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ABSTRACT

Large language models (LLMs), with their generalized capabilities, are consid-
ered as a promising foundation to build generally-capable agents that can handle
multi-turn decision-making tasks across various interactive environments. Pre-
vious attempts typically gather expert-provided trajectories and have LLM-based
agents imitate these trajectories step-by-step. However, this supervised fine-tuning
approach depends heavily on human supervision, limiting scalability and restrict-
ing the agent’s exploration and learning in the environments. In this paper, we
take the first step towards developing generally-capable LLM-based agents that
can explore and evolve themselves across diverse environments. To achieve this,
we identify a trinity of ingredients: 1) diverse interactive environments for agent
exploration, 2) a trajectory set to equip agents with basic capabilities and prior
knowledge, and 3) an effective and scalable approach for agent improvement
across environments. We propose AGENTGYM, a new interactive framework fea-
turing various real-world scenarios and environments for broad, unified, real-time,
and concurrent agent exploration. AGENTGYM also includes a database with ex-
panded instructions, high-quality trajectories, and a benchmark suite. Next, we
investigate the potential of agent self-evolution across various environments with
a derived exploration-learning method named AGENTEVOL. Experimental results
show that the evolved agents can achieve results comparable to SOTA models. We
will release the code, dataset, benchmark, and checkpoints.

1 INTRODUCTION

Developing agents capable of performing a wide spectrum of tasks across various environments
at human-level has been a long-standing goal for AI community (Wooldridge & Jennings, 1995;
Silver et al., 2017; 2018; Reed et al., 2022; Xi et al., 2023). Large language models (LLMs) are
considered a promising foundation for constructing such generalist agents due to their generalized
abilities (OpenAI, 2023; Anthropic, 2024; Anil et al., 2023), and many efforts have been made in
this realm to train generally-capable LLM-based agents (Xi et al., 2023; Wang et al., 2024b).

Previous work involves recruiting human experts to interact with various environments to collect
high-quality multi-turn trajectories, which are then used to train agents to imitate these trajectories
step by step through behavioral cloning (BC) 1. This method, while effective, requires skilled anno-
tators and significant financial resources, making it hard to scale (Yang et al., 2024). Moreover, such
a paradigm may encounter bottlenecks in performance and adaptability due to insufficient explo-
ration of the environment (Aksitov et al., 2023). Another line of research allows LLM-based agents
to improve themselves based on environmental feedback (i.e., self-improvement), reducing reliance
on human supervision while enriching exploration of the environment (Zhou et al., 2024; Tao et al.,
2024; Song et al., 2024). Yet, they typically train agents in isolated environments, and the resulted
specialist agents are limited to narrow tasks.

In this paper, we take the initial step to explore the potential of self-evolution in generally-capable
LLM-based agents across various environments. We expect to let the agents first perform imitation

1In LLM field, the term behavioral cloning can be understood as supervised fine-tuning (SFT).
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Figure 1: An illustration of self-evolution for generally-capable LLM-based agents in our paper.
The agent first imitates human behavior and then performs exploration and learning across various
environments and tasks to evolve itself.

and then interact with the environment to evolve themselves just like the way humans learn and
develop (Standish, 2003; Taylor et al., 2016; Fan et al., 2022; Team et al., 2024), as shown in Figure
1. To achieve this research goal, we identify three key pillars. First, diverse environments and tasks
that allow the agents to explore dynamically and comprehensively, rather than being confined to an
isolated world (Standish, 2003; Langdon, 2005; Taylor et al., 2016; Fan et al., 2022). Second, a
trajectory set to train a base agent with preliminary abilities and prior knowledge. This facilitates
further exploration as in diverse, complex environments, it would be extremely inefficient for an
agent to learn everything from scratch through trial and error (Fan et al., 2022; Song et al., 2024).
Third, an effective and scalable method for the agents to perform self-improvement across diverse
environments and tasks. This involves how the agent interacts with the environment and how it
utilizes the feedback to improve itself (Yang et al., 2024; Aksitov et al., 2023).

Considering the three pillars, we present AGENTGYM (see Figure 2), a new framework designed
to comprehensively evaluate and develop generally-capable LLM-based agents. Our main contribu-
tions are:

1. An interactive framework that includes diverse scenarios and environments for LLM-based
agents. AGENTGYM offers convenient APIs through HTTP services, standardizing task specifica-
tions, environment settings, and the observation/action spaces for agents. Within this framework,
we have implemented a unified interface for multi-round interactions and real-time feedback across
different environments to support holistic evaluation, trajectory collection, and agent exploration.
For comprehensiveness, AGENTGYM identifies 7 real-world scenarios critical for evaluating and
developing agents, i.e., web navigating, text games, house-holding tasks, digital games, embodied
tasks, tool-using, and programming. Specifically, it encompasses 14 environments and 89 tasks, with
high flexibility for further expansion. The diversity of AGENTGYM not only challenges the agents’
multitasking abilities but also enhances their adaptability and practicality in real-world applications,
laying the foundation for more robust and versatile LLM-based agents.

2. Expanded instructions, benchmark suite, and high-quality trajectories across environ-
ments. We collect instructions from various environments and tasks, expanding them through
rule-based strategies and AI-based techniques such as self-instruct (Wang et al., 2023b) and in-
struction evolution (Xu et al., 2023). Subsequently, we leverage several principles to construct a
benchmark suite named AGENTEVAL to comprehensively evaluate LLM-based agents. Next, we
use a gather-and-filter pipeline to get a trajectory set named AGENTTRAJ. The set is used to train a
base agent with basic capabilities and prior knowledge, bootstrapping further agent exploration and
learning. For a fair comparison, we also collect a larger trajectory set AGENTTRAJ-L with the same
pipeline to train an agent that serves as the performance upper bound achievable through SFT/BC.
Note that AGENTTRAJ-L is an extension of AGENTTRAJ and we will release it as well.

3. Investigation of self-evolution for LLM-based agents across various environments with
AGENTEVOL method. Starting from the base agent, we explore its potential of self-improvement
across various environments with a proposed method named AGENTEVOL, which is derived based
on the classical RL as Inference framework (Dayan & Hinton, 1997). We then implement it in an

2
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Figure 2: Overview of the AGENTGYM framework. It covers fourteen environments spanning di-
verse scenarios. It adopts a decoupled client-server architecture for unified and concurrent agent-
environment interaction. AGENTGYM also includes expanded instructions, a comprehensive bench-
mark suite AGENTEVAL, and the high quality trajectory set AGENTTRAJ (-L). We also derive
and implement an exploration-learning method named AGENTEVOL to explore the agent’s self-
evolution across various environments.

exploration-learning paradigm in practice. We focus on whether agents can evolve themselves when
facing previously unseen tasks and instructions, where they need to perform exploration and learn-
ing. Experimental results demonstrate that the self-evolution process is highly effective, with agents
achieving performance on par with or even surpassing SOTA models.

In summary, we propose AGENTGYM (See Figure 2 for an overview), a comprehensive frame-
work that includes an interactive platform covering diverse scenarios, a benchmark suite AGEN-
TEVAL, and two trajectory sets AGENTTRAJ and AGENTTRAJ-L. We also derive and implement
an exploration-learning method AGENTEVOL to explore self-evolution in LLM-based agents across
various environments. We will release the whole suite, implementations, and checkpoints. We hope
AGENTGYM will help the community to develop better generalist LLM-based agents.

2 AGENTGYM: FRAMEWORK ARCHITECTURE, INSTRUCTION SET,
BENCHMARK SUITE, AND TRAJECTORY SET

Table 1: Comparison of AGENTGYM with other agent
frameworks covers several aspects: the number of en-
vironments, presence of an interactive platform and its
usage, availability of trajectory sets, support for evolu-
tion, and the evolution mode.

Frameworks Env. Inter. Plat. Traj. Evol.

AgentBench (Liu et al., 2023a) 8 Eval No No
AgentBoard Ma et al. (2024) 12 Eval No No
AgentOhana (Zhang et al., 2024) 10 No Yes No
Pangu-Agent Christianos et al. (2023) 6 No Yes Single-Env
AGENTGYM (Ours) 14 Eval & Train Yes Multi-Env

AGENTGYM is a framework built for
the community to facilitate the evalua-
tion, training, and evolution of generally-
capable LLM-based agents. It features di-
verse interactive environments and tasks
with ReAct format (Yao et al., 2023). It
supports real-time feedback and concur-
rency, and is easily scalable and extend-
able. The comparison between AGENT-
GYM and other LLM-based agent frame-
works is demonstrated in Table 1.

2.1 DIVERSE TARGETED ENVIRONMENTS AND TASKS FOR LLM-BASED AGENTS.

To ensure the comprehensiveness of the framework, we identify 7 real-world scenarios essential for
evaluating and developing agents’ capabilities, including web navigating, text games, house-holding
tasks, digital games, embodied tasks, tool-using, and programming. These scenarios are represented
by 14 environments and 89 tasks in our framework, as shown in Table 2. We further elaborate on
the motivation for selecting these diverse environments from two perspectives.

3
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Table 2: Statistics of AGENTGYM, including scenarios, count of task types, evaluation metric, in-
struction set size, evaluation set size, trajectory set size (AGENTTRAJ and AGENTTRAJ-L), and the
average interactive rounds of each environment in AGENTTRAJ-L.

Env. Scenario Task Num. Eval. Metric Inst. Size Eval. Size Traj. Size Traj-L Size Rounds

WebArena (WA, Zhou et al. 2023a) Web Navigating 3 Success rate 812 20 0 0 −
WebShop (WS, Yao et al. 2022) Web Navigating 1 Success rate 6910 200 1000 3930 5.1
MAZE (MZ, Abdulhai et al. 2023b) Text Game 1 Success rate 240 25 100 215 4.3
Wordle (WD, Abdulhai et al. 2023b) Text Game 1 Success rate 980 25 500 955 4.3
ALFWorld (ALF, Shridhar et al. 2021) House-holding 6 Success rate 3827 200 500 2420 13.3
SciWorld (Sci, Wang et al. 2022) Embodied Tasks 30 Reward 2320 200 1000 2120 19.9
BabyAI (Baby, Chevalier-Boisvert et al. 2019) Embodied Tasks 40 Reward 900 90 400 810 5.7
TextCraft (TC, Prasad et al. 2023) Digital Game 1 Success rate 544 100 300 374 8.0
Tool-Weather (WT, Ma et al. 2024) Tool Use 1 Success rate 331 20 160 311 5.5
Tool-Movie (MV, Ma et al. 2024) Tool Use 1 Success rate 235 20 100 215 4.0
Tool-Academia (AM, Ma et al. 2024) Tool Use 1 Success rate 20 20 0 0 −
Tool-Sheet (ST, Ma et al. 2024) Tool Use 1 Reward 20 20 0 0 −
Tool-TODOList (TL, Ma et al. 2024) Tool Use 1 Success rate 155 20 70 135 5.6
BIRD (BD, Zheng et al. 2023a) Programming 1 Success rate 3200 200 2000 3000 1.0

Total − 89 − 20494 1160 6130 14485 −

Starting from the definition of an LLM-based agent. An LLM-based agent refers to an agent
with a decision-making core based on a large language model, extending its input and action
(Wooldridge & Jennings, 1995; Xi et al., 2023; Wang et al., 2024b). Consequently, the capabili-
ties required for an LLM-based agent include:

• Input Side. An effective agent must demonstrate the ability to process diverse textual
observations, such as plain text, HTML, code, etc. Thus, the environments and tasks in
AGENTGYM are designed to encompass a wide range of input types. For instance, we
include textual environments (ALF, TC), web-based environments (WS, WA), and coding
environments (BD).

• Decision-making Side. At the core of an LLM-based agent lies its reasoning, planning
and environmental understanding capabilities. Therefore, the tasks within AGENTGYM are
crafted to be challenging and rigorous. For example, in the WS task, when interacting with
a web page containing many products, an LLM-based agent needs to guide its next actions
through reasoning and information extraction. Similarly, in the Sci task, an agent needs
to read manuals, find raw materials, and synthesize items when facing observations from
different rooms. These tasks demand not only basic common knowledge but also advanced
planning and situational understanding capabilities.

• Action Side. An LLM-based agent’s outputs can take various forms, such as plain text,
code, API calls and embodied actions. As a result, the environments must be equipped
to accommodate and process these different types of actions. For example, WT and MV
environments offer a variety of tool-calling APIs for the agent; the DB environment requires
the generation of SQL code; Baby and ALF involve embodied actions, while WD focuses
on producing plain text output.

Starting from the expectation for an LLM-based agent. An LLM-based agent is expected to
tackle complex, long-term, multi-turn sequential decision-making tasks by dynamically interacting
with the environment (Yao et al., 2023; Sumers et al., 2024; Zhou et al., 2024). In this context,
the environments and tasks included in AGENTGYM are designed to embody these characteristics.
Specifically, the tasks require multiple rounds of interaction with the environment, and the context
length is usually longer than those of LLM’s Q&A or reasoning tasks. To accomplish these tasks,
the agent needs to process not only instructions but also inputs derived from historical information
and current observations. From this perspective, AGENTGYM is an framework specifically designed
for LLM-based agents.

2.2 FRAMEWORK ARCHITECTURE AND DATABASE CONSTRUCTION.

We employ a decoupled architecture in AGENTGYM to facilitate standardized and scalable agent-
environment interactions. It supports functions like creating environments, retrieving observations
and performing actions via HTTP-based communication. See Appendix C for more details.

Regarding database construction, we first gather 20, 494 instructions using rule-based generation
and self-instruction techniques. Then, we construct a benchmark suite with a size of 1, 160 named

4
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AGENTEVAL to holistically evaluate the capabilities of LLM-based agents. As for the trajectory set,
we collect and filter 6, 130 high-quality trajectories from 11 environments with various strategies,
including but not limited to crowdsourcing and annotations by SOTA models (e.g., GPT-4-Turbo).
This set, named AGENTTRAJ, is used to train a base agent with preliminary abilities and prior
knowledge. For a fair comparison, we also perform the same annotation pipeline on all instructions
to get AGENTTRAJ-L, which represents the performance upper bound of BC. More collection and
annotating details are presented in Appendix B and D.

3 EVOLVING OF LLM-BASED AGENTS ACROSS VARIOUS ENVIRONMENTS

In this section, we explore the potential of agents to evolve themselves across multiple environ-
ments. We begin by training a base agent using BC to equip it with basic interaction capabilities.
Then, based on the RL as Inference theory (Dayan & Hinton, 1997), we derive and implement an
exploration-learning method, AGENTEVOL, for multi-turn interaction scenarios, enabling agents to
improve themselves across various environments. The method is summarized in Algorithm 1.

3.1 PRELIMINARIES

We define the collection of environments as E . For a specific e ∈ E , we formalize the agent task
in the environment as a partially observable Markov decision process (POMDP) (U ,S,A,O, T , r)e
with instruction space U , state space S, action space A, observation space O, deterministic state
transition function T : S ×A → S, and reward function r : S ×A → R.

Given a task instruction u in environment e, the LLM-based agent parameterized by θ generates an
action a1 ∼ πθ(·|e, u) based on its policy πθ. Then, the state space is transitioned to s1 ∈ S,
and the agent receives feedback o1 ∈ O. Subsequently, the agent interacts with the environ-
ment until the task ends or exceeds the maximum number of steps. We adopt ReAct (Yao et al.,
2023) to model the outputs of agent, where the LLM-based agent generates a reasoning thought be-
fore outputting an action. Thus, at time step t, given the history and current feedback, the agent
generates the thought ht+1 ∼ πθ(·|e, u, h1, a1, o1, ..., ht, at, ot) first and the subsequent action
at+1 ∼ πθ(·|e, u, h1, a1, o1, ..., ht, at, ot, ht+1). Hence, the trajectory can be represented as:

τ = (h1, a1, o1, ..., oT−1, hT , aT ) ∼ πθ(τ |e, u), (1)

πθ(τ |e, u) =
T∏

t=1

πθ(ht, at|e, u, ct−1) =

T∏
t=1

πθ(at|e, u, ct−1, ht) · πθ(ht|e, u, ct−1), (2)

where T is the number of interaction rounds, and ct−1 = (h1, a1, o1, ..., ht−1, at−1, ot−1) represents
the interactive history up to t−1. The final reward r(e, u, τ) ∈ [0, 1] is computed after the interaction
ends or the maximum interactive round number is met.

3.2 BEHAVIORAL CLONING WITH COLLECTED TRAJECTORIES

In diverse and complex environments, learning everything from scratch through trial and error is
inefficient for LLM-based agents due to the vast action space of language space and the varying
prior knowledge across different environments (Fan et al., 2022; Song et al., 2024). Hence, we
employ the behavioral cloning (BC) method to train a base agent using AGENTTRAJ, providing
it with basic interaction capability and prior knowledge. Specifically, BC fine-tunes LLM-based
agents by having them mimic the expert trajectories step-by-step. In practice, we expect the agent
to generate both appropriate thought h and action a. So we maximize the following objective:

JBC(θ) = E(e,u,τ)∼Ds

[
log πθ(τ |e, u)

]
= E(e,u,τ)∼Ds

T∑
t=1

[
log πθ(at|e, u, ct−1, ht) + log πθ(ht|e, u, ct−1)

]
.

(3)

Note that we include a general domain dataset Dgeneral as in Zeng et al. (2023) to maintain the
agent’s ability in language understanding and generation. And the resulting agent πθbase

serves as a
starting point for later exploration and learning across diverse environments.

5
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3.3 EVOLUTION THROUGH EXPLORATION AND LEARNING

To achieve self-evolution, agents need to explore environments, receive feedback, and improve
themselves based on the feedback, as humans do (Standish, 2003; Taylor et al., 2016; Fan et al.,
2022; Team et al., 2024). More importantly, the agents may face previously unseen tasks and in-
structions during exploration. Standard reinforcement learning (RL) algorithms, such as Proximal
Policy Optimization (PPO) (Schulman et al., 2017), are worth considering due to their excellent per-
formance in alignment of LLMs (Bai et al., 2022). However, in the setting of multi-turn decision-
making for LLM-based agents, PPO faces significant challenges, e.g., large action space, long in-
teraction chains and sparse reward signals, leading to high computational complexity and training
instability (Huang et al., 2022; Zheng et al., 2023b; Xi et al., 2024).

Hence, we draw inspiration from the well-established connection between RL and probabilistic
inference, i.e., RL as Inference (Dayan & Hinton, 1997; Levine & Koltun, 2013; Neumann, 2011;
Rawlik et al., 2013; Abdolmaleki et al., 2018; Singh et al., 2023), and derive the exploration-learning
method called AGENTEVOL for evolution in multi-turn decision-making scenarios, which involves
agents alternating between exploration and learning across various environments.

Theoretical foundation: learning from the estimated optimal policy using the classical RL as
Inference framework. We view RL as an inference problem within a specific probabilistic model
(Dayan & Hinton, 1997). Differing from traditional RL formulations that focus on identifying a
trajectory that maximizes the expected reward, inference-based approaches start with an optimal
distribution over trajectories. Following previous work (Toussaint, 2009; Levine & Koltun, 2013;
Abdolmaleki et al., 2018), we initially define P (O = 1) to represent the event of “obtained optimal
policy by maximum expected rewards” or “achieving success in the RL task”, which can be calcu-
lated by integrating the optimal policy probability at each sampling point. Given the policy agent
πθ, the optimal policy can be obtained by maximizing:

logPπθ
(O = 1) = log

∫
πθ(τ)p(O = 1|τ)dτ. (4)

However, the above optimization process is difficult to proceed directly due to the fact that LLM-
based agents require token-wise feedback to perform gradient updates. In this paper, we alternatively
construct the variational lower bound of Eq.4 by introducing an estimation function q on the optimal
policy. With Jensen’s inequality, we soon have:

log

∫
πθ(τ)p(O = 1|τ)dτ = logEq(τ)[

πθ(τ)

q(τ)
p(O = 1|τ)] ≥ Eq[log

πθ(τ)

q(τ)
p(O = 1|τ)]

= Eq[log p(O = 1|τ)]− KL[q(τ)||πθ(τ)] = J (q, πθ),

(5)

where πθ is the trajectory distribution induced by the agent, and q(τ) is a variational distribution.

Due to the monotonicity of the logarithmic function, by maximizing the lower bound J (q, πθ), we
can obtain a policy with an expected return higher than before. Generally, our framework can be
divided into two steps of loop iteration. The first part of J (q, πθ) can be explained as estimating the
optimal policy distribution on the sampled trajectories by maximizing the expected reward over the
state space. The second part relates to updating the current agent’s parameters θ towards the optimal
policy q, thus completing the optimization of one single iteration. In analogy to SGD (Robbins &
Monro, 1951), the estimation process introduces noise to the policy optimization due to the presence
of unseen decision-making trajectories. This error gradually decreases as the optimization proceeds
and converges to zero when the current agent becomes optimal (Dayan & Hinton, 1997).

In AGENTEVOL, we refer to the two steps as Exploration step and Learning step like Singh et al.
(2023). Specifically, with current agent parameters θm and the variational distribution qm, at ex-
ploration step, the estimation of optimal policy q is updated by maximizing the expected reward:
qm+1 = argmaxq J (q, πθm). As maxq J (q, πθm) = minq[KL(q(τ)∥p(O = 1|τ)πθm(τ))], we
have qm+1 ∝ p(O = 1|τ)πθm(τ). This step is equivalent to evaluating the likelihood that the
samples generated from the current agent’s policy achieve best rewards, and observe the returns of
q by empirically estimating on a pre-constructed training set. And at learning step, we optimize
J (qm+1, πθ) by updating θ. This process is similar to learning a new distribution sampled from the
optimal policy on the original training data. Since the first term of J (qm+1, πθ) relates only to q as

6
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Algorithm 1: AGENTEVOL

Input: Initialized policy LLM-based agent πθ, environment set E , trajectory subset Ds, full
instruction set Q, reward function r.

Procedure Behavioral cloning:
Maximize objective JBC(θ) = E(e,u,τ)∼Ds

[
log πθ(τ |e, u)

]
to get πθbase

;

Procedure Evolution :
πθ1 ← πθbase

;
for iteration m = 1 to M do

// Perform Exploration Step
Dm =

⋃
e∈E De

m, where De
m = {(e, uj , τ j) |uj ∼ Qe, τ

j ∼ πθm(τ |e, uj)}|D
e
m|

j=1 ;
Compute reward for Dm with r;
Dm ← Dm ∪ Ds;
// Perform Learning Step
Maximize objective JEvol(θ) = E(e,u,τ)∼Dm

[r(e, u, τ) log πθ(τ |e, u)] to get πθm+1 ;
end

well as τ , the training objective is equivalent to measuring the KL divergence between the estimated
policy qm+1(·) and the current policy πθ(·) over all training samples. We finally derive:

θm+1 := argmin
θ

KL[qm+1(τ)∥πθ(τ)] = argmin
θ

∑
τ

−qm+1(τ) log πθ(τ). (6)

This involves optimizing a weighted negative log-likelihood function based on qm+1, which adjusts
the agent policy to increase the likelihood of generating higher-reward trajectories, thereby improv-
ing the agent’s performance.
Practical implementation for evolving LLM-based agents. In our LLM-based agent setting,
the trajectory is conditioned on the environment e and instruction u. Considering our non-negative
reward function r(e, u, τ), we can get P (O|e, u, τ) ∝ r(e, u, τ) (Singh et al., 2023). Consequently,
qm+1(τ |e, u) ∝ r(e, u, τ) · πθm(τ |e, u). Thus, the policy update in the learning is:

θm+1 := argmin
θ

∑
τ

−(r(e, u, τ) · πθ(τ |e, u)) log πθ(τ |e, u)

= argmax
θ

Ee∈E,u∼Qe,τ∼πθm (τ |e,u)[r(e, u, τ) log πθ(τ |e, u)].
(7)

This can be viewed as a supervised fine-tuning objective weighted by reward. This approach uses
the fixed policy agent from the previous iteration to sample data, thereby separating data collection
and policy optimization. This decoupled process can improve the training stability (Zelikman et al.,
2022; Singh et al., 2023).

Now we describe the two steps of evolution part in AGENTEVOL in practice:

Exploration Step. In the m-th exploring iteration, for each environment e, we have an instruction
set Qe which is larger than that used in the BC phase, allowing us to investigate agents
evolving to unseen tasks and instructions. The current policy agent interacts with this en-
vironment, generating a collection of interaction trajectories De

m = {(e, uj , τ j) |uj ∼
Qe, τ

j ∼ πθm(τ |e, uj)}|D
e
m|

j=1 . Subsequently, based on the reward function of the environ-
ment, we calculate the reward r(e, u, τ) for each trajectory. The generated dataset from
each environment is then merged, resulting in Dm =

⋃
e∈E De

m. Note that we also include
the original trajectory set in Section 3.2 for the learning step, i.e., Dm = Dm

⋃
Ds.

Learning Step. In the m-th learning iteration, we utilize the dataset Dm obtained
from the exploration step to fine-tune the agent with the objective JEvol(θ) =
E(e,u,τ)∼Dm

[r(e, u, τ) log πθ(τ |e, u)] to get πθm+1 . We also include the general domain
dataset as in the BC phase. We optimize the initial agent πθ at each iteration, aiming to
minimize overfitting and prevent drift from the base agent. In this learning step, the agent is
improved, similar to previous work done on LLM reasoning Zelikman et al. (2022); Singh
et al. (2023); Aksitov et al. (2023).

By alternating between the two steps, empirical results show that the method facilitates the evolution
of an LLM-based agent across both seen and unseen tasks and instructions.
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Table 3: Evaluating results on diverse tasks. BCbase means the agent trained with AGENTTRAJ, pro-
viding a base agent with basic ability and prior knowledge. BClarge means the agent that performs
BC on AGENTTRAJ-L, representing the performance upper limit of BC in this paper. Our evolution
method, AGENTEVOL, outperforms BClarge on most tasks and environments through exploration
and learning. The best performance of each part is highlighted in bold.

Method WS ALF TC Sci Baby MZ WD WT MV TL BD

Close-sourced Models & Agents
DeepSeek-Chat 11.00 51.00 23.00 16.80 45.67 4.00 24.00 70.00 70.00 75.00 13.50
Claude-3-Haiku 5.50 0.00 0.00 0.83 1.93 4.00 16.00 55.00 50.00 65.00 13.50
Claude-3-Sonnet 1.50 13.00 38.00 2.78 79.25 0.00 36.00 65.00 80.00 80.00 17.00
GPT-3.5-Turbo 12.50 26.00 47.00 7.64 71.36 4.00 20.00 25.00 70.00 40.00 12.50
GPT-4-Turbo 15.50 67.50 77.00 14.38 72.83 68.00 88.00 80.00 95.00 95.00 16.00

Open-sourced Models & Agents
Llama2-Chat-7B 0.50 2.00 0.00 0.83 0.23 0.00 0.00 0.00 0.00 0.00 1.50
Llama2-Chat-13B 1.00 3.50 0.00 0.83 0.10 0.00 0.00 0.00 0.00 0.00 1.50
AgentLM-7B 36.50 71.00 4.00 1.63 0.49 12.00 4.00 0.00 5.00 15.00 5.00
AgentLM-13B 39.50 73.00 0.00 2.75 0.45 8.00 0.00 10.00 5.00 5.00 3.00
AgentLM-70B 49.50 67.00 4.00 10.68 0.66 8.00 4.00 0.00 0.00 40.00 7.50

Ours
BCbase 66.50 77.50 44.00 26.42 69.31 12.00 12.00 25.00 5.00 45.00 8.00
BClarge 73.50 83.00 60.00 74.47 74.19 12.00 36.00 45.00 5.00 65.00 8.50
AGENTEVOL 76.50 88.00 64.00 38.00 82.70 12.00 12.00 25.00 60.00 70.00 9.00

4 EXPERIMENTS AND DISCUSSION

4.1 EXPERIMENTAL SETUP

Environments and Tasks. We explore the self-evolution of LLM-based agents with the AGENT-
GYM framework. Main experiments cover the following environments: WS, ALF, Sci, Baby, TC,
BD, MZ, WD, TL, WT, and MV. Note that instructions used in BC are fewer than those in evolution,
to study the agent’s ability to generalize when performing exploration.

Baselines. We include closed-source models like GPT-3.5-Turbo (Ouyang et al., 2022), GPT-4-
Turbo (OpenAI, 2023), Claude 3 (Anthropic, 2024), and DeepSeek-Chat (DeepSeek-AI, 2024). We
also include open-source models like Llama-2-Chat (Touvron et al., 2023), and agents trained on
expert trajectories, i.e., AgentLM (Zeng et al., 2023). For a fair comparison, we include a baseline
that performs BC on AGENTTRAJ-L, serving as the maximum performance achievable through BC.

Implementation Details. Experiments are conducted with eight A100-80GB GPUs. Our main
backbone model is Llama-2-Chat-7B. Different environment services are deployed on different ports
of the same server. We set the iteration number M to 4. Each instruction is sampled once during
the evolution process for efficiency. Note that some environments provide dense rewards r ∈ [0, 1],
while others give only binary feedback r ∈ {0, 1}. For simplicity and consistency, we follow
previous work (Singh et al., 2023) and use binary rewards. We set r = 0 for trajectories where
r < 1, while for those with r = 1, we keep it unchanged. See Appendix E for more implementation
details. Detailed prompts for each environment are in Appendix G.

4.2 MAIN RESULTS

Experiment results in Table 3 demonstrate that: (1) While closed-source models perform well, even
SOTA closed-source models like GPT-4-Turbo fail to achieve satisfactory performance on all tasks,
highlighting the need for developing more capable agents. (2) Open-source models, represented by
Llama2-Chat, perform poorly on all tasks, highlighting the importance of the initialization step of
BC. (3) Models trained on agent trajectories, like AgentLM (Zeng et al., 2023), can perform on par
with GPT-4-Turbo on many tasks, particularly the 70B version. However, they do not match perfor-
mance on tasks like TextCraft (Prasad et al., 2023) or SciWorld (Wang et al., 2022), which can be at-
tributed to the lack of training data. (4) The agent trained on AGENTTRAJ-L ,i.e., BClarge, achieves
excellent performance, matching or even surpassing SOTA models, showing that it is a strong base-
line. (5) AGENTEVOL, despite having limited trajectories for imitation, surpasses BClarge and
SOTA models on many tasks like WebShop (Yao et al., 2022), ALFWorld (Shridhar et al., 2021) and
BabyAI (Chevalier-Boisvert et al., 2019), validating the superiority and promise of agent evolution.
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Figure 4: Comparison with other exploration-
based methods.

Moreover, we report the number of interactive rounds required by different models to solve the task,
in order to demonstrate the efficiency of AGENTEVOL (Appendix F.1). We also conduct experiments
to explore evolution in isolated environments (Appendix F.4) and perform case study (Appendix F.6).

4.3 DISCUSSION & ANALYSIS

Ablation on data merging strategies and iteration number M . In our experiments, we merge
the trajectories sampled during each iteration with the initial trajectories for training, rather than
merging it with the trajectories generated in the previous iteration. Here, we conduct an ablation
study to show the impact of this merging strategy and the iteration number M . Experimental results
in Figure 3 show that merging with the initial data provides more stable improvements, while merg-
ing with the trajectories from the previous iteration leads to performance fluctuations, possibly due
to overfitting (Yuan et al., 2023b; Singh et al., 2023). Additionally, as M increases, performance
improves but gradually converges in later iterations. So we choose M = 4 to balance performance
and efficiency. More ablation studies can be found in Appendix F.2.

Comparison with other exploration-based methods. The AGENTEVOL method explores and
learns through interactions with environments. For comparison, we include two additional methods:
online RL method PPO (Schulman et al., 2017) and prompt-based method LLM-Planner (Song et al.,
2023). PPO employs the same backbone as AGENTEVOL, Llama-2-Chat-7B, whereas LLM-Planner
is implemented with GPT-4-Turbo to showcase its effectiveness. We run PPO in the isolated environ-
ment, as it tends to experience training instability and show poorer performance when applied across
multiple environments. Results in Figure 4 show that (1) LLM-Planner outperforms GPT-4-Turbo
but falls short on WS, and overall, it doesn’t surpass AGENTEVOL. (2) PPO performs well but lags
behind AGENTEVOL by a significant margin. These findings indicate that AGENTEVOL consistently
improves performance for smaller open-source models compared to larger SOTA models.

Evolution with both successful and failed trajectories. In the learning step, we only utilize
the sampled trajectories with high rewards (success) and do not use failed trajectories. Inspired
by previous work (Mitra et al., 2024; Hosseini et al., 2024; Song et al., 2024; Yang et al., 2024;
Wang et al., 2023a), we explore whether failed trajectories can be included for better evolution.
Specifically, we construct pairs of successful and failed trajectories and optimize the agent using the
DPO method (Rafailov et al., 2023), which fits models to the pair-wise dataset (Wang et al., 2023a;
Mitra et al., 2024; Lai et al., 2024). Results in Table 4 show that using both types of trajectories can
still bring about evolutionary effects, but the performance is not as good as our method, indicating
that preference optimization in multi-task setting is more challenging compared to single-task (Mitra
et al., 2024; Song et al., 2024). In the future, we hope to explore more advanced algorithms and
methods to make full use of all trajectories for comprehensive evolution.

Effectiveness on different models. To demonstrate the generalizability of our method across
different backbone models, we conduct experiments on Llama-2-13B (Touvron et al., 2023) and
DeepSeek-Coder-1.3B (Guo et al., 2024). The experimental results in Table 5 show that our AGEN-
TEVOL maintains its evolutionary capabilities across different backbone models, achieving perfor-
mance that is comparable to or surpasses BClarge.
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Table 4: Experiments on evolution with both
successful and failed trajectories.

Method WS ALF Baby TC

BCbase 66.5 77.5 69.3 44.0
AGENTEVOL 77.0 88.0 82.9 65.0
DPO with failed traj 75.0 86.5 78.3 58.0

Table 5: Effectiveness of AGENTEVOL on
different models.

Model Method WS ALF Baby TC

DeepSeek-Coder-1.3B BCbase 54.0 33.0 68.9 31.0
BClarge 65.0 62.5 73.8 37.0
AGENTEVOL 67.5 54.5 77.3 38.0

Llama2-Chat-13B BCbase 65.5 81.5 76.6 59.0
BClarge 74.0 85.0 81.1 61.0
AGENTEVOL 78.5 89.5 86.8 71.0

5 RELATED WORK

With the development of LLMs (OpenAI, 2023; Anil et al., 2023), developing agents based on them
has become an important research direction (Xi et al., 2023; Wang et al., 2024b). These agents
are typically designed to perform multi-turn decision-making tasks (Yao et al., 2023; Aksitov et al.,
2023; Chen et al., 2023). To evaluate these agents, researchers have proposed various benchmarks
(Yao et al., 2022; Liu et al., 2023a; Ma et al., 2024; Zhou et al., 2023b). Our benchmark AGENTE-
VAL covers more diverse scenarios and environments, providing a more comprehensive evaluation.

Closed-source LLMs, equipped with prompting methods like ReAct (Yao et al., 2023) and PlanAct
(Liu et al., 2023b), can achieve great performance in agent tasks, while agents based on open-source
methods perform poorly on these tasks (Liu et al., 2023a; Christianos et al., 2023). To address this
challenge, a series of work collects expert trajectories from diverse environments and tasks and trains
LLM-based agents through behavioral cloning (Zeng et al., 2023; Chen et al., 2023; 2024; Zhang
et al., 2024). However, obtaining these expert trajectories is often costly and they lack sufficient
exploration of the environment (Yang et al., 2024; Aksitov et al., 2023).

Another line of work trains LLM-based agents based on environmental feedback, referred to as in-
teractive learning methods (Zhou et al., 2024; Christianos et al., 2023; Song et al., 2024; Abdulhai
et al., 2023a). Specifically, they involve training LLMs or agents through exploration and learning.
As a representative method, RL has succeeded in LLM alignment (Askell et al., 2021; Bai et al.,
2022; Ouyang et al., 2022; Zheng et al., 2023b; Wang et al., 2024a), and has been introduced to
reasoning and agent tasks, achieving excellent results (Xi et al., 2024; Luong et al., 2024; Zhou
et al., 2024; Christianos et al., 2023). However, in our multi-environment scenarios, reward con-
sistency and training stability can become problematic (Zhou et al., 2024; Song et al., 2024; Cao
et al., 2024). Another line of work uses self-evolution/self-improvement, where the model explores
the environment to obtain high-reward trajectories and fine-tunes itself based on these trajectories,
achieving promising performance in reasoning, coding, and web tasks (Gülçehre et al., 2023; Singh
et al., 2023; Zelikman et al., 2022; Yuan et al., 2023a; Aksitov et al., 2023; Yang et al., 2024; Song
et al., 2024; Tao et al., 2024; Tian et al., 2024; Lai et al., 2024). However, like RL-based methods,
these works only explore within a single environment. With AGENTGYM, our work explores agent
evolution using AGENTEVOL method, conducting exploration across multiple environments.

6 CONCLUSION

In this work, we present a new framework named AGENTGYM that encompasses 14 interactive
environments and 89 tasks, covering 7 key scenarios for agent evaluation and development. It also
includes expanded instructions, a comprehensive benchmark named AGENTEVAL, and trajectory
sets called AGENTTRAJ and AGENTTRAJ-L. Additionally, we derive and implement an exploration-
learning method AGENTEVOL to investigate the self-evolution of LLM-based agents across multiple
environments. Empirical results demonstrate the effectiveness of the framework and the method. We
also perform sufficient ablation and analysis to investigate how the method works. We hope our work
can help the AI community develop more advanced generalist LLM-based agents.

ETHICS STATEMENT

AGENTGYM and AGENTEVOL facilitate the self-evolution of generally-capable agents, and our
focus is on the self-evolution of decision-making capabilities, but it is crucial to consider safety and
ethical issues during usage. Agents must not be allowed to violate human values. Therefore, it is
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essential to strengthen supervision and regulation when eliciting agents’ self-evolution capabilities.
In the future, we hope to improve the framework’s functionality to align agents with human values.

REPRODUCIBILITY STATEMENT

We upload anonymized versions of our data and code in a Zip file with a Readme file. We have
listed our implementation details in Section 4.1 and Appendix E. We will release the code, dataset,
benchmark, and checkpoints.
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A LIMITATIONS

This paper proposes a new framework named AGENTGYM. It includes an interactive platform with
diverse environments and tasks, an agent benchmark AGENTEVAL, and two collections of expert
trajectories AGENTTRAJ and AGENTTRAJ-L. Additionally, we introduce a novel algorithm, AGEN-
TEVOL, to explore the evolutionary capabilities of generally-capable LLM-based agents. Despite
the contributions and the fact that our method performs well, our work still has some limitations.
Firstly, for computational efficiency, we do not perform multiple samplings in each iteration. How-
ever, in the analysis in Section 4.3, we find that more sampling leads to better results, although the
improvement is not significant. In the future, we hope to increase the number of samples K to a
larger value when sufficient computational resources are available, to explore the upper limits of our
method. Secondly, although we validate the effectiveness of our method on three different models
(Llama2-Chat-7B, Llama-2-Chat-13B, and DeepSeek-Coder-1.3B), we hope to verify it on stronger
and larger base models in the future to explore the potential for building more generally-capable
agents.

B DETAILS OF ENVIRONMENTS IN AGENTGYM

WebShop (WS) (Yao et al., 2022). WebShop is an interactive web environment for web shopping.
The agents are given instructions, and need to buy a product that matches the specifications. The
agents can click a button on the webpage or search for something by the search engine. WebShop
contains 12k instructions and provides over one million real products from amazon.com. We select
6910 instructions. For AGENTTRAJ, we collect 1000 trajectories with SOTA models (700) and
human annotations (300). For AGENTTRAJ-L, we collect 3930 trajectories with SOTA models
(3430) and human annotations (500). We take the success rate as the evaluation metric and set the
maximum round to 10.2

WebArena (WA) (Zhou et al., 2023a). WebArena is a realistic and reproducible web environ-
ment. It contains four categories: E-commerce platforms, social forum platforms, collaborative
development platforms, and content management systems. It supports 12 different web browsing
actions. The observation space consists of a web page URL, the opened tabs, and the web page
content. Completing tasks in this highly realistic environment requires the agent to possess strong
memory, high-level planning, common sense, and reasoning abilities. The reward from the environ-
ment is consistent with the original paper. We filter 20 evaluating test instances from the original
dataset for three main sub-tasks: Information-seeking, Site Navigation, and Content & configuration
operation. We take the success rate as the evaluation metric and set the maximum round to 25.3

MAZE (MZ) (Abdulhai et al., 2023b). MAZE is a word game. Agents, acting as players, can
know their own position, the goal position, and the directions where there are walls around them.
Agents decide to move one square in one of four directions (up, down, left, or right) each time,
receiving a reward of -1 for every move until they reach the goal position. We use GPT-4-Turbo to
add thoughts to the trajectories sampled by LMRL-Gym and create our dataset. For AGENTTRAJ,
we include 100 trajectories. For AGENTTRAJ-L, we include 215 trajectories. We take the success
rate as the evaluation metric and set the maximum round to 15.4

Wordle (WD) (Abdulhai et al., 2023b). Wordle is a word-guessing game that tests agents’ ability
to reason at the level of individual letters. Agents guess the target word from a given vocabulary con-
taining some five-letter words. After each guess, agents are told whether each letter in the guessed
word is in the target word and whether its position is correct and receive a reward of -1 for each step
until they guess the target word or run out of attempts. We take the success rate as the evaluation
metric and set the maximum round to 8. We also use GPT-4-Turbo to add thoughts to the trajectories
sampled by LMRL-Gym. For AGENTTRAJ, we include 500 trajectories. For AGENTTRAJ-L, we
include 955 trajectories.

2https://github.com/princeton-nlp/WebShop/blob/master/LICENSE.md
3https://github.com/web-arena-x/webarena/blob/main/LICENSE
4https://github.com/abdulhaim/LMRL-Gym/blob/main/LICENSE
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ALFWorld (ALF) (Shridhar et al., 2021). ALFWorld is a household environment based on
TextWorld, where agents need to explore rooms and use common sense reasoning to execute tasks.
The action space of ALFWorld includes picking up and placing items, observing surroundings, us-
ing furniture, and more. The environment provides feedback on the execution of actions based on
predefined logic. We take the success rate as the evaluation metric and set the maximum round
to 30. ALFWorld has six types of tasks. We get 3827 instructions from the original work. For
AGENTTRAJ, we collect 500 trajectories with SOTA models(400) and human annotations (100).
For AGENTTRAJ-L, we collect 2420 trajectories with SOTA models(1920) and human annotations
(500). 5

SciWorld (Sci) (Wang et al., 2022). ScienceWorld is a benchmark for testing agents’ scientific
reasoning abilities in a new interactive text environment at the standard elementary science curricu-
lum level. ScienceWorld includes 30 types of tasks, such as using measurement instruments and
conducting mechanics experiments. Its action space is task-related, with the environment simulator
providing the effects of actions. Because the ScienceWorld repository provides golden paths and
existing models cannot achieve high performance, we use GPT-4-Turbo to generate thoughts for
golden paths of 22 types of interactions that are not too long. For AGENTTRAJ, we include 1000
trajectories. For AGENTTRAJ-L, we include 2120 trajectories. We take reward as the evaluation
metric and set the maximum round to 30.6

BabyAI (Baby) (Chevalier-Boisvert et al., 2019). The BabyAI platform is an interactive grid
world simulator with 40 instruction-following tasks where the agent is asked to interact with ob-
jects. The agent has a limited 7x7 sight of view and can only operate objects in front. The original
implementation of BabyAI presents observations in the form of images and low-level actions like
”move forward” and ”turn left”. The implementation from AgentBoard converts graphic obser-
vations into textual instructions and expands the action space with high-level actions like ”pickup
green key 1” and“go through blue locked door 2”. The agent receives a non-zero reward discounted
by the number of steps when reaching the goal, and 0 otherwise. For AGENTTRAJ, we annotate
400 trajectories of 18 out of all 40 tasks with SOTA models. For AGENTTRAJ-L, we annotate 810
trajectories with SOTA models. We take reward as the evaluation metric and set the maximum round
to 20.7

TextCraft (TC) (Prasad et al., 2023). Similar to WordCraft, TextCraft is a text-only environ-
ment for crafting Minecraft items. This environment constructs a crafting tree based on Minecraft’s
crafting recipes, comprising 544 nodes, each representing a target item. In TextCraft, each task pro-
vides a specific target item alongside a list of crafting commands generated by the tree. These tasks
are structured compositionally, incorporating crafting recipes of varying complexity ranging from
1 to 4 steps. The environment supports three valid actions: craft <item> using <ingredients>,
get <item>, and inventory. Each round, the environment checks the agent’s actions and returns
the execution state. Apart from craftable items and their ingredients, all other items are obtainable
from the environment. Agents can get a reward of 1 only upon successfully crafting the target item.
We select 100 tasks for the test set and use the remaining tasks for training. For AGENTTRAJ, we
annotate 300 trajectories with SOTA models (254) and human annotation (46), with every action in
the trajectories verified by the environment. For AGENTTRAJ-L, we annotate 374 trajectories with
SOTA models (299) and human annotation (75). We take the success rate as the evaluation metric
and set the maximum round to 20.8

Weather (WT) (Ma et al., 2024). The Weather Environment allows LLM agents to utilize a
weather tool to access data on temperature, precipitation, and air quality for various locations and
time periods. It includes 18 different actions that agents can use to achieve weather-related objec-
tives. This environment leverages Python code to integrate the Open-Meteo API and implement the
necessary functions. If the agent’s final answer matches the reference answer, it receives a reward of
1; otherwise, it receives a reward of 0. We expand the original dataset of 20 queries to a total of 331

5https://github.com/alfworld/alfworld/blob/master/LICENSE
6https://github.com/allenai/ScienceWorld/blob/main/LICENSE
7https://github.com/mila-iqia/babyai/blob/master/LICENSE
8https://github.com/archiki/ADaPT/blob/main/LICENSE
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queries by using GPT-3.5-Turbo and GPT-4-Turbo for augmentation using self-instruct and instruc-
tion evolution. Finally, we select 20 questions as the evaluating set, leaving the remaining questions
as the training set. For AGENTTRAJ, we annotate 160 trajectories with SOTA models (140) and
human annotators (20). We also refine the annotations with human review to ensure accuracy. For
AGENTTRAJ-L, we annotate 311 trajectories with SOTA models (230) and human annotators (81).
We take the success rate as the evaluation metric and set the maximum round to 10.9

Movie (MV) (Ma et al., 2024). The Movie Environment grants LLM agents to utilize the movie
tool for accessing cinematic data, including film details, personnel, and production companies. It
offers 16 distinct actions that agents can use to achieve various movie-related objectives. This tool
integrates the API and data from The Movie Database, implementing the necessary functions to
establish its capabilities. If the agent’s final answer matches the reference answer, it receives a
reward of 1; otherwise, it receives a reward of 0. To enhance the dataset, we expand the original
20 questions to 235 by using GPT-3.5-Turbo and GPT-4-Turbo for query augmentation. GPT-4-
Turbo is employed to annotate 100 trajectories in AGENTTRAJ, and the annotations are further
corrected through human annotations to ensure accuracy. We also use GPT-4-Turbo to annotate 215
trajectories for AGENTTRAJ-L. We select 20 questions for the evaluating set, with the remaining
questions designated as the training set. We take the success rate as the evaluation metric and set the
maximum round to 12.

Academia (AM) (Ma et al., 2024). The Academia Environment equips LLM agents with the aca-
demic tools to query information related to computer science research, including academic papers
and author details. It offers 7 different actions for achieving various academic research objectives.
During its development, it utilizes data from the Citation Network Dataset, crafts the necessary
functions, and subsequently constructs the Academia tool. If the agent’s final answer matches the
reference answer, it receives a reward of 1; otherwise, it receives a reward of 0. The original 20
questions are used as the evaluating set. We take the success rate as the evaluation metric and set the
maximum round to 12.

TODOList (TL) (Ma et al., 2024). The TodoEnvironment enables LLM agents to query and
amend personal agenda data through the todo tool, offering 11 different actions. This tool is imple-
mented based on the TodoList API. If the agent’s final answer or operations matches the reference
ones, it receives a reward of 1; otherwise, it receives a reward of 0. To enhance the dataset, we ex-
pand the original 20 questions to 155 using GPT-3.5-Turbo and GPT-4-Turbo for data augmentation.
For AGENTTRAJ, we annotate 70 trajectories with GPT-4-Turbo. For AGENTTRAJ-L, we annotate
the queries to get 135 trajectories with GPT-4-Turbo (96) and human annotators (39). The annota-
tions are further refined by human review to ensure accuracy. Finally, we select 20 questions for the
evaluating set, with the remaining questions designated as the training set. We take the success rate
as the evaluation metric and set the maximum round to 15.

Sheet (ST) (Ma et al., 2024). The Sheet Environment allows LLM agents to use the sheet tool to
access and modify spreadsheet data, providing 20 different actions for operating on an Excel sheet.
This tool is built upon the Google Sheets API. The reward returned by the environment is based on
the similarity between the table manipulated by the agent and the reference table, with a value range
of [0, 1]. The original 20 questions are used as the evaluating set. We take reward as the evaluation
metric and set the maximum round to 15.

BIRD (BD) (Zheng et al., 2023a). Code ability is a crucial aspect of capability for LLM-based
agents. In this environment, we focus on database management ability. We wrap the BIRD-SQL
dataset and provide a unified API for agents to interact with. BIRD-SQL is a bench for large-
scale database-grounded text-to-SQL evaluation. It requires the agent to query a database using
a SELECT statement to get the correct answer. It contains 9428 unique problems with a golden
answer for training. We select 3200 of them as the instruction set. For AGENTTRAJ, we employ
GPT-4-Turbo to add thoughts for 2000 of the training set problems. For AGENTTRAJ-L, we employ

9https://github.com/hkust-nlp/AgentBoard. The codebase is licensed under an Apache-2.0 License and the
dataset is licensed under a GNU General Public License, version 2.
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Figure 5: An illustration of the architecture of AGENTGYM.

GPT-4-Turbo to add thoughts for 3000 of the training set problems. We take success rate as the
evaluation metric and the maximum round is 1 as BD is a single-round programming task.10

C FRAMEWORK ARCHITECTURE OF AGENTGYM

We adopt a decoupled architecture to construct the agent-environment interaction framework, as
illustrated in Figure 5 in Appendix C. Specifically, recognizing the distinct dependencies present
in different environments, AGENTGYM deploys separate services for each environment in a user-
friendly manner to prevent conflicts. These environments are implemented to offer standardized
and parallelizable functions, such as /createEnv to create an environment, /observation to
obtain the current observation from the environment, /available actions to retrieve the cur-
rently available actions, /step to perform an action, and /reset to reset the environment. Clients
communicate with the servers via HTTP protocol. At the core of this architecture is the controller,
which facilitates interactions between agents and environmental services, providing a unified and
encapsulated interface for agents to invoke environmental functions or operations. Additionally, we
implement user-friendly components such as the evaluator, trainer, and data collection pipeline to
support further development of the community. We have implemented 14 types of environments

10https://github.com/AlibabaResearch/DAMO-ConvAI/tree/main/bird. The bench is under a CC BY-NC 4.0
License.
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and 89 tasks, and developers can easily develop new environments and add them to AGENTGYM by
encapsulating the aforementioned interfaces.

D DATABASE CONSTRUCTION OF AGENTTRAJ, AGENTTRAJ-L AND
AGENTEVAL

Instruction collection. We have gathered 20, 494 instructions across the aforementioned environ-
ments using appropriate strategies. (i) For environments whose original datasets contain sufficient
instructions, we use their original instruction sets or subsets (WA, ALF, Sci, AM, ST, BD). (ii) For
certain environments, we generate instructions using rule-based automated pipelines (TC, WS, MZ,
WD, Baby). For example, in TC, we first construct rule trees for forging different items and generate
instructions of varying difficulty (levels 1-4) based on these rules. For WS, we generate instructions
based on available products by fixing the random seed. For MZ, we randomly select starting points
in the maze and construct instructions accordingly. For WD, we fix the seed and generate words for
guessing. For Baby, we pass a fixed seed to the generator provided by the environment to generate
instructions. (iii) In environments where instructions are relatively scarce and difficult to construct
through rules, we use self-instruct (Wang et al., 2023b) and instruction evolution (Xu et al., 2023)
methods to generate instructions. These methods provide an LLM (GPT-4-Turbo) with available
actions and instruction examples, and query it to generate diverse and challenging instructions that
might be needed in real-world scenarios (WT, MV, TL). Note that we manually verify the instruc-
tions generated by these AI-based techniques to ensure that they can be successfully completed.

Benchmark construction. We then construct a benchmark suite with a size of 1160 named AGEN-
TEVAL to holistically evaluate the ability of LLM-based agents in diverse scenarios. Specifically,
(i) for environments that have different task categories or varying difficulty levels, we either uni-
formly sample test examples from different subsets or use them all (ALF, Sci, Baby, TC); (ii) for
remained environments with existing test sets, we use the original test sets or randomly sample from
them (WA, AM, ST, BD); (iii) for others, we randomly sampled from the collected or augmented
instructions (WS, MZ, WD, WT, MV, TL).

Trajectory collecting and filtering. In AGENTGYM, the server provides instructions including
task description, environment setup, and problem to the agent. Next, as described in Section 3.1,
the agent interacts with the environment in ReAct-Style until the task is completed. We collect
6130 trajectories from 11 environments with different strategies. (i) For environments with human
annotated trajectories or where the correct action sequences can be obtained using a rule-based
solver, we use GPT-4-Turbo to add thought step by step for each action, thus forming outputs in
the ReAct-Style (MZ, WD, Sci, BD). (ii) For environments where only instructions are provided
and the correct trajectories are neither available nor can be derived through rules, we annotate the
correct trajectories with SOTA models (e.g., GPT-4-Turbo) and crowdsourcing. Then, we rigorously
filter the trajectories based on rewards and correctness to ensure their quality (WS, ALF, Baby, TC,
WT, MV, TL). This set, named AGENTTRAJ, is used to train a base agent with preliminary abilities
and prior knowledge. For a fair comparison, we perform annotation and filtering on all instructions
using the same pipeline and get AGENTTRAJ-L to represent the performance upper bound of BC.

E MORE IMPLEMENTATION DETAILS

Behavior Cloning. We train the model for 3 epochs with a learning rate of 1 × 10−5. The batch
size is set to 2, and gradient accumulation is performed over 2 steps. We do not employ weight
decay or learning rate warmup.

AGENTEVOL. First, we train a base agent on the AGENTTRAJ set, running BC for 3 epochs with
a learning rate of 1× 10−5. Then, we perform the self-evolution phase. In Learning Step, we run 1
epoch per iteration. In Exploration Step, we set the temperature to 0.7 to sample trajectories across
environments. We perform a total of M=4 iterations. All other parameters remain the same as in
Behavior Cloning. All experiments are conducted on eight A100-80GB GPUs.

LLM-Planner. LLM-Planner is a prompt-based baseline. In our experiments, we enhance the
initial System Prompt with exploration-based guidance. We directly prompt the agent to generate
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a high-level plan in the first turn, mapping the instruction into subgoals, and let it interact with the
environment in a ReAct-style during subsequent turns.

PPO. We use full parameter fine-tuning instead of LoRA tuning. We load three models: the
actor model, the reference model, and the critic model. We do not use a reward model, as our
environment automatically assigns rewards to the agent based on interaction results. We follow the
implementation from the TRL library 11, where the actor and critic models share the same backbone.
On top of this, we add a trainable value head as the output for the critic model. The learning rate is set
to 5×10−7, with a batch size of 1 and gradient accumulation steps of 2. We do not use weight decay
or learning rate warmup. We adhere to OpenAI’s implementation of the PPO algorithm Ouyang et al.
(2022), where KL coef = 0.01, gamma = 1.0, lambda = 0.95, and ppo epoch = 2 . For all
environments, we first perform supervised fine-tuning for 1∼2 epochs as a warm-up, followed by
PPO training for 5∼10 epochs.To alleviate memory constraints, we employ gradient checkpointing
and flash-attention 2 techniques.

DPO. We also use full parameter fine-tuning. During the data sampling phase, we perform two
rounds of sampling on the base model to construct DPO training data pairs. Responses with a
reward exceeding the expert threshold are labeled as “chosen responses”. Responses with a reward
gap greater than that of the “chosen responses” are labeled as “rejected responses”, and these form
the data pairs. In our experiments, the expert threshold is set to 0.9, and the reward gap is set to 0.1.
We train for 3 epochs with a learning rate of 5×10−7, a batch size of 2, gradient accumulation steps
of 4, weight decay of 0.1, and a warmup ratio of 0.1. Additionally, we include a BC objective to
stabilize the training procedure, following previous work (Lai et al., 2024). Both the DPO and BC
objectives are assigned equal weights.

Evaluation. We set do sample = False during evaluation. When evaluating models that
have not been fine-tuned on expert trajectories, we use a few-shot approach; when evaluating models
that have been trained on expert trajectories, we use a zero-shot approach.

We upload anonymized versions of our data and code in a Zip file.

F MORE EXPERIMENTS

F.1 INTERACTIVE ROUNDS IN MAIN EXPERIMENTS

Interactive rounds reflect the efficiency of an agent in solving tasks. Table 6 shows the interac-
tive rounds of each model/agent across tasks. We also present the evaluation performance in Table
6 for better and clearer illustration. We find that agents trained with AGENTTRAJ-L and AGEN-
TEVOL both demonstrate high efficiency, indicating that they can complete tasks in a small number
of rounds. Additionally, we observe a trend: agents that require fewer interactive rounds to com-
plete the same task generally perform better. This may be because underperforming agents often
struggle to find the optimal path to achieve the final goal or exceed the maximum number of rounds.
For example, in ALFWorld and BabyAI, AGENTEVOL achieves the best performance as well as the
fewest interactive rounds.

F.2 MORE ABLATION STUDIES

Ablation on sample number K. In the exploration step, we perform sampling on each instruction
once per iteration. Here, we conduct ablation on sample number K with four tasks. The results
in Table 7 show no significant performance increases with higher K. So we select K = 1 for
computational efficiency.

Ablation on exploration scope. In our experiment, we first train a base agent using Ds and then
let it explore a wider range of instructions and tasks. We conduct an ablation study on four tasks
to see how well the agent evolves with limited instructions as in the BC phase. Table 7 shows that
even in a limited scope, the base agent’s performance improves, which may be attributed to more

11https://github.com/huggingface/trl/blob/main/examples/scripts/ppo/ppo.py
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Table 6: Evaluating performance and interactive rounds on diverse tasks. The first row of each
method indicates performance, while the second row of each method shows the number of interac-
tion rounds between the model/agent and the environment.

Method WS ALF TC Sci Baby MZ WD WT MV TL BD

Close-sourced Models & Agents
DeepSeek-Chat 11.00 51.00 23.00 16.80 45.67 4.00 24.00 70.00 70.00 75.00 13.50

6.9 20.4 15.1 20.7 11.7 14.5 5.2 6.1 5.9 4.4 1.0
Claude-3-Haiku 5.50 0.00 0.00 0.83 1.93 4.00 16.00 55.00 50.00 65.00 13.50

8.0 30.0 20.0 29.8 19.9 14.4 5.7 7.3 6.0 4.0 1.0
Claude-3-Sonnet 1.50 13.00 38.00 2.78 79.25 0.00 36.00 65.00 80.00 80.00 17.00

9.5 27.9 14.6 28.7 6.6 15.0 5.2 6.9 5.1 4.5 1.0
GPT-3.5-Turbo 12.50 26.00 47.00 7.64 71.36 4.00 20.00 25.00 70.00 40.00 12.50

4.9 25.2 13.1 16.5 8.4 14.4 5.3 6.6 4.6 3.4 1.0
GPT-4-Turbo 15.50 67.50 77.00 14.38 72.93 68.00 88.00 80.00 95.00 95.00 16.00

8.2 18.3 9.9 18.1 9.1 9.0 4.0 6.0 4.5 4.0 1.0

Open-sourced Models & Agents
Llama2-Chat-7B 0.50 2.00 0.00 0.83 0.23 0.00 0.00 0.00 0.00 0.00 1.50

6.4 22.6 14.5 27.5 9.5 15.0 6.0 9.9 12.0 15.0 1.0
Llama2-Chat-13B 1.00 3.50 0.00 0.83 0.10 0.00 0.00 0.00 0.00 0.00 1.50

8.1 19.6 16.5 21.3 10.9 13.4 6.0 10.0 12.0 15.0 1.0
AgentLM-7B 36.50 71.00 4.00 1.63 0.49 12.00 4.00 0.00 5.00 15.00 5.00

4.7 17.7 19.4 28.5 7.5 13.9 2.0 8.3 11.7 10.6 1.0
AgentLM-13B 39.50 73.00 0.00 2.75 0.45 8.00 0.00 10.00 5.00 5.00 3.00

4.8 17.8 19.4 28.5 7.6 13.9 6.0 6.6 10.7 8.4 1.0
AgentLM-70B 49.50 67.00 4.00 10.68 0.66 8.00 4.00 0.00 0.00 40.00 7.50

4.9 18.5 18.8 28.2 6.3 13.9 5.2 6.6 11.6 6.7 1.0

Ours
BCbase 66.50 77.50 44.00 26.42 69.31 12.00 12.00 25.00 5.00 45.00 8.00

5.6 16.4 13.7 21.3 6.7 14.3 5.9 6.2 10.8 5.4 1.0
BClarge 73.50 83.00 60.00 74.47 74.19 12.00 36.00 45.00 5.00 65.00 8.50

5.5 16.1 14.3 29.3 6.2 14.3 5.7 6.4 10.2 5.0 1.0
AGENTEVOL 76.50 88.00 64.00 38.00 82.70 12.00 12.00 25.00 60.00 70.00 9.00

5.1 14.0 11.8 18.9 4.3 13.8 5.7 5.9 3.2 5.1 1.0

Table 7: Ablation study on sample number K and the exploration scope with four tasks.

Method WS ALF Baby TC

BCbase 66.5 77.5 69.3 44.0
AGENTEVOL

-w K = 1 77.0 88.0 82.9 65.0
-w K = 2 76.0 88.0 83.1 67.0
-w K = 3 78.5 89.0 83.6 68.0
-w Limited Scope for Exploration 70.0 80.5 70.7 49.0

diverse trajectories sampled from the agent. However, the improvement is not significant, indicating
that effective evolution needs a more extensive environment.

Ablation on base model selection. In our experiments, we optimize the initial agent at each it-
eration rather than continuing training from the last iteration’s agent. To explore this further, we
conduct an ablation study to compare these two training strategies. As shown in Figure 6, continu-
ous fine-tuning provides short-term performance gains but often results in performance degradation
in later iterations, likely due to overfitting. In contrast, training from the initial agent ensures more
consistent and stable performance.

F.3 EVALUATION OF OUT-OF-DOMAIN TASKS AND ENVIRONMENTS

To explore performance on tasks or environments not seen during the evolution phase (i.e. OOD
tasks), we carry out supplementary experiments. In these experiments, the task types and settings
in ALF and Baby are unseen by the agent during both the BC and AGENTEVOL phases, and the
entire environments of AM and ST are entirely new for the agent. As shown in Table 8, our method
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Figure 6: Ablation study regarding the choice of the base model.

demonstrates stronger generalization ability on unseen tasks and environments compared to other
methods.

Table 8: Evaluating results on Out-of-domain tasks.

Method ALF-OOD Baby-OOD AM ST

Llama2-Chat-7B 0.0 2.2 0.0 0.0
AgentLM-7B 57.7 4.4 10.0 14.3
BCbase 60.8 6.2 20.0 24.3
BClarge 64.9 6.1 20.0 25.2
AgentEvol 67.5 6.2 25.0 26.2

F.4 ANALYSIS ON THE VARYING PERFORMANCE IN DIFFERENT ENVIRONMENTS

We observe that AGENTEVOL performs well in most environments, but is weaker than BClarge

in some tasks (SC, WD, and WT). We provide two perspectives to analyze the reasons behind the
fluctuating performance of our method across different environments.

Perspective 1: Conflicts between different environments. We add experiments about the per-
formance of task-specific BC and task-specific AgentEvol. As shown in Table 9, we find that
BC on single tasks outperforms BC on multi-tasks, and AGENTEVOL on single tasks outperforms
AGENTEVOL on multi-tasks. Additionally, AGENTEVOL on single tasks performs poorly on other
tasks. This indicates that there are some conflicts between different environments and tasks, which
may lead to a certain degree of performance degradation and cause the varying performance in our
method.

Perspective 2: Lack of exploration capability. We compare the size of trajectory data used to
train the agent between AGENTEVOL and BC methods. The results are presented in Table 10.

Table 9: Experiments of task-specific BC and task-specific AGENTEVOL.

Method WS ALF Baby WD

BCbase 66.5 77.5 69.3 12.0
BCbase(single task) 68.5 79.0 72.6 12.0
BClarge 73.5 83.0 74.2 36.0
BClarge(single task) 74.0 84.0 76.9 36.0
AGENTEVOL 77.0 88.0 82.9 12.0
AGENTEVOL on WS 78.0 3.0 2.8 4.0
AGENTEVOL on ALF 2.0 89.5 0.5 4.0
AGENTEVOL on Baby 1.5 1.0 84.1 4.0
AGENTEVOL on WD 0.0 0.0 6.80 24.0
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It is important to note that the data for BClarge comes from SOTA models and expert human an-
notators. AGENTEVOL’s data consists of two parts: 1. AGENTTRAJ, the initial training set used
to train the base agent; 2. The data generated through self-exploration in the previous iteration.
The subscript indicates the difference in data size between the current iteration and BClarge. More
data indicates that the agent has explored more thoroughly, which could lead to greater potential for
performance improvement.

In tasks where AGENTEVOL has more data than BClarge, AGENTEVOL usually performs better,
indicating superior exploration capability and results. In tasks where AGENTEVOL has less data
than BClarge, we find that AGENTEVOL performs worse sometimes (Sci, WD and WT). This might
be due to lower exploration efficiency in certain tasks, leading to insufficient optimization.

Table 10: Size of trajectory sets used to train the agent.

Method iter WS ALF WD WT

BClarge 3930 2420 955 311

AGENTEVOL
1 5661+1731 2529+109 585-370 264-47
2 5982+2052 2714+134 585-370 292-19
3 6061+2131 2734+314 579-376 284-27

F.5 ANALYSIS ON RL AND OTHER EXPLORATION-BASED METHODS

We have conducted a detailed comparison of AGENTEVOL with other RL methods and exploration-
based methods as an additional discussion.

Selection of baselines. Our evaluation is comprehensive and sufficient, including Prompt-based,
BC, offline-RL, and online-RL methods. Experimental results demonstrate that AGENTEVOL
achieves superior performance across various tasks when compared with representative algorithms.

Training cost. As shown in Table 11, the training costs for BClarge, Reward Weighted Regression
(RWR) Peters & Schaal (2007), and AGENTEVOL are set as baselines, as they all optimize the
policy in a behavior cloning manner. In contrast, DPO and PPO methods have significantly higher
training costs. DPO requires loading both the actor and reference models and computing probability
distributions for chosen and rejected responses. PPO, being an online RL method, involves sampling
and policy optimization simultaneously, leading to more intensive training times.

Table 11: Comparison between AGENTEVOL and other RL / exploration-based methods

Method Type Avg.
Training Cost

Accuracy
WS ALF Baby

LLM-Planner prompt-based / 18.9 68.5 82.5

BClarge behavior cloning 1× 73.5 83.0 74.2

RWR offline-RL 1× 68.0 76.5 82.1

DPO offline-RL 4.3× 75.0 86.5 78.3

PPO online-RL 15× 68.0 83.5 69.8

AGENTEVOL offline-RL 1× 76.5 88.0 82.7

Learning stability. For consistency, we set the smallest unit of the x-axis for training time as an
epoch. As shown in Figure 7, it is clear that algorithms optimized with BC objectives are more
stable in performance improvements, leading to faster convergence. While DPO shows significant
improvement in the early stages, overfitting occurs quickly as training progresses. PPO, on the other
hand, exhibits noticeable instability throughout the training process, with no clear learning trend
during the same number of epochs.
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Figure 7: Learning stability of AGENTEVOL and other exploration-based methods

Training Reward Curves. Additionally, we provide the mean training reward curves in Figure 8.
We also observe that PPO encounters instability and fluctuations in training rewards. This could be
due to the standard PPO algorithm, which only uses outcome-based rewards and struggles with opti-
mizing sparse, long-term, and multi-turn trajectories, limiting the model’s exploration and learning.
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Figure 8: Mean training reward during PPO

F.6 CASE STUDY

Here, we select three cases to demonstrate the performance comparison before and after the agent
evolution, illustrating the effectiveness of AGENTEVOL.

The first case is shown in Figure 9. In this case, the user’s instruction is “Find me slim fit, straight leg
men’s pants with elastic waist, long sleeve, relaxed fit for everyday wear with color: black, and size:
large, and price lower than 50.00 dollars.” Before evolution, the agent can not effectively utilize
specific information from the environment’s feedback and directly chooses an item that exceeds the
target price, resulting in task failure. However, after evolution, the agent is able to engage in multiple
rounds of interaction with the environment, accurately parse the details of the items returned by the
environment, and select a product with the correct color, size, and price attributes.

The second case comes from the BabyAI environment, as shown in Figure 10. In this environment,
the agent’s task is to pick up the green box in a room. The agent before evolution cannot effectively
understand spatial relationships and fails to perceive that the target object is right in front of it, lead-
ing to incorrect decisions. After receiving the positional information returned by the environment,
it repeatedly moves forward until it reaches the interaction limit. After evolution, the agent can
accurately determine its position and directly execute the correct “pickup green box 1” action.

To compare AGENTEVOL with other baselines, we analyze the third case shown in Figure 11. The
task is to find a long-lasting, lead-free soy candle within a price range. RWR and DPO baselines
fail by selecting the first item without considering the price, while PPO fails by aimlessly clicking
“Next Page”. In contrast, the agent after evolution accurately parses product details and successfully
identifies a suitable item.
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Instruction: Find me slim fit, straight leg men's pants with elastic waist, long sleeve, relaxed fit for everyday 

wear with color: black, and size: large, and price lower than 50.00 dollars

Thought 1:

I think I should use the search bar to look for the 

pants as per the given specifics.
Action 1:

search[slim fit straight leg men's pants elastic waist 

long sleeve relaxed fit everyday wear black large 

price < 50.00]
Observation 1:

<searching results>

Thought 2:

I think I should click on the 'B099231V35' option 

as it seems to be a pair of men's pants that could 

potentially meet the requirements.
Action 2:

click[B099231V35]
Observation 2:

<product details>: … Mens Casual Cargo Pants Hi 

Vis Viz Reflective Overalls High Visibility Safe 

Work Pants Outdoor Hiking Trousers Big and Tall 

[SEP] Price: $16.79 …

Thought 3:

I think I should click on the 'black' option to select 

the color I need.
Action 3:

click[black]
Observation 3:

<product details>

Thought 4:

I think I should click on the 'large' option to select 

the size I need.
Action 4:

click[large]
Observation 4:

<product details>

Thought 5:

I think I should click on the 'Buy Now' button to 

purchase the pants.
Action 5:

click[Buy Now]

Reward: 1.0

Thought 1:

I think I should use the search bar to look for the 

pants as per the given specifics.
Action 1:

search[slim fit straight leg men's pants elastic waist 

long sleeve relaxed fit everyday wear black large 

price < 50.00]
Observation 1:

<searching results>: … B01MSP2B0I [SEP] 

Wrangler Men's Retro Slim Fit Straight Leg Jean, 

Black, 42W x 32L [SEP] $63.05 …

Thought 2:

I think I should click on the 'B01MSP2B0I' option 

as it seems to be a men's pants that fits the 

description.
Action 2:

click[B01MSP2B0I]
Observation 2:

<product details>: … Wrangler Men's Retro Slim 

Fit Straight Leg Jean, Black, 42W x 32L [SEP] 

Price: $63.05 …

Thought 3:

I think I should click on the 'Buy Now' button to 

purchase the pants.
Action 3:

click[Buy Now]

Reward: 0.0

Before Evolution After Evolution

Figure 9: Case study of WebShop. Before evolution, the agent can not effectively utilize specific
information from the environment’s feedback and directly chooses an item that exceeds the target
price, resulting in task failure. After the evolution, the agent is able to engage in multiple rounds of
interaction with the environment, accurately parse the details of the items returned by the environ-
ment, and select a product with the correct color, size, and price attributes.

G PROMPT DETAILS

The prompt for each environment and task comprises two components: the system prompt and the
instruction. The system prompt provides the initial scenario for each task. The instruction provides
specific queries for each task. For consistency, the same prompt template is utilized for human
annotation, AI-based annotation of trajectories, and evaluation across all tasks. The prompt details
for the WebShop are shown in Table 12. Table 13 presents the specifications for ALFWorld. The
TextCraft’s prompt details are outlined in Table 14. The prompt details for the SciWorld are shown
in Table 15. The prompt details for the BabyAI are shown in Table 16. The prompt details for the
MAZE are shown in Table 17. The prompt details for the Wordle are shown in Table 18. The prompt
details for the BIRD are shown in Table 19. Table 20 and 21 show the prompt details for WebArena.
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Thought 1:

I need to find the green box to pick it up. I should 

check my surroundings to locate it.
Action 1:

check available actions
Observation 1:

You can take the following actions: turn left, turn 

right, check available actions. Available actions: 

["turn left", "turn right", "check available actions"]

Thought 2:

I need to find the green box to pick it up. I should 

turn left to explore a different direction.
Action 2:

turn left
Observation 2:

<room details>: …In front of you in this room, you 

can see several objects: There is a green box 1 3 

steps in front of you…

Thought 3:

I need to pick up the green box to complete my 

goal. I should move forward to reach it.
Action 3:

move forward
Observation 3:

<room details>

Thought 4:

I need to pick up the green box to complete my 

goal. I should move forward to reach it.
Action 4:

move forward
Observation 4:

<room details>

…(more interactions)

Thought 20:
I need to pick up the green box to complete my 

goal. I should move forward to reach it.

Action 20:
move forward

…(reach max_interaction_rounds)

Reward: 0.0

Thought 1:

I need to find the green box in this room.
Action 1:

check available actions
Observation 1:

You can take the following actions: turn left, turn 

right, check available actions. Available actions: 

["turn left", "turn right", "check available actions"]

Thought 2:

I need to turn left to explore the room further and 

find the green box.
Action 2:

turn left
Observation 2:

In front of you in this room, you can see several 

objects: There is a red key 1 0 steps in front of you 

and 1 steps to your left. There is a green box 1 3 

steps in front of you and 1 steps to your left. There 

is a purple key 1 3 steps in front of you and 3 steps 

to your left. The room has walls around you. You 

are facing a wall 5 steps away. You are not carrying 

anything. Available actions: ["turn left", "turn right", 

"move forward", "pickup red key 1", "pickup green 

box 1", "pickup purple key 1", "go to red key 1", 

"go to green box 1", \go to purple key 1", "check 

available actions"]

Thought 3:

I need to pick up the green box to complete my goal.
Action 3:

pickup green box 1

Reward: 1.0

Instruction: Your goal: pick up the green box. In front of you in this room, you can see several objects: The 

room has walls around you. You are facing a wall 1 steps away. You are not carrying anything. Available 

actions: ["turn left", "turn right", "check available actions"]

Before Evolution After Evolution

Figure 10: Case study of BabyAI. The agent before evolution cannot effectively understand spatial
relationships and fails to perceive that the target object is right in front of it, leading to incorrect de-
cisions. After receiving the positional information returned by the environment, it repeatedly moves
forward until it reaches the interaction limit. After evolution, the agent can accurately determine its
position and directly execute the correct ”pickup green box 1” action.

The prompt details for the Weather are shown in Table 22, 23, 24, 25. The prompt details for the
TODOList are shown in Table 26, 27. The prompt details for the Movie are shown in Table 28, 29,
30. The prompt details for the Academia are shown in Table 31, 32. The prompt details for the Sheet
are shown in Table 33, 34, 35, 36.
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Thought 1:

I think I should use the search bar to 

look for the long lasting, lead free, soy 

wax candles I need.

Action 1:

search[long lasting soy wax candles 

lead free price < 50.00]

Thought 2:

I think I should click on the 

'B07BKXMCNB' option as it seems to 

be a long lasting, lead free, soy wax 

candle within my price range.
Action 2:

click[B07BKXMCNB]

Observation 2:
<product details>

Thought 3:

I think I should click on the 'Buy Now' 

button to purchase the long lasting, 

lead free, soy wax candle.
Action 3:

click[Buy Now]

Reward: 0.0

RWR DPO

AgentEvol

Instruction: Find me long lasting, lead free candles with soy wax, and price lower than 50.00 dollars.

Thought 1:

I think I should use the search bar to 

look for the long lasting, lead free 

candles with soy wax that are priced 

under $50.

Action 1:

search[long lasting lead free candles 

soy wax price < 50.00]

Thought 2:

I think I should click on the 'Next >' 

button to view more results.
Action 2:

click[Next >]
Observation 2:

<next page searching results>

Thought 3:

I think I should click on the 'Next >' 

button to view more results.
Action 3:

click[Next >]

...(more interactions)

Action 10:
click[Next >]

...(reach max_interaction_rounds)

Reward: 0.0

PPO

Observation 1:

<searching results>: … B07BKXMCNB [SEP] Bungalow Glow, Candle Pikake Lei Wood 6 Ounce [SEP] $57.93 

[SEP] B08JQ5TLQV [SEP] Scented Candles Gift Set for Women, Aromatherapy Candles Gifts for Women, 4x3.5oz 

Long Lasting Candles for Home Scented Bath Yoga, 100% Natural Soy Candles, Unique Mothers Day Gifts for Mom 

Birthday [SEP] $11.99…

Thought 1:

I think I should use the search bar to look 

for the candles I need.

Action 1:

search[long lasting lead free candles soy 

wax price < 50.00]

Thought 2:

I think I should click on the 

'B07BKXMCNB' option as it seems to be 

a long lasting, lead free candle with soy 

wax and a price within my budget.
Action 2:

click[B07BKXMCNB]

Observation 2:
<product details>

Thought 3:

I think I should click on the 'Buy Now' 

button to purchase the candle.
Action 3:

click[Buy Now]

Reward: 0.0

Thought 2:
I think I should click on the 'B08JQ5TLQV' option as it seems to be a long-lasting, lead-free candle with soy 

wax and a price lower than 50.00 dollars.

Action 2:
click[B08JQ5TLQV]

Observation 2:
<product details>

Thought 3:
I think I should click on the 'Buy Now' button to purchase the scented candles.

Action 3:
click[Buy Now]

Reward: 1.0

Figure 11: Case study of WebShop. The RWR and DPO baselines lead to the selection of the first
item without considering the price constraint, resulting in task failure. In comparison, the PPO base-
line continuously clicks “Next Page” without effectively extracting relevant information from the
environment, also failing to find a suitable item. After evolution, the agent demonstrates improved
capabilities by accurately parsing product details, conducting effective multi-round interactions, and
successfully identifying a long-lasting, lead-free soy candle within the price range.
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Table 12: Prompt details for WebShop.

System Prompt:
You are web shopping. I will give you instructions about what to do. You have to follow the
instructions. Every round I will give you an observation and a list of available actions, you have
to respond to an action based on the state and instruction. You can use search action if the search
is available. You can click one of the buttons in clickables. An action should be of the following
structure: search[keywords] click[value]. If the action is not valid, perform nothing. Keywords
in search are up to you, but the value in click must be a value in the list of available actions.
Remember that your keywords in search should be carefully designed. Your response should
use the following format:

Thought: I think ...
Action: click[something]

Instruction:
WebShop [SEP] Instruction: [SEP] Find me machine wash women’s swimsuits & cover-ups
with drawstring closure, elastic waistband, tummy control with color: black, and size: medium,
and price lower than 30.00 dollars [SEP] Search

Table 13: Prompt details for ALFWorld.

System Prompt:
Interact with a household to solve a task. Imagine you are an intelligent agent in a household
environment and your target is to perform actions to complete the task goal. At the beginning
of your interactions, you will be given a detailed description of the current environment and
your goal to accomplish. For each of your turns, you will be given a list of actions and you
can choose one to perform in this turn. You should choose from two actions: “THOUGHT” or
“ACTION”. If you choose “THOUGHT”, you should first think about the current condition and
plan for your future actions, and then output your action in this turn. Your output must strictly
follow this format:

Thought: your thoughts.
Action: your next action.

If you choose “ACTION”, you should directly output the action in this turn. Your output must
strictly follow this format: “Action: your next action”. After each turn, the environment will
give you immediate feedback based on which you plan your next few steps. If the environment
outputs “Nothing happened”, that means the previous action is invalid and you should try more
options. Reminder: the action must be chosen from the given available actions. Any actions
except provided available actions will be regarded as illegal. Think when necessary, try to act
directly more in the process.

Instruction:
You are in the middle of a room. Looking quickly around you, you see a armchair 1, a coffeetable
1, a diningtable 2, a diningtable 1, a drawer 6, a drawer 5, a drawer 4, a drawer 3, a drawer 2, a
drawer 1, a dresser 1, a garbagecan 1, a sidetable 1, a sofa 2, a sofa 1, and a tvstand 1.

Your task is to: find two tissuebox and put them in coffeetable.

AVAILABLE ACTIONS: go to armchair 1, go to coffeetable 1, go to diningtable 1, go to din-
ingtable 2, go to drawer 1, go to drawer 2, go to drawer 3, go to drawer 4, go to drawer 5, go to
drawer 6, go to dresser 1, go to garbagecan 1, go to sidetable 1, go to sofa 1, go to sofa 2, go to
tvstand 1, inventory, look.
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Table 14: Prompt details for TextCraft.

System Prompt:
You are given a few useful crafting recipes to craft items in Minecraft. Crafting commands are
of the format “craft [target object] using [input ingredients]”. Every round I will give you an
observation, you have to respond to an action based on the state and instruction. You can “get”
an object (ingredients) from the inventory or the environment, look up the game “inventory”
by inventory, or “craft” (target) using any of the crafting commands. You can use ONLY these
crafting commands provided, do not use your own crafting commands. However, if the crafting
command uses a generic ingredient like “planks”, you can use special types of the same ingre-
dient e.g. dark oak “planks” in the command instead. Your response should use the following
format:

Thought: ...
Action: ...

Instruction:
Crafting commands:
craft 1 golden shovel using 2 stick, 1 gold ingot
craft 1 golden chestplate using 8 gold ingot
craft 1 golden sword using 1 stick, 2 gold ingot
craft 1 netherite ingot using 4 netherite scrap, 4 gold ingot
craft 1 light weighted pressure plate using 2 gold ingot
craft 1 golden boots using 4 gold ingot
craft 1 golden axe using 2 stick, 3 gold ingot
craft 9 gold nugget using 1 gold ingot
Goal: craft gold nugget.
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Table 15: Prompt details for SciWorld.

System Prompt:
You are an agent for the science world. Every round I will give you an observation, you have to
respond with an action based on the observation to finish the given task.
Here are the actions you may take:
{“action”: “open/close OBJ”, “description”: “open/close a container”,}
{“action”: “de/activate OBJ”, “description”: “activate/deactivate a device”,}
{“action”: “connect OBJ to OBJ”, “description”: “connect electrical components”, }
{“action”: “disconnect OBJ”, “description”: “disconnect electrical components”,}
{“action”: “use OBJ [on OBJ]”, “description”: “use a device/item”,}
{“action”: “look around”, “description”: “describe the current room”,}
{“action”: “look at OBJ”, “description”: “describe an object in detail”,}
{“action”: “look in OBJ”, “description”: “describe a container’s contents”,}
{“action”: “read OBJ”, “description”: “read a note or book”,}
{“action”: “move OBJ to OBJ”, “description”: “move an object to a container”, }
{“action”: “pick up OBJ”, “description”: “move an object to the inventory”, }
{“action”: “put down OBJ”, “description”: “drop an inventory item”,}
{“action”: “pour OBJ into OBJ”, “description”: “pour a liquid into a container”, }
{“action”: “dunk OBJ into OBJ”, “description”: “dunk a container into a liquid”, }
{“action”: “mix OBJ”, “description”: “chemically mix a container”,}
{“action”: “go to LOC”, “description”: “move to a new location”,}
{“action”: “eat OBJ”, “description”: “eat a food”,}
{“action”: “flush OBJ”, “description”: “flush a toilet”,}
{“action”: “focus on OBJ”, “description”: “signal intent on a task object”,}
{“action”: “wait”, “description”: “take no action for 10 iterations”,}
{“action”: “wait1”, “description”: “take no action for 1 iteration”, }
{“action”: “task”, “description”: “describe current task”,}
{“action”: “inventory”, “description”: “list your inventory”}

Your response should use the following format:

Thought: your thoughts.
Action: your next action.

Instruction:
Your task is to find a(n) non-living thing. First, focus on the thing. Then, move it to the orange
box in the living room. This room is called the bedroom. In it, you see: the agent, a substance
called air, a bed. On the bed is: a mattress. On the mattress is: a white pillow. a book shelf
(containing A book (Beowulf) titled Beowulf by Beowulf poet, A book (Pride and Prejudice)
titled Pride and Prejudice by Jane Austen, A book (Sherlock Holmes) titled Sherlock Holmes by
Arthur Conan Doyle), a closet. The closet door is closed. a finger painting, a table. On the table
is: nothing. You also see: A door to the hallway (that is closed)
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Table 16: Prompt details for BabyAI.

System Prompt:
You are an exploration master who wants to finish every goal you are given. Every round I will
give you an observation, and you have to respond to an action and your thought based on the
observation to finish the given task. You are placed in a room and you need to accomplish the
given goal with actions. You can use the following actions:
- turn right
- turn left
- move forward
- go to <obj> <id>
- pick up <obj> <id>
- go through <door> <id>: <door> must be an open door.
- toggle and go through <door> <id>: <door> can be a closed door or a locked door. If you
want to open a locked door, you need to carry a key that is of the same color as the locked door.
- toggle: there is a closed or locked door right in front of you and you can toggle it.

Your response should use the following format:

Thought: <Your Thought>
Action: <Your Action>

Instruction:
Your goal: go to the red ball
In front of you in this room, you can see several objects: There is a grey box 1 1 steps in front
of you and 1 steps to your left. There is a grey ball 1 1 steps in front of you and 2 steps to your
right. There is a grey key 1 1 steps in front of you and 3 steps to your right. The room has walls
around you. You are facing a wall 3 steps away. You are not carrying anything.
Available actions: [“turn left”, “turn right”, “move forward”, “pickup red ball 1”, “pickup red
box 1”, “go to red ball 1”, “go to red box 1”, “check available actions”]

Table 17: Prompt details for MAZE.

System Prompt:
You are an expert maze solver. Your objective is to reach the goal in as few steps as possible.
At each step you will be given information about where the goal is, your current position, and
the walls that surround you. When you move right you increase your y position by 1, when you
move down you increase your x position by 1. Your possible actions are “move up”, “move
down”, “move left”, “move right”. Formally, your return should be in this format:

Thought: <Your Thought>
Action: <Your Action>

Instruction:
Now let’s start a new game. Return your action and your thought in the format above strictly.
Now, make the optimal action given the current environment state: The goal is at position 8, 6.
Your current position is at position 1, 1. There are walls to your left, above you, below you.
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Table 18: Prompt details for Wordle.

System Prompt:
You are an expert wordle player. Welcome to the game of Wordle. Your objective is to guess
a hidden 5 letter word. You have 6 attempts to guess it correctly and you should try to guess
it in as few attempts as possible. When guessing the word, you should format your word as a
space separated sequence of letters, like “s h i r e” for example. After guessing the word, you
will receive feedback from the game environment in the form of a sequence of 5 space separated
letters like “b y g g b”, where each letter indicates some information about the hidden word. The
environment will return one of three letters - “b”, “g”, or “y” – for each letter in the word you
guessed. We describe the meaning of each letter below:
“b”: If the environment returns a “b”, it means that the letter at that position in your guessed
word is not in the hidden word.
“y”: If the environment returns a “y”, it means that the letter at that position in your guessed
word is in the hidden word but is not in the correct position.
“g”: If the environment returns a “g”, it means that the letter at that position in your guessed
word is in the hidden word and is in the correct position.
As a note, if you guess an invalid word (e.g. not a 5 letter word or a word not in the vocabulary),
the environment will respond with an “invalid word” message. In general though, you should
use this information returned by the environment to update your belief about what the hidden
word might be and adjust your next guess accordingly.

Instruction:
Now let’s start a new game. Remember, the word you guess should be strictly in the vocabulary.
You should return your thought and your word strictly in the formation mentioned above.

Table 19: Prompt details for BIRD.

System Prompt:
Given you a description of a SQLite database system, I will ask you a question, then you should
help me operate the SQLite database with SQL to answer the question.
You have to explain the problem and your solution to me and write down your thoughts. After
thinking and explaining thoroughly, you should give a SQL statement to solve the question.
Your response should be like this:

Thought: Your thought here.
Action: SELECT * FROM table WHERE condition;

You MUST put SQL in markdown format without any other comments. Your SQL should be in
one line. Every time you can only execute one SQL statement.

Instruction:
debit card specializing contains tables such as customers, gasstations, products, transactions 1k,
yearmonth. Table customers has columns such as customerid, client segment, currency. cus-
tomerid is the primary key. Table gasstations has columns such as gas station id, chain id,
country, chain segment. gas station id is the primary key. Table products has columns such as
product id, description. product id is the primary key. Table transactions 1k has columns such as
transaction id, date, time, customer id, card id, gas station id, product id, amount, price. transac-
tion id is the primary key. Table yearmonth has columns such as customer id, date, consumption.
is the primary key. The date of yearmonth is the foreign key of client segment of customers.

Among the transactions made in the gas stations in the Czech Republic, how many of them are
taken place after 2012/1/1?
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Table 20: Prompt details for WebArena (Part 1/2).

System Prompt:
You are an autonomous intelligent agent tasked with navigating a web browser. You will be
given web-based tasks. These tasks will be accomplished through the use of specific actions you
can issue.

Here’s the information you’ll have:
The user’s objective: This is the task you’re trying to complete.
The current web page’s accessibility tree: This is a simplified representation of the webpage,
providing key information.
The current web page’s URL: This is the page you’re currently navigating.
The open tabs: These are the tabs you have open.
The previous action: This is the action you just performed. It may be helpful to track your
progress.

The actions you can perform fall into several categories:

Page Operation Actions:
click [id]: This action clicks on an element with a specific id on the webpage.
type [id] [content] [press enter after=0—1]: Use this to type the content into the field with id.
By default, the “Enter” key is pressed after typing unless press enter after is set to 0.
hover [id]: Hover over an element with id.
press [key comb]: Simulates the pressing of a key combination on the keyboard (e.g., Ctrl+v).
scroll [direction=down—up]: Scroll the page up or down.

Tab Management Actions:
new tab: Open a new, empty browser tab.
tab focus [tab index]: Switch the browser’s focus to a specific tab using its index.
close tab: Close the currently active tab.

URL Navigation Actions:
goto [url]: Navigate to a specific URL.
go back: Navigate to the previously viewed page.
go forward: Navigate to the next page (if a previous ’go back’ action was performed).

Completion Action:
stop [answer]: Issue this action when you believe the task is complete. If the objective is to find
a text-based answer, provide the answer in the bracket. If you believe the task is impossible to
complete, provide the answer as “N/A” in the bracket.

Homepage:
If you want to visit other websites, check out the homepage at http://homepage.com. It has a list
of websites you can visit.
http://homepage.com/password.html lists all the account name and password for the websites.
You can use them to log in to the websites.

To be successful, it is very important to follow the following rules:
1. You should only issue an action that is valid given the current observation.
2. You should only issue one action at a time.
3. You should follow the examples to reason step by step and then issue the next action.
4. Generate the action in the correct format. Start with a “In summary, the next action I will
perform is” phrase, followed by action inside. For example, “In summary, the next action I will
perform is click [1234]”.
5. Issue stop action when you think you have achieved the objective. Don’t generate anything
after stop.
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Table 21: Prompt details for WebArena (Part 2/2).

Instruction:
Observation:
Tab 0 (current): Projects · Dashboard · GitLab

[1] RootWebArea ’Projects · Dashboard · GitLab’ focused: True
[271] link ’Skip to content’
[398] link ’Dashboard’
[482] button ” hasPopup: menu expanded: False
[1947] textbox ’Search GitLab’ required: False
[1907] generic ’Use the shortcut key <kbd>/</kbd> to start a search’

...
URL: http://gitlab.com/
OBJECTIVE: Checkout merge requests assigned to me
PREVIOUS ACTION: None
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Table 22: Prompt details for Weather (Part 1/4).

System Prompt:
You are an autonomous intelligent agent. You can use actions to help people solve problems.
We detail name, description, input(parameters) and output(returns) of each action as follows:
Name: get user current date()
Description: Get the user’s current date.
Returns:
The current date in ‘YYYY-MM-DD’ format.

Name: get user current location()
Description: Get the user’s current city.
Returns:
The user’s current city.

Name: get historical temp(latitude, longitude, start date, end date)
Description: Get historical temperature data for a specified location and date range.
Parameters:
- latitude (Type: number): The latitude of the location.
- longitude (Type: number): The longitude of the location.
- start date (Type: string): The start date of the historical data (YYYY-MM-DD).
- end date (Type: string): The end date of the historical data (YYYY-MM-DD).
Returns:
Historical temperature data.

Name: get historical rain(latitude, longitude, start date, end date)
Description: Get historical rainfall data for a specified location and date range.
Parameters:
- latitude (Type: number): The latitude of the location.
- longitude (Type: number): The longitude of the location.
- start date (Type: string): The start date of the historical data (YYYY-MM-DD).
- end date (Type: string): The end date of the historical data (YYYY-MM-DD).
Returns:
Historical rainfall data.

Name: get historical snow(latitude, longitude, start date, end date)
Description: Get historical snowfall data for a specified location and date range.
Parameters:
- latitude (Type: number): The latitude of the location.
- longitude (Type: number): The longitude of the location.
- start date (Type: string): The start date of the historical data (YYYY-MM-DD).
- end date (Type: string): The end date of the historical data (YYYY-MM-DD).
Returns:
Historical snowfall data.

Name: get snow forecast(latitude, longitude, start date, end date)
Description: Get snowfall forecast data for a specified location and date range.
Parameters:
- latitude (Type: number): The latitude of the location.
- longitude (Type: number): The longitude of the location.
- start date (Type: string): The start date of the forecast (YYYY-MM-DD).
- end date (Type: string): The end date of the forecast (YYYY-MM-DD).
Returns:
Snowfall forecast data.
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Table 23: Prompt details for Weather (Part 2/4).

Name: get current snow(latitude, longitude, current date)
Description: Get current snowfall data for a specified location and date.
Parameters:
- latitude (Type: number): The latitude of the location.
- longitude (Type: number): The longitude of the location.
- current date (Type: string): The current date to retrieve snowfall data (YYYY-MM-DD).
Returns:
Current snowfall data.

Name: get current temp(latitude, longitude, current date)
Description: Get current temperature data for a specified location and date.
Parameters:
- latitude (Type: number): The latitude of the location.
- longitude (Type: number): The longitude of the location.
- current date (Type: string): The current date to retrieve temperature data (YYYY-MM-DD).
Returns:
Current temperature data.

Name: get latitude longitude(name)
Description: Get latitude and longitude information for a specified location name.
Parameters:
- name (Type: string): The name of the location. (e.g., city name)
Returns:
latitude and longitude information for the specified location.

Name: get elevation(latitude, longitude)
Description: Get elevation data for a specified location.
Parameters:
- latitude (Type: number): The latitude of the location.
- longitude (Type: number): The longitude of the location.
Returns:
Elevation data for the specified location.

Name: get temp forecast(latitude, longitude, start date, end date)
Description: Get temperature forecast data for a specified location and date range.
Parameters:
- latitude (Type: number): The latitude of the location.
- longitude (Type: number): The longitude of the location.
- start date (Type: string): The start date of the forecast (YYYY-MM-DD).
- end date (Type: string): The end date of the forecast (YYYY-MM-DD).
Returns:
Temperature forecast data.

Name: get rain forecast(latitude, longitude, start date, end date)
Description: Get rainfall forecast data for a specified location and date range.
Parameters:
- latitude (Type: number): The latitude of the location.
- longitude (Type: number): The longitude of the location.
- start date (Type: string): The start date of the forecast (YYYY-MM-DD).
- end date (Type: string): The end date of the forecast (YYYY-MM-DD).
Returns:
Rainfall forecast data.
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Table 24: Prompt details for Weather (Part 3/4).

Name: get current rain(latitude, longitude, current date)
Description: Get current rainfall data for a specified location and date.
Parameters:
- latitude (Type: number): The latitude of the location.
- longitude (Type: number): The longitude of the location.
- current date (Type: string): The current date to retrieve rainfall data (YYYY-MM-DD).
Returns:
Current rainfall data.

Name: get distance(latitude1, longitude1, latitude2, longitude2)
Description: Calculate the distance between two sets of latitude and longitude coordinates.
Parameters:
- latitude1 (Type: number): The latitude of the first location.
- longitude1 (Type: number): The longitude of the first location.
- latitude2 (Type: number): The latitude of the second location.
- longitude2 (Type: number): The longitude of the second location.
Returns:
The distance between the two sets of coordinates in kilometers.

Name: get historical air quality index(latitude, longitude, start date, end date)
Description: Get historical air quality index data for a specified location and date range.
Parameters:
- latitude (Type: number): The latitude of the location.
- longitude (Type: number): The longitude of the location.
- start date (Type: string): The start date of the historical data (YYYY-MM-DD).
- end date (Type: string): The end date of the historical data (YYYY-MM-DD).
Returns:
Historical air quality index (PM2.5) data.

Name: get current air quality index(latitude, longitude, current date)
Description: Get current air quality index data for a specified location and date.
Parameters:
- latitude (Type: number): The latitude of the location.
- longitude (Type: number): The longitude of the location.
- current date (Type: string): The current date to retrieve air quality index data (YYYY-
MM-DD).
Returns:
Current air quality index (PM2.5) data.

Name: get air quality level(air quality index)
Description: Determine the air quality level based on the air quality index (AQI).
Parameters:
- air quality index (Type: number): The air quality index (AQI) value.
Returns:
The air quality level, which can be ‘good’, ‘fair’, ‘moderate’, ‘poor’, ‘very poor’, or ‘ex-
tremely poor’.

Name: check valid actions()
Description: Get supported actions for current tool.
Returns:
- actions (Type: array): Supported actions for current tool.

Name: finish(answer)
Description: Return an answer and finish the task
Parameters:
- answer (Type: [‘string’, ‘number’, ‘array’]): The answer to be returned
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Table 25: Prompt details for Weather (Part 4/4).

If you want to get the latitude and longitude information of a city, you must call
“get latitude longitude”, do not generate it by yourself which maybe wrong.
If you are finished, you will call “finish” action
Please refer to the format of examples below to solve the requested goal. Your response must be
in the format of “Action: [your action] with Action Input: [your action input]”

Instruction:
Now new trial starts. You should perform actions to accomplish the goal: Will there be snowfall
and rainfall on the same day next week? Tell me Yes or No. Give me one action.
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Table 26: Prompt details for TODOList (Part 1/2).

System Prompt:
You are an autonomous intelligent agent. You can use actions to help people solve problems.
We detail name, description, input(parameters) and output(returns) of each action as follows:
Name: get user current date()
Description: Get the user’s current date.
Returns:
The current date in ‘YYYY-MM-DD’ format.

Name: get user current location()
Description: Get the user’s current city.
Returns:
The user’s current city.

Name: get projects()
Description: Get all projects in the TodoList account
Returns:
- Array of objects with properties:
- id (Type: string)
- name (Type: string)
- order (Type: integer)
- color (Type: string)
- is favorite (Type: boolean)

Name: update project(project id, is favorite)
Description: Update a project
Parameters:
- project id (Type: string)
- is favorite (Type: string, Enum: [True, False])
Returns:
Information of the updated project

Name: get tasks(project id)
Description: Get all tasks for a given project
Parameters:
- project id (Type: string)
Returns:
- Array of objects with properties:
- id (Type: string)
- project id (Type: string)
- order (Type: integer)
- content (Type: string): Name of the task.
- is completed (Type: boolean)
- priority (Type: integer): Task priority from 1 (normal) to 4 (urgent).
- due date (Type: string): The due date of the task.

Name: get task description(task id)
Description: Get the description of a specific task in the TodoList account.
Parameters:
- task id (Type: string)
Returns:
- id (Type: string): Unique identifier of the task.
- content (Type: string): Name of the task.
- description (Type: string): Description of the task. Including the Place, Tips, etc.
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Table 27: Prompt details for TODOList (Part 2/2).

Name: get task duration(task id)
Description: Get the duration of a specific task in the TodoList account.
Parameters:
- task id (Type: string)
Returns:
- id (Type: string)
- content (Type: string): Name of the task.
- duration (Type: string): Duration of the task in the format of ‘amount(unit)’.

Name: complete task(task id)
Description: Mark a task as completed
Parameters:
- task id (Type: string)
Returns:
information of the completed task

Name: update task(task id, due date)
Description: Update a task
Parameters:
- task id (Type: string)
- due date (Type: string)
Returns:
Information of the updated task

Name: delete task(task id)
Description: Delete a specific task from the TodoList account.
Parameters:
- task id (Type: string): Unique identifier of the task to delete.
Returns:
Information of the deleted task.

Name: check valid actions()
Description: Get supported actions for current tool.
Returns:
Supported actions for current tool.

Name: finish(answer)
Description: Call this action, when find the answer for the current task or complete essential
operations.
Parameters:
- answer (Type: [‘string’, ‘number’, ‘array’]): If the task is a question answering task, this is the
answer to be returned. If the task is an operation task, the answer in ‘done’

If you are finished, you will call “finish” action
Please refer to the format of examples below to solve the requested goal. Your response must be
in the format of “Action: [your action] with Action Input: [your action input]”

Instruction:
Now new trial starts. You should perform actions to accomplish the goal: Could you provide the
due date for the task ‘Tidy up the living room’ in the Household Chores project? Please answer
in ‘YYYY-MM-DD’ format. Give me one action.
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Table 28: Prompt details for Movie (Part 1/3).

System Prompt:
You are an autonomous intelligent agent. You can use actions to help people solve problems.
We detail name, description, input(parameters) and output(returns) of each action as follows:
Name: get search movie(movie name)
Description: Search for a movie by name and return basic details
Parameters:
- movie name (Type: string): The name of the movie to search for.
Returns:
- id : The ID of the found movie.
- overview : The overview description of the movie.
- title : The title of the movie.

Name: get movie details(movie id)
Description: Get detailed information about a movie by ID
Parameters:
- movie id (Type: string): The ID of the movie.
Returns:
- budget : The budget of the movie.
- genres : The genres of the movie.
- revenue : The revenue of the movie.
- vote average : The average vote score of the movie.
- release date : The release date of the movie.

Name: get movie production companies(movie id)
Description: Get the production companies of a movie by its ID
Parameters:
- movie id (Type: string): The ID of the movie.
Returns:
- production companies : The production companies of the movie.

Name: get movie production countries(movie id) Description: Get the production countries of
a movie by its ID
Parameters:
- movie id (Type: string): The ID of the movie.
Returns:
- production countries : The production countries of the movie.

Name: get movie cast(movie id)
Description: Retrieve the list of the top 10 cast members from a movie by its ID.
Parameters:
- movie id (Type: string): The ID of the movie.
Returns:
- cast : List of the top 10 cast members.

Name: get movie crew(movie id)
Description: Retrieve the list of crew members (limited to 10) from a movie by its ID. The list
primarily includes Director, Producer, and Writer roles.
Parameters:
- movie id (Type: string): The ID of the movie.
Returns:
- crew : List of the top 10 of crew members
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Table 29: Prompt details for Movie (Part 2/3).

Name: get movie keywords(movie id)
Description: Get the keywords associated with a movie by ID
Parameters:
- movie id (Type: string): The ID of the movie.
Returns:
- keywords : The keywords associated with the movie.

Name: get search person(person name)
Description: Search for a person by name.
Parameters:
- person name (Type: string): The name of the person to search for.
Returns:
- id : The ID of the found person.
- name : The name of the person.

Name: get person details(person id)
Description: Get detailed information about a person by ID
Parameters:
- person id (Type: string): The ID of the person.
Returns:
- biography : The biography of the person.
- birthday : The birthday of the person.
- place of birth : The place of birth of the person.

Name: get person cast(person id)
Description: Retrieve the top 10 movie cast roles of a person by their ID
Parameters:
- person id (Type: string): The ID of the person.
Returns:
- cast : A list of movies where the person has acted, limited to top 10

Name: get person crew(person id)
Description: Retrieve the top 10 movie crew roles of a person by their ID
Parameters:
- person id (Type: string): The ID of the person.
Returns:
- crew : A list of movies where the person has participated as crew, limited to top 10

Name: get person external ids(person id)
Description: Get the external ids for a person by ID
Parameters:
- person id (Type: string): The ID of the person.
Returns:
- imdb id : The IMDB id of the person.
- facebook id : The Facebook id of the person.
- instagram id : The Instagram id of the person.
- twitter id : The Twitter id of the person.

Name: get movie alternative titles(movie id)
Description: Get the alternative titles for a movie by ID
Parameters:
- movie id (Type: string): The ID of the movie.
Returns:
- titles : The alternative titles of the movie.
- id : The ID of the movie.
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Table 30: Prompt details for Movie (Part 3/3).

Name: get movie translation(movie id)
Description: Get the description translation for a movie by ID
Parameters:
- movie id (Type: string): The ID of the movie.
Returns:
- translations : The description translation of the movie.
- id : The ID of the movie.
Name: check valid actions()
Description: Get supported actions for current tool.
Returns:
- actions (Type: array): Supported actions for current tool.

Name: finish(answer)
Description: Return an answer and finish the task
Parameters:
- answer (Type: [‘string’, ‘number’, ‘array’]): The answer to be returned

If you are finished, you will call “finish” action
Please refer to the format of examples below to solve the requested goal. Your response must be
in the format of “Action: [your action] with Action Input: [your action input]”

Instruction:
Now new trial starts. You should perform actions to accomplish the goal: Do the movies “The
Godfather” and “Pulp Fiction” share a common genre? Please answer me with Yes or No. Give
me one action.
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Table 31: Prompt details for Academia (Part 1/2).

System Prompt: You are an autonomous intelligent agent. You can use actions to help people
solve problems. We detail name, description, input(parameters) and output(returns) of each
action as follows:
Name: loadPaperNet()
Description: Load PaperNet. In this net, nodes are papers and edges are citation relationships
between papers.

Name: loadAuthorNet()
Description: Load AuthorNet. In this net, nodes are authors and edges are collaboration rela-
tionships between authors.

Name: neighbourCheck(graph, node)
Description: List the first-order neighbors connect to the node. In paperNet, neigbours are cited
papers of the paper. In authorNet, neigbours are collaborators of the author.
Parameters:
- graph (Type: string, Enum: [PaperNet, AuthorNet]): The name of the graph to check
- node (Type: string): The node for which neighbors will be listed
Returns:
- neighbors (Type: array)

Name: paperNodeCheck(node)
Description: Return detailed attribute information of a specified paper in PaperNet
Parameters:
- node (Type: string): Name of the paper.
Returns:
- authors : The authors of the paper
- year : The puslished year of the paper
- venue : The published venue of the paper
- n citation : The number of citations of the paper
- keywords : The keywords of the paper
- doc type : The document type of the paper

Name: authorNodeCheck(node)
Description: Return detailed attribute information of a specified author in AuthorNet
Parameters:
- node (Type: string): name of the author.
Returns:
- name : The name of the author
- org : The organization of the author

Name: authorEdgeCheck(node1, node2)
Description: Return detailed attribute information of the edge between two specified nodes in a
AuthorNet.
Parameters:
- node1 (Type: string): The first node of the edge
- node2 (Type: string): The second node of the edge
Returns:
- papers : All papers that the two authors have co-authored
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Table 32: Prompt details for Academia (Part 2/2).

Name: paperEdgeCheck(node1, node2)
Description: Return detailed attribute information of the edge between two specified nodes in a
PaperNet.
Parameters:
- node1 (Type: string): The first node of the edge
- node2 (Type: string): The second node of the edge
Returns:
None

Name: check valid actions()
Description: Get supported actions for current tool.
Returns:
- actions (Type: array): Supported actions for current tool.

Name: finish(answer)
Description: Return an answer and finish the task
Parameters:
- answer (Type: [‘string’, ‘number’, ‘array’]): The answer to be returned

If you are finished, you will call “finish” action
Please refer to the format of examples below to solve the requested goal. Your response must be
in the format of “Action: [your action] with Action Input: [your action input]”

Instruction:
Now new trial starts. You should perform actions to accomplish the goal: How many mutual
collaborators do Florian Kirchbuchner and Fadi Boutros share? Please give me a numerical
value as an answer. Give me one action.
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Table 33: Prompt details for Sheet (Part 1/4).

System Prompt:
You are an autonomous intelligent agent. You can use actions to help people solve problems.
We detail name, description, input(parameters) and output(returns) of each action as follows:
Name: open sheet(name)
Description: Open a sheet by name
Parameters:
- name (Type: string): The name of the sheet to open.
Returns:
- result (Type: object): The opened worksheet object or an error message.

Name: del sheet(name)
Description: Deletes the specified sheet.
Parameters:
- name (Type: string): The name of the sheet to be deleted.
Returns:
- result (Type: object): Whether the operation was successful.

Name: freeze data(dimension, num)
Description: Freeze rows and/or columns on the worksheet
Parameters:
- dimension (Type: string): The dimension to freeze, either ‘rows’ or ‘columns’
- num (Type: integer): Number of rows/cols to freeze.
Returns:
- result (Type: object): Whether the operation was successful.

Name: get A1 annotation(row, col)
Description: Translate the cell position (row,col) into A1 annotation
Parameters:
- row (Type: integer): Row index.
- col (Type: integer): Column index.
Returns:
- result (Type: string): The A1 notation of the cell or an error message.

Name: insert cols(values list, col idx)
Description: Insert columns into sheet at specified column index
Parameters:
- values list (Type: array[array[string]]): A list of lists, each list containing one column’s values,
which can be expressions
- col idx (Type: integer): Start column to update. Defaults to 1.
Returns:
- result (Type: object): The updated worksheet data or an error message.

Name: insert rows(values list, row idx)
Description: Insert rows into sheet at specified row index
Parameters:
- values list (Type: array[array[string]]): A list of lists, each list containing one row’s values,
which can be expressions
- row idx (Type: integer): Start row to update. Defaults to 1.
Returns:
- result (Type: object): The updated worksheet data or an error message.
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Table 34: Prompt details for Sheet (Part 2/4).

Name: delete batch data(dimension, index list)
Description: Delete a batch of data in the sheet
Parameters:
- dimension (Type: string): The dimension to delete, either ‘row’ or ‘col’.
- index list (Type: array[integer]): List of the indexes of rows/cols for deletion.
Returns:
- result (Type: object): The updated worksheet data or an error message.

Name: update cell(position, value)
Description: Update the value of the cell
Parameters:
- position (Type: string): A1 notation of the cell position.
- value: The value to set.
Returns:
- result (Type: object): The updated worksheet data or an error message.

Name: update cell by formula(start position, end position, position list, result position, opera-
tor)
Description: Update the value of the target cell by applying formulas on some specified cells.
Note: Either specify position list or start position and end position.
Parameters:
- start position (Type: string): The starting position of the range. Default: ‘B1’.
- end position (Type: string): The ending position of the range. Default: ‘D2’.
- position list (Type: array[string]): A list of cell positions in A1 notation.
- result position (Type: string): The position of the cell where the result of the formula will be
stored in. Default: ‘G2’.
- operator (Type: string): The operator to be applied on selected cells. Choose one from [‘SUM’,
‘AVERAGE’, ‘COUNT’, ‘MAX’, ‘MIN’, ‘MINUS’, ‘PRODUCT’].
Returns:
- result (Type: object): The updated worksheet data or an error message.

Name: update range(start position, end position, values list)
Description: Update a range of the cells from a list
Parameters:
- start position (Type: string): A1 notation of the start cell.
- end position (Type: string): A1 notation of the end cell.
- values list (Type: array[array[Any]]): List of values to be inserted, which can be expressions
Returns:
- result (Type: object): The updated worksheet data or an error message.

Name: sort sheet by col(col num, order)
Description: Sorts the current sheet using given sort orders
Parameters:
- col num (Type: integer): The index of the sort column.
- order (Type: string): The sort order. Possible values are ‘asc’ or ‘des’.
Returns:
- result (Type: object): The updated worksheet data or an error message.

Name: merge cells(start position, end position)
Description: Merge cells in sheet
Parameters:
- start position (Type: string): Starting cell position(top left) in A1 annotation.
- end position (Type: string): Ending cell position(bottom right) in A1 annotation.
Returns:
- result (Type: object): The updated worksheet data or an error message.
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Table 35: Prompt details for Sheet (Part 3/4).

Name: update note(position, content)
Description: Update a note in a certain cell
Parameters:
- position (Type: string): cell position in A1 annotation.
- content (Type: string): The text note to insert.
Returns:
- result (Type: string): The updated note or an error message.

Name: get all values()
Description: Display all cell values in current sheet
Returns:
- result (Type: array[array[Any]]): Return all cell values or an error message.

Name: get range values(start position, end position)
Description: Returns a list of cell data from a specified range.
Parameters:
- start position (Type: string): Starting cell position in A1 annotation.
- end position (Type: string): Ending cell position in A1 annotation.
Returns:
- result (Type: array[array[Any]]): List of cell data from the specified range or an error
message.

Name: get cell value(position)
Description: Get the value of a specific cell
Parameters:
- position (Type: string): Cell position in A1 annotation.
Returns:
- result : Cell value or an error message.

Name: get value by formula(start position, end position, position list, operator)
Description: Calculate a value applying formulas on specified cells. Note: Either specify
position list or start position and end position.
Parameters:
- start position (Type: string): The starting position of the range. Default: ‘B1’.
- end position (Type: string): The ending position of the range. Default: ‘D2’.
- position list (Type: array[string]): A list of cell positions in A1 notation.
- operator (Type: string): The operator to be applied on selected cells. Choose one from
[‘SUM’, ‘AVERAGE’, ‘COUNT’, ‘MAX’, ‘MIN’, ‘MINUS’, ‘PRODUCT’].
Returns:
- result (Type: string): Calculated result or an error message.

Name: filter cells(query, in row, in column)
Description: Find all cells matching the query, return all cells’ position.
Parameters:
- query (Type: [‘string’, ‘re.RegexObject’]): A string to match or compiled regular ex-
pression.
- in row (Type: [‘integer’, ‘None’]): Row number to scope the search. Default is all rows
- in column (Type: [‘integer’, ‘None’]): Column number to scope the search. Default is
all columns
Returns:
- result (Type: array[string]): List of cell addresses that match the query or an error mes-
sage.
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Table 36: Prompt details for Sheet (Part 4/4).

Name: get note(position)
Description: Get the note at the certain cell, or return empty string if the cell does not have a
note.
Parameters:
- position (Type: string): Cell position in A1 annotation.
Returns:
- result (Type: string): Note content or an error message.
Name: finish()
Description: Return an answer and finish the task
Returns:
- result (Type: array[array[Any]]): Return all cell values or an error message.

Instruction:
Now new trial starts. You should perform actions to accomplish the goal: Product Update: The
table in “Sheet1” contains the product inventory information, and [[‘Product’, ‘Today Sold’],
[‘beef’, ‘5’], [‘pork’, ‘2’], [‘chicken’, ‘8’], [‘lamb’, ‘12’], [‘duck’, ‘3’], [‘fish’, ‘23’], [‘shrimp’,
‘21’], [‘salmon’, ‘12’], [‘apple’, ‘100’], [‘banana’, ‘287’], [‘orange’, ‘234’], [‘carrot’, ‘12’]] is
today’s sales data. Please update the product information in “Sheet1” in time and then sort by
“Quantity” in descending order. Give me one action.
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