
Proceedings Track
Under Review - Proceedings Track 1–32, 2024 Symmetry and Geometry in Neural Representations

Hidden Holes
topological aspects of language models

Editors: List of editors’ names

Abstract

We explore the topology of representation manifolds arising in autoregressive neural language
models trained on raw text data. In order to study their properties, we introduce tools
from computational algebraic topology, which we use as a basis for a measure of topological
complexity, that we call perforation.

Using this measure, we study the evolution of topological structure in GPT based large
language models across depth and time during training. We then compare these to gated
recurrent models, and show that the latter exhibit more topological complexity, with a
distinct pattern of changes common to all natural languages but absent from synthetically
generated data. The paper presents a detailed analysis of the representation manifolds
derived by these models based on studying the shapes of vector clouds induced by them as
they are conditioned on sentences from corpora of natural language text.

The methods developed in this paper are novel in the field and based on mathematical
apparatus that might be unfamiliar to the target audience. To help with that we introduce
the minimum necessary theory, and provide additional visualizations in the appendices.

The main contribution of the paper is a striking observation about the topological
structure of the transformer as compared to LSTM based neural architectures. It suggests
that further research into mathematical properties of these neural networks is necessary to
understand the operation of large transformer language models. We hope this work inspires
further explorations in this direction within the NLP community.

1. Introduction

Large language models and NLP systems based on them are currently at the forefront
of research and applications of artificial intelligence. Most efforts in this area, however,
focus on analyzing the model outputs. Significantly less work has been done so far on
studying the structure of their internal representations. The power of neural network models
stems from their ability to derive informative representations of inputs into sub-manifolds of
high-dimensional real vector spaces. Ultimately, this mapping of discrete text input into
manifolds induced from large quantities of raw text is at the core of emergent abilities in large
language models. It is precisely the topology and geometry of those vector spaces that allow
AI assistants such as Chat-GPT to perform their cognitive functions. When we interact with
language models on the level of their output, we are looking at the projections of these high
dimensional representations back onto a discrete representation. The natural topological
structure of these language embeddings, which define the ”thoughts” of the system, is lost
in this projection. We are thus looking at shadows of complex high-dimensional objects,
that could have nontrivial shapes.

This paper investigates topological aspects of representation spaces induced by neural
network models trained on natural language data. Instead of working directly with model
outputs, we investigate how the internal structure of the hidden layers evolves during training

© 2024 .



Proceedings Track
as the models process inputs corresponding to natural language text and contrast it with
synthetically generated inputs. In analogy to studying a human subject, our approach
would be akin to analyzing the brain activity of a person as they are reading a book, and
comparing it to the brain activity of a person who is reading unnatural text generated by
a random process, as opposed to relying on subject’s introspection through dialogue. Our
method is therefore based on intrinsic evaluations, which is in contrast to most contemporary
approaches, which are predominantly extrinsic and behavioral in nature. In these mainstream
methods, the abilities of the model are examined with techniques based on prompting and
analyzing the outputs, or by proxy of performance on downstream tasks. Instead, we focus
on the analysis of activation patterns within the models’ neural networks from a topological
perspective. The tools we use here, are novel in the field of natural language processing, and
we hope this paper inspires the AI community to look into these and similar methods in
future studies.

Although the largest NLP systems are currently based on transformer architectures such
as GPT, gated recurrent models, such as LSTM have been used extensively, and are still
deployed in many AI systems dealing with natural language inputs. Furthermore, recurrent
neural networks are increasingly combined with self-attention architectures such as GPT,
leading to improved performance and new abilities of these augmented models Bulatov
et al. (2023). Recurrent models based on state space architectures recently outperformed
transformers on language modelling as well as downstream NLP tasks, while exhibiting
superior scaling properties Gu and Dao (2023). We applied our analysis to both transformer
and recurrent language models in order to compare the topological structure of their
representation manifolds. Studies of algebraic and topological aspects of hidden state
trajectories in gated recurrent networks can lead to re-parametrization and topological
regularization techniques making these architectures more suitable to LLM setting, especially
when combined with transformer architectures.

As of now, it is still a mystery why certain behaviors emerge in large language models, and
little is understood about the structure of their representation manifolds. The more we know
about properties of embedding spaces emergent in the context of language models trained on
raw text data, the closer we get to answering these questions. Additionally, neural language
models, as it currently stands, tend to be extremely inefficient and over-parametrized.
Understanding the structure of their representation spaces can help re-parametrization
efforts aiming at model compression and development of more sustainable NLP systems. In
this paper we explore topological aspects of neural language models in an effort to better
understand the shapes of their activation manifolds.

2. Relation to Other Work

Gunnar Carlson applied topological data analysis to patches of pixels from naturally occurring
images Carlsson et al. (2008). The analysis led to a conclusion that the shape of the image
manifold under study could be approximated by a Klein bottle. This realization led to a
novel compression algorithm for images taking advantage of a parametrization of the pixel
space that mapped 3x3 patches of images onto points on a sub-manifold homeomorphic to
the Klein bottle within the image manifold. To the best of our knowledge such approaches
have not been applied in the field of natural language processing. Recent developments in

2



Proceedings Track
Hidden Holes

deep learning hint at the utility of understanding topological structure of data in improving
representational power of neural information processing systems. For instance, Fuchs et al.
(2020) show that augmenting the self-attention mechanism of transformer architectures
with an inductive prior encoding roto-translational structure leads to significant gains in
robustness for point cloud and graph data modeling. The idea of encoding manifold structure
by algebraically tying synaptic connection weights is at the core of advancements in neural
artificial intelligence Hinton et al. (2011) Jumper et al. (2021). It is likely that augmentations
to neural architectures informed by deep understanding of topological structure of data,
will provide a source of future advancements in this area. A better understanding of the
structure of representation spaces induced by neural networks from training data can aid
research efforts aimed at gaining deeper insights into the inner workings of black box neural
systems such as large language models.

3. Methods

Figure 1: The main data analysis pipeline. Raw text is transformed into a sequence of high
dimensional point clouds by the neural layers of a language model. The shapes of
these point clouds are then analyzed from a topological perspective by computing
persistent homology modules. The free ranks of these algebraic objects keep track
of the number of holes emerging within the manifolds from which these point
clouds are sampled. We also used additional topological analysis methods, which
are explained in the appendices.

Our method can be decomposed into the following stages, which we repeat at each epoch
of training:

1. select a sample of sentences from the training corpus

2. feed the sentences into the language model and record the hidden layer activations
from the model (the hidden state)

3. compute topological features of the hidden state

The representations collected in step 2 were stored in separate tensors - one per each
sentence processed by the models. They form a unit of analysis for the topological compu-
tations performed in step 3. Each sentence generates a 3D tensor of floating point values
with the following axes: number of tokens × state dimension × number of epochs, where

3



Proceedings Track
state dimension refers to the hidden state dimension, which can be one of the following:
self-attention layer output, recurrent cell state, token embedding in case of the input layer.

We apply three different methods of topological analysis to the hidden state tensors:
persistent homology, simplicial mapping approximation, sliding window embedding. The
main approach is based on persistence modules Zomorodian and Carlsson (2004). Detailed
description is provided in the appendices. We can interpreted the information these methods
provide in the following way. The tokens of a sentence are transformed into clouds of
points (vectors associated with the tokens) by the neural network layers. These clouds
can be thought of as finite samples from neighborhoods of some underlying manifolds.
These methods produce data that is subsequently summarized into sequences of integers
(traditionally called Betti numbers in classical homology theory), which count the number
of independent holes (homology classes) in those hidden manifolds. Finally, we use those
integer sequences to compute a summary statistic, which we call perforation. It is a measure
of topological complexity of the hidden manifolds, which we use to track the evolution of the
representation spaces induced by the neural networks as they are trained on natural language
data. We designed perforation to be a simple and intuitive measure of topological complexity,
which can be easily computed from the output of the topological analysis methods we use.
It has the following useful properties:

• it is a positive scalar, which increases with the number of holes in the hidden manifolds

• higher dimensional holes are given more weight, as they require more complex topolog-
ical structure to produce

• it bijectively encodes the Betti number sequences of the hidden manifolds, which is a
homotopy invariant - meaning that topologically equivalent shapes will produce the
same perforation

Definition - perforation:

Given a vector space representation of a sentence s under its language model
induced from a corpus of text, as described previously, let n be the maximum
dimension of its holes (as measured by topological analysis methods - c.f. Ap-
pendix C). Then the perforation of the given sentence s is defined to be
ϕ(s) = H1 log 2 +H2 log 3 + · · ·+Hn log pn. Here pn denotes the n-th prime, and Hn

is the number of independent holes (free rank of homology) in dimension n. Hence,
perforation is the sum of Betti numbers, weighted by logarithms of consecutive
primes. Note that perforation is a homotopy invariant as it is equivalent to a Goedel
encoding of homology ranks.

We count the number of persistent homology classes Edelsbrunner et al. (2008) as a
proxy for estimating the number of holes in the manifold underlying our vector clouds. In
order to do that, we compute persistence barcode diagrams Ghrist (2008) from a Vietoris-
Rips filtration of the point cloud of activations associated to each sentence. We grow ϵ
balls around each token vector in the ambient representation space, and record patterns

4



Proceedings Track
Hidden Holes

of intersections between sets of neighborhoods as the value of ϵ radius increases. The bars
indicate when a hole (in various dimensions) is born and when it dies. Holes are born when
they are formed, and die when they are filled by a higher dimensional object. For instance,
a 2-dimensional hole is born when a pattern of surfaces (generated by triple intersections)
of vector neighborhoods surrounds a 3-dimensional cavity in the ambient space. It dies at
a larger ϵ value, when the cavity is filled by a 3-dimensional volume. These changes are
recorded by bars that start at the birth and end at death values of ϵ associated to each hole
(refer to Appendix C for details).

We also apply topological methods based on approximating the shapes of our point
clouds with a simplicial complex of a lower dimension. This involves clustering the points
based on a cover of a projection to a lower dimensional subspace (see figure 10 for an example
and Appendix C for details). Finally we look at another method of topological data analysis
suitable to time series data. We view our sentences as time series of token embeddings and
apply a sliding window to re-represent them as a collection of point clouds generated from
considering consecutive tokens together (see figure 13 for an illustration).

4. Results

We started by analyzing the data from the recurrent models in order to establish a baseline
for the topological complexity of the representation spaces induced by neural language
models. We then compared the results to the transformer models.

Initially, we looked at the token embeddings (input level representations induced by
the neural network). These did not seem to have complex topological structure, and were
rather ball like, with no cavities in higher dimensions. We then inspected representations
deeper into the neural network stack, comparing topology of input layer embeddings with
the hidden states of the language model for the same sentences side by side. After computing
persistence diagrams of hidden layer representations, we observed a surprising pattern.
Although both the input (embedding) and hidden layer (cell state) representations of the
sentences evolved during training - that is the vectors corresponding to tokens of each
sentence moved around the ambient space - the former did not form cavities, while the latter
did. In other words, the topology of the embeddings remained nearly constant during that
process, while the deeper representations (hidden states of the system) of the same sentences
changed shape significantly, developing complex topological structures. Figure 2 shows the
shift of homology rank distributions in two most informative dimensions (1 and 2) as corpus
perplexity decreases during model convergence.

Encouraged by this discovery, we decided to survey the embedding manifold and the
hidden representation manifold with the simplicial mapping technique (as in figure 10).
We produced graphs (i.e. simplicial mapping approximation of dimension 1) for individual
sentences, and larger sections of the corpus in order to visualize the two spaces in a human
readable format. This resulted in visualizations exhibiting striking differences between
the two manifolds, as viewed through the lens of simplicial mapping. The top of figure 3
shows a visualization resulting from simplicial mapping of hidden state vectors of our LSTM
language model corresponding to a random sample from English. We see that the graph
is quite complex with multiple connected components, and intricate topological structure
of edges. The bottom of figure 3 shows visualization of the same text in the embedding

5



Proceedings Track

Figure 2: Visualization of the two most informative homology dimensions (loops and closed
surfaces) in the representation manifold of an LSTM language model during
training. As the model converges (low perplexity) we observe more topological
complexity transferred to hidden states (top) and the corresponding reduction in
topological complexity of input embeddings (bottom).

Figure 3: Graph approximations (simplicial mapper) to point clouds corresponding to tokens
of a random text sample in English. Hidden states are on top and embeddings on
the bottom.

space. We observe that the resulting graphs are significantly simpler. Appendix C shows
more visualizations of individual sentences, as well as approximations generated from entire
documents.

This difference in topological complexity between embeddings and hidden states held
across sentence sizes and across languages (we trained models on English, German, and
Japanese). In order to see the changes in complexity across depth and time during training,
we sampled 2000 sentences at each epoch of training. We then computed their persistent
homology and used it to determine perforation (our one point summary of topological
complexity) for each sentence. We plotted perforation values for the input layer token
embedding, and the hidden layer representations (mean over the sample and 98% interval).
In the case of the LSTM model, we observed that perforation of deep contextualized
representations increases with learning. More precisely, during model training, there is an
upwards trend in perforation over epochs in the hidden states of the language model as
perplexity decreases. This suggests that perforation can be used as a diagnostic tool for
determining model convergence, and defining early stopping criteria for language models.
Input embeddings by comparison show no increase in perforation, and in fact decrease as the
model converges showing a reversed relationship with perplexity. These results suggests that
the topological structure is transferred from the embedding space to the hidden states during
training. Furthermore, this topological relationship between global and contextualized word
representations with respect to perplexity (higher epochs are lower perplexity) appears
uniformly in all natural language corpora examined (figure 4 shows results for input and

6



Proceedings Track
Hidden Holes

hidden perforation for three languages). All natural languages exhibited inverse relationship
between input and hidden layer representations of sentences. In particular, the input
representations usually start with perforation in mid-teens and drop to near zero within the
first 20 epochs, after which they remain nearly flat for the rest of the training process. By
contrast, the hidden state representations start near zero and increase to mid-teens during
the same period, and stay nearly flat afterwards. The drop in the perforation of input
representations seems more sudden than the rise in hidden state representations, and some
growth in topological complexity still happens in the hidden layers after a delay from when
the input embeddings lose their initial perforation.

After discovering this relationship and establishing that it holds for all natural languages
that we tested, we wanted to see if this effect is particular to natural language data, or
is it a property of LSTM networks that would produce similar outcomes regardless of the
corpus used. If the phenomenon depended on the training data, we wanted to see if it can
be reproduced with fake randomly generated data, which does not encode natural language
structure. For this purpose we generated two synthetic corpora: Zipf and Uniform. Both of
these contained the same number of sentences, with the same sentence length distributions,
and same lexicon as the natural language corpora used before. The difference was that
they destroy natural language structure, generating meaningless sentences by sampling word
tokens at random. The Zipf corpus preserves the unigram frequency distribution found
in natural corpora, while the Uniform corpus samples all tokens with equal probability,
destroying all statistical properties of those languages. Surprisingly, we discovered that
none of the perforation phenomena common to natural languages occur in language models
trained on those synthetic corpora. This implies that perforation can be used as a basis
for a natural language detector. Here, the relationship between perforation changes during
training for input and hidden state preresentations that holds for natural languages is no
longer present. The input embeddings exhibit trivial homological structure with perforation
remaining at zero (plus negligible topological noise). The hidden state perforation is also
near zero, dropping slightly from a low value around 2 during initial epochs (while the
natural language perforation always goes up significantly). Figure 4 shows the hidden state
plots of perforation values over 50 epochs of language model training. Here the difference
between natural and synthetic data is immediately visible.

Having established this pattern of increased topological complexity in the hidden layer
of LSTM language models, we wanted to see if it holds for the transformer architecture. For
this purpose we used Pythia - a suite for analyzing large language models across training and
scale Biderman et al. (2023). These are GPT based, decoder only, autoregressive transformer
models ranging from 70m to 12B parameters, trained on the Pile dataset Gao et al. (2020).
Figure ?? shows the perforation plots for the transformer architecture.

In contrast to the recurrent cell, we see initial sharp drop in perforation which then
remains approximately constant around a low value below 2. These plots look more like
the token embedding layer of the LSTM model, although they are the deep representations
computed by the hidden layers. In the recurrent case, the deep representations exhibited
a clear rise in perforation. This means that the hidden state manifold of the LSTM cell
develops complex topological structure during training, while the manifolds induced by the
transformer layers do not.

7



Proceedings Track

Figure 4: perforation plots for a selection of models and training data

8



Proceedings Track
Hidden Holes

We also computed perforation on synthetic corpora on larger GPT models (additional
plots are given in the eppendices). These corpora preserve the sentence length distribution of
the English corpus, but are composed of meaningless sentences produced from two unigram
distributions: uniform and Zipf. We see that the plots are similar to GPT plots for natural
English corpus in figure ??, except that the uniform plots start much higher. The high initial
perforation values for the uniform corpus are expected because in this corpus every token has
an approximately equal chance of appearing in the context of any other tokens, which means
many random connections will be formed when a limited sample is chosen within a sentence.
This leads to random graphs with many loops. However, all perforation vanishes as the
model is trained, same as for the natural corpora. This shows that transformer models do
not exhibit the topological structure that allowed recurrent models to distinguish between
natural and synthetic data purely based on the homology of their representation manifolds.

We wanted to test whether the vanishing of perforation in GPT models had something
to do with the fact that transformer layers are fully connected. For that purpose, we
implemented a third language model architecture fully based on convolutional neural networks
and trained it on a variety of source languages. The CNN language model is not fully
connected, while also not involving recurrence, so it is a good third option allowing us to
ablate those two factors. Figure ?? shows results for one of the languages (additional plots
are given in the appendix). We observed transformer like vanishing of perforation at the
input and output layers. However, the hidden middle layers of the CNN LM showed a
consistent pattern of slight grow in topological complexity that stabilizes in mean within
the range of 3-6 and shows increased variance. This is interesting because the inner layers of
the CNN model show some similarity in topological changes during training to the hidden
state of the LSTM, while the input and output layers look similar to GPT. The input layer
is the token embedding, while the output layer is a linear projection and softmax. The
hidden layers have nontrivial connection structure, because they are the convolutions, which
introduce sparsity. In case of the LSTM, the nontrivial topology in terms of computation
graph was introduced by the hidden state bottleneck. Because of these observations we
believe that ther relative lack of topological complexity in GPT models is caused by the
fully connected nature of tranformer blocks.

5. Conclusion

We showed that the hidden state representations of recurrent language models exhibit
complex topological structure, while the input embeddings do not. Furthermore, we showed
that this pattern is consistent across different natural languages, and is not present in
synthetic data. Surprisingly, transformers do not exhibit this pattern, and their hidden
state representations remain topologically simple throughout training. In order to suggest a
possible reason for this lack of ”holes” in transformer manifolds, we implement convolutional
language models, and show that sparsity of the convolutional layers introduces holes into their
emergent representations. This suggests that fully connected computational graphs, such as
those in the GPT models, induce solid ball representation manifolds. In contrast, nontrivial
topologies of the recurrent and convolutional architectures lead to complex topologies in the
representations such models induce.

9



Proceedings Track
References

Takuya Akiba, Shotaro Sano, Toshihiko Yanase, Takeru Ohta, and Masanori Koyama.
Optuna: A next-generation hyperparameter optimization framework. In Proceedings of
the 25th ACM SIGKDD international conference on knowledge discovery & data mining,
pages 2623–2631, 2019.

Stella Biderman, Hailey Schoelkopf, Quentin Gregory Anthony, Herbie Bradley, Kyle O’Brien,
Eric Hallahan, Mohammad Aflah Khan, Shivanshu Purohit, USVSN Sai Prashanth,
Edward Raff, et al. Pythia: A suite for analyzing large language models across training
and scaling. In International Conference on Machine Learning, pages 2397–2430. PMLR,
2023.

Aydar Bulatov, Yuri Kuratov, and Mikhail S Burtsev. Scaling transformer to 1m tokens
and beyond with rmt. arXiv preprint arXiv:2304.11062, 2023.

Gunnar Carlsson, Tigran Ishkhanov, Vin De Silva, and Afra Zomorodian. On the local
behavior of spaces of natural images. International journal of computer vision, 2008.

Yann N Dauphin, Angela Fan, Michael Auli, and David Grangier. Language modeling with
gated convolutional networks. In International conference on machine learning, pages
933–941. PMLR, 2017.

Herbert Edelsbrunner, John Harer, et al. Persistent homology-a survey. Contemporary
mathematics, 453(26):257–282, 2008.

Stephen Fitz. The shape of words-topological structure in natural language data. PMLR,
2022.

Fabian B Fuchs, Daniel E Worrall, Volker Fischer, and Max Welling. Se (3)-transformers: 3d
roto-translation equivariant attention networks. arXiv preprint arXiv:2006.10503, 2020.

Leo Gao, Stella Biderman, Sid Black, Laurence Golding, Travis Hoppe, Charles Foster,
Jason Phang, Horace He, Anish Thite, Noa Nabeshima, et al. The pile: An 800gb dataset
of diverse text for language modeling. arXiv preprint arXiv:2101.00027, 2020.

Robert Ghrist. Barcodes: the persistent topology of data. Bulletin of the American
Mathematical Society, 45(1):61–75, 2008.

Albert Gu and Tri Dao. Mamba: Linear-time sequence modeling with selective state spaces.
arXiv preprint arXiv:2312.00752, 2023.

Allen Hatcher. Algebraic topology. Cambridge University Press, 2001.

Geoffrey E Hinton, Alex Krizhevsky, and Sida D Wang. Transforming auto-encoders. In
International conference on artificial neural networks, pages 44–51. Springer, 2011.

John Jumper, Richard Evans, Alexander Pritzel, Tim Green, Michael Figurnov, Olaf
Ronneberger, Kathryn Tunyasuvunakool, Russ Bates, Augustin Ž́ıdek, Anna Potapenko,
et al. Highly accurate protein structure prediction with alphafold. Nature, pages 1–11,
2021.

10



Proceedings Track
Hidden Holes

Katherine Lee, Daphne Ippolito, Andrew Nystrom, Chiyuan Zhang, Douglas Eck, Chris
Callison-Burch, and Nicholas Carlini. Deduplicating training data makes language models
better. arXiv preprint arXiv:2107.06499, 2021.

Stephen Merity, Nitish Shirish Keskar, and Richard Socher. Regularizing and optimizing
lstm language models. arXiv preprint arXiv:1708.02182, 2017.

Jose A Perea and John Harer. Sliding windows and persistence: An application of topological
methods to signal analysis. Foundations of Computational Mathematics, 15(3):799–838,
2015.

Gurjeet Singh, Facundo Mémoli, Gunnar E Carlsson, et al. Topological methods for the
analysis of high dimensional data sets and 3d object recognition. PBG@ Eurographics, 2,
2007.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux,
Timothée Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, et al.
Llama: Open and efficient foundation language models. arXiv preprint arXiv:2302.13971,
2023.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien Chaumond, Clement Delangue, Anthony
Moi, Pierric Cistac, Tim Rault, Rémi Louf, Morgan Funtowicz, Joe Davison, Sam Shleifer,
Patrick von Platen, Clara Ma, Yacine Jernite, Julien Plu, Canwen Xu, Teven Le Scao,
Sylvain Gugger, Mariama Drame, Quentin Lhoest, and Alexander M. Rush. Transformers:
State-of-the-art natural language processing. In Proceedings of the 2020 Conference
on Empirical Methods in Natural Language Processing: System Demonstrations, pages
38–45, Online, October 2020. Association for Computational Linguistics. URL https:

//www.aclweb.org/anthology/2020.emnlp-demos.6.

Afra Zomorodian and Gunnar Carlsson. Computing persistent homology. In Proceedings of
the twentieth annual symposium on Computational geometry, pages 347–356, 2004.

Appendix A. Model Details

A.1. AWD-LSTM

We used a SoTA LSTM model design for our recurrent LMs. We briefly describe features
of this model and the optimization scheme. The Averaged Stochastic Gradient Descent
Weight-Dropped Long Short-Term Memory model (AWD-LSTM) is an enhancement over
traditional LSTM models. Designed to address overfitting and improve regularisation in
sequence modeling tasks, especially in natural language processing, it includes the following
key-features: DropConnect on LSTM Weights: Randomly drops connections in the LSTM
layers; a variant of dropout applied to recurrent networks. DropConnect is a variation of
the dropout technique, specifically applied to the recurrent connections in LSTM layers.
Unlike standard dropout that randomly zeroes out activations, DropConnect zeroes out
a random subset of the weights in the weight matrices. This randomness in dropping
connections helps prevent overfitting by ensuring that the model does not rely too heavily

11

https://www.aclweb.org/anthology/2020.emnlp-demos.6
https://www.aclweb.org/anthology/2020.emnlp-demos.6


Proceedings Track
on any single connection, thus improving the model’s ability to generalise to unseen data.
Weight Dropping: Applies dropout to the weights of the recurrent connections, enhancing
the model’s ability to generalise. This is a regularisation strategy where dropout is applied
directly to the weights of the hidden-to-hidden recurrent connections within the LSTM
units. By randomly setting a fraction of these weights to zero, the network is forced to
learn redundant representations, making it more robust to the loss of specific connections.
This technique is particularly effective for sequential data like natural language, where
dependencies span over long sequences, as it encourages the model to capture and preserve
information over longer time steps. Non-monotonically Triggered Averaged Stochastic
Gradient Descent (NT-ASGD): An optimiser that transitions from SGD to ASGD when
a specified trigger in the validation loss is observed, promoting convergence stability. In
NT-ASGD, the transition from standard SGD to ASGD is triggered based on the model’s
performance on a validation set. Specifically, ASGD begins when the validation loss fails
to improve monotonically. ASGD averages the model parameters over time, which often
leads to better generalisation and more stable convergence, especially in the latter stages of
training. Customisable Embedding and Dropout Layers: Allows different embedding sizes
and dropout rates for each layer, providing flexibility in model architecture. Embedding
size determines the dimensionality of the vector space in which words or other inputs are
represented. Different sizes can capture varying levels of semantic information. Similarly,
allowing different dropout rates for each layer gives more control over how much regularisation
is applied at different stages in the network. This customisation enables the model to be
more finely tuned to the specific characteristics of the dataset it is trained on. These features
collectively enhance the model’s performance in handling long-range dependencies and
complex patterns in sequential data like natural language processing Merity et al. (2017).

A.2. Transformer

A.2.1. Pythia

Pythia is a comprehensive and extensible analytical suite designed for in-depth study and
analysis of LLMs across various stages of training and scaling. In essence, it provides a series
of autoregressive, decoder-only, GPT-based transformer models of 70m to 12B parameters,
which are trained on the Pile dataset Gao et al. (2020). Furthermore, it offers advanced
tools for assessing the performance of LLM, their accuracy, efficiency, and throughput.
These include tools for analysing the training process, identifying patterns, bottlenecks,
and monitoring and recording metrics like loss function values, gradient norms, and other
pertinent indicators of model learning and convergence, which are essential for diagnosing
training issues and optimising model architecture and hyperparameters. Also, it allows
to evaluate scaling and its impact on model performance, including memory management,
processing speed, and scalability limits in terms of parameters, data size, and computational
resources, enabling research on trade-offs and benefits of scaling. Since it includes a set of
benchmarks and evaluation metrics to assess the performance of LLMs on various tasks, it
allows for comparing different models and understanding their strengths and weaknesses in
specific domains or tasks. Beyond those tools and methodologies for assessing complexities
and bottlenecks in LLM development, our foremost interest is in their provision of checkpoints

12



Proceedings Track
Hidden Holes

that allow us to understand information encoding throughout training and analyze the
evolution of topological patterns at each layer of the GPT stack Biderman et al. (2023).

A.2.2. LLaMA

Linguistic LAnguage Model Attention (LLaMA) is a set of SOTA foundation language
models between 7B and 65B parameters, trained on trillions of tokens, using publicly
available datasets exclusively. LLaMA-13B outperforms GPT-3 (175B) on most benchmarks,
and LLaMA-65B is competitive with other equally sized models like Chinchilla-70B and
PaLM-540B. After an initial leak that caused some outrage, all models were released to
the research community. LLaMA models distinguish themselves through novel attention
mechanis and architectural design. They adopt a transformer-based architecture, similar to
GPT-3 or BERT, but incorporate modifications in their attention mechanisms by employing
a multi-head attention structure that allows for more efficient and effective processing of
linguistic inputs. Each attention head is designed to capture different aspects of language
like syntax, semantics, and context, which enables the model to generate more coherent
and contextually relevant text. LLaMA are trained on large datasets of about 4.75 TB,
comprising diverse textual sources, including books (e.g., ArXiv, Gutenberg Project), articles
(e.g. StackExchange), Code (e.g., GitHub) and crawled websites (e.g., Wikipedia), which
ensures the models’ proficiency across a wide range of topics and over 20 languages. The
training process utilizes techniques like gradient checkpointing and mixed-precision training to
optimise computational efficiency and reduce memory requirements. LLaMA achieved SoTA
performance in various natural language processing domains, such as language understanding,
generation, translation, fluency, and contextual relevance in generated text. The models
are particularly strong at tasks requiring deep linguistic understanding, such as sentiment
analysis, summarization, and question-answering Touvron et al. (2023).

A.3. GCN

Finally, we deploy Gated Convolutional Networks (GCN), a variant of Convolutional Neural
Networks (CNN) that integrate gated linear units (GLU). These GLU are instrumental
in controlling the flow of information, similar to the gating mechanisms in LSTM, but
optimised for convolutional structures. Through convolution, inputs can be handled in
a parallel manner, thus significantly enhancing computational efficiency compared to the
sequential processing inherent in RNN. This parallelization is particularly beneficial for
large-scale language modeling tasks, where large amounts of data need to be processed
efficiently. Another aspect crucial to language modelling is that Gated Convolutional
Networks exhibit proficiency in capturing long-range dependencies within sequences. This
proficiency is primarily attained through the use of gated mechanisms and the inherent
design of CNN that facilitates modeling of hierarchical structures and dependencies in data.
This is crucial for understanding contextual relationships in language, which is vital for tasks
such as text generation and machine translation. GCN outperform LSTM-based models
on several language modeling benchmarks, which mainly is attributed to their ability to
efficiently process large sequences of data while effectively capturing long-range dependencies
that are prevalent in natural language Dauphin et al. (2017).

13



Proceedings Track
Appendix B. Data Preparation

B.1. AWD LSTM

Based on previous research Merity et al. (2017), we implement a simple stacked LSTM
based on a standard PyTorch LSTM model, surrounded by an embedding and decoding
layer, as well as a number of hidden dropout layers that helps regularising the model.
Dropout probabilities for each layer and types of activation are tuned hyperparmeters. More
concretely, we create two module lists for the rnns and their dropouts and loop each pair
through the previously computed embeddings, which then is passed through the linear
decoder for the next prediction.

We use custom corpora of text from several languages based on crawling news articles
and open domain books, as well as synthetic randomly generated data, and tokenise it by
adding BOS and EOS tokens, replacing words that occur less than 3 times with UNK tokens,
transforming every word to lowercase, retaining digits, and stripping leading and trailing
whitespace. Finally, we split sentences into training and validation set 8:2 without the use
of a test set.

We perform Bayesian hyperparameter tuning with Optuna Akiba et al. (2019) by first
deciding a for a prior of each hyperparameter based on mean observations in the training
data, then defining an objective function to return the validation loss of the model. Table
B.1 explains the hyperparameters and priors.

Hyperparameter Prior Explanation

n hid UniformInt(50, 1000) Number of hidden states to use. When
using multiple LSTM layers, this is the
total size of all hidden states

n layers UniformInt(2, 5) Number of LSTM layers. Fixed to 1 when
using single layer LSTM

emb sz UniformInt(10, 500) Embedding size dimension. Fixed to 300,
when using Glove

tie weights UniformInt(0, 1) Whether to set same weights for decoder
and encoder

out bias UniformInt(0, 1) Whether to use a bias parameter in the
decoder

output p UniformFloat(0, 0.5) Dropout probability of output
input p UniformFloat(0, 0.5) Dropout probability of input

hidden p UniformFloat(0, 0.5) Dropout probability hidden states
embed p UniformFloat(0, 0.5) Dropout probability embeddings

weight p UniformFloat(0, 0.5) Dropout probability of weights
lr UniformFloat(1e-4, 0.1) Learning rate to use
wd UniformFloat(0, 0.5) Weight decay

freeze epochs UniformInt(0, 95) Number of epochs to freeze pretrained em-
beddings for. Fixed to 0, when not using
pretrained embeddings

Table 1: Hyperparameters and priors of the LSTM model

14



Proceedings Track
Hidden Holes

Those choices are constrained by computational capabilities, especially when using glove
embeddings in combination with multiple LSTM layers. For example, we need to limit
the number of total hidden states to about 1,000 during hyperparameter tuning due to
GPU memory limits. Table B.1 displays the results of the hyperparameter tuning for the
following types of LSTM: multilayer, single layers, pretrained embeddings and non-pretrained
embeddings.

Name Multi Pretrained Multi Random Single Pretrained Single Random

Perplexity 163.56 179.79 167.10 179.39
emb sz nan 768.00 nan 445.00
freeze epochs 78.00 nan 71.00 nan
n hid 349 979 762 327
n layers 2.00 3.00 nan nan
embed p 0.14 0.36 0.00 0.40
hidden p 0.22 0.41 0.24 0.42
input p 0.07 0.20 0.37 0.36
lr 0.02 0.01 0.04 0.04
out bias True True False True
output p 0.48 0.44 0.44 0.47
weight p 0.41 0.48 0.17 0.34
wd 0.08 0.25 0.17 0.20

Table 2: Hyperparameter settings and their results. * emb sz is shown as NA, because it
isn’t optimised in hyperparameter tuning, but the actual emb sz of the architecture
is 300, which is the size of the glove embeddings. freeze epochs value shown as
NaN means that freezing isn’t implemented at the time. n layers being Nan means
single LSTM layer. wd being NAN means the default value of 0.01.

We retrieve hidden states over a random sampling of 2000 input sentences from the
training corpus (by performing inference) at 100 evenly space checkpoints during training.
Before retrieval, we set all hidden states to 0, put the model into evaluation mode, and
turn off dropout and gradient calculations. We use the HDF5 binary data format, which
allows efficient manipulation of large data tensors stored on the hard drive. With every
new sentence used for analysis, we allocate a tensor with the dimensions (number of tokens)
x (hidden state dimension) x (number of epochs). In order to retrieve those tensors from
tokens of each sentence, we loop over all tokens while recording the corresponding embedding
and hidden state vectors at each layer.

B.2. Transformer

B.2.1. Pythia

Since Pythia is pretrained mostly on English test, we perform inference on a test corpus of
English sentences, as well as three variants of random corpora generated using a subset of
English tokens recognized by the Pythia models. The rendom samples are the following. A

15



Proceedings Track
”permutation” corpus - obtained by randomly shuffling the order of words within a subset
of English sentences. A ”Zipf” corpus - obtained by generating random sequnces of words
according to the unigram distribution matching that present in the natural corpus. A
”uniform” corpus - where words are generated with equal probability. All these synthetic
corpora preserve sentence length distribution of the natural corpus. Corpora are tokenised
by model-default tokeniser, lower-cased, transformed into lists of strings and inference is
conducted on sentence level. We conduct inference on the 70m and 160m deduped Lee et al.
(2021) Pythia models Biderman et al. (2023) with these corpora, and record embeddings
and hidden states as numpy arrays with size (sequence length x hidden size) for 100 training
checkpoints. The chosen training checkpoints were: the initial checkpoint (0), ten log-spaced
steps (1,2,4,...512), and 89 linearly spaced (using numpy linspace method) steps in range
(1000 ... 143000) .

Model selection was limited by computational constraints. We select all layers for the
70m model, and three layers for the 160m model, as summarised in table 3.

70m model 160m model

Hidden size 512 768

Total number of layers 6 12

Chosen layers all 4, 8, 12

File size per step ca. 170MB ca. 375MB

Table 3: Overview Pythia models chosen

We deploy the standard Pythia tokeniser Biderman et al. (2023), using their training
corpus that has a vocabulary size of 50,254 tokens. Since it treats spaces as prefix of tokens
and does not feature a dedicated beginning-of-sentence token, we adjusted the settings to
the input format of list of strings.

B.2.2. LLAMA

Due to restrictions in computational resources, we conduct sentence-level inference on
thse same custom-made research corpora, using the smallest 7B parameter LLaMA model
Touvron et al. (2023), of which we use the Int8 quantized version from the Hugging Face
transformer library, which deploys mixed-precision decomposition for maintaining model
performance Wolf et al. (2020). We use the provided byte-pair-encoding tokeniser based on
sentencepiece that is trained on a trillion tokens from publicly available data of the top 20
most spoken languages. Since it does not prepend a prefix space if the first token is the start
of a word and there is no padding token in the original model, we unset the default padding
token. In absence of time steps or checkpoints, we collect input embeddings and hidden
states of the output layer only by performing inference on the fully trained model. Due to
the lack of training checkpoints we can not produce a regular ”perforation over epochs” plot
as for the other models, but instead produce a bar-chart visualization by randomly sampling
2000 sentences and summarizing results with a histogram of perforation values (quantized
to fall between different intervals - that is the height of the bar corresponds to the fraction
of sentences in the sample that had perforation with a given interval of values).

16



Proceedings Track
Hidden Holes

Figure 5: A filtration of Vietoris-Rips complexes with distance parameter ϵ on a set of points
embedded in an ambient metric space, and the associated persistent homology
barcodes. Ghrist (2008)

B.3. GCN

We implement a Gated Convolutional Neural Network (CNN) Dauphin et al. (2017) model
in PyTorch, and train it on the same data as the LSTM network. For that, we first construct
and initialise a CNN Module for sequential data processing, which uses GloVe embeddings to
map vocabulary indices to high-dimensional vectors of fixed size (300). The CNN architecture
is comprised of an embedding layer, multiple convolutional layers, and padding strategies to
maintain uniform input sizes for convolutional operations. We further integrate dropout
layers (0.75 and 0.90) for regularisation and to mitigate overfitting, and a fully connected
linear layer for output dimensionality mapping to the vocabulary size.

Second, to extract and process the initial embeddings and hidden states, we first tokenise
and the input sentences. Then, we set the model to evaluation mode, to affect layers
like dropout and batch normalisation differently than in training mode, and detach the
extracted hidden states and embeddings from the computational graph turning off gradient
accumulation. Finally, we extract outputs for each layer from the CNN, converting and
reorganizing these hidden states into numpy arrays, and store those in an HDF5 database
for further processing.

17



Proceedings Track
Appendix C. Methods of Analysis

C.1. Persistence Modules

In order to associate topological spaces to the sentences of the corpus, we compute the
Vietoris-Rips Complex (VRC). It can be defined for sets of vectors using a technique inspired
by hierarchical clustering methods.

Given a set of data points X = {x1, . . . , xn} embedded in a vector space with metric d,
and real number ϵ ≥ 0, we define the Vietoris-Rips complex VRCϵ(X) as the set of simplices
σ = [x0, . . . , xk] s.t. ∀i, j ∈ {0, . . . , k}, d(xi, xj) ≤ ϵ. This definition produces an abstract
simplicial complex K with vertex set X and set Σ of subsets of X (the simplices), with the
property that for any σ ∈ Σ, all elements of the power set of σ belong to the complex Σ.
A good way of thinking about this process is as sliding an ϵ ball across the ambient space,
while recording simplices spanned by vertices that are captured inside the boundary of the
ball. Note that as ϵ grows, the number of simplices always increases, and VRCs generated
by increasing values of ϵ form a filtration of abstract simplicial complexes containing each
other.

A major difference between topological language representations such as the word
manifold, introduced in Fitz (2022), and the representation manifolds in neural language
models is that the former arises from discrete data without a canonical choice for topology.
In contrast, linguistic unit representations exist in a metric space, which naturally comes
equipped with the open ϵ-ball topology. However, it is not obvious what value of ϵ we
should choose for the construction of the VRC. Furthermore, even small amount of noise can
alter the homotopy type of a VRC associated to a random sample of points, by generating
simplices that alter topological information in significant ways. These issues are main reasons
why, until recently, topology was not very useful in dealing with real world data.

The solution to both these issues resulted from work of Edelsbrunner et al. and was
further developed by Zomordian and Carlsson Zomorodian and Carlsson (2004) in form
of persistent homology. For each fixed value of ϵ in a Vietoris-Rips Complex filtration, we
can compute homology groups of the resulting complex and depict each generator as an
interval with endpoints corresponding to the birth and death ϵ values of the homology class
generator that it represents. Note that as ϵ value grows, higher dimensional simplices appear
in the VRC filtration, and these simplices will have boundaries that were cycles generating
homology classes for earlier values of ϵ. Because of this, as ϵ grows we will see some bars
appear and disappear, until all bars end, and only a single bar remains in dimension zero,
which corresponds to the connected component of the entire point cloud, when it is finally
enclosed by a large enough ϵ ball (see figure 5). The interval representation is often referred
to as a persistence bar code, and was initially inspired by the quiver representation of a
sequence of vector spaces. This construction solves the first issue by taking all values of ϵ > 0
into account. It also solves the second issue, by interpreting the longest bars as representing
informative topological features and the shortest bars as topological noise.

Because the VR complexes for larger ϵ values contain those with smaller values, we have
a nested family of simplicial complexes. That means that there is a simplicial map from the
set of simplices for a given ϵ value into the set of simplices generated by any larger value.
Simplicial maps induce homomorphisms on homology groups. If we compute homology with
field coefficients, we can think of the object generated by all possible ϵ values as a sequence

18



Proceedings Track
Hidden Holes

of vector spaces with linear maps between them. There is a similar visualization technique
in linear algebra known as quiver representation. The barcode diagram for that quiver
representation corresponds to the persistence diagram generated by the given data sample.
Eventually as ϵ increases the number of bars decreases in each dimension, as homology
classes disappear. With a finite number of points there are finite number of bars, and finite
number of merge events.

We do not actually need a metric, but only a nested family of spaces (a filtration) where
inclusion maps induce simplicial maps on the corresponding abstract simplicial complexes
associated to each space. Then, in a fixed dimension, we have a quiver representation of
homology groups with the associated induced maps on homology.

The bar codes generated from a point cloud can be interpreted as measuring the shape of
the space in the following way. In dimension zero the barcode is equivalent to a dendrogram of
a hierarchical clustering of the points in the data set. In dimension one, bars represent loops.
Dimension two shows spherical cavities. Higher dimensions correspond to (n−1)-dimensional
spheres wrapped around n-dimensional cavities.

Formally, topological persistence can be computed using tools from commutative al-
gebra of modules over principal ideal domains and methods such as Smith Normal Form
decomposition of the boundary map matrices. The computation is more intricate than the
process used in simplicial homology theory, because we have to keep track of the extra scale
parameter. The result is a significantly more efficient algorithm for computing persistence
intervals from a filtration of simplicial complexes Zomorodian and Carlsson (2004), than
performing a separate homology computation for each space in a filtration. It is informative
to see an example of such computation done directly.

Suppose we generated a filtration of abstract simplicial complexes from a point cloud by
considering a range of parameter values. For a finite set of initial points, there will be only
a finite number of simplices that appear, and we end up with a finite sequence of simplicial
complexes that contain each other.

X0 ⊆ X1 ⊆ X2 . . .

Every simplex has a definite birth time t which is the index of the complex within the
filtration such that σ ∈ Xt and σ /∈ Xt−1. We can arrange the boundary maps as columns,
and the inclusion induced homomorphisms between chain complexes of each simplicial
complex in the sequence as rows, into a commutative diagram as in figure 6.

The goal of the persistence algorithm is to compute homology once, simultaneously for
all time steps, while also reducing the sizes of matrices involved. In order to do that, we
compute homology of the persistence module, which will encode information about homology
of all the subcomplexes in the sequence simultaneously. The idea behind this construction is
to label the simplices within the filtration with their corresponding birth times. Algebraically,
we convert the boundary matrices, such as those used in simplicial homology, from integers
to polynomials in the birth time variable t, which we adjoin to the ring of integers Z. Let
X be the whole complex, and Xk be the subcomplex in the filtration where a simplex σ
appears for the first time. The strategy of the persistence algorithm is to track birth times
algebraically. Rather than letting Cn(X) contain combinations of simplices with coefficients
in Z we upgrade the coefficients to polynomials in Z[t]. Given n-simplex σ with birth time
k, we represent it by tkσ. If the simplex existed from the start (time index 0), we just get σ

19



Proceedings Track

Figure 6: Chain groups of a filtration of spaces. The columns show boundary chain complex
for each complex in a sequence. The rows show maps induced by the inclusion
of each subcomplex within a larger complex corresponding to higher parameter
values. The lower index marks the dimension within a complex, and the upper
index specifies the ordering within a filtration.

as usual. However, if a simplex shows up at the first time step, we represent it by tk. If it
showed up in the second complex within the filtration, we would represent it as t2k, and so
forth. With this convention, our boundary maps now contain polynomials in t. Reduction
of matrices over Z[t] involves polynomial division, and comes with issues as discussed in
Zomorodian and Carlsson (2004). However, we could also perform this computation over
polynomials with field coefficients, which makes calculation more straightforward. This hides
torsion related phenomena, but if we are just interested in computing the Betti numbers, we
can transition to vector spaces with coefficients in Q[t], and leverage existing linear algebra
packages such as numpy to perform reduction operations.

For the remainder of the discussion, we define persistent chain groups PCk to be free
modules over the polynomial ring Q[t], generated by the simplices of X. In order to make
this computation work, we need to define the boundary maps in a way that that satisfies the
chain complex condition necessary to define homology (c.f. Hatcher (2001)). The following
definition of boundary matrices works. The k-th boundary map ∂k : PCk → PCk−1 is a
linear map over Q[t]. In order to represent it as a matrix, we label rows and columns of
boundary matrices with simplices of X. The difference between it, and the boundary map
used in simplicial homology, is that the entries now encode not only presence of simplices,
but also their relative birth times (difference between the indices of spaces in the filtration
at which they first appear). Suppose that a column of the persistent boundary matrix
corresponds to a k + 1 simplex [v0, v1, . . . , vk], which first appeared in the filtration at index
B (for birth time). In this case, the i-th entry of this column will be of the form (−1)itB−b,
which corresponds to the face [v0, . . . , v̂i, . . . , vk] with a birth time b. Note that the birth
times of simplices marked by columns must be greater than those that mark rows (since
a simplex can not appear unless its boundary is already present), thus the exponent of
t is non-negative. Zomordian et al. proved that this definition of a boundary operator

20



Proceedings Track
Hidden Holes

Figure 7: A filtration of 3 spaces. Note that the vertices v0 and v1 forming the boundary of
edges e0 and e1 have different birth times, which is encoded by the exponents of t
in the entries of the boundary operator.

induces a chain complex (hence we can take homology quotients) Zomorodian and Carlsson
(2004). For instance, the persistent boundary operator in dimension 1 (that is a matrix
representation of ∂1 : PC1 → PC0) for the filtration in figure 7 would be written as follows
under this convention.

∂1 =

e0 e1 e2 e3
v0
v1
v2

−t −t t2 t2

1 1 0 0
0 0 −1 −1


which can be column reduced to−t t2 0 0

1 0 0 0
0 −1 0 0


and is hence of rank 2.
It is informative to see persistent homology computation for a minimal example. Consider

an event of an edge appearing between two vertices as in figure 8.
The persistent boundary matrix in dimension 1 is of the form:

∂1 =

AB
A
B

(
−t
t

)

Note that the exponents of t in the entries above are the differences between birth times
of the edge AB and its boundary vertices A and B (both of which are 1). Thus the image
of ∂1 (i.e. the space of cycles) is rank one.

21



Proceedings Track

Figure 8: An edge appears at some value of ϵ between two vertices A and B.

The kernel of persistent boundary in dimension 0 is is two dimensional, generated by the
two vertices A and B with birth time 0.

spanQ[t]{
(
0
1

)
,

(
1
0

)
} = {

(
q(t)
r(t)

)
: q, r ∈ Q[t]}

Since modules are not uniquely characterized by their dimension (as regular vector spaces
are up to isomorphism), we can not simply do arithmetic on dimensions (which would
wrongly suggest that the quotient is one dimensional), but instead need to work with the
polynomial ring to figure out the rank of homology.

We need to compute the quotient:

PH0 = ker∂0/im∂1 = {
(
q(t)
r(t)

)
+ {

(
−tp(t)
tp(t)

)
: p ∈ Q[t]} : q, r ∈ Q[t]}

Observe that we can always find a representative in each coset, where the first component
is a constant, say a, simply by solving q(t)− tp(t) for a given polynomial q ∈ Q[t] (just set
the coefficients of p so they cancel out all but the constant term of q - we can not zero out
the constant term because tp(t) is at least of degree 1).(

a
r(t) + tp̃(t)

)
where p̃ has been fixed (from an arbitrary polynomial p, in order to make the first

component constant), but r is still an arbitrary polynomial. This argument implies that the
quotient is two dimensional. In fact we can now write:

PH0 = {{
(

a
r(t) + tp̃(t)

)
+

(
−tp(t)
tp(t)

)
: p ∈ Q[t]} : q, r ∈ Q[t]}

and split these cosets into two summands of the form

{{
(
a
0

)
+

(
−tp(t)
tp(t)

)
: p ∈ Q[t]}+ {

(
0

r(t) + tp̃(t)

)
+

(
−ts(t)
ts(t)

)
: s ∈ Q[t]} : q, r ∈ Q[t]}

The above set is a sum of two spans (up to isomorphism):

22



Proceedings Track
Hidden Holes

Figure 9: Bar code corresponding to an edge appearing between two vertices. The two
bars are marked with direct summands of the homology group of the associated
persistence module in dimension 1 as in the example calculation. The arrow head
signifies that the corresponding homology class survives indefinitely.

PH0
∼= Q⊕ spanQ[t]{

(
0
1

)
}

where the fist summand comes from a being an arbitrary constant term of the erased

polynomial q, which gave Q as the coset represented by

(
a
0

)
in the isomorphism above.

This homology group encodes more data than the regular (i.e not persistent) homology
we used previously. In particular we can read Betti numbers over time. They are usually
represented as bar codes (such as those in figure 5). From our computation we can conclude
that there are two bars in dimension 0 (figure 9). The first term Q generates the first bar,
which corresponds to a connected component that exists at time zero, but dies at time 1.
We can think of it as the connected component of vertex A (or B). The second term in the
direct sum above is a longer bar, that represents the connected component which exists at
time 1. This component is the entire space, as A and B are joined by an edge.

In practice, there are many optimization that can be done while computing persistent
homology. In particular, the boundary matrices are very sparse, and algorithms used in
practice take advantage of that fact. There are also topological optimizations based on
Morse theoretic ideas, that identify and remove contractible parts of the simplicial complex
before computing homology (since the resulting spaces are homotopy equivalent and have
isomorphic homology groups).

C.2. Simplicial Mapping Approximation

We produced graph visualizations of embedding and hidden state vectors corresponding to
sentences sampled from the training corpora. The technique we use here can be thought of
as a topological dimensionality reduction method, where the goal is to summarize the shape
of our representation space with a rough sketch in form of a low dimensional topological
manifold. This reduced representation can be thought of as a map approximating the shape
of our embedding space. Such description can be visually inspected by a human, while
remaining more topologically informative than a naive projection. Instead of growing ϵ balls
around points directly, we can map them to a different space first, define an open cover,
and then cluster the original points within the preimage of each cover set. This produces
a summary of the topological features in the embedding with a simplicial complex of a

23



Proceedings Track

Figure 10: Inducing topological structure from a point cloud representing noisy samples from
a neighborhood of a 1-dimensional submanifold (S2) of a 2-dimensional ambient
embedding space (R2). This method can be adjusted to produce simplicial
complex summaries in all dimensions Singh et al. (2007).

chosen dimension Singh et al. (2007). In this set of experiments, we generated 1-dimensional
simplicial complexes (i.e. graphs) from every sentence. Figure 10 shows a visualization of
this process for a point cloud sampled from the circle (S2). The general procedure can be
summarized as follows.

Given data points X = {x1, . . . , xn}, xi ∈ Rd, a function f : Rd → Rm,m < d, and
a cover U =

⋃
i∈I Ui of the image f(X) (where I is some index set) we construct a

simplicial complex as follows:

1. For each Ui ∈ U , cluster f−1(Ui) into kUi clusters CUi,1 , . . . , CUi,kUi

2.
⊔

Ui∈U
{CUi,1 , . . . , CUi,kUi

} now define a cover of X; calculate the nerve of this

cover

Nerve is defined in the following way. Given a cover U =
⋃

i∈I Ui, the nerve of U is
the simplicial complex C(U) where the 0-skeleton is formed by the sets in the cover

(each Ui is a vertex) and σ = [Uj0 , . . . , Ujk ] is a k-simplex ⇐⇒
k⋂

l=0

Ulk ̸= 0

We also attempted visualizations of larger sections of the corpus. Generating simplicial
mapping projections for multiple sentences in a single figure is computationally expensive.
In order to overcome that, we took steps to reduce the computational complexity while
preserving as much of the overall shape of the point cloud as possible. These included
replacing ball like blobs of points with their center of mass, and performing a dimensionality
reduction by PCA. The first step does not affect homotopy type much in most cases, because
dense, ball like, clusters of points that are distributed far from one another in the embedding
space would be collapsed to single nodes in the mapping approximation anyways, and
Gaussian blobs have no interesting topology (they are approximate to solid balls, which are

24



Proceedings Track
Hidden Holes

Figure 11: A random article composed of approximately 2600 words represented by the
LSTM model (hidden state reset after each sentence). Hidden states are on the
left side of the figure. Embeddings are on the right. Projection onto the first five
principal components was performed before clustering.

Figure 12: Five random paragraphs of English text represented by the LSTM model. Hidden
states are shown above, embeddings are below.

contractible and have trivial homology groups). This saves a lot of computation by reducing
the number of vectors in the cloud. Furthermore, since we are already projecting onto a
graph, we can first project onto the top principal components first, without changing the
topology of the graph significantly. Due to these optimizations we were able to visualize
entire articles from the corpus in a single picture. Figure 11 shows a section of the corpus
composed of more than 2600 words. Again, we see that the hidden state projection is
significantly more complex than the embeddings.

C.3. Sliding Window Embedding

Finally, we take yet another look at our representations. In the previous experiments, we
looked at each sentence as a point cloud within the representation space of our neural
language model. Although, the order of words within each sentence is implicitly captured by

25



Proceedings Track

Figure 13: We can reinterpret a time series of values as a geometric object by performing a
sliding window embedding Perea and Harer (2015). The resulting point cloud
can then be interpreted as noisy samples from an underlying manifold. The
topology of this manifold can be studied using tools from computational algebraic
topology. It reveals intrinsic properties of the original time series that are not
easily captured by standard methods.

the structure of the point cloud (because of the way word vectors are induced by the LM),
we did not explicitly take it into consideration when computing topological features. In this
section we take the ordering of the embeddings directly into account by performing a re-
representation step designed to model time series data. This allows us to study homological
properties of each dimension within the representation manifold of our language model.
When words from a corpus are fed into the neural network implementation of the language
model, its hidden state vector traces out a path in the embedding space. We can interpret
topological properties of these paths, and their relationship to corpus data, by analyzing each
dimension of the hidden state vector as a time series. Every sentence of the corpus generates
multiple sequences of floating point numbers - one in each dimension of the representation
manifold. We can transform those sequences, into topological objects, and study a notion of
shape for each factor of the word embedding. In order to do this, we slide a window over the
time series of the hidden states associated to the LM, and compute topological invariants of
the resulting point clouds (see figure 13 for an illustration of the idea).

The first step is the construction of the sliding window embedding. This step depends on
two parameters: τ for the delay and d for the dimension. Let fi(t) be the value of the i-th
component of the hidden state vector in our language model, after t words of the sentence
being analyzed were consumed by it. We collect the values fi(t), fi(t+τ), · · · , fi(t+(d−1)×τ),
which results in a vector of d values.

SWd,τfi(t) =


fi(t)

fi(t+ τ)
...

fi(t+ (d− 1)τ)

 ∈ Rd

The dimension d in our case corresponds to the n-gram size chosen. For instance, if we
look at a 3-gram model, we would slide a window of 3 values over representations of each

26



Proceedings Track
Hidden Holes

Figure 14: Trajectories of the hidden states in 450 dimensional representation manifold over
a sentence composed of 50 words (LSTM model).

Figure 15: Left: visualization of the trajectory of hidden state of the LSTM in dimension
42 of the representation manifold over a sentence composed of 50 words. Center:
sliding window embedding of that data using a 3-gram model of the sentence.
Right: persistence diagram of this hidden state trajectory.

sentence. We do this in each dimension separately. We then analyze the collection of such
vectors obtained from each sentence of the corpus. Thus sentence with w words, embedded
into a d-dimensional manifold by the neural language model, analyzed using n-gram size of n,
will produce d, n-dimensional point clouds. We then analyze each one of these point clouds
as a sample from an underlying topological manifold using techniques from the previous
sections. That is we compute Vietoris-Rips filtrations and their homology. This produces
topological summaries of each dimension in our representation space.

We analyzed the trajectories of the hidden states in each dimension of the representation
manifold. Looking at the raw data directly, it is hard to observe any patterns (see figure 14).
However, topological representation allows us to summarize the behavior of these states in a
way similar to the previously described approaches. Figure 15 shows an example of a single
dimension.

27



Proceedings Track
We applied this same process in all dimensions, and performed comparisons between

global and contextualized representations, as well as analysis of state evolution over training
epochs. The results confirm the observations of the previous three sections. More precisely,
in the LSTM models hidden states had significantly higher average topological complexity
over all dimensions than that of the input embeddings. Furthermore, topological complexity
increased during training with more topological features appearing with lower perplexity.

28



Proceedings Track
Hidden Holes

Appendix D. Additional Plots

Figure 16: Perforation over epochs of training using a sample of English sentences. The
embedding layer and transformer blocks 4, 8, 12 of a 160m GPT model (Pythia)
(from left to right).

Figure 17: Perforation over epochs of training. Columns are the CNN model layers from
embedding (left) to output (right). The rows from top to bottom are: Arabic,
French, German, Japanese, Russian.

29



Proceedings Track

Figure 18: Perforation histograms for 33 transformer layers of LLaMA (fully trained). Syn-
thetic Zipf corpus.

Figure 19: Perforation histograms for 33 transformer layers of LLaMA (fully trained). Nat-
ural English corpus.

30



Proceedings Track
Hidden Holes

Figure 20: Perforation histograms for 33 transformer layers of LLaMA (overlay), followed
by histogram of mean perforation over each layer. Zipf (first pair of plots) and
English corpora (the second pair).

31



Proceedings Track

32


	Introduction
	Relation to Other Work
	Methods
	Results
	Conclusion
	Model Details
	AWD-LSTM
	Transformer
	Pythia
	LLaMA

	GCN

	Data Preparation
	AWD LSTM
	Transformer
	Pythia
	LLAMA

	GCN

	Methods of Analysis
	Persistence Modules
	Simplicial Mapping Approximation
	Sliding Window Embedding

	Additional Plots

