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ABSTRACT

Continual learning (CL) plays a key role in dynamic systems in order to adapt to
new tasks, while preserving previous knowledge. Most existing CL approaches
focus on learning new knowledge in a supervised manner, while leaving the data
gathering phase to the novelty detection (ND) algorithm. Such presumption limits
the practical usage where new data needs to be quickly learned without being
labeled. In this paper, we propose a unified approach of CL and ND, in which
each new class of the out-of-distribution (ODD) data is first detected and then
added to previous knowledge. Our method has three unique features: (1) a unified
framework seamlessly tackling both ND and CL problems; (2) a self-supervised
method for model adaptation, without the requirement of new data annotation;
(3) batch-mode data feeding that maximizes the separation of new knowledge
vs. previous learning, which in turn enables high accuracy in continual learning.
By learning one class at each step, the new method achieves robust continual
learning and consistently outperforms state-of-the-art CL methods in the single-
head evaluation on MNIST, CIFAR-10, CIFAR-100 and TinyImageNet datasets.

1 INTRODUCTION

Machine learning methods have been widely deployed in dynamic applications, such as drones,
self-driving vehicles, surveillance, etc. Their success is built upon carefully handcrafted deep neural
networks (DNNs), big data collection and expensive model training. However, due to the unforesee-
able circumstances of the environment, these systems will inevitably encounter the input samples
that fall out of the distribution (OOD) of their original training data, leading to their instability and
performance degradation. Such a scenario has inspired two research branches: (1) novelty detection
(ND) or one-class classification and (2) continual learning (CL) or life-long learning. The former
one aims to make the system be able to detect the arrival of OOD data. The latter one studies how
to continually learn the new data distribution while preventing catastrophic forgetting Goodfellow
et al. (2013) from happening to prior knowledge.

While there exists a strong connection between these two branches, current practices to solve them
are heading toward quite different directions. ND methods usually output all detected OOD samples
as a single class while CL methods package multiple classes into a single task for learning. Such a
dramatic difference in problem setup prevents researchers to form an unified algorithm from ND to
CL, which is necessary for dynamic systems in reality.

One particular challenge of multi-class learning in CL is the difficulty in data-driven (i.e., self-
supervised or unsupervised) separation of new and old classes, due to their overlap in the feature
space. Without labeled data, the model can be struggling to find a global optimum that can suc-
cessfully separate the distribution of all classes. Consequently, the model either ends up with the
notorious issue of catastrophic forgetting, or fails to learn the new data. To overcome this chal-
lenge, previous methods either introduce constraints in model adaptation in order to protect prior
knowledge when learning a new task Aljundi et al. (2018); Li & Hoiem (2018); Kirkpatrick et al.
(2017); Rebuffi et al. (2017), or expand the network structure to increase the model capacity for new
knowledge Rusu et al. (2016); Yoon et al. (2017). However, the methods with constraints may not
succeed when the knowledge distribution of a new task is far from prior knowledge distribution. On
the other hand, the methods with a dynamic network may introduce too much overhead when the
amount of new knowledge keeps increasing.

In this context, our aims of this work are: (1) Connecting ND and CL into one method for dynamic
applications, (2) Completing ND and CL without the annotation of OOD data, and (3) Improving the
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Figure 1: The framework of our unified method for both novelty detection and one-class continual
learning. The entire process is self-supervised, without the need of labels for new data.

robustness and accuracy of CL in the single-head evaluation. We propose a self-supervised approach
for one-class novelty detection and continual learning, with the following contributions:

• A unified framework that continually detects the arrival of the OODs, extracts and learns
the OOD features, and merges the OOD into the knowledge base of previous IDDs. More
specially, we train a tiny binary classifier for each new OOD class as the feature extractor.
The binary classifier and the pre-trained IDD model is sequentially connected to form a
“N + 1” classifier, where “N” represents prior knowledge which contains N classes and
“1” refers to the newly arrival OOD. This CL process continues as “N + 1+ 1+ 1...” (i.e,
one-class CL), as demonstrated in this work.

• A batch-mode training and inference method that fully utilizes the context of the input and
maximizes the feature separation between OOD and previous IDDs, without using data
labels. This method helps achieve the high accuracy in OOD detection and prediction in a
scenario where IDDs and OODs are streaming into the system, such as videos and audios.

• Comprehensive evaluation on multiple benchmarks, such as MNIST, CIFAR-10, CIFAR-
100, and TinyImageNet. Our proposed method consistently achieves robust and a high
single-head accuracy after learning a sequence of new OOD classes one by one.

2 BACKGROUND

Most continual learning methods belong to the supervised type, where the input tasks are well-
labeled. To mitigate catastrophic forgetting, three directions have been studied in the community: (1)
Regularization methods Zeng et al. (2019); Aljundi et al. (2018); Li & Hoiem (2018); Kirkpatrick
et al. (2017); Rebuffi et al. (2017); Zenke et al. (2017); Ahn et al. (2019), which aim to penalize
the weight shifting towards the new task. This is realized by introducing a new loss constraint to
protect the most important weights for previous tasks. Many metrics to measure the importance of
weights are proposed, such as the Fisher information matrix, distillation loss and training trajectory.
(2) Rehearsal-based methods Lopez-Paz & Ranzato (2017); Chaudhry et al. (2018); Rolnick et al.
(2019); Aljundi et al. (2019); Cha et al. (2021), which maintain a small buffer to store the samples
from previous tasks. To prevent the drift of prior knowledge, these samples are replayed during
the middle of the training routine on the new task. Some rehearsal-based methods are combined
with the regularization methods to improve their performance. (3) Expansion-based methods Rusu
et al. (2016); Yoon et al. (2017); Schwarz et al. (2018); Li et al. (2019); Hung et al. (2019), which
aim to protect previous knowledge by progressively adding new network branches for the new task.
These methods are especially useful when the knowledge base of previous tasks and that of the
new task are overlapping. Although these three supervised methods improve the performance of
continual learning, we argue that the capability to automatically detect the task shifting and learn
the new knowledge (i.e., self-supervised or unsupervised) is the most preferred solution by a realistic
system, since an expensive annotation process of the new task is impractical in the field.
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There also exist self-supervised CL methods Rao et al. (2019); Smith et al. (2021), which focus
on the generation of the class-discriminative representations from the unlabelled sequence of tasks.
However, their demonstration so far are still limited to relatively simple and low-resolution datasets,
such as MNIST and CIFAR-10.

3 METHODOLOGY

3.1 TERMINOLOGY

Algorithm 1 Unification of One-class Novelty Detection
and Continual Learning
Input: IDD memory budget Xmem

IDD =
{Xmem1

IDD , . . . , XmemN

IDD }, IDD sequence XIDD ={
X1

IDD, . . . , X
N
IDD

}
OOD sequence XOOD ={

X0
OOD, . . . , X

t
OOD

}
, trained modelM0

1: Mcurrent ←M0

2: for i = 0 to len(XOOD) do
3: Xcurrent

OOD ← XOOD[i]
4: Xmixture ← XIDD +Xcurrent

OOD
5: DIDD ← IDD estimator(Xmem

IDD ,Mcurrent)

6: Xpred
OOD,Bi ← noveltyDetector(Mcurrent,

Xmem
IDD ,DIDD, Xmixture)

7: Xmem
IDD .append(Xpred

OOD)
8: Mcurrent ←Mcurrent + Bi //Merge Model
9: end for

10: returnMcurrent

Previous CL methods use a task-
based setup, where each task consists
of multiple classes of training sam-
ples. The model is trained to learn
each task (i.e., multiple classes) se-
quentially. Different from previous
methods, our proposed solution is an
unified system that leverages the out-
put from the novelty detector for CL.
Therefore, we embrace the one-class
per task setup as follows:

As shown in Algorithm 1, the sys-
tem is continuously exposed to a
stream of mixed input that con-
tains both in-distribution data (IDD)
XIDD =

{
X1

IDD, . . . , X
N
IDD

}
and one of the out-of-distribution
(OOD) data Xcurrent

OOD ∈ XOOD ={
X0

OOD, . . . , X
t
OOD

}
, where each

Xi corresponds to a single class in the dataset. XIDD denotes the IDD set containing all the classes
that the system already recognizes. XOOD contains the OOD classes that the system is currently fac-
ing and will encounter in the future. The primary task is to filter out Xcurrent

OOD from XIDD through
the novelty detection engine, while learning the features of Xcurrent

OOD for continual learning. Once
Xcurrent

OOD is successfully detected and learned, we move Xcurrent
OOD from XOOD into XIDD, and ran-

domly draw a new OOD class from XOOD as the newXcurrent
OOD . This process continues until XOOD

is empty and all classes have been learned by the model, i.e., becoming IDDs. For simplicity, we
denote the initial IDD classes and the first OOD class as X 0

IDD and X0
OOD, respectively. When the

system has successfully learned X0
OOD, we denote the updated IDD set as X 1

IDD and the next OOD
as X1

OOD. Then Si =
{
X i

IDD, X
i
OOD

}
represents the status when the system just finishes learning

Xi−1
OOD. From the perspective of task-based learning, eachXi

OOD can be considered as a single task.
Our proposed method will detect and learn only one class at each time.

3.2 ONE-CLASS NOVELTY DETECTION AND CONTINUAL LEARNING

Our method is built upon the recently proposed work on “Self-supervised gradient-based novelty
detector” Sun et al. (2022). The contributions of this method are two-fold. First, given a pre-trained
modelM0 that is able to classify X 0

IDD, a statistical analysis evaluating the Mahalanobis distance
in the gradient space is developed to threshold the OOD. Second, to further boost the performance,
they introduce a self-supervised binary classifier, denoted as B0, which guides the label selection
process to generate the gradients so that the Mahalanobis distance between the IDD and OOD data
is further maximized. The primary OOD detector, which is based on the Mahalanobis distance,
interleaves with the binary classifier. As more data stream into the system, the OOD detection
accuracy gradually improves through this closed-loop interaction.

This method can be naturally converted into a one-class CL solution. Upon the successful detec-
tion of X0

OOD, the binary classifier B0 is well-trained to recognize X0
OOD from previous X 0

IDD.
Intuitively, we can deploy B0 upstream from the pre-trained IDD modelM0 to filter out the newly
learned X0

OOD, and leave the predicted X 0
IDD samples to the downstream M0 for further classi-

fication. This merged modelM1 = {M0 + B0} will become the new baseline to detect the next
X1

OOD. Continuously, we can keep adding a new binary classifier Bi to the previously merged
modelMi = {Mi−1 + Bi−1} for every new Xi

OOD upon its detection. Eventually, we obtain this

3



Under review as a conference paper at ICLR 2023

chain structure (Fig. 1) where the latest binary classifier is the most knowledgeable one to recognize
all XIDD and XOOD. During the inference phase, its job is to filter out the Xt

OOD from a mix-
ture input that contains {X t

IDD, X
t
OOD}. The remaining inputs X t

IDD =
{
X t−1

IDD, X
t−1
OOD

}
will be

sent downstream to the next binary classifier to sequentially recognize the Xt−1
OOD. This sequence

continues until only X 0
IDD is left and arrives at the original modelM0 for final classification.

Algorithm 2 Gradient-based Novelty Detection

1: function noveltyDetector (M,Xmem
IDD ,DIDD, Xmix)

2: Initialize Bnew
3: Xpure

mix ← batchPurityEstimator(Xmix,
Xmem

IDD ,M)
4: repeat 10 iterations
5: Xpred

IDD ← [ ], Xpred
OOD ← [ ]

6: for each x ∈ Xpure
mix do

7: if Bnew not trained then
8: cM0 ← cpredM0

, cBi ← cpredBi

9: else
10: cM0

← ccustM0
, cBi

← 1− cpredBi

11: end if
∇fM(x)← ∇cM0

fM0
(x)∥ . . . ∥∇cBi

fBi
(x)

12: noveltyScore l← [ ]

13: for each (µ̂c, Σ̂c) in DIDD do
score c← (∇fM(x)−µ̂c)

T Σ̂c
−1

(∇fM(x)−µ̂c)
noveltyScore l.append(score c)

14: end for
15: noveltyScore← min(noveltyScore l)
16: if noveltyScore < threshold then
17: Xpred

IDD.append(x)
18: else
19: Xpred

OOD.append(x)
20: end if
21: end for
22: Re-initial & Train Bnew using {Xpred

IDD, X
pred
OOD}

23: return X pred
IDD,Bnew

24: end function

There are two advantages of this one-
class learning method. First, after
we merge a new binary classifier to
the existing structure, all weights are
frozen and isolated from future train-
ing towards the new OODs. This
prevents the knowledge shifting and
thus, minimizes catastrophic forget-
ting. Second, each binary classifier
only induces a small memory over-
head since its task is simple enough to
be accomplished with very few layers
of neurons. Compared with previous
dynamic methods which either add
an indeterminate amount of neurons
to each layer or make new branches
using sub-modules, our method re-
quires much lower memory.

On the other hand, such a sequen-
tial learning model leaves two ques-
tions to be answered: (1) How to
port the original Mahalanobis dis-
tance method into this merged model
so that it can detect the next OOD?
(2) How to achieve a high infer-
ence accuracy of the binary classi-
fier, such that the testing samples can
go through multiple steps in this se-
quence and reach the final classifier
without losing the accuracy. We will
address each problem in the subsec-
tion 3.3 and 3.4, respectively.

3.3 GRADIENT-BASED NOVELTY DETECTOR

The stepping stone of the previous novelty detector (Algorithm 2, Algorithm 3) is to charac-
terize the IDD and OOD in the gradient space. If a model M has been trained to classify
N classes in X train

IDD =
{
Xtrain 1

IDD , . . . , Xtrain N
IDD

}
, the gradients collected from each Xi

IDD ∈
XIDD will form a class-wise multi-variant distribution DIDD =

{
D1

IDD, . . . , D
N
IDD

}
. Each

Di
IDD ∼ N (µ̂i, Σ̂i) corresponds to a Gaussian distribution for a particular class i, and future IDDs
X val

IDD =
{
Xval 1

IDD , . . . , X
val N
IDD

}
will be within the range of corresponding Di

IDD. On the contrary,
due to the low confidence towards the OOD, the modelM will adjust itself to fit the OOD properly
by back-propagating the gradients with abnormal magnitude and direction. Any deviant fromDIDD

will be considered as abnormal and therefore, a distance metric can be utilized to measure the nov-
elty confidence. They propose to use the Mahalanobis Distance as the novelty confidence score Sun
et al. (2022):

Mx = (∇cfM(x)− µ̂c)
T Σ̂−1

c (∇cfM(x)− µ̂c) (1)

To collect the gradient ∇cfM(x), they further utilize two types of labels for back-propagation:
cpredictedM and ccustomM .

cpredictedM = argmax
c∈XIDD

(Softmax(fM(X; Θ))) (2)
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ccustomM = argmin
c∈XIDD

(Softmax(fM(X; Θ))) (3)

Measured by the softmax output from the trained model M, cpredictedM and ccustomM refer to the
most and least possible class the input belongs to, respectively, leading to mild and aggressive back-
propagated gradients. Since the goal is to detect the abnormal gradient from the OOD, using ccustomM
for OOD maximizes weight update to the model and thus, the gradients will be even more likely to
fall out of the DIDD. On the other hand, using cpredictedM for IDDs helps their gradients stay within
DIDD and thus, reduces the possibility of false alarm. To guide the label selection, they introduce
a binary classifier into the system to predict the samples. Based on the prediction, the primary
ND engineM collects the gradients with either cpredictedM or ccustomM to measure the Mahalanobis
distance towards DIDD.

To make the above algorithm compatible with the unified ND model, we set up the following sce-
nario for explanation. Assume the system just finishes the detection and learning on Xi

OOD and
is in the status of Si+1 =

{
X i+1

IDD, X
i+1
OOD

}
. The latest binary classifier Bi, which can distinguish

Xi
OOD and X i

IDD, is placed upstream from the previously merged modelMi to form a new model
Mi+1 = {Mi + Bi}. At this point,Mi+1 becomes the new baseline to detect Xi+1

OOD. It is a se-
quential structure composed of i+1 number of the binary classifier, i.e., one for each learned OOD,
and one original neural networkM0 that predicts N classes and is placed at the end of the chain.
With these notations mentioned above, we introduce our solution as follows:

Gradient Collection: To make this merged modelMi+1 = {Mi + Bi} capable of detecting the
upcomingXi+1

OOD, we need to first conduct theDi+1
IDD estimation onX i+1

IDD =
{
X i

IDD, X
i
OOD

}
from

bothMi andBi. Only then we can start evaluating how far theXi+1
OOD deviates from the distributions

inDi+1
IDD. Given an input x, we propose to collect the gradients∇cfBi

(x) and∇cfMi
(x) separately

from both Bi andMi. Then we concatenate them together∇cfBi+Mi
(x) = ∇cfBi

(x)∥∇cfMi
(x).

The overall gradient dimension becomes ∇fMi+1
= ∇fM0

∥(∇fB0
∥ . . . ∥∇fBi

), where ∇fM0
is

the gradient collected from the original neural network, and ∇fB0...i
are the gradients from each

binary classifier in the chain.

Class Selection: Similar as cpredictedM and ccustomM to ∇cfM(x), here we introduce cpredictedBi
and

ccustomBi
to control the gradient∇cfBi(x). Since there are only two possible predictions: IDD (label

0) and OOD (label 1), we can simply make the original prediction as cpredictedBi
and use the flipped

result as ccustomBi

cpredictedBi
= fBi(X; Θ) ; ccustomBi

= 1− fBi(X; Θ) (4)

Ideally we prefer to use the label cpredictedBi
for all the samples X ∈

{
X i

IDD, X
i
OOD

}
, so that the

gradient∇cfBi
(x) will be minimized. ForXi+1

OOD, using ccustomBi
will make their gradients stand out

even more and thus, easier to be detected.

Algorithm 3 Gradient-based Evaluation of IDD Distribution

1: function IDD estimator (Xmem
IDD ,Mi)

2: DIDD ← [ ]
3: for each Xmem

IDD in Xmem
IDD do

4: ∇cfMi
(xk) = ∇cfM0

(xk)∥ . . . ∥∇cfBi
(xk)

5: µ̂c ← 1
Nc

∑
yk=c
∇cfMi(xk)

6: Σ̂c ← 1
Nc

∑
yk=c

(∇cfMi
(xk) − µ̂c)(∇cfMi

(xk) −

µ̂c)
⊤ where (xk, yk) ∈ Xmem

IDD

7: DIDD.append((µ̂c, Σ̂c))
8: end for
9: return DIDD

10: end function

Memory for DIDD Evalu-
ation: The extra dimension
from ∇fBi

requires the pre-
estimated distributions in DIDD

to be re-evaluated. For each
class in X i+1

IDD, we assign a
memory at a constant size to
re-evaluate DIDD after the ex-
pansion of the gradient dimen-
sion. In addition, the newly
learned Xi

OOD becomes a new
IDD class from the perspective
ofMi+1 and thus, DIDD needs
to includeDi

IDD. Before we use
Mi+1 to detect the next OOD,

DIDD should include the distribution estimation of N + i+1 classes, in the dimension of∇fMi+1 .
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Furthermore, a small memory for each class helps improve the ND accuracy. Previous methods only
rely on the predicted IDD and OOD from the novelty detector engine to train the binary classifier,
with limited training accuracy and convergence speed when the prediction is not accurate enough.
Instead, we propose to directly use the pre-stored IDD samples as the IDD training dataset. For the
OOD, we still use the predicted OOD from the ND routine. Such a solution makes the training of
the binary classifier more stable, by reducing mislabeled OODs. After the system converges towards
current OOD, those predicted OOD samples, selected by the novelty detector with the assistance
from the binary classifier, will be stored in the memory as the representation of this newly learned
class, which will be used for DIDD evaluation and future training on the new binary classifier.
Except for the first N classes which have the pre-labeled dataset, all the samples from the new
coming OODs are self-selected by the engine itself.

3.4 BATCH-MODE TRAINING AND INFERENCE

The success of the sequential classification, from a sequence of binary classifiers, relies on the high
inference accuracy of each binary classifier. Even with very minor accuracy degradation from each
of them, the accumulated accuracy will drop exponentially. To achieve such a goal, we propose
to not only consider the sample itself but the context of the sample as well. If a testing sample is
within the cluster of other samples that all come from the same class, its prediction will be biased
towards that class as well. This inspires the idea of the batch-mode training and inference: Based
on the features, we will cluster the samples in one class into a batch first, before feeding them to the
engine. During the training phase, we introduce the new loss function as follows:

L(X ) = 1

N

N−1∑
i=0

L(f(Xi), i) (5)

where each Xi refers to a single batch with samples of class i only. Different from traditional train-
ing method where the feed-forward operation is conducted on a single batch that contains randomly
selected samples fromN classes, we sendN individual one-class batches to the classifier all at once
and calculate their average loss. Due to the nature of the BatchNorm layer in the neural network,
we find that the batch average from each class can be better separated and thus, the boundary of the
classes is easier to be learned.

To prove the effectiveness of the batch-mode training, we evaluate the feature distribution of IDD
and OOD using both the traditional and batch-mode method with CIFAR-10 dataset on a binary
classifier, where IDD contains five classes and OOD contains one class. The batch size is at 32
samples. As shown in Fig. 2(a)(b), the result from batch-mode training is less intertwined, promising
a higher chance to detect OOD. We exploit this property to improve the accuracy of each binary
classifier.

One challenges in this approach is that onlyXIDD classes are available for creating the pure batches,
but the OOD samples are mixed with IDD in the incoming stream, not pre-labeled. Therefore, a pre-
filtering operation is necessary to detect and prepare the OOD from the data stream. We propose to
first divide the input stream into small consecutive batches and use a purity metric to localize the
batches with the highest OOD percentage. In reality, the assumption of IDD/OOD batches is quite
feasible. For instance, in a video or audio stream, once OOD data appear, there will be multiple,
continuous samples of OOD, rather than one glitching sample only.

Regarding the purity metric, we propose to compare the mean of the features from the testing batch
with the pre-estimated features of each class in XIDD. More specifically, assuming the system is in
status Si =

{
X i

IDD, X
i
OOD

}
, there are totally N + i classes in X i

IDD. Therefore, we expect the
next input stream will contain a mixture of Xi

OOD batch and N + i kinds of batches from previous
classes. We use M0 to filter out the batches that contain the first N IDD classes, by comparing
the L2 distance between the batch features ψM0

(Xtest) and the X IDD
0 features ψM0

(X IDD
0 ), both

extracted from M0. Since M0 is trained by X IDD
0 , if Xtest batch is dominated by the samples

from X IDD
0 , then the L2 distance between them should not be large. On the other hand, if the batch

is mixed with samples from another class, then the L2 distance will increase which helps us set a
threshold to separate them. The selected batches will be sent to the upstream of M0, which is B0,
for another round of filtering to remove the batches that are dominated by X0

OOD. This procedure
continues along the sequential structure from bottom to top until all the batches containing theN+ i
classes are filtered out. The remaining batches then only contain the new OOD Xi

OOD.
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Algorithm 4 Unsupervised Estimation of Batch Purity

1: function batchPurityEstimator
(Xmix,Xmem

IDD ,M)
2: Divide Xmix sequence into batches with size 32

[XB0, XB1, . . . , XBt]
3: Xpure

mix ← [ ]
4: for each XB ∈ [XB0, XB1, . . . , XBt] do
5: for eachm along the chain [M0,B0, . . . ,Bi]

do
6: if m isM0 then
7: Xref

IDD ← select X 0
IDD from Xmem

IDD
8: else if m is Bk where k ∈ [0, i] then
9: Xref

IDD ← select Xk
OOD from Xmem

IDD
10: end if
11: L2← d(ψm(XB), ψm(Xref

IDD))
12: if L2 < thresholdIDD then
13: Xpure

mix .append(XB)
14: else if L2 > thresholdOOD then
15: Continue
16: else Break
17: end if
18: end for
19: end for
20: return Xpure

mix
21: end function

(a) Frame-based feature distribution

(b) Batch-based feature distribution

Figure 2: The feature distribution of
IDD and OOD using (a) traditional
training and (b) batch-mode training.

Figure 3: L2 distance-based batch purity estimation using M0 and B0−3 on IDD:{
X 0

IDD, X
0
OOD, . . . , X

3
OOD

}
and OOD: X4

OOD. All data are collected using CIFAR-10 dataset.
Fig. 3 illustrates the process to separate the pure batches from the CIFAR-10 input stream that
consists of five types of IDDs (

{
X 0

IDD, X
0
OOD, . . . , X

3
OOD

}
) and one OOD (X4

OOD), using M0

and B0−3. The gray and white area corresponds to the batches with 100% purity and mixture data,
respectively. Starting fromM0 (the red curve), X 0

IDD pure batches are collected by comparing the
L2 distance with low threshold. The batches above threshold are sent to B0 to find the X0

OOD pure
batches. This process continues until the stream data reaches B3 and all IDD and OOD pure batches
are successfully separated.

4 EXPERIMENTS

To prove the efficacy of our proposed method, we conduct several one-class ND and CL experi-
ments using MNIST Deng (2012), CIFAR-10, CIFAR-100 Krizhevsky & Hinton (2009) and Tiny-
ImageNet Le & Yang (2015). All experiments are implemented using PyTorch Paszke et al. (2019)
on NVIDIA GeForce RTX 2080 platform.

4.1 EXPERIMENTAL SETUP

Input Sequence and Memory Budget: Different from the multiple-class based setup, our method
is evaluated after every exposure to a new OOD class. For every new Xi

OOD, we mix it with the
same amount of randomly selected samples from X i

IDD. This mixed input stream is then sent to the
system for ND and CL. The input stream consists of the batches from N + i classes in X i

IDD and
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from theXi
OOD current class. Each batch is at the size of 32 frames for all the experiments. We also

create the transition phases to mimic the input change from one class to another. Each transition
phase last three batches long. The ratios of the mixture between the previous class and the next class
are 1/4, 1/2 and 3/4. This transition setup is used in batch purity evaluation. For each dataset, the
size of Xi

OOD and X i
IDD samples is shown in the first row of Table 1. Xi

OOD samples are selected
from the training dataset while the X i

IDD are selected from the testing dataset. The reason for using
testing rather than training on X i

IDD is because previously trained binary classifiers have already
seen the training data of X i

IDD and we need to avoid any unfair evaluation in the current iteration.
The second row of Table 1 presents the memory budget for X0

IDD.

Network Structure and Training: For fair comparisons with previous methods, we select the
structure of M0 as shown in Table 1, Row 3. The binary classifier has three convolution layers,
one BatchNorm layer, and a Sigmoid classifier. This structure is used in all experiments. ForM0

training, standard Stochastic Gradient Decent is used with momentum 0.9 and weight decay 0.0005.
The number of epochs is listed in Table 1, Row 4. The initial learning rate is set to 0.1 and is divided
by 10 after reaching the 50% and 75% milestones. For the binary classifier, we train it in 100 epochs
with the Adam optimizer Kingma & Ba (2014) where the initial learning rate is set to 0.0002 and
the decay rate is controlled by β1 = 0.5 and β2 = 0.999. To estimate the novelty in the gradient
space, we collect the gradients from the last convolution layer ofM0 and the second from the last
convolution layer of each binary classifier.

(a) CIFAR-100 (b) CIFAR-10

(c) Tiny-ImageNet (d) MNIST

Figure 4: Single-head accuracy of one-class novelty detection and continual learning using (a)
CIFAR-100, (b) Tiny-ImageNet, (c) CIFAR-10, and (d) MNIST.

4.2 IN-DEPTH ANALYSIS

All experiments are conducted in an unsupervised manner, which means all new OOD classes are
not manually labeled, but purely rely on the prediction from the novelty detector engine. Compared
with traditional CL algorithms which learn multiple classes in one shot, our method learns one class
at each time and takes more steps to achieve the same learning goal. To test how many classes can
be learned before the accuracy starts to drop, we test our algorithm using CIFAR-100 by training a
baseline model using 10 classes and then continually feeding 20 new classes to the system one class
after another. The inset from the Figure 4(a) illustrates the accuracy curve from the actual testing
result (red points) plus the extrapolation (dashed line). This curve proves that our method is able
to stably learn multiple steps; the accuracy eventually drops as the error in each binary classifier
accumulates through the sequential process.

Therefore, we design our further experiment as follows: For CIFAR-100 and Tiny-ImageNet, we
divide them into 10 tasks where each task contains 10 and 20 classes, respectively. After the base-
line training with the first task, we test the algorithm performance by feeding the next task as the
incoming OOD. Once all the classes from the new task are learned one by one, we terminate the
current iteration and retrain a new baseline model using all the previous tasks. This new baseline
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will then be used for learning the next available task. This process continues till all the tasks have
been tested. For each experiment on CIFAR-10 and MNIST, we train two baseline models using the
first two classes and the first five classes to mimic the 5-tasks (5T) and 2-tasks (2T) setup that used
by other methods. We then feed the remaining classes to the baseline model to test the performance.

As shown in Fig. 4, the single-head accuracy of all the experiments stay at a high value after consec-
utively detecting and learning new classes from each checkpoint, which proves that our batch-mode
method successfully boosts the performance of the binary classifier. For CIFAR-10 and MNIST,
our method significantly improves the state-of-the-art even though it is unsupervised. For Tiny-
ImageNet, the accuracy is less stable due to the increased complexity of the dataset, but overall the
performance is still robust after learning 20 new classes.

5 ABLATION STUDY

We conduct four ablation studies to test how the performance is influenced by various input stream
patterns using CIFAR-10 and CIFAR-100 dataset. First, we conduct two experiments by feeding the
input with 75%/25% and 90%/10% of IDD/OOD mixture. As shown in Figs. 5(a)(b), the single-head
accuracy of both experiments are worse than previous experiments using 50%/50% of IDD/OOD
mixture. This is because fewer OOD samples increase the difficulty in OOD separation, especially
the unsupervised training of the binary classifier. Second, we test our model with two smaller batch
size for batch purity estimation. Figs. 5(c)(d) present the performance after dividing the input stream
into smaller batches at the size of 16 and 8. The smaller the batch size is, the worse performance our
model achieves. With fewer samples in each batch, the average feature estimated from the trained
model becomes more diverse, which exacerbates the error in the purity estimation engine.

(a) CIFAR-100: IDD/OOD ratio (b) CIFAR-10: IDD/OOD ratio

(c) CIFAR-100: Batch size (d) CIFAR-10: Batch size

Figure 5: Ablation studies on CIFAR-10 and CIFAR-100 with (a)(b) multiple ratios of IDD/OOD
mixture, and (c)(d) various batch sizes.

6 CONCLUSION

In this paper, we propose an unified framework for one-class novelty detection and continual learn-
ing, by using a sequence of binary classifiers with the batch-mode technique. We demonstrate
that our method successfully detects and learns consecutive OOD classes in an unsupervised setup,
achieving a stable single-head accuracy without triggering catastrophic forgetting. For instance, our
method reaches 97.08% on CIFAR-10 in continual learning, better than the state-of-the-art. The
performance on all other datasets is also among the top list, without the need of manually labeled
training data. The success of this approach promises high stabilization, high learning accuracy, and
practical usage by various dynamic systems.
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A APPENDIX

Parameters MNIST CIFAR-10 CIFAR-100 Tiny-ImgNet

Size of OOD 4000 2000 500 1000
Memory Budget 4000 2000 500 500

M0 MLP 1ResNet-34 ResNet-34 ResNet-18
Train Epochs onM0 30 70 200 200
1 He et al. (2016)

Table 1: Hyper-parameters for each experiment.
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