline to
support further development of the community. We have implemented 14 types of environments

10https://github.com/AlibabaResearch/DAMO-ConvAI/tree/main/bird. The bench is under a CC BY-NC 4.0
License.

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

and 89 tasks, and developers can easily develop new environments and add them to AGENTGYM by
encapsulating the aforementioned interfaces.

D DATABASE CONSTRUCTION OF AGENTTRAJ, AGENTTRAJ-L AND
AGENTEVAL

Instruction collection. We have gathered 20, 494 instructions across the aforementioned environ-
ments using appropriate strategies. (i) For environments whose original datasets contain sufficient
instructions, we use their original instruction sets or subsets (WA, ALF, Sci, AM, ST, BD). (ii) For
certain environments, we generate instructions using rule-based automated pipelines (TC, WS, MZ,
WD, Baby). For example, in TC, we first construct rule trees for forging different items and generate
instructions of varying difficulty (levels 1-4) based on these rules. For WS, we generate instructions
based on available products by fixing the random seed. For MZ, we randomly select starting points
in the maze and construct instructions accordingly. For WD, we fix the seed and generate words for
guessing. For Baby, we pass a fixed seed to the generator provided by the environment to generate
instructions. (iii) In environments where instructions are relatively scarce and difficult to construct
through rules, we use self-instruct (Wang et al., 2023b) and instruction evolution (Xu et al., 2023)
methods to generate instructions. These methods provide an LLM (GPT-4-Turbo) with available
actions and instruction examples, and query it to generate diverse and challenging instructions that
might be needed in real-world scenarios (WT, MV, TL). Note that we manually verify the instruc-
tions generated by these AI-based techniques to ensure that they can be successfully completed.

Benchmark construction. We then construct a benchmark suite with a size of 1160 named AGEN-
TEVAL to holistically evaluate the ability of LLM-based agents in diverse scenarios. Specifically,
(i) for environments that have different task categories or varying difficulty levels, we either uni-
formly sample test examples from different subsets or use them all (ALF, Sci, Baby, TC); (ii) for
remained environments with existing test sets, we use the original test sets or randomly sample from
them (WA, AM, ST, BD); (iii) for others, we randomly sampled from the collected or augmented
instructions (WS, MZ, WD, WT, MV, TL).

Trajectory collecting and filtering. In AGENTGYM, the server provides instructions including
task description, environment setup, and problem to the agent. Next, as described in Section 3.1,
the agent interacts with the environment in ReAct-Style until the task is completed. We collect
6130 trajectories from 11 environments with different strategies. (i) For environments with human
annotated trajectories or where the correct action sequences can be obtained using a rule-based
solver, we use GPT-4-Turbo to add thought step by step for each action, thus forming outputs in
the ReAct-Style (MZ, WD, Sci, BD). (ii) For environments where only instructions are provided
and the correct trajectories are neither available nor can be derived through rules, we annotate the
correct trajectories with SOTA models (e.g., GPT-4-Turbo) and crowdsourcing. Then, we rigorously
filter the trajectories based on rewards and correctness to ensure their quality (WS, ALF, Baby, TC,
WT, MV, TL). This set, named AGENTTRAJ, is used to train a base agent with preliminary abilities
and prior knowledge. For a fair comparison, we perform annotation and filtering on all instructions
using the same pipeline and get AGENTTRAJ-L to represent the performance upper bound of BC.

E MORE IMPLEMENTATION DETAILS

Behavior Cloning. We train the model for 3 epochs with a learning rate of 1 × 10−5. The batch
size is set to 2, and gradient accumulation is performed over 2 steps. We do not employ weight
decay or learning rate warmup.

AGENTEVOL. First, we train a base agent on the AGENTTRAJ set, running BC for 3 epochs with
a learning rate of 1× 10−5. Then, we perform the self-evolution phase. In Learning Step, we run 1
epoch per iteration. In Exploration Step, we set the temperature to 0.7 to sample trajectories across
environments. We perform a total of M=4 iterations. All other parameters remain the same as in
Behavior Cloning. All experiments are conducted on eight A100-80GB GPUs.

LLM-Planner. LLM-Planner is a prompt-based baseline. In our experiments, we enhance the
initial System Prompt with exploration-based guidance. We directly prompt the agent to generate

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2025

a high-level plan in the first turn, mapping the instruction into subgoals, and let it interact with the
environment in a ReAct-style during subsequent turns.

PPO. We use full parameter fine-tuning instead of LoRA tuning. We load three models: the
actor model, the reference model, and the critic model. We do not use a reward model, as our
environment automatically assigns rewards to the agent based on interaction results. We follow the
implementation from the TRL library 11, where the actor and critic models share the same backbone.
On top of this, we add a trainable value head as the output for the critic model. The learning rate is set
to 5×10−7, with a batch size of 1 and gradient accumulation steps of 2. We do not use weight decay
or learning rate warmup. We adhere to OpenAI’s implementation of the PPO algorithm Ouyang et al.
(2022), where KL coef = 0.01, gamma = 1.0, lambda = 0.95, and ppo epoch = 2 . For all
environments, we first perform supervised fine-tuning for 1∼2 epochs as a warm-up, followed by
PPO training for 5∼10 epochs.To alleviate memory constraints, we employ gradient checkpointing
and flash-attention 2 techniques.

DPO. We also use full parameter fine-tuning. During the data sampling phase, we perform two
rounds of sampling on the base model to construct DPO training data pairs. Responses with a
reward exceeding the expert threshold are labeled as “chosen responses”. Responses with a reward
gap greater than that of the “chosen responses” are labeled as “rejected responses”, and these form
the data pairs. In our experiments, the expert threshold is set to 0.9, and the reward gap is set to 0.1.
We train for 3 epochs with a learning rate of 5×10−7, a batch size of 2, gradient accumulation steps
of 4, weight decay of 0.1, and a warmup ratio of 0.1. Additionally, we include a BC objective to
stabilize the training procedure, following previous work (Lai et al., 2024). Both the DPO and BC
objectives are assigned equal weights.

Evaluation. We set do sample = False during evaluation. When evaluating models that
have not been fine-tuned on expert trajectories, we use a few-shot approach; when evaluating models
that have been trained on expert trajectories, we use a zero-shot approach.

We upload anonymized versions of our data and code in a Zip file.

F MORE EXPERIMENTS

F.1 INTERACTIVE ROUNDS IN MAIN EXPERIMENTS

Interactive rounds reflect the efficiency of an agent in solving tasks. Table 6 shows the interac-
tive rounds of each model/agent across tasks. We also present the evaluation performance in Table
6 for better and clearer illustration. We find that agents trained with AGENTTRAJ-L and AGEN-
TEVOL both demonstrate high efficiency, indicating that they can complete tasks in a small number
of rounds. Additionally, we observe a trend: agents that require fewer interactive rounds to com-
plete the same task generally perform better. This may be because underperforming agents often
struggle to find the optimal path to achieve the final goal or exceed the maximum number of rounds.
For example, in ALFWorld and BabyAI, AGENTEVOL achieves the best performance as well as the
fewest interactive rounds.

F.2 MORE ABLATION STUDIES

Ablation on sample number K. In the exploration step, we perform sampling on each instruction
once per iteration. Here, we conduct ablation on sample number K with four tasks. The results
in Table 7 show no significant performance increases with higher K. So we select K = 1 for
computational efficiency.

Ablation on exploration scope. In our experiment, we first train a base agent using Ds and then
let it explore a wider range of instructions and tasks. We conduct an ablation study on four tasks
to see how well the agent evolves with limited instructions as in the BC phase. Table 7 shows that
even in a limited scope, the base agent’s performance improves, which may be attributed to more

11https://github.com/huggingface/trl/blob/main/examples/scripts/ppo/ppo.py

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2025

Table 6: Evaluating performance and interactive rounds on diverse tasks. The first row of each
method indicates performance, while the second row of each method shows the number of interac-
tion rounds between the model/agent and the environment.

Method WS ALF TC Sci Baby MZ WD WT MV TL BD

Close-sourced Models & Agents
DeepSeek-Chat 11.00 51.00 23.00 16.80 45.67 4.00 24.00 70.00 70.00 75.00 13.50

6.9 20.4 15.1 20.7 11.7 14.5 5.2 6.1 5.9 4.4 1.0
Claude-3-Haiku 5.50 0.00 0.00 0.83 1.93 4.00 16.00 55.00 50.00 65.00 13.50

8.0 30.0 20.0 29.8 19.9 14.4 5.7 7.3 6.0 4.0 1.0
Claude-3-Sonnet 1.50 13.00 38.00 2.78 79.25 0.00 36.00 65.00 80.00 80.00 17.00

9.5 27.9 14.6 28.7 6.6 15.0 5.2 6.9 5.1 4.5 1.0
GPT-3.5-Turbo 12.50 26.00 47.00 7.64 71.36 4.00 20.00 25.00 70.00 40.00 12.50

4.9 25.2 13.1 16.5 8.4 14.4 5.3 6.6 4.6 3.4 1.0
GPT-4-Turbo 15.50 67.50 77.00 14.38 72.93 68.00 88.00 80.00 95.00 95.00 16.00

8.2 18.3 9.9 18.1 9.1 9.0 4.0 6.0 4.5 4.0 1.0

Open-sourced Models & Agents
Llama2-Chat-7B 0.50 2.00 0.00 0.83 0.23 0.00 0.00 0.00 0.00 0.00 1.50

6.4 22.6 14.5 27.5 9.5 15.0 6.0 9.9 12.0 15.0 1.0
Llama2-Chat-13B 1.00 3.50 0.00 0.83 0.10 0.00 0.00 0.00 0.00 0.00 1.50

8.1 19.6 16.5 21.3 10.9 13.4 6.0 10.0 12.0 15.0 1.0
AgentLM-7B 36.50 71.00 4.00 1.63 0.49 12.00 4.00 0.00 5.00 15.00 5.00

4.7 17.7 19.4 28.5 7.5 13.9 2.0 8.3 11.7 10.6 1.0
AgentLM-13B 39.50 73.00 0.00 2.75 0.45 8.00 0.00 10.00 5.00 5.00 3.00

4.8 17.8 19.4 28.5 7.6 13.9 6.0 6.6 10.7 8.4 1.0
AgentLM-70B 49.50 67.00 4.00 10.68 0.66 8.00 4.00 0.00 0.00 40.00 7.50

4.9 18.5 18.8 28.2 6.3 13.9 5.2 6.6 11.6 6.7 1.0

Ours
BCbase 66.50 77.50 44.00 26.42 69.31 12.00 12.00 25.00 5.00 45.00 8.00

5.6 16.4 13.7 21.3 6.7 14.3 5.9 6.2 10.8 5.4 1.0
BClarge 73.50 83.00 60.00 74.47 74.19 12.00 36.00 45.00 5.00 65.00 8.50

5.5 16.1 14.3 29.3 6.2 14.3 5.7 6.4 10.2 5.0 1.0
AGENTEVOL 76.50 88.00 64.00 38.00 82.70 12.00 12.00 25.00 60.00 70.00 9.00

5.1 14.0 11.8 18.9 4.3 13.8 5.7 5.9 3.2 5.1 1.0

Table 7: Ablation study on sample number K and the exploration scope with four tasks.

Method WS ALF Baby TC

BCbase 66.5 77.5 69.3 44.0
AGENTEVOL

-w K = 1 77.0 88.0 82.9 65.0
-w K = 2 76.0 88.0 83.1 67.0
-w K = 3 78.5 89.0 83.6 68.0
-w Limited Scope for Exploration 70.0 80.5 70.7 49.0

diverse trajectories sampled from the agent. However, the improvement is not significant, indicating
that effective evolution needs a more extensive environment.

Ablation on base model selection. In our experiments, we optimize the initial agent at each it-
eration rather than continuing training from the last iteration’s agent. To explore this further, we
conduct an ablation study to compare these two training strategies. As shown in Figure 6, continu-
ous fine-tuning provides short-term performance gains but often results in performance degradation
in later iterations, likely due to overfitting. In contrast, training from the initial agent ensures more
consistent and stable performance.

F.3 EVALUATION OF OUT-OF-DOMAIN TASKS AND ENVIRONMENTS

To explore performance on tasks or environments not seen during the evolution phase (i.e. OOD
tasks), we carry out supplementary experiments. In these experiments, the task types and settings
in ALF and Baby are unseen by the agent during both the BC and AGENTEVOL phases, and the
entire environments of AM and ST are entirely new for the agent. As shown in Table 8, our method

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2025

M = 1 M = 2 M = 3 M = 4 M = 5
Iteration Number (M)

20

30

40

50

60

70

80

90

Pe
rfo

rm
an

ce

Strategy 1: Evolving based on the initial agent
Strategy 2: Evolving based on the last iteration's agent

AlfWorld
BabyAI

TextCraft
Sciworld

Figure 6: Ablation study regarding the choice of the base model.

demonstrates stronger generalization ability on unseen tasks and environments compared to other
methods.

Table 8: Evaluating results on Out-of-domain tasks.

Method ALF-OOD Baby-OOD AM ST

Llama2-Chat-7B 0.0 2.2 0.0 0.0
AgentLM-7B 57.7 4.4 10.0 14.3
BCbase 60.8 6.2 20.0 24.3
BClarge 64.9 6.1 20.0 25.2
AgentEvol 67.5 6.2 25.0 26.2

F.4 ANALYSIS ON THE VARYING PERFORMANCE IN DIFFERENT ENVIRONMENTS

We observe that AGENTEVOL performs well in most environments, but is weaker than BClarge

in some tasks (SC, WD, and WT). We provide two perspectives to analyze the reasons behind the
fluctuating performance of our method across different environments.

Perspective 1: Conflicts between different environments. We add experiments about the per-
formance of task-specific BC and task-specific AgentEvol. As shown in Table 9, we find that
BC on single tasks outperforms BC on multi-tasks, and AGENTEVOL on single tasks outperforms
AGENTEVOL on multi-tasks. Additionally, AGENTEVOL on single tasks performs poorly on other
tasks. This indicates that there are some conflicts between different environments and tasks, which
may lead to a certain degree of performance degradation and cause the varying performance in our
method.

Perspective 2: Lack of exploration capability. We compare the size of trajectory data used to
train the agent between AGENTEVOL and BC methods. The results are presented in Table 10.

Table 9: Experiments of task-specific BC and task-specific AGENTEVOL.

Method WS ALF Baby WD

BCbase 66.5 77.5 69.3 12.0
BCbase(single task) 68.5 79.0 72.6 12.0
BClarge 73.5 83.0 74.2 36.0
BClarge(single task) 74.0 84.0 76.9 36.0
AGENTEVOL 77.0 88.0 82.9 12.0
AGENTEVOL on WS 78.0 3.0 2.8 4.0
AGENTEVOL on ALF 2.0 89.5 0.5 4.0
AGENTEVOL on Baby 1.5 1.0 84.1 4.0
AGENTEVOL on WD 0.0 0.0 6.80 24.0

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2025

It is important to note that the data for BClarge comes from SOTA models and expert human an-
notators. AGENTEVOL’s data consists of two parts: 1. AGENTTRAJ, the initial training set used
to train the base agent; 2. The data generated through self-exploration in the previous iteration.
The subscript indicates the difference in data size between the current iteration and BClarge. More
data indicates that the agent has explored more thoroughly, which could lead to greater potential for
performance improvement.

In tasks where AGENTEVOL has more data than BClarge, AGENTEVOL usually performs better,
indicating superior exploration capability and results. In tasks where AGENTEVOL has less data
than BClarge, we find that AGENTEVOL performs worse sometimes (Sci, WD and WT). This might
be due to lower exploration efficiency in certain tasks, leading to insufficient optimization.

Table 10: Size of trajectory sets used to train the agent.

Method iter WS ALF WD WT

BClarge 3930 2420 955 311

AGENTEVOL
1 5661+1731 2529+109 585-370 264-47
2 5982+2052 2714+134 585-370 292-19
3 6061+2131 2734+314 579-376 284-27

F.5 ANALYSIS ON RL AND OTHER EXPLORATION-BASED METHODS

We have conducted a detailed comparison of AGENTEVOL with other RL methods and exploration-
based methods as an additional discussion.

Selection of baselines. Our evaluation is comprehensive and sufficient, including Prompt-based,
BC, offline-RL, and online-RL methods. Experimental results demonstrate that AGENTEVOL
achieves superior performance across various tasks when compared with representative algorithms.

Training cost. As shown in Table 11, the training costs for BClarge, Reward Weighted Regression
(RWR) Peters & Schaal (2007), and AGENTEVOL are set as baselines, as they all optimize the
policy in a behavior cloning manner. In contrast, DPO and PPO methods have significantly higher
training costs. DPO requires loading both the actor and reference models and computing probability
distributions for chosen and rejected responses. PPO, being an online RL method, involves sampling
and policy optimization simultaneously, leading to more intensive training times.

Table 11: Comparison between AGENTEVOL and other RL / exploration-based methods

Method Type Avg.
Training Cost

Accuracy
WS ALF Baby

LLM-Planner prompt-based / 18.9 68.5 82.5

BClarge behavior cloning 1× 73.5 83.0 74.2

RWR offline-RL 1× 68.0 76.5 82.1

DPO offline-RL 4.3× 75.0 86.5 78.3

PPO online-RL 15× 68.0 83.5 69.8

AGENTEVOL offline-RL 1× 76.5 88.0 82.7

Learning stability. For consistency, we set the smallest unit of the x-axis for training time as an
epoch. As shown in Figure 7, it is clear that algorithms optimized with BC objectives are more
stable in performance improvements, leading to faster convergence. While DPO shows significant
improvement in the early stages, overfitting occurs quickly as training progresses. PPO, on the other
hand, exhibits noticeable instability throughout the training process, with no clear learning trend
during the same number of epochs.

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2025

1 2 3 4 5
Epoch

55

60

65

70

75

80

Pe
rfo

rm
an

ce

BClarge

DPO
PPO
AgentEvol

(a) Webshop

1 2 3 4 5
Epoch

50
55
60
65
70
75
80
85
90

Pe
rfo

rm
an

ce

BClarge

DPO
PPO
AgentEvol

(b) Alfworld

1 2 3 4 5
Epoch

50
55
60
65
70
75
80
85
90

Pe
rfo

rm
an

ce

BClarge

DPO
PPO
AgentEvol

(c) BabyAI

Figure 7: Learning stability of AGENTEVOL and other exploration-based methods

Training Reward Curves. Additionally, we provide the mean training reward curves in Figure 8.
We also observe that PPO encounters instability and fluctuations in training rewards. This could be
due to the standard PPO algorithm, which only uses outcome-based rewards and struggles with opti-
mizing sparse, long-term, and multi-turn trajectories, limiting the model’s exploration and learning.

0 4000 8000 12000 16000
Step

0.2

0.4

0.6

0.8

1.0

Re
wa

rd

Webshop

(a) Webshop

0 1500 3000 4500 6000
Step

0.2

0.4

0.6

0.8

1.0

Re
wa

rd

Aflworld

(b) Alfworld

0 400 800 1200 1600
Step

0.2

0.4

0.6

0.8

1.0

Re
wa

rd
BabyAI

(c) BabyAI

Figure 8: Mean training reward during PPO

F.6 CASE STUDY

Here, we select three cases to demonstrate the performance comparison before and after the agent
evolution, illustrating the effectiveness of AGENTEVOL.

The first case is shown in Figure 9. In this case, the user’s instruction is “Find me slim fit, straight leg
men’s pants with elastic waist, long sleeve, relaxed fit for everyday wear with color: black, and size:
large, and price lower than 50.00 dollars.” Before evolution, the agent can not effectively utilize
specific information from the environment’s feedback and directly chooses an item that exceeds the
target price, resulting in task failure. However, after evolution, the agent is able to engage in multiple
rounds of interaction with the environment, accurately parse the details of the items returned by the
environment, and select a product with the correct color, size, and price attributes.

The second case comes from the BabyAI environment, as shown in Figure 10. In this environment,
the agent’s task is to pick up the green box in a room. The agent before evolution cannot effectively
understand spatial relationships and fails to perceive that the target object is right in front of it, lead-
ing to incorrect decisions. After receiving the positional information returned by the environment,
it repeatedly moves forward until it reaches the interaction limit. After evolution, the agent can
accurately determine its position and directly execute the correct “pickup green box 1” action.

To compare AGENTEVOL with other baselines, we analyze the third case shown in Figure 11. The
task is to find a long-lasting, lead-free soy candle within a price range. RWR and DPO baselines
fail by selecting the first item without considering the price, while PPO fails by aimlessly clicking
“Next Page”. In contrast, the agent after evolution accurately parses product details and successfully
identifies a suitable item.

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2025

Instruction: Find me slim fit, straight leg men's pants with elastic waist, long sleeve, relaxed fit for everyday

wear with color: black, and size: large, and price lower than 50.00 dollars

Thought 1:

I think I should use the search bar to look for the

pants as per the given specifics.
Action 1:

search[slim fit straight leg men's pants elastic waist

long sleeve relaxed fit everyday wear black large

price < 50.00]
Observation 1:

<searching results>

Thought 2:

I think I should click on the 'B099231V35' option

as it seems to be a pair of men's pants that could

potentially meet the requirements.
Action 2:

click[B099231V35]
Observation 2:

<product details>: … Mens Casual Cargo Pants Hi

Vis Viz Reflective Overalls High Visibility Safe

Work Pants Outdoor Hiking Trousers Big and Tall

[SEP] Price: $16.79 …

Thought 3:

I think I should click on the 'black' option to select

the color I need.
Action 3:

click[black]
Observation 3:

<product details>

Thought 4:

I think I should click on the 'large' option to select

the size I need.
Action 4:

click[large]
Observation 4:

<product details>

Thought 5:

I think I should click on the 'Buy Now' button to

purchase the pants.
Action 5:

click[Buy Now]

Reward: 1.0

Thought 1:

I think I should use the search bar to look for the

pants as per the given specifics.
Action 1:

search[slim fit straight leg men's pants elastic waist

long sleeve relaxed fit everyday wear black large

price < 50.00]
Observation 1:

<searching results>: … B01MSP2B0I [SEP]

Wrangler Men's Retro Slim Fit Straight Leg Jean,

Black, 42W x 32L [SEP] $63.05 …

Thought 2:

I think I should click on the 'B01MSP2B0I' option

as it seems to be a men's pants that fits the

description.
Action 2:

click[B01MSP2B0I]
Observation 2:

<product details>: … Wrangler Men's Retro Slim

Fit Straight Leg Jean, Black, 42W x 32L [SEP]

Price: $63.05 …

Thought 3:

I think I should click on the 'Buy Now' button to

purchase the pants.
Action 3:

click[Buy Now]

Reward: 0.0

Before Evolution After Evolution

Figure 9: Case study of WebShop. Before evolution, the agent can not effectively utilize specific
information from the environment’s feedback and directly chooses an item that exceeds the target
price, resulting in task failure. After the evolution, the agent is able to engage in multiple rounds of
interaction with the environment, accurately parse the details of the items returned by the environ-
ment, and select a product with the correct color, size, and price attributes.

G PROMPT DETAILS

The prompt for each environment and task comprises two components: the system prompt and the
instruction. The system prompt provides the initial scenario for each task. The instruction provides
specific queries for each task. For consistency, the same prompt template is utilized for human
annotation, AI-based annotation of trajectories, and evaluation across all tasks. The prompt details
for the WebShop are shown in Table 12. Table 13 presents the specifications for ALFWorld. The
TextCraft’s prompt details are outlined in Table 14. The prompt details for the SciWorld are shown
in Table 15. The prompt details for the BabyAI are shown in Table 16. The prompt details for the
MAZE are shown in Table 17. The prompt details for the Wordle are shown in Table 18. The prompt
details for the BIRD are shown in Table 19. Table 20 and 21 show the prompt details for WebArena.

28

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2025

Thought 1:

I need to find the green box to pick it up. I should

check my surroundings to locate it.
Action 1:

check available actions
Observation 1:

You can take the following actions: turn left, turn

right, check available actions. Available actions:

["turn left", "turn right", "check available actions"]

Thought 2:

I need to find the green box to pick it up. I should

turn left to explore a different direction.
Action 2:

turn left
Observation 2:

<room details>: …In front of you in this room, you

can see several objects: There is a green box 1 3

steps in front of you…

Thought 3:

I need to pick up the green box to complete my

goal. I should move forward to reach it.
Action 3:

move forward
Observation 3:

<room details>

Thought 4:

I need to pick up the green box to complete my

goal. I should move forward to reach it.
Action 4:

move forward
Observation 4:

<room details>

…(more interactions)

Thought 20:
I need to pick up the green box to complete my

goal. I should move forward to reach it.

Action 20:
move forward

…(reach max_interaction_rounds)

Reward: 0.0

Thought 1:

I need to find the green box in this room.
Action 1:

check available actions
Observation 1:

You can take the following actions: turn left, turn

right, check available actions. Available actions:

["turn left", "turn right", "check available actions"]

Thought 2:

I need to turn left to explore the room further and

find the green box.
Action 2:

turn left
Observation 2:

In front of you in this room, you can see several

objects: There is a red key 1 0 steps in front of you

and 1 steps to your left. There is a green box 1 3

steps in front of you and 1 steps to your left. There

is a purple key 1 3 steps in front of you and 3 steps

to your left. The room has walls around you. You

are facing a wall 5 steps away. You are not carrying

anything. Available actions: ["turn left", "turn right",

"move forward", "pickup red key 1", "pickup green

box 1", "pickup purple key 1", "go to red key 1",

"go to green box 1", \go to purple key 1", "check

available actions"]

Thought 3:

I need to pick up the green box to complete my goal.
Action 3:

pickup green box 1

Reward: 1.0

Instruction: Your goal: pick up the green box. In front of you in this room, you can see several objects: The

room has walls around you. You are facing a wall 1 steps away. You are not carrying anything. Available

actions: ["turn left", "turn right", "check available actions"]

Before Evolution After Evolution

Figure 10: Case study of BabyAI. The agent before evolution cannot effectively understand spatial
relationships and fails to perceive that the target object is right in front of it, leading to incorrect de-
cisions. After receiving the positional information returned by the environment, it repeatedly moves
forward until it reaches the interaction limit. After evolution, the agent can accurately determine its
position and directly execute the correct ”pickup green box 1” action.

The prompt details for the Weather are shown in Table 22, 23, 24, 25. The prompt details for the
TODOList are shown in Table 26, 27. The prompt details for the Movie are shown in Table 28, 29,
30. The prompt details for the Academia are shown in Table 31, 32. The prompt details for the Sheet
are shown in Table 33, 34, 35, 36.

29

1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2025

Thought 1:

I think I should use the search bar to

look for the long lasting, lead free, soy

wax candles I need.

Action 1:

search[long lasting soy wax candles

lead free price < 50.00]

Thought 2:

I think I should click on the

'B07BKXMCNB' option as it seems to

be a long lasting, lead free, soy wax

candle within my price range.
Action 2:

click[B07BKXMCNB]

Observation 2:
<product details>

Thought 3:

I think I should click on the 'Buy Now'

button to purchase the long lasting,

lead free, soy wax candle.
Action 3:

click[Buy Now]

Reward: 0.0

RWR DPO

AgentEvol

Instruction: Find me long lasting, lead free candles with soy wax, and price lower than 50.00 dollars.

Thought 1:

I think I should use the search bar to

look for the long lasting, lead free

candles with soy wax that are priced

under $50.

Action 1:

search[long lasting lead free candles

soy wax price < 50.00]

Thought 2:

I think I should click on the 'Next >'

button to view more results.
Action 2:

click[Next >]
Observation 2:

<next page searching results>

Thought 3:

I think I should click on the 'Next >'

button to view more results.
Action 3:

click[Next >]

...(more interactions)

Action 10:
click[Next >]

...(reach max_interaction_rounds)

Reward: 0.0

PPO

Observation 1:

<searching results>: … B07BKXMCNB [SEP] Bungalow Glow, Candle Pikake Lei Wood 6 Ounce [SEP] $57.93

[SEP] B08JQ5TLQV [SEP] Scented Candles Gift Set for Women, Aromatherapy Candles Gifts for Women, 4x3.5oz

Long Lasting Candles for Home Scented Bath Yoga, 100% Natural Soy Candles, Unique Mothers Day Gifts for Mom

Birthday [SEP] $11.99…

Thought 1:

I think I should use the search bar to look

for the candles I need.

Action 1:

search[long lasting lead free candles soy

wax price < 50.00]

Thought 2:

I think I should click on the

'B07BKXMCNB' option as it seems to be

a long lasting, lead free candle with soy

wax and a price within my budget.
Action 2:

click[B07BKXMCNB]

Observation 2:
<product details>

Thought 3:

I think I should click on the 'Buy Now'

button to purchase the candle.
Action 3:

click[Buy Now]

Reward: 0.0

Thought 2:
I think I should click on the 'B08JQ5TLQV' option as it seems to be a long-lasting, lead-free candle with soy

wax and a price lower than 50.00 dollars.

Action 2:
click[B08JQ5TLQV]

Observation 2:
<product details>

Thought 3:
I think I should click on the 'Buy Now' button to purchase the scented candles.

Action 3:
click[Buy Now]

Reward: 1.0

Figure 11: Case study of WebShop. The RWR and DPO baselines lead to the selection of the first
item without considering the price constraint, resulting in task failure. In comparison, the PPO base-
line continuously clicks “Next Page” without effectively extracting relevant information from the
environment, also failing to find a suitable item. After evolution, the agent demonstrates improved
capabilities by accurately parsing product details, conducting effective multi-round interactions, and
successfully identifying a long-lasting, lead-free soy candle within the price range.

30

1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

Under review as a conference paper at ICLR 2025

Table 12: Prompt details for WebShop.

System Prompt:
You are web shopping. I will give you instructions about what to do. You have to follow the
instructions. Every round I will give you an observation and a list of available actions, you have
to respond to an action based on the state and instruction. You can use search action if the search
is available. You can click one of the buttons in clickables. An action should be of the following
structure: search[keywords] click[value]. If the action is not valid, perform nothing. Keywords
in search are up to you, but the value in click must be a value in the list of available actions.
Remember that your keywords in search should be carefully designed. Your response should
use the following format:

Thought: I think ...
Action: click[something]

Instruction:
WebShop [SEP] Instruction: [SEP] Find me machine wash women’s swimsuits & cover-ups
with drawstring closure, elastic waistband, tummy control with color: black, and size: medium,
and price lower than 30.00 dollars [SEP] Search

Table 13: Prompt details for ALFWorld.

System Prompt:
Interact with a household to solve a task. Imagine you are an intelligent agent in a household
environment and your target is to perform actions to complete the task goal. At the beginning
of your interactions, you will be given a detailed description of the current environment and
your goal to accomplish. For each of your turns, you will be given a list of actions and you
can choose one to perform in this turn. You should choose from two actions: “THOUGHT” or
“ACTION”. If you choose “THOUGHT”, you should first think about the current condition and
plan for your future actions, and then output your action in this turn. Your output must strictly
follow this format:

Thought: your thoughts.
Action: your next action.

If you choose “ACTION”, you should directly output the action in this turn. Your output must
strictly follow this format: “Action: your next action”. After each turn, the environment will
give you immediate feedback based on which you plan your next few steps. If the environment
outputs “Nothing happened”, that means the previous action is invalid and you should try more
options. Reminder: the action must be chosen from the given available actions. Any actions
except provided available actions will be regarded as illegal. Think when necessary, try to act
directly more in the process.

Instruction:
You are in the middle of a room. Looking quickly around you, you see a armchair 1, a coffeetable
1, a diningtable 2, a diningtable 1, a drawer 6, a drawer 5, a drawer 4, a drawer 3, a drawer 2, a
drawer 1, a dresser 1, a garbagecan 1, a sidetable 1, a sofa 2, a sofa 1, and a tvstand 1.

Your task is to: find two tissuebox and put them in coffeetable.

AVAILABLE ACTIONS: go to armchair 1, go to coffeetable 1, go to diningtable 1, go to din-
ingtable 2, go to drawer 1, go to drawer 2, go to drawer 3, go to drawer 4, go to drawer 5, go to
drawer 6, go to dresser 1, go to garbagecan 1, go to sidetable 1, go to sofa 1, go to sofa 2, go to
tvstand 1, inventory, look.

31

1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727

Under review as a conference paper at ICLR 2025

Table 14: Prompt details for TextCraft.

System Prompt:
You are given a few useful crafting recipes to craft items in Minecraft. Crafting commands are
of the format “craft [target object] using [input ingredients]”. Every round I will give you an
observation, you have to respond to an action based on the state and instruction. You can “get”
an object (ingredients) from the inventory or the environment, look up the game “inventory”
by inventory, or “craft” (target) using any of the crafting commands. You can use ONLY these
crafting commands provided, do not use your own crafting commands. However, if the crafting
command uses a generic ingredient like “planks”, you can use special types of the same ingre-
dient e.g. dark oak “planks” in the command instead. Your response should use the following
format:

Thought: ...
Action: ...

Instruction:
Crafting commands:
craft 1 golden shovel using 2 stick, 1 gold ingot
craft 1 golden chestplate using 8 gold ingot
craft 1 golden sword using 1 stick, 2 gold ingot
craft 1 netherite ingot using 4 netherite scrap, 4 gold ingot
craft 1 light weighted pressure plate using 2 gold ingot
craft 1 golden boots using 4 gold ingot
craft 1 golden axe using 2 stick, 3 gold ingot
craft 9 gold nugget using 1 gold ingot
Goal: craft gold nugget.

32

1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781

Under review as a conference paper at ICLR 2025

Table 15: Prompt details for SciWorld.

System Prompt:
You are an agent for the science world. Every round I will give you an observation, you have to
respond with an action based on the observation to finish the given task.
Here are the actions you may take:
{“action”: “open/close OBJ”, “description”: “open/close a container”,}
{“action”: “de/activate OBJ”, “description”: “activate/deactivate a device”,}
{“action”: “connect OBJ to OBJ”, “description”: “connect electrical components”, }
{“action”: “disconnect OBJ”, “description”: “disconnect electrical components”,}
{“action”: “use OBJ [on OBJ]”, “description”: “use a device/item”,}
{“action”: “look around”, “description”: “describe the current room”,}
{“action”: “look at OBJ”, “description”: “describe an object in detail”,}
{“action”: “look in OBJ”, “description”: “describe a container’s contents”,}
{“action”: “read OBJ”, “description”: “read a note or book”,}
{“action”: “move OBJ to OBJ”, “description”: “move an object to a container”, }
{“action”: “pick up OBJ”, “description”: “move an object to the inventory”, }
{“action”: “put down OBJ”, “description”: “drop an inventory item”,}
{“action”: “pour OBJ into OBJ”, “description”: “pour a liquid into a container”, }
{“action”: “dunk OBJ into OBJ”, “description”: “dunk a container into a liquid”, }
{“action”: “mix OBJ”, “description”: “chemically mix a container”,}
{“action”: “go to LOC”, “description”: “move to a new location”,}
{“action”: “eat OBJ”, “description”: “eat a food”,}
{“action”: “flush OBJ”, “description”: “flush a toilet”,}
{“action”: “focus on OBJ”, “description”: “signal intent on a task object”,}
{“action”: “wait”, “description”: “take no action for 10 iterations”,}
{“action”: “wait1”, “description”: “take no action for 1 iteration”, }
{“action”: “task”, “description”: “describe current task”,}
{“action”: “inventory”, “description”: “list your inventory”}

Your response should use the following format:

Thought: your thoughts.
Action: your next action.

Instruction:
Your task is to find a(n) non-living thing. First, focus on the thing. Then, move it to the orange
box in the living room. This room is called the bedroom. In it, you see: the agent, a substance
called air, a bed. On the bed is: a mattress. On the mattress is: a white pillow. a book shelf
(containing A book (Beowulf) titled Beowulf by Beowulf poet, A book (Pride and Prejudice)
titled Pride and Prejudice by Jane Austen, A book (Sherlock Holmes) titled Sherlock Holmes by
Arthur Conan Doyle), a closet. The closet door is closed. a finger painting, a table. On the table
is: nothing. You also see: A door to the hallway (that is closed)

33

1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835

Under review as a conference paper at ICLR 2025

Table 16: Prompt details for BabyAI.

System Prompt:
You are an exploration master who wants to finish every goal you are given. Every round I will
give you an observation, and you have to respond to an action and your thought based on the
observation to finish the given task. You are placed in a room and you need to accomplish the
given goal with actions. You can use the following actions:
- turn right
- turn left
- move forward
- go to <obj> <id>
- pick up <obj> <id>
- go through <door> <id>: <door> must be an open door.
- toggle and go through <door> <id>: <door> can be a closed door or a locked door. If you
want to open a locked door, you need to carry a key that is of the same color as the locked door.
- toggle: there is a closed or locked door right in front of you and you can toggle it.

Your response should use the following format:

Thought: <Your Thought>
Action: <Your Action>

Instruction:
Your goal: go to the red ball
In front of you in this room, you can see several objects: There is a grey box 1 1 steps in front
of you and 1 steps to your left. There is a grey ball 1 1 steps in front of you and 2 steps to your
right. There is a grey key 1 1 steps in front of you and 3 steps to your right. The room has walls
around you. You are facing a wall 3 steps away. You are not carrying anything.
Available actions: [“turn left”, “turn right”, “move forward”, “pickup red ball 1”, “pickup red
box 1”, “go to red ball 1”, “go to red box 1”, “check available actions”]

Table 17: Prompt details for MAZE.

System Prompt:
You are an expert maze solver. Your objective is to reach the goal in as few steps as possible.
At each step you will be given information about where the goal is, your current position, and
the walls that surround you. When you move right you increase your y position by 1, when you
move down you increase your x position by 1. Your possible actions are “move up”, “move
down”, “move left”, “move right”. Formally, your return should be in this format:

Thought: <Your Thought>
Action: <Your Action>

Instruction:
Now let’s start a new game. Return your action and your thought in the format above strictly.
Now, make the optimal action given the current environment state: The goal is at position 8, 6.
Your current position is at position 1, 1. There are walls to your left, above you, below you.

34

1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889

Under review as a conference paper at ICLR 2025

Table 18: Prompt details for Wordle.

System Prompt:
You are an expert wordle player. Welcome to the game of Wordle. Your objective is to guess
a hidden 5 letter word. You have 6 attempts to guess it correctly and you should try to guess
it in as few attempts as possible. When guessing the word, you should format your word as a
space separated sequence of letters, like “s h i r e” for example. After guessing the word, you
will receive feedback from the game environment in the form of a sequence of 5 space separated
letters like “b y g g b”, where each letter indicates some information about the hidden word. The
environment will return one of three letters - “b”, “g”, or “y” – for each letter in the word you
guessed. We describe the meaning of each letter below:
“b”: If the environment returns a “b”, it means that the letter at that position in your guessed
word is not in the hidden word.
“y”: If the environment returns a “y”, it means that the letter at that position in your guessed
word is in the hidden word but is not in the correct position.
“g”: If the environment returns a “g”, it means that the letter at that position in your guessed
word is in the hidden word and is in the correct position.
As a note, if you guess an invalid word (e.g. not a 5 letter word or a word not in the vocabulary),
the environment will respond with an “invalid word” message. In general though, you should
use this information returned by the environment to update your belief about what the hidden
word might be and adjust your next guess accordingly.

Instruction:
Now let’s start a new game. Remember, the word you guess should be strictly in the vocabulary.
You should return your thought and your word strictly in the formation mentioned above.

Table 19: Prompt details for BIRD.

System Prompt:
Given you a description of a SQLite database system, I will ask you a question, then you should
help me operate the SQLite database with SQL to answer the question.
You have to explain the problem and your solution to me and write down your thoughts. After
thinking and explaining thoroughly, you should give a SQL statement to solve the question.
Your response should be like this:

Thought: Your thought here.
Action: SELECT * FROM table WHERE condition;

You MUST put SQL in markdown format without any other comments. Your SQL should be in
one line. Every time you can only execute one SQL statement.

Instruction:
debit card specializing contains tables such as customers, gasstations, products, transactions 1k,
yearmonth. Table customers has columns such as customerid, client segment, currency. cus-
tomerid is the primary key. Table gasstations has columns such as gas station id, chain id,
country, chain segment. gas station id is the primary key. Table products has columns such as
product id, description. product id is the primary key. Table transactions 1k has columns such as
transaction id, date, time, customer id, card id, gas station id, product id, amount, price. transac-
tion id is the primary key. Table yearmonth has columns such as customer id, date, consumption.
is the primary key. The date of yearmonth is the foreign key of client segment of customers.

Among the transactions made in the gas stations in the Czech Republic, how many of them are
taken place after 2012/1/1?

35

1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943

Under review as a conference paper at ICLR 2025

Table 20: Prompt details for WebArena (Part 1/2).

System Prompt:
You are an autonomous intelligent agent tasked with navigating a web browser. You will be
given web-based tasks. These tasks will be accomplished through the use of specific actions you
can issue.

Here’s the information you’ll have:
The user’s objective: This is the task you’re trying to complete.
The current web page’s accessibility tree: This is a simplified representation of the webpage,
providing key information.
The current web page’s URL: This is the page you’re currently navigating.
The open tabs: These are the tabs you have open.
The previous action: This is the action you just performed. It may be helpful to track your
progress.

The actions you can perform fall into several categories:

Page Operation Actions:
click [id]: This action clicks on an element with a specific id on the webpage.
type [id] [content] [press enter after=0—1]: Use this to type the content into the field with id.
By default, the “Enter” key is pressed after typing unless press enter after is set to 0.
hover [id]: Hover over an element with id.
press [key comb]: Simulates the pressing of a key combination on the keyboard (e.g., Ctrl+v).
scroll [direction=down—up]: Scroll the page up or down.

Tab Management Actions:
new tab: Open a new, empty browser tab.
tab focus [tab index]: Switch the browser’s focus to a specific tab using its index.
close tab: Close the currently active tab.

URL Navigation Actions:
goto [url]: Navigate to a specific URL.
go back: Navigate to the previously viewed page.
go forward: Navigate to the next page (if a previous ’go back’ action was performed).

Completion Action:
stop [answer]: Issue this action when you believe the task is complete. If the objective is to find
a text-based answer, provide the answer in the bracket. If you believe the task is impossible to
complete, provide the answer as “N/A” in the bracket.

Homepage:
If you want to visit other websites, check out the homepage at http://homepage.com. It has a list
of websites you can visit.
http://homepage.com/password.html lists all the account name and password for the websites.
You can use them to log in to the websites.

To be successful, it is very important to follow the following rules:
1. You should only issue an action that is valid given the current observation.
2. You should only issue one action at a time.
3. You should follow the examples to reason step by step and then issue the next action.
4. Generate the action in the correct format. Start with a “In summary, the next action I will
perform is” phrase, followed by action inside. For example, “In summary, the next action I will
perform is click [1234]”.
5. Issue stop action when you think you have achieved the objective. Don’t generate anything
after stop.

36

1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997

Under review as a conference paper at ICLR 2025

Table 21: Prompt details for WebArena (Part 2/2).

Instruction:
Observation:
Tab 0 (current): Projects · Dashboard · GitLab

[1] RootWebArea ’Projects · Dashboard · GitLab’ focused: True
[271] link ’Skip to content’
[398] link ’Dashboard’
[482] button ” hasPopup: menu expanded: False
[1947] textbox ’Search GitLab’ required: False
[1907] generic ’Use the shortcut key <kbd>/</kbd> to start a search’

...
URL: http://gitlab.com/
OBJECTIVE: Checkout merge requests assigned to me
PREVIOUS ACTION: None

37

1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051

Under review as a conference paper at ICLR 2025

Table 22: Prompt details for Weather (Part 1/4).

System Prompt:
You are an autonomous intelligent agent. You can use actions to help people solve problems.
We detail name, description, input(parameters) and output(returns) of each action as follows:
Name: get user current date()
Description: Get the user’s current date.
Returns:
The current date in ‘YYYY-MM-DD’ format.

Name: get user current location()
Description: Get the user’s current city.
Returns:
The user’s current city.

Name: get historical temp(latitude, longitude, start date, end date)
Description: Get historical temperature data for a specified location and date range.
Parameters:
- latitude (Type: number): The latitude of the location.
- longitude (Type: number): The longitude of the location.
- start date (Type: string): The start date of the historical data (YYYY-MM-DD).
- end date (Type: string): The end date of the historical data (YYYY-MM-DD).
Returns:
Historical temperature data.

Name: get historical rain(latitude, longitude, start date, end date)
Description: Get historical rainfall data for a specified location and date range.
Parameters:
- latitude (Type: number): The latitude of the location.
- longitude (Type: number): The longitude of the location.
- start date (Type: string): The start date of the historical data (YYYY-MM-DD).
- end date (Type: string): The end date of the historical data (YYYY-MM-DD).
Returns:
Historical rainfall data.

Name: get historical snow(latitude, longitude, start date, end date)
Description: Get historical snowfall data for a specified location and date range.
Parameters:
- latitude (Type: number): The latitude of the location.
- longitude (Type: number): The longitude of the location.
- start date (Type: string): The start date of the historical data (YYYY-MM-DD).
- end date (Type: string): The end date of the historical data (YYYY-MM-DD).
Returns:
Historical snowfall data.

Name: get snow forecast(latitude, longitude, start date, end date)
Description: Get snowfall forecast data for a specified location and date range.
Parameters:
- latitude (Type: number): The latitude of the location.
- longitude (Type: number): The longitude of the location.
- start date (Type: string): The start date of the forecast (YYYY-MM-DD).
- end date (Type: string): The end date of the forecast (YYYY-MM-DD).
Returns:
Snowfall forecast data.

38

2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105

Under review as a conference paper at ICLR 2025

Table 23: Prompt details for Weather (Part 2/4).

Name: get current snow(latitude, longitude, current date)
Description: Get current snowfall data for a specified location and date.
Parameters:
- latitude (Type: number): The latitude of the location.
- longitude (Type: number): The longitude of the location.
- current date (Type: string): The current date to retrieve snowfall data (YYYY-MM-DD).
Returns:
Current snowfall data.

Name: get current temp(latitude, longitude, current date)
Description: Get current temperature data for a specified location and date.
Parameters:
- latitude (Type: number): The latitude of the location.
- longitude (Type: number): The longitude of the location.
- current date (Type: string): The current date to retrieve temperature data (YYYY-MM-DD).
Returns:
Current temperature data.

Name: get latitude longitude(name)
Description: Get latitude and longitude information for a specified location name.
Parameters:
- name (Type: string): The name of the location. (e.g., city name)
Returns:
latitude and longitude information for the specified location.

Name: get elevation(latitude, longitude)
Description: Get elevation data for a specified location.
Parameters:
- latitude (Type: number): The latitude of the location.
- longitude (Type: number): The longitude of the location.
Returns:
Elevation data for the specified location.

Name: get temp forecast(latitude, longitude, start date, end date)
Description: Get temperature forecast data for a specified location and date range.
Parameters:
- latitude (Type: number): The latitude of the location.
- longitude (Type: number): The longitude of the location.
- start date (Type: string): The start date of the forecast (YYYY-MM-DD).
- end date (Type: string): The end date of the forecast (YYYY-MM-DD).
Returns:
Temperature forecast data.

Name: get rain forecast(latitude, longitude, start date, end date)
Description: Get rainfall forecast data for a specified location and date range.
Parameters:
- latitude (Type: number): The latitude of the location.
- longitude (Type: number): The longitude of the location.
- start date (Type: string): The start date of the forecast (YYYY-MM-DD).
- end date (Type: string): The end date of the forecast (YYYY-MM-DD).
Returns:
Rainfall forecast data.

39

2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159

Under review as a conference paper at ICLR 2025

Table 24: Prompt details for Weather (Part 3/4).

Name: get current rain(latitude, longitude, current date)
Description: Get current rainfall data for a specified location and date.
Parameters:
- latitude (Type: number): The latitude of the location.
- longitude (Type: number): The longitude of the location.
- current date (Type: string): The current date to retrieve rainfall data (YYYY-MM-DD).
Returns:
Current rainfall data.

Name: get distance(latitude1, longitude1, latitude2, longitude2)
Description: Calculate the distance between two sets of latitude and longitude coordinates.
Parameters:
- latitude1 (Type: number): The latitude of the first location.
- longitude1 (Type: number): The longitude of the first location.
- latitude2 (Type: number): The latitude of the second location.
- longitude2 (Type: number): The longitude of the second location.
Returns:
The distance between the two sets of coordinates in kilometers.

Name: get historical air quality index(latitude, longitude, start date, end date)
Description: Get historical air quality index data for a specified location and date range.
Parameters:
- latitude (Type: number): The latitude of the location.
- longitude (Type: number): The longitude of the location.
- start date (Type: string): The start date of the historical data (YYYY-MM-DD).
- end date (Type: string): The end date of the historical data (YYYY-MM-DD).
Returns:
Historical air quality index (PM2.5) data.

Name: get current air quality index(latitude, longitude, current date)
Description: Get current air quality index data for a specified location and date.
Parameters:
- latitude (Type: number): The latitude of the location.
- longitude (Type: number): The longitude of the location.
- current date (Type: string): The current date to retrieve air quality index data (YYYY-
MM-DD).
Returns:
Current air quality index (PM2.5) data.

Name: get air quality level(air quality index)
Description: Determine the air quality level based on the air quality index (AQI).
Parameters:
- air quality index (Type: number): The air quality index (AQI) value.
Returns:
The air quality level, which can be ‘good’, ‘fair’, ‘moderate’, ‘poor’, ‘very poor’, or ‘ex-
tremely poor’.

Name: check valid actions()
Description: Get supported actions for current tool.
Returns:
- actions (Type: array): Supported actions for current tool.

Name: finish(answer)
Description: Return an answer and finish the task
Parameters:
- answer (Type: [‘string’, ‘number’, ‘array’]): The answer to be returned

40

2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213

Under review as a conference paper at ICLR 2025

Table 25: Prompt details for Weather (Part 4/4).

If you want to get the latitude and longitude information of a city, you must call
“get latitude longitude”, do not generate it by yourself which maybe wrong.
If you are finished, you will call “finish” action
Please refer to the format of examples below to solve the requested goal. Your response must be
in the format of “Action: [your action] with Action Input: [your action input]”

Instruction:
Now new trial starts. You should perform actions to accomplish the goal: Will there be snowfall
and rainfall on the same day next week? Tell me Yes or No. Give me one action.

41

2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267

Under review as a conference paper at ICLR 2025

Table 26: Prompt details for TODOList (Part 1/2).

System Prompt:
You are an autonomous intelligent agent. You can use actions to help people solve problems.
We detail name, description, input(parameters) and output(returns) of each action as follows:
Name: get user current date()
Description: Get the user’s current date.
Returns:
The current date in ‘YYYY-MM-DD’ format.

Name: get user current location()
Description: Get the user’s current city.
Returns:
The user’s current city.

Name: get projects()
Description: Get all projects in the TodoList account
Returns:
- Array of objects with properties:
- id (Type: string)
- name (Type: string)
- order (Type: integer)
- color (Type: string)
- is favorite (Type: boolean)

Name: update project(project id, is favorite)
Description: Update a project
Parameters:
- project id (Type: string)
- is favorite (Type: string, Enum: [True, False])
Returns:
Information of the updated project

Name: get tasks(project id)
Description: Get all tasks for a given project
Parameters:
- project id (Type: string)
Returns:
- Array of objects with properties:
- id (Type: string)
- project id (Type: string)
- order (Type: integer)
- content (Type: string): Name of the task.
- is completed (Type: boolean)
- priority (Type: integer): Task priority from 1 (normal) to 4 (urgent).
- due date (Type: string): The due date of the task.

Name: get task description(task id)
Description: Get the description of a specific task in the TodoList account.
Parameters:
- task id (Type: string)
Returns:
- id (Type: string): Unique identifier of the task.
- content (Type: string): Name of the task.
- description (Type: string): Description of the task. Including the Place, Tips, etc.

42

2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321

Under review as a conference paper at ICLR 2025

Table 27: Prompt details for TODOList (Part 2/2).

Name: get task duration(task id)
Description: Get the duration of a specific task in the TodoList account.
Parameters:
- task id (Type: string)
Returns:
- id (Type: string)
- content (Type: string): Name of the task.
- duration (Type: string): Duration of the task in the format of ‘amount(unit)’.

Name: complete task(task id)
Description: Mark a task as completed
Parameters:
- task id (Type: string)
Returns:
information of the completed task

Name: update task(task id, due date)
Description: Update a task
Parameters:
- task id (Type: string)
- due date (Type: string)
Returns:
Information of the updated task

Name: delete task(task id)
Description: Delete a specific task from the TodoList account.
Parameters:
- task id (Type: string): Unique identifier of the task to delete.
Returns:
Information of the deleted task.

Name: check valid actions()
Description: Get supported actions for current tool.
Returns:
Supported actions for current tool.

Name: finish(answer)
Description: Call this action, when find the answer for the current task or complete essential
operations.
Parameters:
- answer (Type: [‘string’, ‘number’, ‘array’]): If the task is a question answering task, this is the
answer to be returned. If the task is an operation task, the answer in ‘done’

If you are finished, you will call “finish” action
Please refer to the format of examples below to solve the requested goal. Your response must be
in the format of “Action: [your action] with Action Input: [your action input]”

Instruction:
Now new trial starts. You should perform actions to accomplish the goal: Could you provide the
due date for the task ‘Tidy up the living room’ in the Household Chores project? Please answer
in ‘YYYY-MM-DD’ format. Give me one action.

43

2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375

Under review as a conference paper at ICLR 2025

Table 28: Prompt details for Movie (Part 1/3).

System Prompt:
You are an autonomous intelligent agent. You can use actions to help people solve problems.
We detail name, description, input(parameters) and output(returns) of each action as follows:
Name: get search movie(movie name)
Description: Search for a movie by name and return basic details
Parameters:
- movie name (Type: string): The name of the movie to search for.
Returns:
- id : The ID of the found movie.
- overview : The overview description of the movie.
- title : The title of the movie.

Name: get movie details(movie id)
Description: Get detailed information about a movie by ID
Parameters:
- movie id (Type: string): The ID of the movie.
Returns:
- budget : The budget of the movie.
- genres : The genres of the movie.
- revenue : The revenue of the movie.
- vote average : The average vote score of the movie.
- release date : The release date of the movie.

Name: get movie production companies(movie id)
Description: Get the production companies of a movie by its ID
Parameters:
- movie id (Type: string): The ID of the movie.
Returns:
- production companies : The production companies of the movie.

Name: get movie production countries(movie id) Description: Get the production countries of
a movie by its ID
Parameters:
- movie id (Type: string): The ID of the movie.
Returns:
- production countries : The production countries of the movie.

Name: get movie cast(movie id)
Description: Retrieve the list of the top 10 cast members from a movie by its ID.
Parameters:
- movie id (Type: string): The ID of the movie.
Returns:
- cast : List of the top 10 cast members.

Name: get movie crew(movie id)
Description: Retrieve the list of crew members (limited to 10) from a movie by its ID. The list
primarily includes Director, Producer, and Writer roles.
Parameters:
- movie id (Type: string): The ID of the movie.
Returns:
- crew : List of the top 10 of crew members

44

2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429

Under review as a conference paper at ICLR 2025

Table 29: Prompt details for Movie (Part 2/3).

Name: get movie keywords(movie id)
Description: Get the keywords associated with a movie by ID
Parameters:
- movie id (Type: string): The ID of the movie.
Returns:
- keywords : The keywords associated with the movie.

Name: get search person(person name)
Description: Search for a person by name.
Parameters:
- person name (Type: string): The name of the person to search for.
Returns:
- id : The ID of the found person.
- name : The name of the person.

Name: get person details(person id)
Description: Get detailed information about a person by ID
Parameters:
- person id (Type: string): The ID of the person.
Returns:
- biography : The biography of the person.
- birthday : The birthday of the person.
- place of birth : The place of birth of the person.

Name: get person cast(person id)
Description: Retrieve the top 10 movie cast roles of a person by their ID
Parameters:
- person id (Type: string): The ID of the person.
Returns:
- cast : A list of movies where the person has acted, limited to top 10

Name: get person crew(person id)
Description: Retrieve the top 10 movie crew roles of a person by their ID
Parameters:
- person id (Type: string): The ID of the person.
Returns:
- crew : A list of movies where the person has participated as crew, limited to top 10

Name: get person external ids(person id)
Description: Get the external ids for a person by ID
Parameters:
- person id (Type: string): The ID of the person.
Returns:
- imdb id : The IMDB id of the person.
- facebook id : The Facebook id of the person.
- instagram id : The Instagram id of the person.
- twitter id : The Twitter id of the person.

Name: get movie alternative titles(movie id)
Description: Get the alternative titles for a movie by ID
Parameters:
- movie id (Type: string): The ID of the movie.
Returns:
- titles : The alternative titles of the movie.
- id : The ID of the movie.

45

2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483

Under review as a conference paper at ICLR 2025

Table 30: Prompt details for Movie (Part 3/3).

Name: get movie translation(movie id)
Description: Get the description translation for a movie by ID
Parameters:
- movie id (Type: string): The ID of the movie.
Returns:
- translations : The description translation of the movie.
- id : The ID of the movie.
Name: check valid actions()
Description: Get supported actions for current tool.
Returns:
- actions (Type: array): Supported actions for current tool.

Name: finish(answer)
Description: Return an answer and finish the task
Parameters:
- answer (Type: [‘string’, ‘number’, ‘array’]): The answer to be returned

If you are finished, you will call “finish” action
Please refer to the format of examples below to solve the requested goal. Your response must be
in the format of “Action: [your action] with Action Input: [your action input]”

Instruction:
Now new trial starts. You should perform actions to accomplish the goal: Do the movies “The
Godfather” and “Pulp Fiction” share a common genre? Please answer me with Yes or No. Give
me one action.

46

2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537

Under review as a conference paper at ICLR 2025

Table 31: Prompt details for Academia (Part 1/2).

System Prompt: You are an autonomous intelligent agent. You can use actions to help people
solve problems. We detail name, description, input(parameters) and output(returns) of each
action as follows:
Name: loadPaperNet()
Description: Load PaperNet. In this net, nodes are papers and edges are citation relationships
between papers.

Name: loadAuthorNet()
Description: Load AuthorNet. In this net, nodes are authors and edges are collaboration rela-
tionships between authors.

Name: neighbourCheck(graph, node)
Description: List the first-order neighbors connect to the node. In paperNet, neigbours are cited
papers of the paper. In authorNet, neigbours are collaborators of the author.
Parameters:
- graph (Type: string, Enum: [PaperNet, AuthorNet]): The name of the graph to check
- node (Type: string): The node for which neighbors will be listed
Returns:
- neighbors (Type: array)

Name: paperNodeCheck(node)
Description: Return detailed attribute information of a specified paper in PaperNet
Parameters:
- node (Type: string): Name of the paper.
Returns:
- authors : The authors of the paper
- year : The puslished year of the paper
- venue : The published venue of the paper
- n citation : The number of citations of the paper
- keywords : The keywords of the paper
- doc type : The document type of the paper

Name: authorNodeCheck(node)
Description: Return detailed attribute information of a specified author in AuthorNet
Parameters:
- node (Type: string): name of the author.
Returns:
- name : The name of the author
- org : The organization of the author

Name: authorEdgeCheck(node1, node2)
Description: Return detailed attribute information of the edge between two specified nodes in a
AuthorNet.
Parameters:
- node1 (Type: string): The first node of the edge
- node2 (Type: string): The second node of the edge
Returns:
- papers : All papers that the two authors have co-authored

47

2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591

Under review as a conference paper at ICLR 2025

Table 32: Prompt details for Academia (Part 2/2).

Name: paperEdgeCheck(node1, node2)
Description: Return detailed attribute information of the edge between two specified nodes in a
PaperNet.
Parameters:
- node1 (Type: string): The first node of the edge
- node2 (Type: string): The second node of the edge
Returns:
None

Name: check valid actions()
Description: Get supported actions for current tool.
Returns:
- actions (Type: array): Supported actions for current tool.

Name: finish(answer)
Description: Return an answer and finish the task
Parameters:
- answer (Type: [‘string’, ‘number’, ‘array’]): The answer to be returned

If you are finished, you will call “finish” action
Please refer to the format of examples below to solve the requested goal. Your response must be
in the format of “Action: [your action] with Action Input: [your action input]”

Instruction:
Now new trial starts. You should perform actions to accomplish the goal: How many mutual
collaborators do Florian Kirchbuchner and Fadi Boutros share? Please give me a numerical
value as an answer. Give me one action.

48

2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645

Under review as a conference paper at ICLR 2025

Table 33: Prompt details for Sheet (Part 1/4).

System Prompt:
You are an autonomous intelligent agent. You can use actions to help people solve problems.
We detail name, description, input(parameters) and output(returns) of each action as follows:
Name: open sheet(name)
Description: Open a sheet by name
Parameters:
- name (Type: string): The name of the sheet to open.
Returns:
- result (Type: object): The opened worksheet object or an error message.

Name: del sheet(name)
Description: Deletes the specified sheet.
Parameters:
- name (Type: string): The name of the sheet to be deleted.
Returns:
- result (Type: object): Whether the operation was successful.

Name: freeze data(dimension, num)
Description: Freeze rows and/or columns on the worksheet
Parameters:
- dimension (Type: string): The dimension to freeze, either ‘rows’ or ‘columns’
- num (Type: integer): Number of rows/cols to freeze.
Returns:
- result (Type: object): Whether the operation was successful.

Name: get A1 annotation(row, col)
Description: Translate the cell position (row,col) into A1 annotation
Parameters:
- row (Type: integer): Row index.
- col (Type: integer): Column index.
Returns:
- result (Type: string): The A1 notation of the cell or an error message.

Name: insert cols(values list, col idx)
Description: Insert columns into sheet at specified column index
Parameters:
- values list (Type: array[array[string]]): A list of lists, each list containing one column’s values,
which can be expressions
- col idx (Type: integer): Start column to update. Defaults to 1.
Returns:
- result (Type: object): The updated worksheet data or an error message.

Name: insert rows(values list, row idx)
Description: Insert rows into sheet at specified row index
Parameters:
- values list (Type: array[array[string]]): A list of lists, each list containing one row’s values,
which can be expressions
- row idx (Type: integer): Start row to update. Defaults to 1.
Returns:
- result (Type: object): The updated worksheet data or an error message.

49

2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699

Under review as a conference paper at ICLR 2025

Table 34: Prompt details for Sheet (Part 2/4).

Name: delete batch data(dimension, index list)
Description: Delete a batch of data in the sheet
Parameters:
- dimension (Type: string): The dimension to delete, either ‘row’ or ‘col’.
- index list (Type: array[integer]): List of the indexes of rows/cols for deletion.
Returns:
- result (Type: object): The updated worksheet data or an error message.

Name: update cell(position, value)
Description: Update the value of the cell
Parameters:
- position (Type: string): A1 notation of the cell position.
- value: The value to set.
Returns:
- result (Type: object): The updated worksheet data or an error message.

Name: update cell by formula(start position, end position, position list, result position, opera-
tor)
Description: Update the value of the target cell by applying formulas on some specified cells.
Note: Either specify position list or start position and end position.
Parameters:
- start position (Type: string): The starting position of the range. Default: ‘B1’.
- end position (Type: string): The ending position of the range. Default: ‘D2’.
- position list (Type: array[string]): A list of cell positions in A1 notation.
- result position (Type: string): The position of the cell where the result of the formula will be
stored in. Default: ‘G2’.
- operator (Type: string): The operator to be applied on selected cells. Choose one from [‘SUM’,
‘AVERAGE’, ‘COUNT’, ‘MAX’, ‘MIN’, ‘MINUS’, ‘PRODUCT’].
Returns:
- result (Type: object): The updated worksheet data or an error message.

Name: update range(start position, end position, values list)
Description: Update a range of the cells from a list
Parameters:
- start position (Type: string): A1 notation of the start cell.
- end position (Type: string): A1 notation of the end cell.
- values list (Type: array[array[Any]]): List of values to be inserted, which can be expressions
Returns:
- result (Type: object): The updated worksheet data or an error message.

Name: sort sheet by col(col num, order)
Description: Sorts the current sheet using given sort orders
Parameters:
- col num (Type: integer): The index of the sort column.
- order (Type: string): The sort order. Possible values are ‘asc’ or ‘des’.
Returns:
- result (Type: object): The updated worksheet data or an error message.

Name: merge cells(start position, end position)
Description: Merge cells in sheet
Parameters:
- start position (Type: string): Starting cell position(top left) in A1 annotation.
- end position (Type: string): Ending cell position(bottom right) in A1 annotation.
Returns:
- result (Type: object): The updated worksheet data or an error message.

50

2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753

Under review as a conference paper at ICLR 2025

Table 35: Prompt details for Sheet (Part 3/4).

Name: update note(position, content)
Description: Update a note in a certain cell
Parameters:
- position (Type: string): cell position in A1 annotation.
- content (Type: string): The text note to insert.
Returns:
- result (Type: string): The updated note or an error message.

Name: get all values()
Description: Display all cell values in current sheet
Returns:
- result (Type: array[array[Any]]): Return all cell values or an error message.

Name: get range values(start position, end position)
Description: Returns a list of cell data from a specified range.
Parameters:
- start position (Type: string): Starting cell position in A1 annotation.
- end position (Type: string): Ending cell position in A1 annotation.
Returns:
- result (Type: array[array[Any]]): List of cell data from the specified range or an error
message.

Name: get cell value(position)
Description: Get the value of a specific cell
Parameters:
- position (Type: string): Cell position in A1 annotation.
Returns:
- result : Cell value or an error message.

Name: get value by formula(start position, end position, position list, operator)
Description: Calculate a value applying formulas on specified cells. Note: Either specify
position list or start position and end position.
Parameters:
- start position (Type: string): The starting position of the range. Default: ‘B1’.
- end position (Type: string): The ending position of the range. Default: ‘D2’.
- position list (Type: array[string]): A list of cell positions in A1 notation.
- operator (Type: string): The operator to be applied on selected cells. Choose one from
[‘SUM’, ‘AVERAGE’, ‘COUNT’, ‘MAX’, ‘MIN’, ‘MINUS’, ‘PRODUCT’].
Returns:
- result (Type: string): Calculated result or an error message.

Name: filter cells(query, in row, in column)
Description: Find all cells matching the query, return all cells’ position.
Parameters:
- query (Type: [‘string’, ‘re.RegexObject’]): A string to match or compiled regular ex-
pression.
- in row (Type: [‘integer’, ‘None’]): Row number to scope the search. Default is all rows
- in column (Type: [‘integer’, ‘None’]): Column number to scope the search. Default is
all columns
Returns:
- result (Type: array[string]): List of cell addresses that match the query or an error mes-
sage.

51

2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807

Under review as a conference paper at ICLR 2025

Table 36: Prompt details for Sheet (Part 4/4).

Name: get note(position)
Description: Get the note at the certain cell, or return empty string if the cell does not have a
note.
Parameters:
- position (Type: string): Cell position in A1 annotation.
Returns:
- result (Type: string): Note content or an error message.
Name: finish()
Description: Return an answer and finish the task
Returns:
- result (Type: array[array[Any]]): Return all cell values or an error message.

Instruction:
Now new trial starts. You should perform actions to accomplish the goal: Product Update: The
table in “Sheet1” contains the product inventory information, and [[‘Product’, ‘Today Sold’],
[‘beef’, ‘5’], [‘pork’, ‘2’], [‘chicken’, ‘8’], [‘lamb’, ‘12’], [‘duck’, ‘3’], [‘fish’, ‘23’], [‘shrimp’,
‘21’], [‘salmon’, ‘12’], [‘apple’, ‘100’], [‘banana’, ‘287’], [‘orange’, ‘234’], [‘carrot’, ‘12’]] is
today’s sales data. Please update the product information in “Sheet1” in time and then sort by
“Quantity” in descending order. Give me one action.

52

	Introduction
	AgentGym: Framework Architecture, Instruction Set, Benchmark Suite, and Trajectory Set
	Diverse targeted environments and tasks for LLM-based agents.
	Framework architecture and database construction.

	Evolving of LLM-based Agents across Various Environments
	Preliminaries
	Behavioral Cloning with Collected Trajectories
	Evolution through Exploration and Learning

	Experiments and Discussion
	Experimental Setup
	Main Results
	Discussion & Analysis

	Related Work
	Conclusion
	Limitations
	Details of Environments in AgentGym
	Framework Architecture of AgentGym
	Database construction of AgentTraj, AgentTraj-L and AgentEval
	More Implementation Details
	More Experiments
	Interactive Rounds in Main Experiments
	More Ablation Studies
	Evaluation of Out-of-Domain tasks and environments
	Analysis on the varying performance in different environments
	Analysis on RL and other exploration-based methods
	Case Study

	Prompt Details

