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Abstract

Visual storytelling (VIST) is a typical vision001
and language task that has seen extensive de-002
velopment in the natural language generation003
research domain. However, it remains unclear004
whether conventional automatic evaluation met-005
rics for text generation are applicable on VIST.006
In this paper, we present the VHED (VIST007
Human Evaluation Data) dataset, which first008
re-purposes human evaluation results for au-009
tomatic evaluation; hence we develop Vrank010
(VIST ranker), a novel reference-free VIST011
metric for story evaluation. We first show that012
the results from commonly adopted automatic013
metrics for text generation have little correla-014
tion with those obtained from human evalua-015
tion, which motivates us to directly utilize hu-016
man evaluation results to learn the automatic017
evaluation model. In the experiments, we evalu-018
ate the generated texts to predict story ranks us-019
ing our model as well as other reference-based020
and reference-free metrics. Results show that021
Vrank prediction is significantly more aligned022
to human evaluation than other metrics with al-023
most 30% higher accuracy when ranking story024
pairs. Moreover, we demonstrate that only025
Vrank shows human-like behavior in its strong026
ability to find better stories when the quality027
gap between two stories is high. Finally, we028
show the superiority of Vrank by its general-029
izability to pure textual stories, and conclude030
that this reuse of human evaluation results puts031
Vrank in a strong position for continued future032
advances.033

1 Introduction034

In visual storytelling (VIST) (Huang et al., 2016), a035

generation model tells a short story to describe the036

given five images. Automatic generation of visual037

stories is challenging because it has the complex-038

ity of cross-modal understanding with the diversity039

and sophistication of creative writing (Zhu et al.,040

2020). Extensive efforts in model developments041

have decreased the distance between machine-042

the city was very busy. there were many different kinds of bikes.
some were very unique. they were all very fast. i had a great time.

i went to the park station. it was a train trip to the museum. the train
was very long. we had to go on our way out of the trains. this dog
is so happy to see us.

Reference: i decided my dog would like a train ride. off to the
train station we go. this is the train we will be taking our short trip
on. my friend is the conductor. he is getting ready to attach the
cars. here is the train all together. as you can see, my dog had a
fantastic time.

Model 1 (BLEU-1: 0.605, Human Rankers:         )

Model 2 (BLEU-1: 0.354, Human Rankers:                            )

Figure 1: Ranking of two stories generated by Model 1
and 2, by human rankers versus BLEU-1 score. BLEU-1
mispredicts due to unreasonable matches, correlating
poorly with human ranking judgment.

generated and human-written stories, but research 043

on VIST evaluation remains stagnant. 044

Automatic metrics and human evaluation are 045

widely used to examine natural language gen- 046

eration. Traditional n-gram-based or reference- 047

based autometrics such as BLEU (Papineni et al., 048

2002), CIDEr (Vedantam et al., 2015), and ME- 049

TEOR (Banerjee and Lavie, 2005) are com- 050

mon for VIST evaluation. However, prelimi- 051

nary findings have shown that these metrics have 052

many drawbacks and hence are incompatible with 053

VIST (Wang et al., 2018b). In particular, they as- 054

sume that human-written stories are always better 055

than machine-generated stories, limiting the ad- 056

vance of models yet not conforming to our ob- 057

servation on human judgment. Rethinking this 058

postulation in evaluation, we believe the depen- 059

dence on references should be minimized and hu- 060

man evaluation results should be fully utilized in- 061

stead, because human judgements contain more 062

meaningful signals. Recent hybrid and reference- 063

free metrics such as BLEURT (Sellam et al., 2020) 064

and UNION (Guan and Huang, 2020) have not yet 065

been implemented or studied in VIST. Neverthe- 066
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less, BLEURT utilizes few human results in fine-067

tuning, and UNION still regards human references068

as gold labels, which results in poor correlation069

to human judgment. On the other hand, human070

evaluations are relatively reliable for performance071

reports, and recent studies often include them to072

provide more convincing experimental results (Hsu073

et al., 2020, 2021a,b). However, human evaluations074

are expensive, time-consuming, and difficult to re-075

produce. Therefore, results should be recycled to076

benefit future evaluations.077

Accordingly, we re-collected the human evalu-078

ation results from multiple published papers and079

organized the data into story pairs (Wei and Jia,080

2021) as the VHED (VIST Human Evaluation081

Data) dataset. We then re-purposed VHED to cre-082

ate a better metric for VIST named Vrank (VIST083

Ranker). Vrank is a reference-free SIMCSE (Gao084

et al., 2021) based metric trained on VHED to learn085

to rank visual stories. We believe a storytelling086

metric should be independent of the references be-087

cause stories are highly diverse by nature (Zhu088

et al., 2020), and it is reasonable for them to be dis-089

similar to the references (Guan and Huang, 2020;090

Wang et al., 2018b), as shown in Fig. 1. The story091

generated by Model 1 is assigned a higher BLEU092

score because larger portions of text overlap with093

the reference. However, human rankers recognize094

description in isolation and object detection error095

in Model 1, and instead rank Model 2 better. We096

conduct experiments to show that Vrank is superior097

to existing metrics, many of which lack proper-098

ties essential to evaluating stories in a human-like099

fashion.100

Therefore, we utilize VHED to understand and101

analyze human judgment in evaluating visual sto-102

ries, and to provide additional metric assessments103

to reveal the shortcomings of existing metrics. The104

metric assessment experiments are conducted as105

the story-pair ranking task in which two stories are106

ranked based on their story quality. We observe107

three characteristics and design corresponding as-108

sessments to demonstrate Vrank’s merits. First,109

larger rank differences in story quality are eas-110

ier for people to differentiate. We measure the111

performance of metrics in story pairs with large112

gaps versus small gaps to determine whether all113

metrics have this property. Our assessment indi-114

cates this property is exclusively hold by Vrank.115

Second, human-written stories are not always bet-116

ter than machine-written stories. Indeed, 38% of117

machine-generated stories are better than the ref- 118

erences, which suggests that the afore-mentioned 119

assumption may need to be revisited (Clark et al., 120

2021). We examine the ability of metrics to rank 121

such human-machine pairs, which Vrank performs 122

relatively well. Finally, most generated stories still 123

contain many errors, which serve as signals for 124

human rankers (Modi and Parde, 2019). Hence 125

we evaluate the ability of metrics to detect errors 126

and show that Vrank is a better indicator of errors. 127

Also, we show that Vrank is able to generalize to 128

other datasets without bias to VHED. In conclu- 129

sion, Vrank excels in the above assessments and 130

able to follow human behaviors in ranking, rank 131

machine and human stories decently and is better 132

at detecting story errors. 133

The contributions of this paper are threefold: 134

• We re-collect and organize human evaluation 135

results from recent VIST papers to form a new 136

dataset: VHED. 137

• We propose a novel valid metric Vrank for 138

visual storytelling which appropriately evalu- 139

ates VIST model performance. 140

• We propose three assessments for metrics ac- 141

cording to human properties and a generaliza- 142

tion test to better illustrate the shortcomings 143

of existing VIST metrics. 144

2 Related Work 145

Visual Storytelling (VIST) Visual storytelling 146

was introduced by Huang et al. (2016) as the task 147

of generating a coherent story given five images. 148

They provided a dataset, Sequential Images Narra- 149

tive Dataset (SIND), containing images and refer- 150

ences in which references are human-written short 151

stories describing images. For every image prompt 152

(one sequence of photos), there are 2 to 5 refer- 153

ences. VIST requires deeper understanding of the 154

photo events to prevent descriptions in isolation 155

(i.e., image captions). Researchers have proposed 156

various methods for this task. Knowledge graphs 157

are often integrated in models to encourage diver- 158

sity of terms and plots in the stories (Hsu et al., 159

2020, 2021a; Chen et al., 2021). Some studies use 160

reinforcement learning to reward models that gen- 161

erate stories that contain fewer errors and are more 162

topically-focused (Huang et al., 2019; Hu et al., 163

2020a). However, existing evaluation methods are 164

unable to capture the true quality of the generated 165

stories. Thus we examine automatic metrics to de- 166

vise a better way for machines to evaluate stories. 167
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VIST-Human Evaluation Several VIST gener-168

ation models use human evaluation to evaluate169

model performance. Recent studies apply aspect-170

based rating evaluation. Hu et al. (2020b) and171

Wang et al. (2020b) ask workers to rate stories172

based on pre-defined aspects.1 However, it is dif-173

ficult to normalize these aspects as the definition174

of aspect varies from paper to paper. Also, these175

aspects are not mutually independent, making it176

difficult to analyze results based on these ratings.177

Therefore, we consider the ranking method as it178

is commonly used (Hsu et al., 2020; Wang et al.,179

2020b; Hsu et al., 2021a) among authors. Hsu et al.180

(2020) asks human annotators to rank five stories181

from different models based on overall quality. Hu182

et al. (2020b) and Wang et al. (2020b) conduct pair-183

wise human evaluations to rank stories according184

to different story aspects, where the latter is judged185

to be closer to human-level. These human evalu-186

ation results are valuable resources for observing187

human judgments in visual storytelling. Hence, in188

our work we collect this information for analysis189

and model training.190

Automatic Metrics Automatic evaluation met-191

rics are widely used in language generation tasks.192

Most reference-based metrics (e.g., BLEU (Pap-193

ineni et al., 2002), METEOR (Banerjee and Lavie,194

2005), and ROUGE (Lin, 2004)) evaluate the n-195

gram similarity between a generated text and the196

reference. However, referenced metrics correlate197

poorly with human judgment (Wang et al., 2018b;198

Hsu et al., 2019; Modi and Parde, 2019) in di-199

alog generation and story generation tasks: the200

generated text is given unreasonable scores due201

to incongruity with the reference. To account for202

this, several reference-free metrics (Sinha et al.,203

2020; Guan and Huang, 2020) have been designed204

to measure generated texts without any reference.205

BERT-Score (Zhang et al., 2019), for instance,206

uses contextual embedding to calculate the sim-207

ilarity between candidates and references, and208

BLEURT (Sellam et al., 2020) uses referenced209

automatic metrics as supervision signals for pre-210

training and is fine-tuned on a human judgment211

evaluation dataset. UNION (Guan and Huang,212

2020) uses pre-defined negative samples to train a213

model in an attempt to provide a metric that spe-214

cializes in story generation. In our analysis, current215

1Hu et al. define relevance, coherence, and expressive-
ness, and Wang et al. define focus, coherence, detail, share,
grounded, and human.

metrics remain unable to mimic human judgment 216

to discern quality differences in story pairs. 217

3 VHED 218

3.1 Dataset Description 219

The VHED dataset is a collection of human eval- 220

uation results from three VIST studies: KG- 221

Story (Hsu et al., 2020), PR-VIST (Hsu et al., 222

2021a), and Stretch-VST (Hsu et al., 2021b). All 223

papers followed Hsu et al. (2020)’s human evalua- 224

tion method using Amazon Mechanical Turk. For 225

each task, the workers were to rank the story by 226

overall quality, from the best story to the worst 227

story. Specifically, each task displayed N stories, 228

and each worker ranked each story from 1 to N . 229

Details about each paper are listed in Table 1. 230

The construction of VHED is shown in Fig. 2. 231

Collected from the aforementioned papers, we ob- 232

tained 4,500 task results. Further, we grouped N 233

stories into story pairs, where the number of story 234

pairs per task is CN
2 . The resulting story pairs 235

(x1, x2) are either two machine-generated stories 236

from two different models or one reference and one 237

machine-generated story. For each story pair, there 238

are five attributes: 239

• Stories: A story pair consists of a better-ranked 240

story and worse-ranked story. The story pair 241

is either a reference with a machine-generated 242

story, or two machine-generated stories. 243
• Image Sequence IDs: A list of IDs for each of 244

the five images from the SIND dataset (Huang 245

et al., 2016). 246
• Average Rank: The average of the five work- 247

ers’ story rankings and is divided by N for nor- 248

malization. N varies from paper to paper (Ta- 249

ble 1) 250
• Ranking Gap: The ranking gap is calculated 251

as the average ranking of x1 minus the average 252

ranking of x2. The ranking gap distribution is 253

shown in the appendix (Table 6). 254
• Human Agreement: Human agreement is 255

when k workers agree that the better-ranked 256

stories are better than the worse-ranked stories. 257

Note that human agreement = 2 is equivalent to 258

human agreement = 3, because 1 person agree- 259

ing that story A is better than B is equivalent to 260

4 people agreeing that story B is better than A. 261

Therefore, we kept human agreements = 3,4,5 262

for simple notation. 263

For quality control, we remove story pairs with 264

zero ranking gap. This yields 13,875 story pairs in 265
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Story 1

Story 2

Story 3

Story 4

Story 5

Stories Workers Story Ranking

1 Story 1

Story 2

Story 4

Story 5

Story Pairs
(w/ avg rank)

Human 
Agreement

Ranking 
Gap

0.6

-1.6

2 1 1.63 1

2 3 3 1 2

5 4 4 4 4

3 5 5 5 3

4 1 1 2 5

2.2

4.2

2.6

Figure 2: Workflow for creation of VHED dataset

Paper Human
Evaluation Sampling Tasks N

KGStory 2 500 1,000 5
PRVIST 6 250–500 1,000 3–4
Stretch-VST 7 250–500 2,500 2–4

Table 1: Statistics of human evaluation results of
KGStory (Hsu et al., 2020), PRVIST (Hsu et al., 2021a),
and Stretch-VST (Hsu et al., 2021b)

total. 2 The train-test-validation sets were split at266

a ratio of 8:1:1 to 11,208, 1,351, and 1,316 story267

pairs. The descriptions of VIST models’ generated268

stories are included in the appendix.269

3.2 Data Analysis and Findings270

As we acquired data about human preferences in271

story pairs, we conducted analyses to understand272

the potential patterns for workers when assign-273

ing story ranks, the quality gap between machine-274

generated and human-written stories, and the errors275

in the stories. The results of this observation are276

crucial for assessing the performance of a metric.277

Worker Ranking Analysis Story pairs are278

grouped by the same human agreement. Ωk de-279

notes a sub-dataset containing story pairs with hu-280

man agreement = k. In Table 2, we calculate the281

number of story pairs as well as the averaged rank-282

ing gap of each sub-dataset. For story pairs, we283

note that story pairs with k = 3 account for 53%284

of the dataset, meaning that half of the tasks have285

inconsistent annotations. Regardless, this paper286

evaluates the story pairs with k ≥ 4 to filter out287

inconsistent human annotations. We also note that288

the ranking gap increases as human agreement289

increases. The ranking gap indicates the quality290

difference between a better-ranked and a worse-291

ranked story. That is, the difference between a292

ranked 1 story and a ranked 5 story should be larger293

than that between a ranked 2 story and a ranked294

3 story. From Table 2, we find that story-pairs295

with lower agreement are closer in ranking. In296

2VHED will be released upon acceptance

Story pairs Ranking gap Machine better
Ω3 6,494 (53%) 0.123 918(45%)
Ω4 3,677 (30%) 0.247 523(35%)
Ω5 2,110 (17%) 0.416 110(22%)

Table 2: The number and percentage of story pairs,
average ranking gap of each sub-dataset. Machine better
is the number and percentage of machine stories better
than references in story pairs containing only a reference
and a machine-generated story.

other words, a story pair with a marginal quality 297

difference easily leads to inconsistent worker an- 298

notations, because it is harder to rank two similar 299

stories. Essentially, we expect the metrics to ex- 300

hibit similar behavior: the larger the ranking gap, 301

the easier it is to rank. 302

Who Wins? Machine vs. Human Stories Next 303

we revisit the assertion that references are always 304

superior. We select story pairs with a reference and 305

a machine-generated story. We analyze the number 306

and percentage of references that are ranked better 307

than the generated stories on three human agree- 308

ments. From Table 2, we observe that when more 309

humans agree on the ranking results, the percentage 310

of the reference being better also increases. In addi- 311

tion, further analysis shows that, on average, 38% 312

of the machine-generated stories are in fact better 313

than the references, showing that references are not 314

always better than machine-generated stories. 315

Error Analysis To understand the difference be- 316

tween better- and worse-ranked stories, deeper anal- 317

ysis into the story content is necessary. We ran- 318

domly sampled 200 stories from VHED (67 human 319

and 134 machine generated) and manually labeled 320

the stories according to the following error aspects: 321

• Grammatical error (Gram): Erroneous usage 322

of past/current tense and mistakes in misplaced 323

modifiers. 324
• Repetition (Rep): Repetitive sentences or 325

phrases at sentence- and story-level. 326
• Description in isolation (Desc): Sentences that 327

lack consistency, resulting in isolated captions 328

instead of a fluent story. 329
• Absurdity (Abs): Ambiguous sentences or non- 330

sensical phrases that are incomprehensible to 331

humans. 332
• Event mismatch (Event): Stories that are off- 333

topic, which present events that are not relevant 334

to the image stream. 335
• Object mismatch (Obj): Irrelevant nouns that 336

do not appear in the images and are not seman- 337

tically related. 338
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Type Gram Rep Desc Abs Event Obj
Percentage .186 .141 .306 .351 .313 .186

Table 3: Error percentage of the sampled stories.

We first labeled stories based on all 11 error as-339

pects defined in (Modi and Parde, 2019) and we se-340

lect the most occurring errors, which are grammar,341

repetition, description in isolation, and absurdity.342

These four error aspects focus primarily on story343

coherence and within-story consistency. However,344

visual storytelling requires generated stories to fit345

the given story images. Rohrbach et al. (2019)346

show that humans are aware of the correctness of347

image descriptions. Also, Wang et al. (2020a) show348

that mismatched events in stories can lead to poor349

story quality. Therefore, we added event and object350

mismatch into our analysis. The error examples351

and correlation between the error are illustrated in352

the appendix (Table 9 and Figure 5).353

From our observation, 79.8% of the sampled ma-354

chine generated stories contained at least one of355

the errors in the categories, meaning most VIST356

models are unable to generate perfect stories. In357

Table 3, the high percentage of object and event358

mismatch errors also show that current VIST mod-359

els do not capture visual groundings accurately.360

This can lead to humans assigning higher scores361

to human-written stories since they are most likely362

to be relevant to the given images. Grammatical363

errors and absurdities are also common in gener-364

ated text, which can lead to ambiguous stories that365

humans are unable to comprehend. The prevalence366

of errors makes it essential for evaluation metrics367

to automatically detect these errors.368

4 Vrank369

We propose Vrank, a reference-free automatic met-370

ric that inputs story pairs to predict human pref-371

erences between the two stories. We utilize SIM-372

CSE(Gao et al., 2021) to leverage better sentence373

representations. SIMCSE uses contrastive learn-374

ing with dropout as augmentation, then trained on375

natural langauge inference datasets to obtain better376

sentence embeddings from BERT (Devlin et al.,377

2018). First, we pre-trained the SIMCSE model378

using SIND reference stories with the Masked Lan-379

guage Model objective. Then, we input two sto-380

ries with a [SEP] token in between through the381

pre-trained model. We use the acquired sentence382

embeddings and feed it through a regression layer383

to predict a ranking gap. We used mean squared384

error to calculate the loss between the predicted 385

ranking gap and true ranking gap. After obtaining 386

the ranking gap, we predict which story is better 387

according to the sign of the predicted ranking gap. 388

Although Vrank is a simple model fine-tuned solely 389

on human judgment, it still outperforms current ex- 390

isting metrics in our assessments. This suggests 391

further potential for use with VHED; more studies 392

can be conducted to replace Vrank with stronger 393

neural network models. 394

During model training, since the number of pos- 395

itives and negatives were not balanced in the orig- 396

inal dataset, we augmented the data to create a 397

symmetric dataset of VHED to minimize dataset 398

bias.3 The ranking gap in the resulting dataset was 399

close to normally distributed. We hypothesize that 400

thus doing makes it possible to extract more in- 401

formation, making it easier for the model to learn 402

human judgment for story pairs. However, due to 403

the small amount of data available, high variance is 404

likely (Mosbach et al., 2021) to occur during infer- 405

ence. Hence, we used all data from VHED, includ- 406

ing human agreement=3 to increase the stability 407

of our model following Mosbach et al. (2021). 408

5 Metric Assessment 409

In this section, we describe a series of assessments 410

conducted on existing metrics on VHED, in which 411

the assessment methods are based on the analyses 412

in VHED. The objective is to examine whether 413

Vrank is superior to other metrics based on our 414

analysis of VHED. 415

5.1 Experimental Settings 416

Story-Pair Ranking A recent study (Wei and 417

Jia, 2021) illustrates that pairwise accuracy reflects 418

metric performance better than using correlation 419

with human evaluation. Hence, we propose simple 420

story-pair ranking to evaluate automatic evaluation 421

metrics for visual storytelling. The task is to de- 422

termine the correct ranking order of the stories in 423

a story pair based on the story quality scores pre- 424

dicted by the automatic evaluation metrics being 425

assessed. Given the story pair (x1, x2), the auto- 426

metric being assessed predicts the corresponding 427

story quality scores (s1, s2) which we compare to 428

the averaged ranks y1 and y2 of x1 and x1 from hu- 429

man evaluation. The performance of the evaluation 430

3Other configurations, including utilizing visual features
and changing the task objective to classifying better- and
worse-ranked stories did not perform better.
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Dataset VHED VIST-Edit VHED
Subset Ω4 Ω5 Ω{4,5} AREL-edit GLAC-edit R&M M&M
Metrics Reference-based metric Reference-based metric
Random .516 .495 .511 .503 .481 .481 .528
BLEU-1 .470 .413 .459 .482 .405 .346 .529
BLEU-4 .205 .134 .192 .146 .103 .346 .097
SacreBLEU .531 .557 .536 .424 .456 .528 .541
METEOR .493 .432 .481 .437 .501 .461 .494
ROUGE-L .506 .480 .501 .375 .389 .519 .491
BERT-Score .527 .548 .531 .567 .450 .533 .529

Reference-free/hybrid metric Reference-free/hybrid metric
BLEURT .497 .451 .489 .546 .532 .509 .476
UNION-ROC .488 .521 .496 .727 .475 .445 .525
UNION-WP .449 .504 .461 .740 .612 .507 .435
Vrank .786 .826 .796 .696 .626 .816 .789

Table 4: (Left) Average ranking accuracy for each metric on VIST-Eval and VIST-Edit. (Right) Evaluation results
for reference-and-machine (R&M) story pairs and machine-and-machine (M&M) story pairs from Ω{4,5}. The
Random baseline indicates that metrics that perform around 50% correspond to random guesses. Vrank’s standard
deviation for accuracy is calculated by training over 10 different seeds and taking the average.

metric on the i-th story pair is formulated as431

ranking_acci =


1, if s1 > s2 and y1 < y2

1, if s1 < s2 and y1 > y2

0, otherwise,
(1)432

where ranking_acci = 1 indicates correct (incor-433

rect) prediction. Note that low scores indicate high434

rank. The overall metric performance is defined as435

avg_ranking_acc =
1

M

M∑
i=1

ranking_acci,

(2)436

where M denotes the number of story pairs for437

evaluation.438

Datasets In addition to VHED, we also collected439

VIST-Edit4 (Hsu et al., 2019) for story-pair ranking.440

VIST-Edit includes 2,981 visual stories generated441

by AREL (Wang et al., 2018a) and GLAC (Kim442

et al., 2018), and 14,905 human-edited visual sto-443

ries, that is, AREL and GLAC-generated stories444

edited by workers. Their paper shows that the445

crowd workers’ edits systematically increased the446

lexical diversity of the stories. Since the pur-447

pose of the editing was to improve the machine-448

generated stories, we paired up human-edited sto-449

ries and machine-generated stories as better-ranked450

and worse-ranked samples (labeled as 1 and 2), re-451

sulting in 14,905 story pairs. Comparing VHED to452

VIST-Edit, VHED contains reference and multiple453

models’ generated stories, but VIST-Edit has only454

human-machine story pairs. Additionally, VIST-455

Edit is not in Vrank’s training data. VIST-Edit is456

4VIST-Edit: https://github.com/tingyaohsu/
VIST-Edit

utilized only for metric performance reports, serv- 457

ing as an unseen dataset for Vrank. 458

Baseline Automatic Metrics We imple- 459

mented BLEU, ROUGE-L, METEOR, and 460

SacreBLEU (Keenan, 2017), all traditional 461

n-gram-based reference-based metrics. We also 462

considered the more recent BERT-Score, BLEURT, 463

and UNION as baseline metrics. In addition to 464

the above automatic metrics, we also included a 465

random baseline to provide a random score for 466

each story, shown as Random in Table 4, as the 467

lower bound. 468

A common practice for reference-based metrics: 469

a candidate story is scored against each reference 470

rj in a gold reference set R = {ri}ni=1; the highest 471

score was used. However, applying this method 472

on a reference-machine story pair would always 473

result in reference having a full score, because of 474

the exact match between reference and the gold 475

reference set. To ensure a fair evaluation and avoid 476

meaningless matching, we first check that the gold 477

references do not include the reference. To this 478

end, we propose the Reference Absent Algorithm 479

for evaluating story pairs containing the reference 480

story (or stories) as in Eq. 3, which removes the rj 481

from R when any of the candidate stories in a story 482

pair (x = {x1, x2}) is identical to rj . 483

sj = max(metric(xj , R− x)), j = {1, 2}, (3) 484

where metric(·) can be any reference-based metric 485

and sj is the story quality scores for the j-th story 486

in a story pair. The Reference Absent Algorithm 487

only applies when evaluating story pairs contain- 488

ing references, i.e., reference-machine pairs in this 489

paper. 490
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5.2 Results and Discussion491

Pairwise Story Evaluation Accuracy: Metric’s492

ability to determine the correct ranking order493

in story pairs. The average ranking accuracy of494

each automatic metric on VHED and VIST-Edit495

are presented in Table 4 (left). Around 50% corre-496

sponds to random guessing, as shown as Random497

in the table. Vrank shows superior performance498

in VHED and VIST-Edit, which VIST-Edit is the499

unknown dataset to Vrank. High performance on500

VIST-Edit and VHED indicates Vrank has the abil-501

ity to distinguish diverse story pairs. In contrast,502

we observe unexpectedly low performance for most503

baseline metrics, as they perform no better than the504

Random baseline. BLEU-4 especially struggles505

to rank the stories in both datasets. Further anal-506

ysis suggests that BLEU-4 marked ∼80% of the507

stories as 0, and Equation 1 coincidentally treated508

them as incorrect prediction because it discourages509

ties. BLEURT, in turn, also performed poorly be-510

cause it relies on reference-based metrics as sig-511

nals for training. Reference-free metrics, especially512

UNION, perform well on VIST-Edit. However, its513

design is not generalizeable to VHED.514

Worker Ranking Behavior on Metrics: The515

larger the ranking gap, the easier is it to rank.516

The ranking gap is the difference between a better-517

ranked and worse-ranked sample’s average ranks.518

VHED is categorized into four sub-datasets with519

different ranking gaps. This assessment tests each520

metrics’ ability to mimic worker ranking behavior521

observed in the analysis. Story pairs with larger522

gaps suggest stronger linguistic differences and are523

likely easier to rank, whereas those with smaller524

gaps are likely more difficult. In Fig. 3, all baseline525

automatic metrics, including metrics not reported526

in the figure, show randomly distributed scores,527

most of which remain around 50%, thus failing528

to exhibit such behavior. On the contrary, Vrank529

yields an ideal decrease. Starting with ranking gaps530

over 0.3, the accuracy reaches ∼0.85 and a grad-531

ual decrease afterward. We believe such behavior532

reveals Vrank to be a more preferable metric for533

visual story evaluation.534

Machine and Human on Metrics: Machines are535

sometimes better than humans. Two aspects536

are studied in this section. First, we evaluate the537

ability of Vrank and reference-based metrics to538

rank reference-machine (R&M) pairs. Although539

some machine texts have progressed to human-540
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Figure 3: Average ranking accuracy for each metric on
four sub-datasets with different ranking gaps r. Based
on our analyses, metrics should perform better when the
ranking gap is larger, and gradually decrease when the
gap is smaller.

level, to our knowledge, there has been little inves- 541

tigation of metrics’ ability to evaluate references 542

and machines. We apply reference-based metrics 543

with Eq. 3. This results in poor performance for 544

reference-based metrics as shown in R&M in Ta- 545

ble 45. An explanation is that since the reference is 546

removed from the reference set by Eq. 3, the refer- 547

ence needs to match with the remaining references 548

in the reference set. Although most references are 549

on topic, the stories are highly diverse (Zhu et al., 550

2020). These metrics are unable to calculate the 551

similarity to semantic levels; thus, they result in 552

poor performance. On the contrary, Vrank is a deep 553

learning model, trained on VHED and thus learned 554

to rate based on story quality rather than similar- 555

ity. Another analysis to study ability of Vrank to 556

rank correctly when machine is better than refer- 557

ence shows that Vrank yields 26.5% recall when 558

the other metrics have 0 recall without Eq. 3 and 559

∼18% with Eq. 3. 560

Second, we observe the performance of metrics 561

on M&M (machine-machine pairs). M&M ranking 562

gaps are smaller than those of R&M pairs (0.18 563

v.s. 0.21), making them harder to rank because 564

their story qualities are closer. However, Vrank 565

still shows promising performance when ranking 566

such story pairs, outperforming existing metrics. 567

Errors in Metrics: Metric’s ability to detect 568

errors. Current generated stories often contain 569

errors which prompt human evaluators to assign 570

lower scores. It is crucial for automatic metrics to 571

also recognize such errors to judge generated text. 572

To do this, we adapted the point-biserial correla- 573

5A complete table without Eq. 3 can be found in the ap-
pendix (Table 7)
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Error Types Human Vrank UNION-ROC UNION-WP BLEURT BERT-Score ROUGE-L METEOR
Gram -0.107 -0.021 -0.099 -0.087 -0.228 -0.124 0.024 -0.167
Desc -0.212 -0.154 -0.149 0.154 -0.081 0.080 0.114 -0.018
Rep -0.130 -0.042 -0.120 -0.411 0.168 0.134 0.079 -0.034
Abs -0.309 -0.308 0.003 0.120 -0.113 0.105 0.092 -0.025
Obj -0.067 -0.157 -0.089 0.158 -0.302 -0.111 -0.048 -0.098

Event -0.191 -0.093 0.008 -0.001 -0.131 0.043 0.138 -0.099

Table 5: This table shows the correlation of human rankings, automatic metric scores with the corresponding error
categories. An ideal correlation should be closer to Human. Negative correlation illustrates that higher rankings
(average ranking closer to 1) co-occur with few errors in the story. Hence, an high error detection rate is a correlation
coefficient closer to -1.

tion coefficient to analyze the correlation between574

binary annotated errors and metric scores.575

The correlation between metrics and errors is576

presented in Table 5: existing metrics are not able577

to detect errors as the correlation coefficients are578

low. From the correlation coefficients between the579

human ranking score and each error aspect, we580

observe that human evaluation for stories may be581

influenced by error aspects, especially absurdity582

and description in isolation. In general, Vrank per-583

forms best in detecting absurdity and description584

in isolation. UNION-WP performs best in corre-585

lation with repetition, which is reasonable since586

UNION is trained to discriminate erroneous stories587

that are repetitive in structure. In summary, current588

metrics remain unable to detect errors to evaluate589

coherency efficiently. Metrics ability to detect er-590

rors may give clearer indications of the quality of591

generated texts.592

6 Dataset Generalization593

In addition to VIST, we expect Vrank to reasonably594

evaluate the quality of text as well. To determine595

whether Vrank generalizes to textual stories, we se-596

lected as the benchmark the MANS dataset (Guan597

et al., 2021), an image-free storytelling dataset in598

which the stories are derived from the ROCStories599

corpus. This dataset includes 200 story prompts,600

where each prompt includes five model-generated601

stories and a reference. However, it does not con-602

tain human story rankings. Thus, for each story603

prompt, we asked five workers from Amazon Me-604

chanical Turk to rank the five stories to obtain rank-605

ing scores.606

Following the VHED construction procedure,607

the ranked stories were converted into story pairs,608

making for 1,112 story pairs for which 3 workers609

agreed on the ranking, 605 story pairs for which610

4 workers agreed, and 132 story pairs for which 5611

workers agreed. Likewise, we evaluate story pairs612

with k ≥ 4.613

Reference-based metric
Subset Ω4 Ω5 Ω{4,5}

BLEU-1 .486 .530 .494
BLEU-4 .007 .030 .001
SacreBLEU .537 .545 .539
METEOR .489 .576 .505
ROUGE-L .506 .508 .506
BERT-Score .509 .530 .513

Reference-free/Hybrid metric
BLEURT .531 .538 .532
UNION-ROC .493 .553 .503
UNION-WP .444 .500 .455
Vrank .575 .644 .588

Table 6: Average ranking accuracy for generalizing to
MANS.

The results of Vrank and the baseline automatic 614

metrics when ranking MANS are shown in Table 6. 615

We find that Vrank outperforms baseline metrics 616

in story pairs with k ≥ 4, whereas the latter still 617

show limited abilities to rank the MANS dataset. 618

In general, the accuracy of automatic evaluation on 619

MANS is lower than that on VHED. This may be 620

due to the comparably unconstrained writing styles 621

of pure textual stories. An example of the evalua- 622

tion on stories is given in the appendix(Table 8). 623

7 Conclusion and Discussion 624

We present VHED and Vrank, the first dataset of 625

human evaluation results and evaluation metric 626

for VIST. We show that Vrank performs signif- 627

icantly better in three assessment tasks and gen- 628

eralizes to other datasets. Also, recent automatic 629

metrics are ill-suited to evaluating visual stories, es- 630

pecially human-level written stories. We welcome 631

researchers to share their human evaluation results 632

to the community to broaden the data domain to ob- 633

tain more knowledge about human judgment and 634

improve the performance of Vrank. As the gap 635

between machines and humans continues to de- 636

crease, stronger metrics will be needed to evaluate 637

machine and human stories. Improving Vrank per- 638

formance to replace reference-based metrics is our 639

future goal. 640
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8 Appendix806

Application In this section, we introduce an ap-807

plication for Vrank and other reference-free met-808

rics. Our assessment indicates that Vrank’s predic-809

tions strongly agree with human judgment. We810

quantify the distance between humans and ma-811

chines by pairing up reference and generated sto-812

ries and calculating the ratio of generated stories813

that outmatch the references. Unlike human evalu-814

ation, which can be conducted only on a portion of815

the testing data, this method allows researchers to816

evaluate the proposed model over the entire testing817

dataset.818

After applying Vrank to assess five recent VIST819

models, we present the results in Fig. 4: the mod-820

els are gradually approaching human-level writing,821

outlining an exciting development of NLG in VIST.822

Figure 4: Ratio of generated stories that outmatch the
references. Colors denote the publication years. A result
of 50% indicates half of them outmatch the references.

Error Type Examples and Correlation In Ta-823

ble 9, we show examples of error types mentioned824

in our error analysis. We also show the correlation825

between different error types in Fig. 5. As the error826

types are mutually independent, there is the poten-827

tial to construct tools to automatically detect each828

error, since they do not overlap with each other.

Figure 5: Correlation matrix between different kinds
of errors, including Grammatical errors, Repetitions,
Descriptions in isolation, Absurdity, Event mismatches,
and Object detection errors

829

Reference-based metric
Subset Ω4 Ω5 Ω{4,5} R&M M&M
BLEU-1 .597 .647 .607 .657 .571
BLEU-4 .569 .689 .593 .657 .547
SacreBLEU .533 .647 .556 .657 .482
METEOR .546 .638 .564 .657 .497
ROUGE-L .541 .647 .563 .657 .494
BERT-Score .516 .663 .546 .657 .464

Hybrid metric
BLEURT .552 .664 .575 .657 .514

Table 7: Ranking accuracy for each metric on VIST-
Eval. Reference-based metrics without Reference Ab-
sent Algorithm accuracy results. Reference-free metrics
are not affected by this algorithm.

Figure 6: Normalized ranking gap distribution of
machine-machine pairs, human-machine pairs, and all
story pairs. The dashed lines are the ranking gap means
for H&M and M&M pairs, and the full line is the mean
for all story-pair ranking gaps.

Ranking Gap Distribution The ranking gap dis- 830

tribution is shown in Fig. 6, in which both the rank- 831

ing gaps and the number of stories are normalized. 832

Also, since the ranking gaps contain both negative 833

and positive values, we took the absolute value of 834

the gap for the histogram. We observe that the 835

machine-machine pairs are centered closer to zero. 836

However, the human-machine pairs are distributed 837

more evenly than the M&M pairs, which indicates 838

that human-machine pairs are easier to distinguish 839

than machine-machine pairs. 840

Without Reference Absent Algorithm Here, we 841

show the results of automatic metric accuracy in 842

story-pair ranking without the proposed Reference 843

Absent Algorithm. As expected, the accuracies 844

for H&M pairs are the same. Since all references 845

are regarded as ground truth for reference-based 846

automatic metrics, the accuracy is shown as the per- 847

centage of the human-written stories that are better 848
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than machine-generated stories. Hence, these met-849

rics are unable to identify any machine-generated850

stories that are better than human-written stories.851

This demonstrates the importance of our proposed852

algorithm in the experiment results.853

Data Collection Details We sampled 250 to 500854

image prompts from SIND’s testing dataset and855

hired crowd workers from Amazon Mechanical856

Turk to evaluate the visual stories that were gener-857

ated based of these image prompts. The workers858

were adult workers in the US with 98% assign-859

ments approved and who had completed at least860

3,000 HITs. A user interface for workers to com-861

plete was called a task. A task displayed one image862

prompt on the top with several stories at the bottom,863

and five workers were recruited to rank the stories.864

The stories usually included a reference, stories865

generated using the proposed model, and several866

baseline stories. The compensation was USD 0.10867

per task.868

Training Details We use the pre-trained base869

model from Huggingface (Wolf et al., 2020) and870

fine-tune it to our regression objective. We uti-871

lized Adam as optimizer with learning rate 2e-5872

and trained for 30 epochs. The batch size is set as873

32 and the random seed for training can be set as874

7777 for reproduction. Checkpoints are stored for875

every 500 steps and we also utilized mixed preci-876

sion training for more efficient training. The envi-877

ronment of our operating system is Ubuntu 20.0.4.878

Training was completed on two NVidia RTX 3090879

GPUs, each of which contains 24 GB of memory.880

Model Design Before we came up with the final881

model using SIMCSE, we tried several settings.882

Formulating the task as a binary classification task883

didn’t achieve good accuracy, we speculate that884

this is because the boundaries for a good and bad885

story is hard to find. Also, we tried to augment the886

story-pairs with agreement=5. We found out that887

it didn’t improve the performance. Moreover, we888

tested using CLIP(Radford et al., 2021) to extract889

image features for additional features and vision-890

language models also did not improve performance.891

Hence, we picked a simple model architecture to892

demonstrate our performance.893

Details of Story Generation Models in VHED894

• GLAC (Kim et al., 2018): combines global and895

local attention to construct image-dependent896

sentences. A context cascading mechanism is 897

incorporated to improve story coherency. 898

• AREL (Wang et al., 2018a): uses a policy model 899

and reward model to associate reward learning. 900

The policy model is used to generate stories, and 901

the reward model learns from human demonstra- 902

tions. 903

• KGStory (Hsu et al., 2020): a three-stage frame- 904

work which distills a set of representive words 905

from the input text and utilizes knowledge 906

graphs to enrich the content. It generates stories 907

from the enriched word set. 908

• PRVIST (Hsu et al., 2021a): a two-stage frame- 909

work that finds an optimal path through the con- 910

structed story graph which forms the best sto- 911

ryline. This path is then used to generate the 912

story. 913

• Stretch-VST (Hsu et al., 2021b): a modification 914

of KGStory that produces more sentences in the 915

story while maintaining quality. Appropriate 916

knowledge added to the story results in a more 917

detailed story. 918
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Story Vrank UNION BLEURT Human
Story1 i learned of my baby ’s birthday . i was very sad because my

parents made her cake . i went to get my cake . [FEMALE]
family surprised me and made me a very happy face .

Rank 2 Rank 1 Rank 1 Rank 2

Story2 one night , my parents and i decided to go to the movies . after-
wards , we decided to sleep together . i fell asleep while my dad
was watching movies . i was never able to sleep with my parents
since my parents were away .

Rank 1 Rank 2 Rank 2 Rank 1

Reference i told my mother bye as i went to school . after school later that
day my brother picked me up . he told me and my twin brother
our mother had died . i went home and cried my eyes out .

NaN NaN NaN NaN

Table 8: Example of stories in MANS datasets, and the each metrics’ rankings for stories.

Error types Examples
Grammatical error there was a lot of students . the space was very small . this is our hotel area . we got to town on

our trip . everyone had a great game .
Repetitions i went to the city yesterday . the streets were empty and the streets were empty . the city was very

tall . the city was very tall . it was a beautiful day .
Description in isolation i went on a hike . i met some people there . they were playing around the house . we got very

scared . it was a sheep .
Absurdity the city was beautiful . there was a lot of traffic . it was a nice day . and the streets were empty .

but i had a great time .
Object mismatch our trip to the town were amazing . it was a long trip to many different formations . my dad took

pictures of the view . it was a great view of the snow . i also saw water in the stone .(See Figure 7)
Event mismatch the parade was a lot of fun . there were many people there . they were all very excited . it was a

great time . everyone was dressed up .(See Figure 8)

Table 9: Error types with examples

Figure 7: Illustration for object detection error. The last sentence:"i also saw water in the stone" is incorrect. Since
there isn’t water seen in the photo, it should be snow instead. StoryID:47608.

Figure 8: Illustration for event mismatch error. The event should be a peaceful protest for civil rights, while the
example story regard the event as a festival parade. StoryID:47670.
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