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ABSTRACT

In federated learning, client participation is mainly motivated by performance-gain
rewards or monetary rewards. In practice, different clients may have varying
preferences over these two types of rewards. However, optimizing the training
process to align model performance and monetary rewards with client expecta-
tions remains an open challenge. To accommodate diverse reward preferences,
we propose Alpha-Tuning, an FL performance adjustment framework guided by
dynamic validation loss composition. The core of our framework is a mechanism
to decide the weights assigned to clients’ local validation loss, each of which is
determined by the corresponding client’s performance contribution in the given
training round and its monetary quotation for biasing this FL course towards its
favor. The training hyper-parameters and model aggregation weights are adjusted
together with model parameters to minimize the weighted sums of clients’ local
validation losses in our framework. Paired with a payment rule designed to com-
pensate the clients according to their data contribution, Alpha-Tuning balances
the clients’ preferences between the performance gain and monetary reward. We
demonstrate the effectiveness of our framework by conducting experiments on the
federated learning tasks under various client quotation settings.

1 INTRODUCTION

Recently, federated learning (FL) has garnered significant attention due to its capability to col-
laboratively train models from various isolated data sources without the direct sharing of private
data (Kairouz et al., 2021). The success of an FL greatly depends on the active participation of clients
that possess valuable data. As clients engage in FL primarily to achieve performance gains, monetary
rewards, or both (Pei, 2020; Zeng et al., 2021), the appropriate incentive mechanism becomes an
essential component of FL.

Most existing incentive mechanisms take a post-hoc form, where clients receive monetary rewards
based on their data contribution after the trained model has generated revenue (Wang et al., 2020).
However, such incentives may not be flexible in cases where clients act as both data contributors and
model buyers with different preferences towards rewards. For example, if a client with less data is
willing to pay more to obtain a better model performance gain, in the post-hoc form, there is no way
to transfer the monetary investment to the model performance gain in the FL training process, since
in such cases, clients can only influence model training through their data. Moreover, some clients
act as data merchants, and their primary objective is to obtain monetary rewards by contributing their
data to FL training, regardless of the model performance they obtain. Therefore, the challenge is to
design an FL framework with an embedded incentive mechanism that can adaptively adjust different
clients’ preferences towards both monetary rewards and model performance gain rewards.

In light of the federated hyper-parameter optimization (FedHPO) Khodak et al. (2021); Guo et al.
(2022); Wang et al. (2023), which efficiently searches for the suitable hyper-parameter configurations,
we propose a novel FL framework, named as Alpha-Tuning. The core of our proposed framework
is the MarketFedHPO component, which enables the adjustment of the performance of the model
during the FL training process according to clients’ willingness. The willingness, named as alpha
value, is measured by the overall contribution that is a combination of clients’ monetary quotation
(monetary contribution) and their data value (data contribution). With the overall-contribution based
willingness, the performance adjustment is achieved by prioritizing the model performance of clients
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who have made higher willingness through the hyper-parameter selection criteria. By using this
overall contribution-based hyper-parameter selection criteria, clients with lower-quality data can
pursue a higher alpha value by submitting a higher bid/quotation, thereby obtaining a model that
focuses on improving performance on their data. After training, the payment schema allocates the
entire amount in the bidding pool among clients based on their data contribution. Those clients
who have provided high-quality data are rewarded with a greater amount of monetary compensation
through this payment schema. The combination of the overall contribution-based FedHPO and data
contribution-based payment schema allows for a flexible approach to satisfying clients’ varying
preferences regarding model performance gain and monetary reward. Our experiments with different
client quotation settings demonstrate the effectiveness of this proposed method in terms of preference
adjustment.

2 BACKGROUND AND RELATED WORK

Federated Learning (FL). Federated learning (Kairouz et al., 2021) is a framework designed for
facilitating the collaboration on training machine learning models within a multi-client setting and
without directly sharing clients’ local datasets. Formally speaking, assume there is a set of clients
C = {1, . . . , N} in the FL training. Each client i 2 C has its own dataset Di ⇠ (X i)ni , where
X i is the local data distribution and ni is the number of local samples. An important concern in
FL is data heterogeneity, which means that X i and X j are probably two different distributions if
i 6= j. We further denote the virtual global dataset as Dgl = {D1, . . . , DN}. Similar to the standard
procedure in traditional machine learning, the client divides its local dataset into training, validation
and testing sets, denoted as Di

T , D
i
V and Di

E . In this paper, we only focus on the properties of the
global aggregated model w in FL. By taking a model w and a dataset D as input, the loss function
is denoted as L(w, D). The classic FL training can be formalized as the following empirical risk
minimization problem:

min
w2W

X

i2C
�iL(w, Di

T ). (1)

We call the �i as training aggregation weights. The most classic setting is �i = ni
n , which is

equivalent to minimize the loss according to the virtual global dataset Dgl. However, the training
aggregation weights are subject to changes for different tasks.

Federated hyper-parameter optimization. Khodak et al. (2021) introduce and compare federated
successive halving algorithm (SHA) and FedEx. A similar method (Guo et al., 2022) is also proposed
to accomplish hyper-parameter optimization in one trial, but update the hyper-parameter selection
model with additional rounds of communication. A recent paper (Zhou et al., 2023) was proposed to
search for good hyper-parameters before the FL training. Besides, there are other FedHPO with a
different focus or different setting, including by extrapolation on learning rate (Koskela & Honkela,
2018), by Bayesian optimization (Dai et al., 2020), by representation matching (Mostafa, 2019) or by
optimizing from system perspective (Zhang et al., 2023).

In recent FedHPO studies, a common routine is to take the hyper-parameters ✓ (i.e., local learning rate
and local training iterations) of optimization algorithms (i.e., stochastic gradient descent) as additional
trainable parameters. If we denote the loss function with hyper-parameters as L ((w, ✓), D), the
federated hyper-parameter optimization problem can be formalized as:

min✓2⇥
P

i2C ↵iLhyper

�
(w, ✓), Di

V

�
s.t. w 2 argminu

P
i2C �iLtrain

�
(u, ✓), Di

T

�
. (2)

The above problem formulation contains the training of model parameters on training sets as the
condition, and places the hyper-parameter choosing step with validation set in the objective. Solving
the problem can output the best hyper-parameter based on the best model performance each hyper-
parameter can produce. Notice that Ltrain and Lhyper are not necessarily the same. While Ltrain

are usually traditional loss function (e.g., cross-entropy loss) for the need of applying efficient
optimization algorithm (e.g., stochastic gradient descent), the Lhyper can be more flexible and
customize for different purposes. For example, when both precision and recall are important, Lhyper

can be the negated F1 score. Also, notice that the training aggregation weights �i and the weights in
composing validation results ↵i can be different. Especially, we can treat the �i as part of the tunable
hyper-parameters while ↵i are designed to favor specific clients.
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If we embrace the spirit of Bayesian, the algorithm can be designed as the hyper-parameters ✓
are sample from a distribution P� parametered by �. It can be further reduced to a “single-level”
empirical risk minimization problem (Li et al.; Khodak et al., 2021)

min�2�,w2W E✓⇠P�

⇥P
i2C ↵iLhyper

�
(w, ✓), Di

V

�
+ �iLtrain

�
(w, ✓), Di

T

� ⇤
. (3)

After such transformation, the problem can be solve by updating the � and w alternatively.

Data market and valuation of federated learning. To provide a more direct incentive for the client
to participate in the FL training, many researchers have explored pricing strategies for data sharing
and federated learning (Pei, 2020; Zeng et al., 2021). Although numerical technical routines have
demonstrated their potential, the most prevalent approaches are based on Shapley value (Ghorbani &
Zou, 2019; Song et al., 2019; Wang et al., 2019; Liu et al., 2021) and auction mechanisms (Agarwal
et al., 2019; Deng et al., 2021; Zeng et al., 2020). Our solution shares partial similarities with both
approaches: our influence score is similar to Shapley value, but simplified to save the computation
and communication cost in FL; the client quotation inherits the spirit of auction in the sense that the
higher the price a client pays, the more the model favors it. But most of the existing work derives the
monetary results afterward, while the monetary quotations in our solution affect the training on the
fly together with contribution scores.

3 PERFORMANCE ADJUSTMENT VIA WEIGHTED VALIDATION LOSSES

Problem formulation. In practice, due to the heterogeneous data distribution among participants
in FL, models may exhibit varying performance on clients’ local data. Participants in FL may
have incentives to influence the model training process to exert more substantial influence over the
final model and increase model performance on their own data distribution. On the contrary, some
participants may care less about the final model performance on their local datasets but want to profit
from their contribution to the global model. Thus, a problem arises as how to design a dynamic
mechanism to satisfy the FL participants in terms of both local model performance (e.g., test accuracy
on local testing set) and potential monetary payments or rewards.

1. Local training
2. Local evaluation

  1. Update alpha value 
  2. Update HPs
  3. Aggregation 

Server

MarketFedHPO• Model parameters 
• HPs

• Updated model parameters 
• Local evaluation resultsQuotation

        
        1. 100,000 
        2.   50,000 
        3.   30,000 
                      ...

Bidding Pool

Payment Schema

...

Clients
Monetary
rewards

Performance
rewards...

Clients

...

Clients

Figure 1: Framework of Alpha-Tuning. HPs stands for hyper-parameters.

Overview of our solution: Alpha-Tuning. The primary contribution of this paper lies in exploring
an effective and fair approach to incentivize the FL training. As shown in Fig. 1, like many traditional
FL algorithms, the local model parameters are updated with classic optimization algorithms, such as
stochastic gradient descent (SGD) to ensure the model is optimized towards better solutions on the
local training set. To build a bridge between the model performance preferences and the monetary
quotation, we introduce a mechanism to quantify the influence of clients on the model training
process. The mechanism updates a set of weights denoted by ↵, and the weighted sums of the local
validation losses with ↵ guide the selection of 1) the aggregation weights when server merges the
local updates with FedAvg, and 2) the hyper-parameters in the local training. Finally, a payment
method re-distributed the total monetary quotations of all clients as payments or rewards. Eventually,
our framework achieves “what you pay is what you get” regarding the final model performance and
monetary payments and rewards. We will introduce the details of our framework, including how to
quantify the performance contribution and monetary quotation, how to compute ↵ with these two
kinds of variables, and how to use the ↵ to balance the performance gain rewards and monetary
rewards.

3.1 PERFORMANCE GAIN METRIC: MUTUAL BENEFICIAL SCORE

When designing the metric for performance gain in the federated learning setting, we want to ensure
the metric has the following properties.
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1) Compatible with different local optimization and global aggregation algorithms. Since we focus
on balancing the performance gain and monetary reward among clients, the optimal local training
and global aggregation strategy should be left for clients to decide. However, notice that the model
performance gain may differ for clients with different local training and global aggregation strategies.
A desideratum is that such a metric can reflect performance contribution with different algorithms,
but the metric score is also consistent with the algorithm chosen.

2) Efficient in terms of communication cost and computation cost for training and evaluation. In the
FL setting, the communication cost of transferring models between servers and clients is a major
factor in efficiency concerns. Meanwhile, as the client’s computation power may be limited, we also
need to consider the computation cost of evaluation. If the framework introduces a large number of
additional communication rounds and local evaluations, it will be unwelcome in practice.

3) Clear in mutual beneficial relations and appreciative for the improvement because of heterogeneous
data, not similar data. This property echoes FL’s original goal: to take advantage of heterogeneous
data to improve a model. Assume that in the data market setting, Client A, as a buyer, is interested
in paying for co-train models with Client B. A reasonable outcome is that if Client B’s local data is
the same as Client A’s, Client A should be obligated to pay. Besides, because we want to enable the
monetary flow between clients, clear mutual beneficial relations are required for reasoning.

4) Flexible enough for different axes. The clients’ performance focus may shift as the machine
learning task changes. In Click-through-rate prediction tasks, the data may be very imbalanced, and
improving the true positive may be the most desirable. However, minimizing the false negative may
be the most crucial goal if a task is detecting cancer from MRI images.

To satisfy the above properties when quantifying the performance contribution, we introduce mu-
tual beneficial score (MBS), denoted as B(t)

i!k. Intuitively, it follows the spirit of leave-one-out
(LOO) (Cook, 1977), measuring the impact of client i to the client k’s local evaluation. The higher
B(t)

i!k is, client i makes a larger contribution to improve the performance on client k’s local dataset.

Computation of MBS. Following the spirit of LOO, the FL training will actually train N +1 model.
One model is trained with all clients; each of the other N models is trained with updates from N � 1
clients. We denote w(t) as the model at the t-th FL training round with contributions from all clients.
Symmetrically, we use w(t)

C/i to denote the model at the t-th FL round, and without involving client
i from the beginning. Our mutual beneficial score describes the significance of contribution from
client i to another client j as the difference between the local validation metric score MB on client j
with the model train with client i and the one train without client i. Namely,

B(t)
i!j :=

(
MB(w

(t)
C\i, D

j
V )�MB(w(t), Dj

V ), if MB is the lower the better;
MB(w(t), Dj

V )�MB(w
(t)
C\i, D

j
V ) otherwise,

(4)

where MB can be any of the evaluation metrics, such as validation loss, accuracy, and F1 score. Since
there is such value between any pairs of clients, one can represent the influence scores as a matrix
B(t) 2 RN⇥N , and B(t)

i,j := B(t)
i!j . Notice that this matrix is not symmetric in general, because the

effect of removing client i on client j is not equivalent to the effect of removing client j on client
i. Besides, the difference B(t)

i!j can be negative, which means involving client j deteriorates the
model performance on client i’s validation set. This can happen when the data distributions of these
two clients are very different, or there is at least one training dataset is poisoned. Empirically, the
naive way to obtain the MBS score is to get

�
wC\i

 Nc

i=1
and w directly with conducting Nc +1 times

FL runs. If MB is infinitely differentiable (such as validation loss), the calculation can be further
approximated as: MB(w

(t)
C\i, D

j
V ) �MB(w(t), Dj

V ) ⇡ M
0

B(w
(t), Dj

V )(w
(t)
C\i � w(t)), where the

two terms can be obtained by one FL trial (Xue et al., 2021). The details defer to Appendix A.

3.2 MONETARY QUOTATION

Before the FL starts, each client must submit a monetary quotation. This quotation bi 2 [0,1]
reflects the profit that client i can obtain with a deployed model that focuses on providing better
performance from client i’s perspective. Because the monetary quotation has a joint effect with
the performance gain, we design to normalize it to a scale comparable to the performance gain:
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vi =
bi+✏P

j2C(bj+✏) . The ✏ is a small positive constant to validate the extreme case that all clients submit
0 as their quotation. Since there are N clients in a FL task, the equation can be written in a vector
form v = b+✏

<b+✏,1> .

3.3 ADJUSTABLE WEIGHTS FOR VALIDATION LOSSES

In our framework, both MBS and monetary quotation vi are encapsulated in the definition of the
validation loss aggregation weights, denoted as ↵i.

↵(t)
i = vi exp

⇣PN
k=1 B

(t)
i!k/⌧↵

⌘
. (5)

The variable ⌧↵ is the temperature used as a nob to scale the effect of task value and influence
score. It is straightforward that ↵(t)

i positively correlates to the monetary quotation of client i and
its contribution to other clients’ training. This design ensures that the model favors those clients
who make the most performance or monetary contribution and will benefit from the FL. Also, one
should expect that ↵(t)

i can be changed in different iterations because B(t)
i!k usually varies iteration

by iteration. The following special cases give some intuition about the effectiveness of the monetary
quotation and the performance contribution.

Equal monetary quotation scenario. If all the clients submit the same monetary quotation, then the
relative magnitudes, ↵(t)

i /↵(t)
j , only depend on the contribution of client i and j to other clients.

That is, the client that can help others more will be granted with larger weight when selecting
hyper-parameters and aggregation weights.

Data market scenario. In the scenario of data market, one or multiple data sellers, treated as clients
in our FL framework, can submit zero as its monetary quotation. That means that the data sellers give
up it most of their privilege in selecting hyper-parameters and aggregation weight. The data buyer
can dominate the process and pick the best hyper-parameters and aggregation weights completely for
improving model performance on its local dataset.

Useless user contribution scenario. If a client’s contribution to other parties is very small, i.e.,
B(t)

i!k ! 0, it will only be granted very limited effectiveness on the hyper-parameter and aggregation
weight selection without huge monetary contribution. If a client’s contribution is negative, then its
power on selecting hyper-parameters and aggregation weights will be mostly deprived, because its
contribution harms the overall goal.

3.4 MARKETFEDHPO

With the definition of the MBS and monetary quotation, the alpha value can be calculated accordingly
at the beginning of each communication round. The core idea of our framework is to use ↵ as weights
to compose the local validation scores as the training continues. These weighted validation scores
guide the model selection process so that the final output model can balance clients’ preferences for
performance gain and monetary reward. The model selection is achieved by selecting an appropriate
combination for two sets of parameters: training hyper-parameters and aggregation weights. The
hyper-parameters mainly define how the models should be trained on the client side, including the
learning rate and the epoch to local update. Symmetrically, the aggregation weights define how the
local models are aggregated. We provide a set of candidates for both hyper-parameter combinations
and aggregation weights. Then, FedHPO algorithms can be applied to select the most appropriate
hyper-parameter and aggregation weighted for given ↵.

Generally, as shown in Fig. 1, one FL round of MarketFedHPO includes the following procedures. In
the beginning, the server distributes the global model to clients. After receiving the global model, the
clients’ local computation includes local training and local evaluation. Then the updated local models
and the necessary metrics for FedHPO are uploaded to the server. When receiving the information
from clients, the server first updates the alpha score by Eqn. (5), then updates the hyper-parameters
based on the alpha score and the local evaluation results according to the adopted FedHPO methods.
Finally, the server aggregates the received local model updates.

Our proposed method is naturally adaptive to a wide range of FL methods and FedHPO methods.
As an example, we adapt successive halving algorithm (SHA) and FedEx (Khodak et al., 2021)
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as backbones of our model selection algorithm in this paper, because they can explore different
hyper-parameter combinations and update the hyper-parameter selection policy on the fly in the
training process, and its design embraces the personalization of FL naturally. These two properties
echo our needs for the efficiency of the algorithm and deliberate bias toward the client with the
highest combined score.

The details of the algorithm are shown in Alg. 1, where Nm, No, Nc denotes the number of candidate
aggregation weights, candidate local hyper-parameter configurations, and clients, separately. In the
algorithm, firstly, a total of Nm models are initialized. Although the initialized models are identical,
but each of them will be updated with an associated candidate aggregation weight. At each round,
among every model, the FedEx is performed (Line 7-15) to update the configuration distribution ✓.
Specifically, with the ↵, the hyper-parameter distribution parameter ✓ of m-th model at t-th round is
updated by FedEx-Dist-Update, which is defined as follows:

✓(m)
t = Norm

⇣
✓(m)
t�1 � exp(�⌘tr̃

(m)

t )
⌘
, (6)

where Norm denotes the normalization function, and Norm(✓) = ✓/||✓||1; � denotes the element-
wise multiplication; r̃(m)

t denotes the gradient approximation of ✓(m)
t , whose j-th element is

calcuated as: r̃(m)

t [j] =

PNc
c=1 ↵c

t�1(M
(m,t,c)
FedEx ��t)1o

m,c
t =oj

✓(m)
t�1[j]

PNc
c=1 ↵t�1,c

, 8oj 2 O. When it reaches the SHA

elimination round, the models with top 1
⌘SHA

-quantile performance are selected for the next FedEx and
SHA round (Line 20-21). Specifically, the alpha value of each client is calculated at the beginning
of each round (Line 4), and is involved in the validation metric calculation of both FedEx and SHA
(Line 14 and Line 17).

Algorithm 1 MarketFedHPO

Input: Aggregation weight candidate set: O = {a(m)}Nm
m=1; Local hyper-parameter configuration

candidate set: {oj}No
j=1, schemes for setting step-size ⌘t and baseline �t, Elimination Rate ⌘SHA

1: Server : Randomly initialize model w0 and candidate set: H0 = {w(m)
0 = w0}Nm

m=1;

2: Server : Initialize hyper-parameter distribution
n
✓(m)
0 = 1

No

oNm

m=1
; initialize

n
↵0,c =

1
Nc

o

c2C
;

3: for t = 1, . . . , do
4: Server : calculate

n
↵(c)
t�1

o

c2C
by Eqn. 5

5: for m 2
n
m : w(m)

t�1 2 Ht�1

o
do (In parallel)

6: for c 2 C do (In parallel)
7: Server : sample o(m,c)

t ⇠ P
⇣
✓(m)
t�1

⌘
and share

⇣
o(m,c)
t ,w(m)

t�1

⌘
to client c

8: Client : M(m,c,t�1)
SHA  EvalSHA(w

(m)
(t�1), D

c
V ); . Local evaluation

9: Client : M(m,t,c)
FedEx  EvalFedEx(w

(m,c)
(t) , Dc

V )

10: Client : w(m,c)
t  Train(w(m)

t�1, D
c
T , o

(m,c)
t ), . Run local training

11: Client : upload
⇣
w(m,c)

t ,M(m,t�1,c)
SHA ,M(m,t,c)

FedEx

⌘

12: end for
13: Server : ✓(m)

t  FedEx-Dist-Update(✓(m)
t�1, {M

(m,t,c)
FedEx }c2C , {↵(c)

t�1}c2C ,�t, ⌘t)

14: Server : w(m)
t  Agg

✓n
w(m,c)

t

o

c2C
,a(m)

◆

15: end for
16: if t 2 elimination round and |Ht�1| > 1 then . Perform SHA
17: Server : M(m,t�1)

SHA  
P

c2C ↵t�1,cM
(m,t�1,c)
SHA

18: Server : Ht  
n
w(m)

t : Mm,t�1
SHA < 1

⌘SHA
-quantile

⇣n
M(m,t�1)

SHA : w(m)
t�1 2 Ht�1

o⌘o

19: end if
20: end for
21: Return the remaining w 2 Ht.
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3.5 PAYMENT SCHEMA

The payment happens at the end of the FL training process. Intuitively, the more a client contributes
to another client’s performance gain on local validation, the more significant position contribution
it makes in this FL task. Thus, we design a payment rule so that each client’s compensation is
proportional to its contribution.

The total amount of monetary rewards that need to be distributed is the sum of all client’s quotations
for this task. Within this total reward, each client deserves a portion of the reward proportional to
its contribution to the other clients’ local validation loss. Considering client i has its own monetary
quotation bi for this FL task, the net payment of client i needs to pay is:

pi = bi �
exp

⇣PN
k=1 B(t)

i!k/⌧p
⌘

PN
j=1 exp

⇣PN
k=1 B(t)

j!k/⌧p
⌘
PN

j=1 bj , (7)

where ⌧p is a temperature controlling how fast the portion changes. The payment can be either positive
or negative. A positive payment means the client needs to make a monetary contribution to this FL
task, while a negative payment means the client can be compensated because of its contribution.

3.6 PROPERTIES OF MarketFedHPO

Property 1 (Communication and computation cost). MarketFedHPO requires each client to call the
local training or evaluation oracle and share the model at most Nm⌘SHA�1

⌘SHA�1 +NcT times.

If we use SHA (Khodak et al., 2021; Jamieson & Talwalkar, 2016) as the algorithm to select the
best aggregation weight, then MarketFedHPO has the following property for providing the best
aggregation weights.
Property 2 (Best aggregation weight). If 1) T is large enough, 2) MBS and Mm,t

SHA converge as t!1
and 3) the local hyper-parameter configuration set has size 1, then Algorithm 1 can ensure the higher
price a client pays, the more favorable the final model will be to the client.

This guarantee directly inherits the guarantee of SHA (Jamieson & Talwalkar, 2016). The key idea is
that the more monetary contribution a client makes, the larger influence he can exert on the M(m,t)

SHA .
More specifically, if a client c increases his monetary contribution so that ↵c > ↵0

c and M(m,c,t)
SHA >

M(m0,c,t)
SHA . If M0(m,t)

SHA  M0(m0,t)
SHA when client c has ↵0

c, it can happen that M(m,t)
SHA > M(m0,t)

SHA if client
c increase to ↵c. But not vice versa. So increasing ↵c from ↵0

c can only increase the probability that
less favorable aggregation weight a(m

0) filter before a more favorable one a(m).

Though it is difficult to give a quantitative result of convergence, we will demonstrate in the experiment
section that the proposed algorithm can converge very fast and ensure that the favorableness of the
final model towards a client is positively correlated with the client’s monetary contribution.

4 EXPERIMENT

In this section, we conduct experiments under various client bid settings to verify the performance
control of our proposed method.

Dataset. We conduct experiments on CIFAR10 dataset (Krizhevsky, 2009) to verify the performance
control of the proposed method. Specifically, to simulate the cross-silo FL scenario, we generate the
FL dataset by splitting the dataset to several clients based on the pre-defined class category. More
details regarding the FL dataset are in Appendix B.1

Hyper-parameters. The search space of the hyper-parameters is listed in Appendix B.2. The metric
to calculate the influence score is the validation loss, the metric adopted in FedEX is validation loss,
and the metric in SHA of aggregation weight is validation F1 score.

Client bids. To simulate the scenario where different willingness to performance gain and monetary
of clients in FL, i.e., some clients want to obtain more performance gain from the model, while some
clients want to receive more payment, we set different bids for clients. For example, when the client
bids are 10:0:0, it means that client 1 wants to achieve a higher performance gain, while the other
clients prefer montary rewards.
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(a) Setting: Three clients, with one client prefers performance gain and others prefer monetary rewards.

(b) Setting: Two clients,with one client prefers performance gain and others prefer monetary rewards.

Figure 2: Performance under different client bids.

4.1 RESULTS

We report the accuracy and the F1 score of each clients. Fig. 2 shows the performance of each client.
We report the mean and standard deviation with 5 times repeated runs (with different random seeds).
It can be observed that compared with the case where clients have the same bids, the client can
gain a better performance when the corresponding bid increases. Specifically, comparing column
1 and column 2 in Fig. 2(a), we observe a significant improvement in the model’s performance
on client 1’s data when their bid is increased to 10, while the bids of the other clients remain at
0. Furthermore, when client 1 increases their bid to become the highest among the three clients,
the model’s performance on their data changes from being the worst to the best compared to the
other clients. The same trend can be found in the other two clients. Similarly, in the two-clients
dataset, the same trend can be found in Fig. 2(b). These observations validate the efficacy of our
proposed method, as the rise in bids signifies the client’s willingness to acquire a model with superior
performance at the expense of increased monetary investment. More experimental results with clients
bids selected from set {10, 20, 50} are in Appendix C.2

The experiments demonstrate that our method can effectively align the client’s performance with
their bids, which reflect their preference and budget. By increasing their bids, the clients can obtain
a model that performs better on their own data, while sacrificing some performance on the other
clients’ data. This shows that our method can achieve a fair and flexible trade-off between the clients’
willingness and the model performance.

Study about Alpha Value. Fig. 3 shows the calculated alpha value. The trend of the alpha value is
consistent with the performance shown in Fig. 2. This indicates that our proposed method empowers
clients to invest more funds in achieving a higher alpha value, ultimately leading to the final model
being more beneficial to their unique data.

Study about Payment. Fig. 4 shows the averaged payments and performance results of clients under
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(a) Setting: Three clients. Each title of the subfigure denotes the client bids.

(b) Two clients. Each title of the subfigure denotes the client bids.

Figure 3: Alpha value under different client bids.
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0:10:0
0:0:10
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Figure 4: Payment and F1. Left: Two Clients; Right: Three Clients. The error bar represents the
standard deviation.

different client bids. The positive value of payment indicates that the client gives the payment to
others, and the negative value indicates that the client receives payment from others. The dots with
the same colour represent one group of clients in one bid, and the markers with the same marker
represent one client. For the purpose of clarity, in the figure, we show the payment and the F1 score
with bids around 10. From the figure, it can be observed that within one-time bid, the client with the
highest price pays the highest value to others and obtains the best performance. The other clients
whose bids are 0 indicating their high request of monetary reward, receive the payment based on their
corresponding data contribution. This observation demonstrates the ability of our proposed method
in adjusting different reward type preferences.

5 CONCLUSIONS

Federated Learning (FL) has emerged as a promising solution for collaborative model training
from isolated data sources without the direct sharing of private data. The incentive mechanism
plays a crucial role in motivating clients to participate and contribute data. Most existing incentive
mechanisms take a post-hoc form, which may not be flexible in cases where clients act as both
data contributors and model buyers with different preferences. To address this challenge, our
proposed framework Alpha-Tuning, embeds an adaptive incentive mechanism that prioritizes model
performance of clients who have made higher overall contributions, based on their monetary and
data contributions. By using an overall contribution-based hyper-parameter selection criteria and
a data contribution-based payment schema, this approach offers a flexible and efficient solution to
satisfy clients’ various preferences towards model performance gains and monetary rewards. Overall,
this paper contributes to the advancement of FL frameworks with an incentive mechanism that can
adaptively adjust different clients’ preferences.
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