KeeA*: Epistemic Exploratory A* Search via
Knowledge Calibration

Dengwei Zhao!, Shikui Tu!¥, Yanan Sun? Lei Xu'=**

School of Computer Science, Shanghai Jiao Tong University
2School of Integrated Circuits, Shanghai Jiao Tong University
3Guangdong Laboratory of Atrtificial Intelligence and Digital Economy(SZ)
{zdwccc, tushikui, yannasun, leixul}@sjtu.edu.cn

Abstract

In recent years, neural network-guided heuristic search algorithms, such as Monte-
Carlo tree search and A* search, have achieved significant advancements across
diverse practical applications. Due to the challenges stemming from high state-
space complexity, sparse training datasets, and incomplete environmental modeling,
heuristic estimations manifest uncontrolled inherent biases towards the actual ex-
pected evaluations, thereby compromising the decision-making quality of search
algorithms. Sampling exploration enhanced A* (SeeA*) was proposed to improve
the efficiency of A* search by constructing an dynamic candidate subset through
random sampling, from which the expanded node was selected. However, uniform
sampling strategy utilized by SeeA* facilitates exploration exclusively through
the injection of randomness, which completely neglects the heuristic knowledge
relevant to open nodes. Moreover, the theoretical support of cluster sampling
remains ambiguous. Despite the existence of potential biases, heuristic estimations
still encapsulate certain valuable information. In this paper, epistemic exploratory
A* search (KeeA*) is proposed to integrate heuristic knowledge for calibrating the
sampling process. We first theoretically demonstrate that SeeA* with cluster sam-
pling outperforms uniform sampling due to the distribution-aware selection with
higher variance. Building on this insight, cluster scouting and path-aware sampling
are introduced in KeeA* to further exploit heuristic knowledge to increase the sam-
pling mean and variance, respectively, thereby generating higher-quality extreme
candidates and enhancing overall decision-making performance. Finally, empir-
ical results on retrosynthetic planning and logic synthesis demonstrate superior
performance of KeeA* compared to state-of-the-art heuristic search algorithms.

1 Introduction

With the rise of deep learning, neural networks are utilized as guiding heuristic functions within
Monte Carlo Tree Search (MCTS), which has contributed crucially to the successes of AlphaGo [41]
and also sparked the renaissance of classical search algorithms such as A* search [18]]. Empowered
by the remarkable representational capabilities of neural networks, heuristic search algorithms
have demonstrated superhuman performance across a broad spectrum of real-world applications,
including games[39], de novo drug design [37], functional protein generation and optimization[48]],
retrosynthetic planning of organic molecules [4}140, 59|, logic synthesis in very large scale integration
(VLSI) design [[7], and combinatorial optimization tasks such as traveling salesman problem [6} 53]
and bin packing problem [21]. Moreover, heuristic search plays a critical role in state-of-the-art

*Correspondence authors are Shikui Tu and Lei Xu.

39th Conference on Neural Information Processing Systems (NeurIPS 2025).

large language models by facilitating the efficient traversal of expansive solution spaces and enabling
multi-step decision-making through structured reasoning [45] 58]

A* search [18] is a best-first search algorithm that selects the node with the maximum estimated
evaluation reward f at each iteration for expanding. For a given node n, f(n) is defined as the
summation of g(n), the cumulative reward from the initial node ng to n, and h(n), the estimated
reward from n to the desired goal, i.e.,

f(n) = g(n) + h(n). M

g(n) is derived from the historically traversed path and thus exactly corresponds to the true cumulative
reward ¢g*(n). In contrast, h(n) is a heuristic estimation of the unobserved future reward, which
typically diverges from the true remaining reward h*(n). A* is theoretically guaranteed to identify
an optimal solution if h(n) is admissible, i.e., h(n) > h*(n), even in the presence of estimation
bias. Nonetheless, inaccuracies in the heuristics may still substantially degrade search efficiency
through inducing suboptimal node expansions. In practical applications, constructing an accurate
heuristic function h(n) is challenging due to the high complexity of the state space and the sparsity of
available training data. Moreover, since search algorithms are inherently model-based optimization
methods, inaccuracies in state transitions and immediate reward feedback, stemming from incomplete
environment modeling, further compromise search performance.

SeeA* [60] introduces a selective sampling process to construct a dynamic subset, incorporating
exploratory behavior into A* search to escape from local optimal branches. Although theoretical
analysis demonstrates that even uniform sampling can improve the efficiency of A* search, it entirely
disregards heuristic information associated with open nodes, which, despite inherent potential biases,
still encapsulate certain valuable guidance for the search process. Furthermore, while experimental
results suggest that advanced strategies, such as cluster sampling, increase the likelihood of selecting
higher-quality nodes and thereby contributing to enhanced decision performance, the theoretical
benefits remain unclear.

In this paper, KeeA*, an epistemic exploratory A* search algorithm enhanced by knowledge calibra-
tion, is proposed to address the aforementioned limitations of SeeA*. The main contributions are
summarized from three aspect{’}

* We theoretically demonstrate that cluster sampling produces a candidate set with more
favorable extrema than uniform sampling by embedding distributional knowledge into the
cluster structure, and increasing both the expected mean and variance of sampled nodes
contributes to improved decision-making performance.

* Cluster scouting and path-aware sampling are introduced by KeeA* to enhance the quality of
the sampled candidate set by injecting epistemic knowledge into the sampling. We first show
that for any two nodes, a greater disparity in their f-values corresponds to a higher likelihood
that the node with the larger f also exhibits a greater true reward f*, despite the presence
of prediction errors. Accordingly, cluster scouting is proposed by first evaluating clusters
based on f-statistics and subsequently allocating a larger sampling budget to clusters with
higher estimated quality to improve the expected mean of candidate nodes. Furthermore,
path-aware sampling mechanism is proposed to incorporate historical path dependencies
into the intra-cluster sampling process, thereby increase the variance of selected nodes.

» Experiments are conducted on two real-world applications: retrosynthetic planning in
organic chemistry and logic synthesis in VLSI design. KeeA* demonstrates superior
performance over SeeA™ and other state-of-the-art heuristic search algorithms, achieving
higher success rates in problem-solving and superior solution quality.

2 Related work

A* search [18]] is a foundational algorithm in heuristic search and has been extensively applied
across diverse application domains, including route planning [46l 47], combinatorial games such as
Rubik’s Cube and sliding puzzles [[1], motion planning in robotics [[14], and so on. Monte Carlo Tree
Search (MCTS) [3l[10] integrates stochastic node sampling with a tree-based search framework to
efficiently explore large search spaces. Upper Confidence bounds applied to Trees with predictor

’The source code is publicly available at https://github. com/CMACH508/KeeA.

https://github.com/CMACH508/KeeA

implemented via deep neural networks (PUCT) has been adopted in AlphaGo [41]] and its successors
[431142,139], achieving superhuman performance and also sparking the renaissance of classical search
algorithms. However, constructing accurate heuristic functions for complex real-world applications
remains a significant challenge due to the combinatorial explosion of the search space and the limited
availability of high-quality training data. For example, heuristic estimations in retrosynthetic planning
exhibit substantial overfitting [59], thereby impairing search effectiveness by misdirecting expansion
priorities. Furthermore, in applications such as functional protein design [22| [56] and de novo
drug design [36], reward functions employed for learning are typically obtained through in silico
simulations, which intrinsically diverge from real-world ground truth. The inherent complexities of
environment modeling further hinder the effective development of robust heuristic functions.

Exploration has been incorporated into A* search to escape local optima induced by biased heuristic
functions. e-greedy node selection has been shown to improve the coverage of search algorithms,
even when multiple enhancements have already been integrated into LAMA [44]. Type-WA* [9]
augments Weighted A* with type-based exploration [51], randomly selecting one of 7" node types
within the focal list [34]] for expansion. LevinTS [33]] incorporates node depth as a penalty term to
encourage exploring alternative branches. Gumbel MuZero [12]] employs Gumbel-Top-k sampling
[25]] by combining Gumbel noise gumbel(a) with policy logits to generate a candidate action set for
subsequent selection. MENST [50] combines MCTS and entropy regularization for the first time to
explicitly promote exploration. By employing relative entropy and Tsallis entropy as regularization
terms, RENTS and TENTS [11]] significantly enhance the convergence efficiency of MCTS. SeeA*
[59,160] introduces exploration into A* search by stochastically sampling a subset of open nodes and
selecting the expansion node from this candidate set.

Retrosynthetic planning aims to identify a feasible synthetic route by recursively decomposing
a target molecule into simpler and commercially available precursors. To efficiently explore the
vast combinatorial space of chemical reactions, search algorithms such as MCTS [19, 40, 57], A*
search [4] [16} 23] 27, 152] |60] and depth-first proof-number search [24], in conjunction with a single-
step predictor, are extensively utilized to address this challenging problem. Logic synthesis (LS)
is a critical step in very large scale integration (VLSI) design, transforming high-level abstract
representations of logic circuits into gate-level implementations by optimizing area, delay, and power
consumption. Recent developments utilizing reinforcement learning [8} 20,28 [35} 161} 126] and search
algorithms [7} 132]] have demonstrated substantial improvements in both the efficiency and scalability
of solving LS tasks.

3 Preliminaries on A* search

In A* search, nodes in the search tree are divided into an OPEN set O, which consists of unexpanded
leaf nodes, and a CLOSED set C, containing nodes that have already been explored. At each iteration,
the node n € O with the maximum path reward f(n) is selected, i.e., n = argmax, co f(n'). If n
corresponds to the target goal, the search process terminates successfully. Otherwise, n is moved
to the CLOSED set C, and its successors CH (n) are added to the OPEN set O for subsequent
exploration, i.e., C <— CU{n}, O <~ O\ {n} UCH (n). The greedy best-first expansion strategy
of A* search makes it highly susceptible to getting trapped in local optima due to the biases in the
estimated f-values. SeeA* introduces exploratory capabilities to the A* search through the dynamic
construction of a candidate set D, achieving superior efficiency even with uniform sampling when
the estimation bias of f is substantial. In SeeA*, node selection involves first constructing D from
the OPEN set O using a sampling strategy, and then selecting the node n with the highest f-value
from D for expansion. The expansion probability of the optimal node n* in O by SeeA* is given by

P(n* is expanded) = P(n* € D) x P(n* = arg max f(n)n* € D).)

Advanced sampling strategies not only increase the probability of including n* in D, but also enhance
the likelihood of its selection from D for expansion due to the reduced candidate set size, thus
enhancing the efficiency of the search process.

Uniform sampling employed in SeeA* is a non-differentiated sampling strategy that does not incor-
porate any node-specific knowledge, treating all nodes equally without prioritizing more promising
candidates. Cluster sampling first partitions the nodes in O into multiple clusters, from which
an equal number of nodes are uniformly sampled from each cluster to construct the candidate set
D. Experimental results demonstrate that cluster sampling outperforms uniform sampling, yet the

underlying mechanism remains unexplored. This paper first theoretically establishes that cluster
structure introduces node-specific knowledge to calibrate the epistemic process, thereby enhancing
the quality of the constructed D. Then, KeeA* is proposed to leverage domain-independent node
knowledge for constructing a more efficient search algorithm.

4 The superiority of cluster sampling

For the cluster sampling strategy in SeeA*, N nodes in the OPEN set O are partitioned into K
disjoint clusters, each containing N; open nodes:

{01,09,-+- 0| UL, O; = Oand Vi # j, 0, N O; = 0}. 3)

The probability of a node belonging to the i-th cluster is given by p§ = N;/N. The mean and
variance of the true reward f* for nodes in); are assumed to be y; and o, respectively. For uniform
sampling, V¢ nodes are sampled from O to construct the candidate set D,,, while in cluster sampling,
N{ nodes are sampled from each cluster O; to constitute D, together. The probability of nodes in D
being sampled from O; is given by p{ = NF/N¢, and M denotes the extreme value of f* among the
N€ candidate nodes:

M, = Hé%x f*(n)7a€ {U,,C}. “4)

It is worth noting that a node with a larger f* is closer to the optimal solution, whose path reward is
[.- Given the preceding assumptions, the following theorem is established.

max-*

Theorem 4.1 The candidate set constructed by cluster sampling is closer to the optimal solution
compared to uniform sampling, exhibiting a larger expected extreme value of f*:

Ep. [MC] > Ep, [Mu] Q)
To prove Theorem[d.1] two lemmas are provided as follows.

Lemma 4.2 Suppose there are K component distributions, each with a probability weight p;, mean
i, and variance 0’,?. Then, the mean and variance of the overall distribution are:

2
H= Zpil% o = ZPN? + Zpiﬂf - <Zpim> . (6)

Lemma 4.3 Suppose a population consists of N samples with mean i and variance o*. A subset D
with n samples is drawn without replacement. Let X and S? denote the mean and variance of D,
respectively. Then:

N —no?

21 2
N1 ElS=0 ™)

E[X]=p, Var[X]=

Leveraging Lemmaf.2]and[4.3] we demonstrate that D, constructed through cluster sampling with
p; = p§, has the same expected mean but a larger expected variance compared to D,,, which is
obtained via uniform sampling:

Ep,(fic) = Ep, (), Ep,(62) > Ep,(52), (8)

where ji. and ji,, denote the means of real path reward f* for nodes in D, and D,,, respectively, and
52 and G2 are the corresponding variance. The detailed proof can be found in Appendix|A| According
to the Gumbel extreme value theorem, the expected value of M for n samples with a mean of ;s and a

variance of o2 is
27+ In (n*/(47Inn))

2v21Inn ’

where is the Euler—Mascheroni constant. Therefore, combining with Equation[8] we obtain that
Ep,[M,] is larger than Ep [M,,] because cluster sampling entails a higher expected variance, and
Theorem@]is proved. Let Q denote the set of near-optimal nodes, defined as,

Q={n[f*(n) > (1 - &) fias} a € {u,c}, (10)

EM]=p+o0 x 9

where ¢ < 1 is a hyperparameter that controls the gap from optimality. Based on Theorem 4.1}
the likelihood that D, contains at least one near-optimal node exceeds that of D,, i.e., P(In €
Qsuch thatn € D,) > P(3n € Q such that n € D,,). According to Equation 2] cluster sampling
increases the probability of including near-optimal nodes, thereby promoting broader exploration
of high-quality regions in the search space and leading to improved solution quality. Under the
framework of SeeA*, drawing m samples from N nodes with uniform sampling yields a probability
of m/N for including the optimal node. Under cluster sampling, m/K nodes are sampled from
each of the K clusters uniformly. If the optimal node resides in a large cluster with more than N/K
nodes, the probability of selecting the optimal node under cluster sampling will be lower than m /N
in uniform sampling, leading to reduced search efficiency. Theorem [4.1] offers a complementary
perspective by first showing that cluster sampling increases the variance of collected candidates.
Leveraging the extreme value theorem, a higher expected maximum is achieved by cluster sampling,
providing a theoretical justification for the advantage of cluster sampling in SeeA*.

5 KeeA* search algorithm

In SeeA* search [60], cluster sampling leverages the underlying node distribution as prior knowledge
to calibrate the epistemic process, thereby improving search efficiency over uniform sampling.
However, the strategy of equally allocating candidates across clusters and performing uniform
sampling within each cluster remains suboptimal. What’s more, the optimal sampling policy is
inherently dependent on the distribution of the true path reward f* of nodes within each cluster,
which is typically inaccessible due to estimation bias. A detailed analysis is provided in Appendix[C]
To address these limitations, KeeA* is proposed to incorporate distributional knowledge for more
effective guidance of the epistemic process. Specifically, cluster scouting and path-aware sampling
are introduced to respectively improve the mean and variance of the sampled nodes, thereby enabling
the construction of higher-quality candidate sets.

-
-
-

- @ Cluster
/ scouting

@ Knowledge-

guided sampling

Figure 1: The sampling procedure of cluster scouting sampling.

Cluster 1 Cluster 2 Cluster 3 Cluster 4 Cluster §

5.1 Cluster scouting

Despite the inherent bias of f, it still encapsulates certain valuable information. Let A'(-, -) denote a
Gaussian distribution. Theorem [5.1]is established, and a detailed proof is provided in Appendix

Theorem 5.1 Let the true path reward f* be independently and identically sampled from N (p, O’Z),
and assume that the prediction errors of f follow a Gaussian distribution, i.e., f(n) ~ N (f*(n), O'g).
For any two nodes ny and ns, the likelihood that f*(n1) > f*(ng) is given by:

{ oy (f(n) — f(nz))z}

* * = —1 X -
P(f*(n1) > f*(n2)) =1— _ exp 402(02 + 02) cos? &

2

where 0 < & < /2 is a constant, and the probability P(f*(n1) > f*(nz)) increases monotonically
with the magnitude of the discrepancy between f(n1) and f(ng).

(11)

In fact, only the derivation of Equation [IT]explicitly relies on the Gaussian noise assumption. For
general noise distributions, the probability P(f*(n1) > f*(n2)) remains a monotonic function of
the difference f; — fo. More details are provided in Appendix

According to Theorem [5.1} nodes with larger f-values exhibit a higher likelihood of being closer
to the optimal solution relative to others. Motivated by this insight, cluster scouting is proposed by
initially refining cluster identification through scout sampling, after which the sampling proportion is
strategically increased within near-optimal clusters to enable the construction of a superior D. As
depicted in Figure[I] the sampling procedure consists of two stages:

* An equal number of nodes, denoted as {D;, Ds, - - - , Dx } are uniformly sampled from each
cluster O; to perform scouting and evaluate the quality of each cluster according to:
E[f; Dy
0)) = s, 12
score(O;) SDIF; Dl + # (12)

where E[-] and SD[-] denote the mean and standard variance of the estimated f-values of the
nodes in D;, respectively. & is introduced to avoid a zero variance. E[-] is utilized to assess
the quality of cluster, while SD[-] mitigate the impact of within-cluster variance.

* Cluster sampling is performed by selecting nodes from K clusters, with the number of nodes
selected proportional to the following probability:

s exp{score(O;)}
p; = a X
2 j=1,... i exp{score(0;)}

where o € [0, 1] is a hyperparameter balancing exploitation of score(Q;) and uniform
exploration across clusters.

Jr(lfoz)xi

e (13)

As higher f-values indicate a greater likelihood of superior f*, allocating larger sampling probabilities
p; to such clusters increases the expected mean of [i. compared to the uniform allocation strategy
used in SeeA*, consequently yielding a higher expected extreme value M, as shown in Equation 9]

5.2 Path-aware sampling

Beyond optimizing inter-cluster sampling distributions, conducting more effective intra-cluster
sampling is also instrumental. While cluster scouting improves the expected mean of the sampled D,
path-aware sampling is proposed to leverage path information to enhance intra-cluster exploration,
resulting in greater sampling variance than uniform strategies.

d=0
~ /\ A__T cLosen
d=1 /\ /\ ;_____j Node
d=2
/\ | /\ ‘ OPEN
Node
o A
d=4 i o =7 Candidate
""" /\ /\ /\ /\ bd Node
a= i s i

Figure 2: Comparison between uniform sampling and path-aware sampling within a cluster O,.

As the number of nodes grows exponentially with depth, uniform sampling disproportionately selects
nodes from deeper branches as candidates, reducing exploration of shallower regions. When heuristics
learned by neural networks violate the admissible condition due to their black-box nature, the search
process is more susceptible to being trapped in this local optima. As illustrated in Figure 2] node
depth d(n) is employed as path information to bias sampling toward shallower nodes, mitigating
the concentration of samples within limited deeper branches. Enhanced exploration facilitates
the generation of more diverse candidate set D, thereby increasing the sampling variance o7 and

consequently improving the expected extreme value M., according to Equation [0} The sampling
probability of node n in cluster O; is calculated by
expd(n 1
piln) = B x o2y gy
> expd(ny) i
where 3 € [0, 1] is a hyperparameter that controls the trade-off between depth-aware exploration and
uniform sampling.

(14)

In summary, KeeA* improves the mean and variance of candidate nodes through cluster scouting and
path-aware sampling, respectively, which leads to higher extreme values of the real path reward f*
and yields solutions that are closer to the optimum. Algorithmic details are provided in Algorithm T]

Algorithm 1: KeeA* search algorithm

Input: root node ng, the number of cluster K, candidate size V¢, and heuristic function f.
Initialize CLOSED set C «+), and OPEN set O UfilOi with K empty clusters O; < (), and
cluster centers {w; |i=1,--- ,K}
Assign root to the nearest cluster i = argmin;_p ... x ||w(ng) — w;||*
Update cluster: O; « O; U {ng}, w; < w; +n x (w(ng) — w;)
repeat
Compute cluster-level sampling distribution {p$, p3, - - , p% } via Equation
Sample p; x N nodes from each cluster O; using Equation [T4]to form candidate set D.
Node selection: n < arg max,cp f(n).
if n is the goal node then
return n
else
Move n from O to C: C <~ CU{n}, O «+ O\ {n}.
for each child node n, € CH(n) do
Assign n, to the nearest cluster: ¢ = arg min;—1 ... f |[w(n.) — w;||?
Update cluster: O; « O; U {n.}, w; < w; + 1 x (w(n.) — w;).
end for
end if
until O is empty
return False

6 Experiments

To evaluate the effectiveness of KeeA*, we consider two real-world applications: retrosynthetic
planning in organic chemistry and logic synthesis in VLSI design. In both domains, heuristic
functions are susceptible to significant overfitting due to the large state-space complexity and limited
high-quality training data, posing significant challenges for search algorithms [59}60]. Additional
application-specific details are provided in Appendix [E|and [} All experiments are conducted on
NVIDIA Tesla V100 GPUs and an Intel(R) Xeon(R) Gold 6238R CPU. Guiding heuristic models are
consistent with SeeA* for fair comparison.

6.1 Results on retrosynthetic planning

Retrosynthetic planning aims to iteratively decompose a target molecule through predicted chemical
reactions until all intermediate molecules are identified as commercially available building blocks. A
single-step retrosynthetic prediction model is employed as the policy to generate candidate reactions
for synthesizing input molecules, and only top 50 reaction templates ranked by predicted probability
are maintained to form the legal action space. A heuristic value function is employed to estimate the
synthesis cost. Each molecule is represented as a 2048-dimensional Morgan fingerprint vector [38]],
which serves as the input to the heuristic functions, and the last hidden state in the value network
is employed as the embedding feature w(n) for clustering. Both the single-step model and the cost
estimator are adopted from Retro*+ [23]], and are consistently used to guide the baseline algorithms.

Experiments are conducted on the widely used USPTO benchmark, which comprises 190 target
molecules [4], and additional 4719 molecules collected from logP [3]], logS [54]], Toxicity LD50

Table 1: Success rate on seven test dataset for retrosynthetic planning problem (%).

Algorithm USPTO logP logS Toxicity LDS0 Ames BBBP ClinTox Mean
Retro* 86.84 53.96 67.08 55.39 57.40 47.87 38.69 54.66
Retro*+ 91.05 61.14 69.29 59.98 63.51 5246 43.15 59.93
A* 88.42 58.71 68.55 59.17 62.98 51.80 42.04 58.73
WA* 84.21 58.43 68.30 59.52 62.89 52.30 4459 58.87
MCTS 89.47 58.15 67.08 58.26 63.42 5295 46.34 59.20
LevinTS 96.84 61.14 70.76 60.32 64.84 5492 43.63 61.01
PHS 87.37 55.45 65.60 57.00 59.96 50.98 39.01 56.16
SeeA*(Uniform) 96.84 63.37 71.00 62.73 67.32 56.39 45.70 62.97
SeeA*(Cluster) 98.42 64.12 72.73 63.53 66.08 57.54 4777 63.56
KeeA* w/o CS 98.94 6393 7248 63.76 66.52 57.05 4825 63.74
KeeA* 98.94 64.21 7297 63.30 66.60 57.21 48.25 63.76

[49], Ames [[17], BBBP [29]], and ClinTox [[15]] dataset. Molecules from the eMolecules databaseE]
are used as the set of commercially available building blocks. As the majority of computational
overhead arises from invoking the single-step retrosynthetic prediction model, all search algorithms
are constrained to a maximum of 500 calls or 10 minutes of wall-clock time, following prior works
[4}123]]. To avoid redundant computation, predictions from the single-step model are cached and
reused when the same molecule is revisited [[30]. The candidate size is fixed at N = 50, and the
number of clusters is K = 5, which are consistent with SeeA*. The hyperparameters « and (3 in
KeeA™ are set as 0.5 and 0.8, respectively.

Synthesis success rate and average solution length are employed as valuation metrics for model
comparison. The success rate is defined as the percentage of target molecules for which a complete
and valid synthesis route is successfully identified. To penalize failures, molecules for which no
valid route is found are assigned a fixed path length of 32. Experiment results are summarized in
Table 1] and Table KeeA* achieves a success rate of 63.76% across seven benchmark datasets,
slightly outperforming SeeA*, which attains 63.56%. A McNemar test is conducted to compare the
success rates of KeeA* and SeeA* on paired binary outcomes. The chi-square statistic is 3.615 with
a p-value of 0.0286(< 0.05), indicating that KeeA* achieves a statistically significant improvement
in success rate over SeeA*. See Appendix [G|for additional details. The average path length generated
by KeeA* is 14.14, shorter than SeeA*’s 14.31. When considering only successfully synthesized
molecules, KeeA™* achieves an average path length of 3.95, significantly shorter than SeeA*’s 4.17.
KeeA* highlighting its overall superiority by not only increasing the likelihood of finding a valid
synthesis route but also identifying shorter and more efficient reaction pathways.

In terms of computational cost, SeeA* with cluster sampling requires an average runtime of 37.98
seconds per molecule on the USPTO benchmark, while KeeA* costs a comparable 37.40 seconds,
demonstrating that KeeA* improves synthesis quality without introducing significant computational
overhead. Ablation studies reveal that removing cluster scouting module degrades both success rate
and solution quality, with the average solution length of successful cases increasing to 4.01, though
still surpassing SeeA*. Both cluster scouting and path-aware sampling contribute to the overall
effectiveness of synthesis planning.

6.2 Results on logic synthesis

For the logic synthesis task, an And-Inverter Graph (AIG) is optimized to minimize the area-delay
product (ADP) via a sequence of functionality-preserving transformations. 7 legal transformations are
allowed, and the action sequence is constrained to be 10 steps. Due to diverse functionalities in VLSI
design, the logic synthesis problem exhibits substantial combinatorial complexity. The widely used
resyn2 transformation script is adopted as the baseline [[7,[8,[32], and the solution S is evaluated by
1—ADP(S)/ADP(resyn2), where ADP is approximately estimated using the ABC synthesis tool
[2]. 12 MCNC benchmark circuits {Cy ~ C12} [53] are used for evaluation. The guiding heuristics

*http://downloads.emolecules.com/free/2023-12-01/
*Values marked in red and blue correspond to the best and second-best performance, respectively. CS is short
for cluster scouting.

http://downloads.emolecules.com/free/2023-12-01/

Table 2: Solution length on seven dataset for retrosynthetic planning problem.

Algorithm USPTO logP logS ToxicityLD5S0 Ames BBBP ClinTox Mean
Retro* 9.71 16.67 12.63 16.24 1591 18.29 21.11 16.58
Retro*+ 8.74 15.01 12.26 15.23 14.67 17.37 20.06 15.44
A* 9.27 15.64 12.44 15.49 14.94 17.56 20.26 15.78
WA* 10.16 15.62 12.46 15.39 14.90 17.36 19.43 15.66
MCTS 8.23 16.27 13.00 15.99 15.05 17.35 19.15 1591
LevinTS 7.45 15.55 1248 15.74 15.02 17.25 20.24 15.74
PHS 10.19 16.56 13.29 16.11 15.72 17.79 21.09 16.51
e-Greedy 43.78 23.21 12.76 16.70 16.32 18.43 23.82 19.88
SeeA*(Uniform) 7.34 14.64 11.81 14.76 14.00 16.62 1941 14.85
SeeA*(Cluster) 6.48 14.05 11.20 14.21 13.79 15.85 18.65 14.31
KeeA* w/o CS 6.15 13.95 11.10 14.03 13.70 15.66 1845 14.16
KeeA* 5.89 13.93 10.96 14.19 13.55 15.82 1841 14.14

remain consistent across the different search algorithms, and the final hidden embedding vector is
employed for clustering. The candidate size is fixed at N¢ = 10, with the number of clusters K = 5.
Five nodes are sampled from each cluster for scouting. Hyperparameters « and [are set to 0.5 and
0.8, respectively.

Experimental results are summarized in Table KeeA* achieves a 25.2% ADP improvement,
surpassing SeeA* with cluster sampling, which attains a 23.5% improvement. SeeA* (Cluster)
outperforms KeeA* on only 1 of the 12 benchmark circuits, highlighting the strong generalization
of KeeA™ across diverse design instances. With only the path-aware sampling module enabled,
KeeA™ still achieves a 24.0% performance improvement, exceeding SeeA* and highlighting the
complementary contributions of both proposed components.

Table 3: The ADP reduction (%) rates against resyn2 on MCNC testing datasets.

Algorithm c1r Cc2 C3 Cc4 C5 C6 CT (C8 (C9 (10 Cl1 C(C12 Mean
DRILLS 189 6.7 80 130 384 191 54 180 143 186 6.6 11.0 148
Online-RL 206 66 81 135 394 210 5.0 179 162 202 47 114 154
SA+Pred. 176 170 156 130 46.5 182 85 236 199 176 10.0 203 19.0
MCTS 171 159 131 130 469 149 6.5 232 17.7 205 13.1 19.7 185
ABC-RL 199 196 16.8 15.0 469 19.1 121 243 21.3 21.1 136 21.6 20.9
A* search 183 16.6 19.7 15.7 436 152 133 255 194 208 7.5 188 19.5
PV-MCTS 173 200 279 201 273 20.7 135 247 143 141 147 20.0 195
PHS 214 171 117 84 479 52 &7 102 205 120 73 208 159

SeeA*(Uniform) 21.9 18.7 219 165 372 13.8 123 255 21.5 241 215 240 21.6
SeeA*(Cluster) 23.2 20.8 227 16.2 459 226 134 248 224 242 203 251 235

KeeA* w/o CS 21.0 21.6 245 155 508 265 121 248 224 272 175 23.6 24.0
KeeA* 23.7 246 283 162 53.6 242 147 26.0 224 245 169 267 252

6.3 The impact of the hyperparameters

The hyperparameter « in cluster scouting controls the balance between exploration and exploitation
of the heuristic function f in the allocation of candidate nodes across clusters. When o = 1.0, the
number of candidates sampled from each cluster is fully determined by the evaluations of scouted
nodes, which may lead to suboptimal performance due to heuristic bias. Conversely, setting a = 0
results in uniform allocation across clusters, failing to exploit epistemic knowledge of cluster quality
and thereby reducing search efficiency. Similarly, 5 controls the trade-off between exploration
and exploitation during intro-cluster sampling. When 3 = 1.0, the sampling process is dominated
by biased path information, misguiding the search toward a breadth-first strategy. Conversely,
£ = 0 results in uniform sampling, disregarding potentially informative knowledge. As presented
in Appendix [H] excessively large or small values of « and 3 lead to performance degradation,
emphasizing the necessity of tuning the hyperparameters to ensure performance robustness.

K represents the number of clusters, which is a critical parameter of KeeA*. An excessively small
K induces under-fitting, leading to a model of limited flexibility, while an overly large K risks

overfitting to collected states. Both extremes impair the efficacy of decision-making during search,
highlighting the importance of appropriate cluster number K selection to optimize the efficiency of
KeeA*. Details are provided in Appendix [[]

To quantify KeeA*’s variability induced by randomness, we executed three runs for each of ten
random seeds on the USPTO test set. A T-test with the significance level is used to compute the
error intervals. SeeA* not only exhibits a larger variance across multiple runs but also shows greater
performance fluctuations under different random seeds, highlighting the superiority of KeeA* over
SeeA* (Cluster) with respect to stability. More details are provided in Appendix []]

7 Conclusion

In this paper, we first theoretically demonstrate the superiority of cluster sampling over uniform
sampling within the SeeA* framework and reveal that the optimal sampling strategy is intrinsically
determined by the underlying distribution of the real path reward f*. Cluster scouting and path-
aware sampling is proposed by KeeA* to exploit node distributional knowledge for epistemic
calibration, enhancing the mean and variance of sampled candidate nodes, respectively. The likelihood
of incorporating nodes closer to the optimal solution into the candidate set is increased, thereby
enhancing the decision-making efficiency of search algorithms. Due to the dynamic construction
of candidate set, KeeA* exhibits slight randomness. Nevertheless, extensive empirical experiments
across thousands of test instances and statistical hypothesis testing results validate the effectiveness
and robustness of KeeA*.

Beyond improving the predictive accuracy of the heuristic function, increasing the likelihood of
sampling the optimal solution within a smaller D can also significantly improve search efficiency.
Besides raising the mean reward of candidate nodes, enhancing variance improves the likelihood of
sampling near-optimal nodes, providing a promising direction for future research. This work is still
in the nascent stages and has not yet been applied to real-world scenarios directly impacting everyday
human activities. Substantial ethical risks or detrimental social impacts are not anticipated.

8 Acknowledgement

This work was supported by the National Natural Science Foundation of China under Grant No.
62172273, 62174110, by the Science and Technology Commission of Shanghai Municipality under
Grant 24510714300, and by the Shanghai Municipal Science and Technology Major Project under
Grant No. 2021SHZDZX0102, Natural Science Foundation of Shanghai (23ZR1433200).

References

[1] Forest Agostinelli, Stephen McAleer, Alexander Shmakov, and Pierre Baldi. Solving the rubik’s
cube with deep reinforcement learning and search. Nature Machine Intelligence, 1(8):356-363,
2019.

[2] Robert Brayton and Alan Mishchenko. Abc: An academic industrial-strength verification tool.
In Computer Aided Verification: 22nd International Conference, CAV 2010, Edinburgh, UK,
July 15-19, 2010. Proceedings 22, pages 24—40. Springer, 2010.

[3] Hyeong Soo Chang, Michael C Fu, Jiagiao Hu, and Steven I Marcus. An adaptive sampling
algorithm for solving markov decision processes. Operations Research, 53(1):126—139, 2005.

[4] Binghong Chen, Chengtao Li, Hanjun Dai, and Le Song. Retro*: learning retrosynthetic
planning with neural guided A* search. In International Conference on Machine Learning,
pages 1608-1616. PMLR, 2020.

[5] Tiejun Cheng, Yuan Zhao, Xun Li, Fu Lin, Yong Xu, Xinglong Zhang, Yan Li, Renxiao Wang,
and Luhua Lai. Computation of octanol- water partition coefficients by guiding an additive
model with knowledge. Journal of chemical information and modeling, 47(6):2140-2148, 2007.

[6] Jinho Choo, Yeong-Dae Kwon, Jihoon Kim, Jeongwoo Jae, André Hottung, Kevin Tierney,
and Youngjune Gwon. Simulation-guided beam search for neural combinatorial optimization.
Advances in Neural Information Processing Systems, 35:8760-8772, 2022.

10

[7] Animesh Basak Chowdhury, Marco Romanelli, Benjamin Tan, Ramesh Karri, and Siddharth
Garg. Retrieval-guided reinforcement learning for boolean circuit minimization. In The Twelfth
International Conference on Learning Representations, 2023.

[8] Animesh Basak Chowdhury, Benjamin Tan, Ryan Carey, Tushit Jain, Ramesh Karri, and
Siddharth Garg. Bulls-eye: Active few-shot learning guided logic synthesis. IEEE Transactions
on Computer-Aided Design of Integrated Circuits and Systems, 2022.

[9] Eldan Cohen, Richard Anthony Valenzano, and Sheila A Mcllraith. Type-wa*: Using explo-
ration in bounded suboptimal planning. In IJCAI, pages 4047-4053, 2021.

[10] Rémi Coulom. Efficient selectivity and backup operators in monte-carlo tree search. In
International conference on computers and games, pages 72—83. Springer, 2006.

[11] Tuan Q Dam, Carlo D’Eramo, Jan Peters, and Joni Pajarinen. Convex regularization in monte-
carlo tree search. In International Conference on Machine Learning, pages 2365-2375. PMLR,
2021.

[12] Ivo Danihelka, Arthur Guez, Julian Schrittwieser, and David Silver. Policy improvement by
planning with gumbel. In International Conference on Learning Representations, 2022.

[13] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. BERT: pre-training of
deep bidirectional transformers for language understanding. CoRR, abs/1810.04805, 2018.

[14] FrantiSek Duchorti, Andrej Babinec, Martin Kajan, Peter Beilo, Martin Florek, Tom4s Fico, and
Ladislav JuriSica. Path planning with modified a star algorithm for a mobile robot. Procedia
engineering, 96:59-69, 2014.

[15] Kaitlyn M Gayvert, Neel S Madhukar, and Olivier Elemento. A data-driven approach to
predicting successes and failures of clinical trials. Cell chemical biology, 23(10):1294-1301,
2016.

[16] Peng Han, Peilin Zhao, Chan Lu, Junzhou Huang, Jiaxiang Wu, Shuo Shang, Bin Yao, and Xian-
gliang Zhang. Gnn-retro: Retrosynthetic planning with graph neural networks. In Proceedings
of the AAAI conference on artificial intelligence, volume 36, pages 4014—4021, 2022.

[17] Katja Hansen, Sebastian Mika, Timon Schroeter, Andreas Sutter, Antonius Ter Laak, Thomas
Steger-Hartmann, Nikolaus Heinrich, and Klaus-Robert Muller. Benchmark data set for in silico
prediction of ames mutagenicity. Journal of chemical information and modeling, 49(9):2077-
2081, 2009.

[18] Peter E Hart, Nils J Nilsson, and Bertram Raphael. A formal basis for the heuristic determination
of minimum cost paths. IEEE transactions on Systems Science and Cybernetics, 4(2):100-107,
1968.

[19] Siqi Hong, Hankz Hankui Zhuo, Kebing Jin, Guang Shao, and Zhanwen Zhou. Retrosynthetic
planning with experience-guided monte carlo tree search. Communications Chemistry, 6(1):120,
2023.

[20] Abdelrahman Hosny, Soheil Hashemi, Mohamed Shalan, and Sherief Reda. Drills: Deep rein-
forcement learning for logic synthesis. In 2020 25th Asia and South Pacific Design Automation
Conference (ASP-DAC), pages 581-586. IEEE, 2020.

[21] Zhiming Hu, James Tu, and Baochun Li. Spear: Optimized dependency-aware task scheduling
with deep reinforcement learning. In 2019 IEEE 39th international conference on distributed
computing systems (ICDCS), pages 2037-2046. IEEE, 2019.

[22] Hyeonah Kim, Minsu Kim, Taeyoung Yun, Sanghyeok Choi, Emmanuel Bengio, Alex
Herndndez-Garcia, and Jinkyoo Park. Improved off-policy reinforcement learning in biological
sequence design. In NeurIPS Workshop on Al for New Drug Modalities, 2024.

[23] Junsu Kim, Sungsoo Ahn, Hankook Lee, and Jinwoo Shin. Self-improved retrosynthetic
planning. In International Conference on Machine Learning, pages 5486-5495. PMLR, 2021.

11

[24] Akihiro Kishimoto, Beat Buesser, Bei Chen, and Adi Botea. Depth-first proof-number search
with heuristic edge cost and application to chemical synthesis planning. Advances in Neural
Information Processing Systems, 32, 2019.

[25] Wouter Kool, Herke Van Hoof, and Max Welling. Stochastic beams and where to find them: The
gumbel-top-k trick for sampling sequences without replacement. In International Conference
on Machine Learning, pages 3499-3508. PMLR, 2019.

[26] Xihan Li, Xing Li, Lei Chen, Xing Zhang, Mingxuan Yuan, and Jun Wang. Circuit transformer:
A transformer that preserves logical equivalence. In The Thirteenth International Conference
on Learning Representations, 2025.

[27] Guoqing Liu, Di Xue, Shufang Xie, Yingce Xia, Austin Tripp, Krzysztof Maziarz, Marwin
Segler, Tao Qin, Zongzhang Zhang, and Tie-Yan Liu. Retrosynthetic planning with dual value
networks. In International Conference on Machine Learning, pages 22266-22276. PMLR,
2023.

[28] Chenyang Lv, Ziling Wei, Weikang Qian, Junjie Ye, Chang Feng, and Zhezhi He. Gpt-ls:
Generative pre-trained transformer with offline reinforcement learning for logic synthesis. In
2023 IEEE 41st International Conference on Computer Design (ICCD), pages 320-326. IEEE,
2023.

[29] Ines Filipa Martins, Ana L Teixeira, Luis Pinheiro, and Andre O Falcao. A bayesian approach
to in silico blood-brain barrier penetration modeling. Journal of chemical information and
modeling, 52(6):1686-1697, 2012.

[30] Krzysztof Maziarz, Austin Tripp, Guoqing Liu, Megan Stanley, Shufang Xie, Piotr Gainski,
Philipp Seidl, and Marwin Segler. Re-evaluating retrosynthesis algorithms with syntheseus.
arXiv preprint arXiv:2310.19796, 2023.

[31] Quinn McNemar. Note on the sampling error of the difference between correlated proportions
or percentages. Psychometrika, 12(2):153-157, 1947.

[32] Walter Lau Neto, Yingjie Li, Pierre-Emmanuel Gaillardon, and Cunxi Yu. Flowtune: End-to-
end automatic logic optimization exploration via domain-specific multi-armed bandit. IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems, 2022.

[33] Laurent Orseau, Levi Lelis, Tor Lattimore, and Théophane Weber. Single-agent policy tree
search with guarantees. Advances in Neural Information Processing Systems, 31, 2018.

[34] Judea Pearl and Jin H Kim. Studies in semi-admissible heuristics. IEEE transactions on pattern
analysis and machine intelligence, (4):392-399, 1982.

[35] Yasasvi V Peruvemba, Shubham Rai, Kapil Ahuja, and Akash Kumar. RI-guided runtime-
constrained heuristic exploration for logic synthesis. In 2021 IEEE/ACM International Confer-
ence On Computer Aided Design (ICCAD), pages 1-9. IEEE, 2021.

[36] Mariya Popova, Olexandr Isayev, and Alexander Tropsha. Deep reinforcement learning for de
novo drug design. Science advances, 4(7):eaap7885, 2018.

[37] Hao Qian, Cheng Lin, Dengwei Zhao, Shikui Tu, and Lei Xu. Alphadrug: protein target specific
de novo molecular generation. PNAS nexus, 1(4):pgac227, 2022.

[38] David Rogers and Mathew Hahn. Extended-connectivity fingerprints. Journal of chemical
information and modeling, 50(5):742-754, 2010.

[39] Julian Schrittwieser, Ioannis Antonoglou, Thomas Hubert, Karen Simonyan, Laurent Sifre, Si-
mon Schmitt, Arthur Guez, Edward Lockhart, Demis Hassabis, Thore Graepel, et al. Mastering
atari, go, chess and shogi by planning with a learned model. Nature, 588(7839):604-609, 2020.

[40] Marwin HS Segler, Mike Preuss, and Mark P Waller. Planning chemical syntheses with deep
neural networks and symbolic Al. Nature, 555(7698):604—610, 2018.

12

[41] David Silver, Aja Huang, Chris] Maddison, Arthur Guez, Laurent Sifre, George Van Den Driess-
che, Julian Schrittwieser, loannis Antonoglou, Veda Panneershelvam, Marc Lanctot, et al. Mas-
tering the game of Go with deep neural networks and tree search. nature, 529(7587):484-489,
2016.

[42] David Silver, Thomas Hubert, Julian Schrittwieser, loannis Antonoglou, Matthew Lai, Arthur
Guez, Marc Lanctot, Laurent Sifre, Dharshan Kumaran, Thore Graepel, et al. A general
reinforcement learning algorithm that masters chess, shogi, and go through self-play. Science,
362(6419):1140-1144, 2018.

[43] David Silver, Julian Schrittwieser, Karen Simonyan, loannis Antonoglou, Aja Huang, Arthur
Guez, Thomas Hubert, Lucas Baker, Matthew Lai, Adrian Bolton, et al. Mastering the game of
go without human knowledge. nature, 550(7676):354-359, 2017.

[44] Richard Valenzano, Nathan Sturtevant, Jonathan Schaeffer, and Fan Xie. A comparison of
knowledge-based gbfs enhancements and knowledge-free exploration. In Proceedings of the
International Conference on Automated Planning and Scheduling, volume 24, pages 375-379,
2014.

[45] Ziyu Wan, Xidong Feng, Muning Wen, Stephen Marcus McAleer, Ying Wen, Weinan Zhang,
and Jun Wang. Alphazero-like tree-search can guide large language model decoding and training.
In Forty-first International Conference on Machine Learning, 2024.

[46] Jiankun Wang, Wenzheng Chi, Chenming Li, Chaoqun Wang, and Max Q-H Meng. Neural
rrt*: Learning-based optimal path planning. IEEE Transactions on Automation Science and
Engineering, 17(4):1748-1758, 2020.

[47] Jingyuan Wang, Ning Wu, Wayne Xin Zhao, Fanzhang Peng, and Xin Lin. Empowering a*
search algorithms with neural networks for personalized route recommendation. In Proceedings
of the 25th ACM SIGKDD international conference on knowledge discovery & data mining,
pages 539-547, 2019.

[48] Yi Wang, Hui Tang, Lichao Huang, Lulu Pan, Lixiang Yang, Huanming Yang, Feng Mu, and
Meng Yang. Self-play reinforcement learning guides protein engineering. Nature Machine
Intelligence, 5(8):845-860, 2023.

[49] Kedi Wu and Guo-Wei Wei. Quantitative toxicity prediction using topology based multitask
deep neural networks. Journal of chemical information and modeling, 58(2):520-531, 2018.

[50] Chenjun Xiao, Ruitong Huang, Jincheng Mei, Dale Schuurmans, and Martin Miiller. Maximum
entropy monte-carlo planning. Advances in Neural Information Processing Systems, 32, 2019.

[51] Fan Xie, Martin Miiller, Robert Holte, and Tatsuya Imai. Type-based exploration with multiple
search queues for satisficing planning. In Proceedings of the AAAI Conference on Artificial
Intelligence, volume 28, 2014.

[52] Shufang Xie, Rui Yan, Peng Han, Yingce Xia, Lijun Wu, Chenjuan Guo, Bin Yang, and Tao
Qin. Retrograph: Retrosynthetic planning with graph search. In Proceedings of the 28th ACM
SIGKDD Conference on Knowledge Discovery and Data Mining, pages 2120-2129, 2022.

[53] Zhihao Xing and Shikui Tu. A graph neural network assisted monte carlo tree search approach
to traveling salesman problem. IEEE Access, 8:108418-108428, 2020.

[54] Guoli Xiong, Zhenxing Wu, Jiacai Yi, Li Fu, Zhijiang Yang, Changyu Hsieh, Mingzhu Yin,
Xiangxiang Zeng, Chengkun Wu, Aiping Lu, et al. Admetlab 2.0: an integrated online platform
for accurate and comprehensive predictions of admet properties. Nucleic Acids Research,
49(W1):W5-W14, 2021.

[55] Saeyang Yang. Logic synthesis and optimization benchmarks user guide: version 3.0. Citeseer,
1991.

[56] Michael Yao, Yimeng Zeng, Hamsa Bastani, Jacob Gardner, James Gee, and Osbert Bastani.
Generative adversarial model-based optimization via source critic regularization. Advances in
Neural Information Processing Systems, 37:44009-44039, 2024.

13

[57] Yemin Yu, Ying Wei, Kun Kuang, Zhengxing Huang, Huaxiu Yao, and Fei Wu. Grasp:
Navigating retrosynthetic planning with goal-driven policy. Advances in Neural Information
Processing Systems, 35:10257-10268, 2022.

[58] Dan Zhang, Sining Zhoubian, Ziniu Hu, Yisong Yue, Yuxiao Dong, and Jie Tang. Rest-mcts*:
LLM self-training via process reward guided tree search. Advances in Neural Information
Processing Systems, 37:64735-64772, 2024.

[59] Dengwei Zhao, Shikui Tu, and Lei Xu. Efficient retrosynthetic planning with MCTS exploration
enhanced A* search. Communications Chemistry, 7(1):52, 2024.

[60] Dengwei Zhao, Shikui Tu, and Lei Xu. Seea*: Efficient exploration-enhanced A* search by

selective sampling. Advances in Neural Information Processing Systems, 37:104138-104179,
2024.

[61] Keren Zhu, Mingjie Liu, Hao Chen, Zheng Zhao, and David Z Pan. Exploring logic optimiza-

tions with reinforcement learning and graph convolutional network. In Proceedings of the 2020
ACM/IEEE Workshop on Machine Learning for CAD, pages 145-150, 2020.

14

A Proof of the sampling expectation

In the section, we will provide the detailed proof of comparing the uniform sampling and cluster
sampling with p§ = p¢ = N;/N. In this situation, the number of nodes selected by cluster sampling
from O; is p{ x N¢, and the number of nodes selected from cluster O; by uniform sampling, denoted
as N, is also expected to be proportional to the cluster size N;, i.e., E[N}] = p¢ x N°. According
to Lemma[4.2} the mean and variance of the global distribution encompassing K clusters are:

K K
= pp, o2= pio; +Zpluz (15)
=1 i=1

In each sampling iteration, /N¢ nodes are directly acquired from the global distribution, exhibiting
empirical mean and variance fi,, and 52, respectively. Building upon Lemma the expected values
of fi,, and 2 of the sampled nodes using uniform sampling are:

K
Ep, [fi] = pg = > _pipi, Ep,[62] =0 —Zp +szuz (16)
=1

For cluster sampling, let fi; and 7 denote the empirical mean and variance, respectively, of the N¢
nodes drawn from O;. According to Lemma[4.3] the following relations hold:

Ni—N,L-C 0'2

2t B 52 = o2 17
Nz—l N,LC’ DC[UZ] UZ ()

Ep,] = pi, Varp,[ii] =

Based on Lemma[4.2] the mean and variance of the candidate set D are:

K K K
= i, 62=) piet+ > piid — il (18)
i=1 =1 =1

Considering that p; = p$, we have:

K

Ep.|fic) =) _piEli sz pi = Elfiu)] (19)

K K K
i . . (N — N¢ o2 wo Ny — N¢ o2
Ep, [52] = ZPN?"‘ZM <]i, —1 N© ‘HL?) - [Z(Pi)QJ\z]__lNc Jiel*| (20)
i=1 i=1 g i i=1
KON - N N¢ o2
— 52] = et T _ 2
Ep,[57] — Ep,[57) gp Ni_ NC Z N1 N
K
N; — Nf1—p§
= A L2 21
Zpl NZ 71 Nic O-’L > 0 ()

Therefore, for cluster sampling proportional to the cluster size, the expected value of the mean EDC [fic)
remains consistent with Ep_ [fi,], but the expected variance Ep,[52] is larger than Ep, [52].

B Error assumption of Theorem

Due to the presence of prediction errors, for two nodes n; and ny, we have that f; = f; + €; and
fa = f5 + €2, where € is the prediction error of f to the real evaluation f*. Define A = fo — f1 > 0
and 7 = €3 — €1, we have that

P(fs > filfa= f1 = A) = P(fs = i > 0]A) = P(A > n|A). (22)

Since P(A > n|A) is increasing with A, P(f5 > f{|f2 — f1 = A) also increases with the gap
between f; and fo. The monotonicity property established in Theorem [5.1]remains valid even when
the noise distribution € is non-Gaussian and node-dependent.

15

C Suboptimal of cluster sampling in SeeA*

We further delve into the sampling strategies within cluster sampling by decomposing Equation [20]
into

EDC [&2} :(b(ﬂla 7MK)+’¢(O—%7 aU%{)> (23)
where

K K 2
¢= piu;— <pr/u> , (24)
=1 i=1

K K K ,

N; — Nf 0‘ 2 Ni — N7 072
_ P i A e A 25
v=>_pio] +Zpl B P IL iy v (25)
¢ is the variance of the mean of dlfferent clusters, while v evaluates the uncertainty of the sampling
distribution. Given that the true node path reward f* is unobservable, the corresponding mean p; and
variance o7 for cluster O; are inherently difficult to estimate. Assume that y; for cluster O; is drawn
from a distribution with E[;] = g« and Var[u;] = o2,,, and that variance o7 is also sampled

from a distribution with E[0?] = p, and Var[o?] = o2,. Therefore,

K
= P B[] = fime (26)

K
E,[¢] = sz W] = E Y07 62+ pip iy

i=1]
K
= O e = Y (D)) (O + 15e) = Y DIDS M-
i=1 i£]
K 2
0-7271,* + :ugn* - Z Oms — <Zpl> ,LLE"*
=1
K
= O (1 - Z(W) < K[; " 27)
i=1

where the equality holds if and only if Vi, p{ = 1/K. Therefore, Ezng [¢], which sampling equal
number of nodes from each cluster, is larger than Eﬁ "% [¢], which proportional sampling from each
cluster. What’s more,

—p;N°¢ I pj
B[] = s 1+Z 71)]\, R [y 1+Z 1—pj) (NCNZH
=1
K-1 p‘?(p‘?’—l) K-1
= MHyx 1 B T S vk 1) 28
H T e +i:1 N, % tNe (28)

where the equality holds if and only if 3¢, p{ = 1 and Vj # i, p; = 0. What’s more, if each cluster
has the same number of nodes, i.e., Ny = Ny = --- = Nk, p; = 1/K will minimize E,[¢]. In
summary, sampling from each cluster evenly maximizes E,,[¢], while sampling from single cluster
maximizes E, [{]. C0n51der1ng both Equatlonm and. Lagrange multiplier method is employed to
maximize E, [ED[2

= 1 &apip -)
1— 5\2 . i \Pq
max o7, (>) > + Ho Ne Tl N]
=1 =1
K
subjectto » pi=1, 1<p;<1 Vi
=1

16

The optimal sampling distribution is p{ = min (1, max (07 mwii"%)) , where X is a constant
to ensure Zz[(:l p; = 1. Based on Equation , the expectation of the mean of sampled nodes is
independent of the sampling distribution p$, and the optimal p; to maximize the expectation of
the sampling variance is related to the unknown o2, and o2,. Therefore, considering Equation @
selecting nodes from each cluster evenly employed in SeeA* is not guaranteed to be the optimal for
cluster sampling, and the optimal sampling distribution still needs further investigation to achieve a
trade-off between E,[¢] and E,[)].

D Proof of Theorem 5.1]

We begin by establishing a lemma that supports the proof of Theorem 5.1]

Lemma D.1 Assume x is random variable from distribution N (119, 03), y from N'(u1,0%). If x and
y are independent of each other and 1y > o, then

2
1 1 {(Nl—uo)/\/angUﬂ
Plx>y) = 5XPy ~5 cosZ€ (29)

where 0 < £ < /2 is a constant.
According to Bayes’ theorem,

2 2 2 2
Tl Lol %%) (30
02 +02 o242
p g p g

P(f*1f) o< P(fIf*) x P(f*) = N(f*,07) x N(pg, 05) =N<

According to Lemma [D.1] for two nodes ny and ny with f(n1) > f(no):

2 402(02 + 02) cos?

According to Equation 31} likelihood P(f*(n1) > f*(n2)) increases with the difference f(n;) —
f(n2). Theorem[5.1]is proved.

E Introduction of retrosynthesis planning

Retrosynthetic planning aims to identify a synthetic route from available molecules to a target
compound. It can be formulated as a Markov Decision Process and solved using heuristic tree search
algorithms:

» State: The current set of molecules obtained through a sequence of retrosynthetic steps
from the target molecule.

* Action: The reaction provided by the single-step retrosynthesis model to synthesize the first
non-building-block intermediate in the current retrosynthetic state

* Reward: The cost of a chemical reaction is defined as the negative logarithm of its predicted
probability by the single-step retrosynthesis model, and the reward is given as the negative
of this cost.

* Transition function: A new molecular state is obtained by replacing the product in the
current molecular set with the reactants of the applied chemical reaction.

A terminal state is reached when all molecules are identified as available building blocks, indicating
a complete synthetic route. The single-step retrosynthesis model is designed for a multi-class task
based on 381, 302 chemical reaction templates. The input is a 2048-dimensional Morgan Fingerprint
vector [38]], and the architecture of the policy network is:

* A fully connected layer with dimensions [2048, 512].

17

A batch normalization layer.
A dropout layer with a dropout rate of 0.3.
A fully connected layer with dimensions [512, 381302].

A softmax layer.

The synthesis cost of a state is defined as the sum of the synthesis costs of all molecules in the
set, where the cost of available building blocks is 0, and the synthesis costs of other molecules are
estimated by a well-trained value network. The input is a 2048-dimensional molecular vector, and
the architecture is as follows:

A fully connected layer with dimensions [2048, 128].
A ReLU activation layer.

A dropout layer with a dropout rate of 0.1.

A fully connected layer with dimensions [128, 1].

Normalize the output y with log(1 + €¥).

The parameters of the policy and value networks are identical to those of Retro*+ [23]], and also
consistent with SeeA* [60]. The set of molecules used for testing is derived from the following seven

datasets:

USPTO [4]: 190 molecules are collected from the United States Patent and Trademark
Office (USPTO) used primarily for retrosynthetic planning and related research. Only
molecules for which reactions in the synthesis route are all covered by the top-50 predictions
by the one-step model are kept.

logP [5]: The logarithm of the partition coefficient quantifies the solubility of a molecule in
a particular solvent, which is crucial for understanding the molecule’s pharmacokinetics and
pharmacodynamics. 1073 molecules are collected.

logS [54]: This property is used to assess the solubility of molecules, which significantly
impacts the absorption, distribution, metabolism, and excretion of drug candidates. 407
molecules are contained in the logS.

Toxicity LDS50 [49]: The LD50 value measures the toxicity of a substance, playing a critical
role in evaluating the safety and efficacy of pharmaceutical compounds. 872 molecules are
considered.

Ames [17]: The Ames test is widely employed in drug development to assess the mutagenic
potential of drug candidates and other chemicals used in drug formulation or as excipients.
Ames benchmark consists of 1129 molecules.

BBBP [29]]: The Blood-Brain Barrier Penetration dataset evaluates the ability of molecules
to cross the blood-brain barrier, a critical factor in the development of central nervous system
drugs. 610 molecules are included.

ClinTox [15]: A dataset comprising 628 FDA-approved drugs and those that failed clinical
trials due to toxicity concerns, providing insight into the safety profiles of pharmaceutical
compounds.

F Introduction of logic synthesis

Logic synthesis refers to the process of converting a hardware design described at the register-transfer
level (RTL) into a gate-level Boolean representation, typically modeled as an And-Inverter Graph
(AIG)—a netlist composed solely of AND and NOT gates. An optimized AIG is then produced by
applying a series of semantics-preserving transformations aimed at improving circuit performance,
area, and power. The logic synthesis problem can also be formulated as a Markov Decision Process
and addressed using tree search algorithms:

State: The current state is encoded as an And-Inverter Graph, which captures the structural
and functional characteristics of the circuit.

18

* Action: Following ABC [2]] and recent reinforcement learning approaches [7, 20], seven
logic optimization operations are permitted: balance, re-substitution, re-substitution -z,
rewrite, rewrite -z, refactor, and refactor -z.

* Reward: resyn2 synthesis recipe is used as the baseline during the evaluation. The immedi-
ate reward for non-termination state is 0, and the area-delay product (ADP) reduction for an
action sequence .S is used as the reward for termination state:

ADP(S .
maX{fl,lfwe(‘gly)qu)}, ift = ‘S|

. (32)
0, Otherwise

R(S,t) = {

where ADP(-) is estimated by the ABC library [2].

* Transition model: Each action is designed to perform a global structural transformation on
the AIG. The state transition function is implemented using ABC [2], resulting in a newly
transformed AIG.

A value network is employed to estimate the expected reduction in ADP, thereby guiding the search
process. The input to the value estimator consists of the initial AIG and the sequence of actions. Each
node in the AIG is encoded as a two-dimensional vector that captures both types and the number
of inverted predecessors, while the adjacency matrix encodes the structural connectivity of AIG. A
Graph Convolutional Network (GCN) is utilized to extract the AIG embedding, with the architecture
specified as follows:

* A GCN layer with a hidden size of 32.

* A batch normalization layer.

* A LeakyReLU activation layer.

* A second GCN layer with a hidden size of 32.

* A batch normalization layer.

* Mean pooling and max pooling are applied independently, and their outputs are concatenated

to yield a 64-dimensional graph embedding.

The action sequence, along with the number of steps, is encoded as a string and passed to a BERT
model [13]], which generates a 768-dimensional sequence embedding. The final input to the value
estimator is formed by concatenating the 64-dimensional AIG embedding with the 768-dimensional
BERT embedding. The architecture of the value estimator is as follows:

* A fully connected layer with dimensions [832, 256].

* A LeakyReLU activation layer.

* A fully connected layer with dimensions [256, 256].

* A LeakyReLU activation layer.

* A fully connected layer with dimensions [256, 1].

* A Tanh activation layer.
The parameters of the value networks are identical to those of SeeA* [60]. Twelve benchmark circuits

from the MCNC dataset are used for evaluation, each exhibiting varying numbers of components and
structure connections. Detailed specifications are provided in Table]

G McNemar test on success rate

To assess the statistical significance of the difference in success rates between two models on paired
binary outcomes, we employ the McNemar test [31]. This non-parametric test is employed to evaluate
classification performance differences on matched samples. Given a 2 x 2 contingency table:

Model B Correct Model B Incorrect
Model A Correct ni1 n10
Model A Incorrect no1 00

19

Table 4: Characterization of testing circuits from MCNC dataset.

Circuit # Inputs # Outputs # Nodes Depth
alu4 10 6 735 42
apex|1 45 45 2655 27
apex2 39 3 445 29
apex4 9 19 3452 21
b9 41 21 105 10
c880 60 26 327 24
c7552 207 108 2074 29
9 88 63 889 14
m4 8 16 760 14
pair 173 137 1500 24
max1024 10 6 1021 20
prom1 9 40 7803 24
The test statistic is defined as:)
2= (no1 — n1o) (33)

no1 + N1o

Under the null hypothesis of no difference, x? approximately follows a chi-square distribution with

one degree of freedom. A p-value less than 0.05 indicates a statistically significant difference in
performance.

The synthesis outcomes of 4, 909 molecules across seven datasets are used for hypothesis testing. The
resulting chi-square statistic was 3.615 with a p-value of 0.0286(< 0.05), leading to the rejection of

the null hypothesis. These results indicate that KeeA* achieves a statistically significant improvement
over SeeA*.

H An investigation of hyperparameters

@ ®)

—O— Success Rate —
== Avg Length

—O— Success Rate
== Avg Length

Success Rate (%)
\
Avg Length

Success Rate (%)
Avg Length

00 01 02 03 04 05 06 07 08 09 10

Figure 3: Success rate and average solution length on the USPTO benchmark with different (a) o and

(b) 8.

The comparative experiments under different hyperparameter settings on the USPTO and ClinTox
test benchmark are presented in Figure [3] and] respectively. The best success rate and average
solution length are achieved when @ = 0.4. As « approaches 0, performance slightly degrades;
however, a more significant drop is observed when oz — 1.0, highlighting the adverse impact of an
overly imprecise heuristic on the search process. KeeA* performs best when 8 = 0.8, while both
excessively large and small values of 3 lead to performance degradation. These results indicate that
appropriate choices of « and 3 effectively balance exploration and exploitation, thereby enhancing
the overall search performance. The comparative experimental results on the b9 circuit for logic

synthesis task are shown in Figure[5] yielding a similar conclusion: appropriate values of « and /3
lead to improved performance.

20

(a) (b)
048 —] ? — 0.484 —| B —O— Success Rate
h == AvglLength | —
1
0.46 — 1 [0.482 —
]
; —
2o 0.44 —] ! [o
> S 0.480 —|
s = s 18602
Q i E:
£ 0e] - g
& —O— Success Rate 3 é 0.478 —| 5
P == Avg Length @ N =
— o0 @ en
8 040 — > 9 X
4 : < Gon] L=
2 ! — n
038 — ,’
1 0474 — [—
i L
36 —] !
]
s N 0. o--0._ 0.472 — —
0 oSN o —
0.34 — o

00 01 02 03 04 05 06 07 08 09 10 00 01 02 03 04 05 06 07 08 09 10

a

Figure 4: Success rate and average solution length on the ClinTox benchmark with different (a) «

and (b) 5.

(@) 200 ®) oo
28— 25.8—
3 256 — @
3 .
~ ~— 256 —
= =
Q 254 — =}
2 2
o 23N
= > 25.4—]
B 52— B
4 4
C"zsf,— Py 252 —]
a a
< <
248 — 5.0 —
24.6 —
4.8 —

Figure 5: ADP reduction on the b9 circuit on logic synthesis with different (a) « and (b) 5.

To demonstrate the robustness of KeeA*, an exhaustive grid search is conducted with three indepen-
dent runs per configuration, and a T-test at the 0.05 significance level is used to compute the error
intervals. Because only three runs are conducted, the deviation is relatively large. Both the mean
and the error interval are reported in Table[5] KeeA* demonstrates robust performance, consistently
outperforming SeeA*’s 97.30 + 2.36% across a wide range of hyperparameter settings, with the
highest success rate reaching 98.77 & 0.62%.

B=0.1 B=03 B=05 B=0.7 B=0.9
a=01 97.72+£246 98.07+2.68 97.54+1.64 97.72+1.64 97.72+1.24
a=03 97804283 97.72+1.64 98.60+2.21 98.60+2.68 97.54+1.24
a=05 97.54+£246 98.77+2.46 98.07+0.62 97.37+1.84 97.89 + 0.00
a=0.7 98.25+£062 98.07+1.64 98.074+0.62 98.77+£0.62 97.89+1.07
a=09 64.74+770 62.81+857 64.04+6.43 60.88+4.32 64.74+2.14

Table 5: Success rate of KeeA* under different o and 3 on the USPTO benchmark (%).

I Investigation of cluster number K

To assess the influence of the number of clusters K on KeeA*, three runs are performed for various
K, and a T-test with the 0.05 significance level is used to compute the error intervals. Because only
three runs are conducted, the error interval is relatively large. KeeA* consistently outperforms SeeA*
(Cluster) on the USPTO test set. An excessively small K induces under-fitting, leading to a model of
limited flexibility, while an overly large K risks overfitting to collected states. Both extremes impair

21

Table 6: Success rate of KeeA* and SeeA* (Cluster) with different cluster number K on the USPTO
benchmark (%).

KeeA* SeeA* (Cluster)

95.44 + 0.66 9491 +1.74
97.54 £0.50 97.37 £ 0.86
98.53 £+ 0.60 97.30 £0.95
97.36 £1.55 96.32 £ 0.43
95.26 + 0.86 94.04 +0.89
9491 +1.74 92.98 +2.21

0O U W | R

the efficacy of decision-making during search, highlighting the importance of appropriate cluster
number K selection to optimize the efficiency of SeeA* and KeeA*.

J Variability of KeeA* due to randomness.

To quantify KeeA*’s variability induced by randomness, we executed three runs for each of ten
random seeds on the USPTO test set. A T-test with the significance level is used to compute the
error intervals. The average success rate over all 30 runs is 98.53%, which is comparable to the
98.84% reported in the paper. KeeA* exhibits robust performance across various random seeds,
achieving more stable results compared to SeeA* (Cluster). SeeA* not only exhibits a larger variance
across multiple runs but also shows greater performance fluctuations under different random seeds,
highlighting the superiority of KeeA* over SeeA* (Cluster) with respect to stability.

Table 7: Success rate of KeeA* and SeeA* (Cluster) with different random seed on the USPTO
benchmark (%).

Seed KeeA* SeeA* (Cluster)
0 98.07 £ 0.25 96.49 + 0.66
1 97.89 +0.86 98.07 + 0.66
2 98.60 + 0.25 96.84 4+ 0.00
3 98.60 + 0.50 97.89 +0.43
4 98.25 +£0.25 98.60 + 0.25
5 98.95 + 0.43 97.37 £ 0.00
6 99.30 + 0.50 96.67 £ 1.08
7 98.95 + 0.00 96.67 + 0.89
8 98.07 + 0.25 96.84 +1.14
9 98.60 + 0.25 97.54 +£0.25
All 98.53 + 0.60 97.30 £0.95

22

NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: Yes, the main claims made in the abstract and introduction accurately reflect
the paper’s contributions and scope.

Guidelines:

* The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: Limitations are discussed in the Conclusion section
Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate "Limitations" section in their paper.

* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

* If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]

23

Justification: Assumptions and detailed proof are provided in the main text and appendix
materials.

Guidelines:

The answer NA means that the paper does not include theoretical results.

All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

All assumptions should be clearly stated or referenced in the statement of any theorems.

The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: The algorithmic procedure, network architecture, and hyperparameter settings
are all detailed in the paper, and both the code and datasets will be made publicly available.

Guidelines:

The answer NA means that the paper does not include experiments.

If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

24

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: The code is provided in the supplemental material and will be publicly available
once acceptance.

Guidelines:

* The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.

6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]
Justification: All details are summarized in the Experiment section and appendix
Guidelines:

» The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.

7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: Although error bars are not provided, the proposed method was evaluated on
over 4, 909 test instances — far exceeding the 190 molecules used in previous studies. The
McNemar test is employed to statistically validate the robustness of KeeA*.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

25

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

8.

10.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

¢ It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

¢ For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: Computer resources employed in this work is summarized in Experiments
section

Guidelines:

» The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]
Justification: We believe that this paper conform with the NeurIPS Code of Ethics.
Guidelines:

¢ The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]
Justification: Discussion of societal impacts is provided in the Conclusion section.
Guidelines:

* The answer NA means that there is no societal impact of the work performed.

26

https://neurips.cc/public/EthicsGuidelines

If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards

12.

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: This work focuses on heuristic search algorithms and currently poses no risk
of misuse.

Guidelines:

The answer NA means that the paper poses no such risks.

Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: All materials used in this study are publicly available and well-cited.

Guidelines:

The answer NA means that the paper does not use existing assets.
The authors should cite the original paper that produced the code package or dataset.

The authors should state which version of the asset is used and, if possible, include a
URL.

The name of the license (e.g., CC-BY 4.0) should be included for each asset.

For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

27

13.

14.

15.

* If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]

Justification: This paper does not release new assets, but the associated code will be made
publicly available upon acceptance.

Guidelines:

* The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.
Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: This paper does not involve crowdsourcing nor research with human subjects.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: This paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

28

paperswithcode.com/datasets

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
16. Declaration of LLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]
Justification: LLMs are not involved as any important, original, or non-standard components.
Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

¢ Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.

29

https://neurips.cc/Conferences/2025/LLM

	Introduction
	Related work
	Preliminaries on A* search
	The superiority of cluster sampling
	KeeA* search algorithm
	Cluster scouting
	Path-aware sampling

	Experiments
	Results on retrosynthetic planning
	Results on logic synthesis
	The impact of the hyperparameters

	Conclusion
	Acknowledgement
	Proof of the sampling expectation
	Error assumption of Theorem 5.1
	Suboptimal of cluster sampling in SeeA*
	Proof of Theorem 5.1
	Introduction of retrosynthesis planning
	Introduction of logic synthesis
	McNemar test on success rate
	An investigation of hyperparameters
	Investigation of cluster number K
	Variability of KeeA* due to randomness.

