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Abstract

To enable Large Language Models (LLMs) to001
function as conscious agents with generaliz-002
able reasoning capabilities, it is crucial that003
they possess the ability to comprehend situa-004
tional changes (transitions) in distribution trig-005
gered by environmental factors or actions from006
other agents. Despite its fundamental signifi-007
cance, this ability remains underexplored due008
to the complexity of modeling infinite possible009
changes in an event and their associated distri-010
butions, coupled with the lack of benchmark011
data with situational transitions. Addressing012
these gaps, we propose a novel formulation013
of reasoning with distributional changes as a014
three-step discriminative process, termed as015
MetAphysical ReaSoning. We then introduce016
the first-ever benchmark, MARS, comprising017
three tasks corresponding to each step. These018
tasks systematically assess LLMs’ capabilities019
in reasoning the plausibility of (i) changes in ac-020
tions, (ii) states caused by changed actions, and021
(iii) situational transitions driven by changes in022
action. Extensive evaluations with 20 (L)LMs023
of varying sizes and methods indicate that all024
three tasks in this process pose significant chal-025
lenges, even after fine-tuning. Further anal-026
yses reveal potential causes for the underper-027
formance of LLMs and demonstrate that pre-028
training on large-scale conceptualization tax-029
onomies can potentially enhance LMs’ meta-030
physical reasoning capabilities. Our data and031
models will be released upon acceptance.032

1 Introduction033

Recent advancements in LLMs have demonstrated034

superior performance across a variety of reasoning035

tasks (Liu et al., 2023b; Chan et al., 2024; Ko et al.,036

2023; Qin et al., 2023; Jain et al., 2023). However,037

to truly achieve conscious processing (Andreas,038

2022), the integration of System II reasoning abil-039

ity (Sloman, 1996; Kahneman, 2011) is essential as040

it enables LLMs to perform out-of-distribution gen-041

eralization when encountered with unfamiliar sce-042
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Figure 1: Examples of changes in event in our formula-
tion. Events may become metaphysical as components
are abstracted into high-level concepts, while some re-
main plausible in reality.

narios (Bengio et al., 2021). Among several compo- 043

nents that make up System II reasoning, a critical 044

element of it is the ability to reason with situa- 045

tional changes in distribution, triggered by environ- 046

mental factors and actions by themselves or other 047

agents, when dealing with non-stationarities (Ben- 048

gio, 2017). It serves as the core ability in planning 049

tasks (Huang et al., 2024), which can be achieved 050

by dynamically recombining existing concepts in 051

the given environment or action and learning from 052

the resultant situational changes (Lake and Baroni, 053

2018; Bahdanau et al., 2019; de Vries et al., 2019). 054

For instance, in the event that “PersonX is driv- 055

ing a car in a sunny day,” a change in the weather 056

from sunny to rainy could cause a different out- 057
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come, such as “PersonX becomes more cautious058

and drives slower.” This illustrates that a change059

in weather conditions can lead to a change in the060

driver’s behavior, which represents an environmen-061

tal change that triggers situational changes within062

the distribution of different weathers.063

Though fundamental, the exploration of this abil-064

ity has been limited due to several factors. First, the065

scope for change within an event is vast, with nu-066

merous components capable of altering in a wide067

variety of ways. This results in an overwhelm-068

ingly large number of potential changes that are069

impossible to fully cover with existing knowledge070

bases. Second, reasoning with changes in distribu-071

tion lacks a clear formulation due to its complex-072

ity. Unlike one-step inference reasoning tasks (Sap073

et al., 2019), changes in action may lead to implau-074

sible events that cannot occur in reality, thus termi-075

nating the reasoning process. Such type of changes076

require extra care when designing evaluation pro-077

tocols. Lastly, there is a lack of a reliable evalua-078

tion benchmark. Existing benchmarks (Valmeekam079

et al., 2023; He et al., 2023b) typically focus on a080

limited number of changes within a few scenarios,081

thus limiting the coverage of formed distributions.082

The changes in actions and states are also formu-083

lated under planning or logical tasks, which neglect084

transitions (consequences) caused by changes.085

To address these gaps, we take a step forward by086

formally defining reasoning with changes in distri-087

bution as a three-step discriminative process. We088

start by defining seven categories of changes, each089

corresponding to different components within an090

event. To semantically cover more changes in a091

unified manner, we propose implementing changes092

by altering each component within the event using093

their abstractions or numerical variations. This ap-094

proach creates a hierarchical distribution of various095

changes, with the abstracted ones offering a more096

generalized coverage. Inspired by (Bengio et al.,097

2021), we formulate reasoning with changes in dis-098

tribution as sequentially tasking the model to: (1)099

assess the plausibility of a potential change in a100

given event that describes an action, (2) evaluate101

the plausibility of an inferential state resulting from102

the modified action, and (3) determine the neces-103

sary change in an action to convert an implausible104

inferential state into a plausible one. We refer to105

this process as metaphysical reasoning, as it also106

requires models to distinguish implausible actions,107

states, and transitions that only exist in the meta-108

physical realm, indicating their rare occurrence in109

reality (Heidegger, 2014). 110

We then construct the first evaluation bench- 111

mark, MARS, featuring 355K annotated data 112

across three tasks corresponding to each step. It is 113

constructed by sequentially instructing an LLM to 114

extract events from Wikitext (Merity et al., 2017) 115

and BookCorpus (Zhu et al., 2015), identify muta- 116

ble components within each event, generate abstrac- 117

tions and numerical variations for those compo- 118

nents, create a metaphysical inference state based 119

on the changes, and generate the necessary modifi- 120

cations to make the metaphysical inference plausi- 121

ble in reality. Large-scale human annotations are 122

then conducted to provide labels of evaluation data 123

entries and verify the quality of our benchmark. Ex- 124

tensive experiments with over 20 (L)LMs demon- 125

strate that all three tasks in this process present sig- 126

nificant challenges, even for LMs after fine-tuning. 127

Further analyses reveal potential reasons for such 128

underperformance and identify possible solutions 129

for enhancing the metaphysical reasoning abilities 130

of language models. 131

2 Backgrounds and Related Works 132

Reasoning about Changes in Distribution. En- 133

abling LMs to understand distributional changes 134

due to localized causal interventions, particularly 135

in semantic spaces, has long been a crucial ob- 136

jective in the pursuit of conscious machine intelli- 137

gence (Bengio et al., 2019, 2021). Previous works 138

have mainly explored this within the context of 139

discriminating changes between actions and states 140

with methods such as commonsense knowledge in- 141

jection (Tandon et al., 2018), event calculus (Basina 142

et al., 2022), and fuzzy reasoning (Zhang et al., 143

2013). Other studies aim to benchmark this rea- 144

soning process through logical reasoning tasks (He 145

et al., 2023b) and planning tasks (Valmeekam et al., 146

2023; Wu et al., 2021). However, these studies 147

only cover changes in limited formats and scenar- 148

ios and also overlook the significance of represent- 149

ing changes as a distribution in relation to different 150

variables in actions. Such loss restricts the out-of- 151

distribution generalizability of the resulting LMs 152

when facing unfamiliar scenarios. Moreover, pre- 153

vious evaluations do not cover transitions caused 154

by changes, making subsequent evaluations incom- 155

plete. 156

Benchmarking LLMs. The advent of LLMs (Ope- 157

nAI, 2022, 2023; Touvron et al., 2023b,a; Reid 158

et al., 2024) has sparked various studies in investi- 159
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Figure 2: The three steps in metaphysical reasoning. Our motivation behind this is that, by conquering all steps
sequentially, a conscious agent could answer: (1) Will the change occur in reality? (2) What will the change cause?
(3) What change can make a metaphysical (desired) inference plausible?

gating LLM’s potential in a variety of tasks (Chen160

et al., 2024b,a; Yuan et al., 2024; Chan et al., 2024;161

Jain et al., 2023; Qin et al., 2023). These studies162

have significantly contributed to our understanding163

of LLMs by evaluating their performance across di-164

verse tasks, using different scales of parameters and165

prompting methods (Qiao et al., 2023). However,166

there is an absence of a comprehensive benchmark167

for assessing the ability of (L)LMs to reason with168

changes in distribution. This inspires us to formally169

define it and introduce the first benchmark that eval-170

uates such reasoning capabilities of (L)LMs.171

3 Definitions of Changes in Event and172

Metaphysical Reasoning173

Modeling changes within an event is inherently174

complex due to the infinite number of changes175

that can occur. For simplicity, we only consider176

events that represent an action and study changes177

between their inferential states. Given an event178

e, we first define seven types of changes that179

could transpire within e. These changes are rep-180

resented as components of the event, including181

its subject s, verb v, object o, temporal quanti-182

fier t, spatial quantifier l, numerical properties183

n, and sub-events se. The original event is de-184

noted as a function of these seven components,185

e = f(s, v, o, t, l, n, se). A change in the event186

can be represented by altering one of its compo-187

nents, for instance, e′ = f(s′, v, o, t, l, n, se) if the188

change impacts the subject s′.189

To effectively model the distribution of changes190

across different types of components, we leverage191

two types of hierarchical formulations. Specifi-192

cally, for s, v, o, se, we define changes in these193

components as conceptualizing their original in-194

stance into three concepts with progressively in-195

creased abstractedness (Giunchiglia and Walsh,196

1992; Tenenbaum et al., 2011). For t, l, n, we de-197

fine their changes as modifications from their origi-198

nal values to three distinct numerical or spatial val-199

ues with progressively increased units. This brings 200

a hierarchical structure to changes of a certain com- 201

ponent, forming a distribution that gradually covers 202

more possible changes. Abstracted conponents, as 203

high-level concepts, can semantically represent a 204

broader range of combinations for altering an event. 205

Some running examples of how changes impact an 206

action are shown in Figure 1. 207

We then propose a three-step discriminative pro- 208

cess, which we term as Metaphysical Reasoning, 209

to formulate reason with changes in distribution. 210

The three steps, as shown in Figure 2, are: 211

(1) Metaphysical Event Discrimination: The first 212

step answers the question, “Will the change happen 213

in reality?” It aims to determine the plausibility of 214

a change based on a given event, as alterations in 215

components may lead to implausible events that 216

defy reality. We refer to such an event, which 217

rarely occurs in reality due to these changes, as 218

a metaphysical event. The goal of the first task is 219

to discriminate whether the modified event e′, con- 220

ditioned on the original event e with a single altered 221

component c ∈ (s, v, o, t, l, n, se), is metaphysical 222

or not by making a binary prediction. 223

(2) Metaphysical Inference Discrimination: Con- 224

sidering that distributional changes occur in non- 225

stationary environments, a conscious agent should 226

be able to predict the potential outcomes of the 227

modified event for future reasoning scenarios. 228

Therefore, the second step aims to answer the ques- 229

tion, “What will the altered event result in?” Simi- 230

larly, we term the inferences of an event that rarely 231

occurs in reality as metaphysical inference. The 232

objective of the second task is to determine whether 233

an inferential state i, triggered by the altered event 234

e′, is metaphysical or not by predicting a binary 235

answer. Note that e′ could be either metaphysical 236

or not, as inferences in both cases can be evaluated. 237

(3) Metaphysical Transition Reasoning: Finally, 238

with some inferences remain metaphysical, a con- 239

scious agent should be able to plan what change is 240

3



necessary to make such inference plausible in real-241

ity. This completes the reasoning chain by covering242

the feasibility, consequence, and motivation of dis-243

tributional changes. Thus, the last task answers244

the question, “What change is needed to make a245

metaphysical inference plausible?” We refer to this246

as metaphysical transition reasoning and set the247

objective as to determine whether another change,248

denoted as c′, can make a metaphysical inference i249

plausible in relation to a changed event e′ by mak-250

ing a binary prediction regarding c′.251

4 MARS Benchmark Curation Pipeline252

We then introduce our sequential pipeline for cu-253

rating the MARS benchmark. An overview of254

our curation pipeline is shown in Appendix Fig-255

ure 5. To guarantee a comprehensive coverage256

of events across various domains and topics, we257

source original text from two publicly available258

large corpora: Wikitext (Merity et al., 2017) and259

BookCorpus (Zhu et al., 2015). We filter out noisy260

text that includes hashtags and hyperlinks and seg-261

ment long text into sentences with no more than262

200 tokens to facilitate future processing.263

4.1 Text Decomposition and Extraction264

We first perform text decomposition (Ye et al.,265

2023; Jhamtani et al., 2023) to break down lengthy266

text into semantically complete short events, which267

are then used for fine-grained component extrac-268

tion. To enable large-scale processing, we use Chat-269

GPT (OpenAI, 2022), a powerful LLM with strong270

text understanding abilities, as the core processor271

for all stages. For each stage, we guide it with a272

few-shot prompt (West et al., 2022; Brown et al.,273

2020) by creating task-specific explanations and274

exemplars (detailed prompts are in Appendix A):275

<TASK-PROMPT>
<INPUT1><OUTPUT(1,1)> . . . <OUTPUT(1,N1)>
<INPUT2><OUTPUT(2,1)> . . . <OUTPUT(2,N2)>
. . .
<INPUT10><OUTPUT(10,1)> . . . <OUTPUT(10,N10)>
<INPUT11>

276

To perform text decomposition, <TASK-PROMPT>277

clarifies the goal to ChatGPT, which involves ex-278

tracting semantically complete actions from the279

given text. <INPUT1−10> and <OUTPUT1−10> are280

filled with 10 pairs of human-crafted examples,281

each containing several action events extracted282

from text sampled from Wikitext and BookCor-283

pus. ChatGPT is expected to learn from these ex-284

amples and use them as a guide to extract action285

events (<OUTPUT(11,1−N)>) from the final input text286

(<INPUT11>). For component extraction, we adjust 287

<TASK-PROMPT> to define the task of extracting the 288

seven components from a given event. We populate 289

<INPUT1−10> and <OUTPUT1−10> with 10 pairs of 290

events and seven comma-separated lists of compo- 291

nents extracted from the event, each corresponding 292

to one type of components defined in §3. ChatGPT 293

then extracts seven lists of components for the final 294

given event (<INPUT11>). If any type of component 295

is absent, “None” will be generated instead. 296

4.2 Component Abstraction and Variation 297

The next step is designed to implement changes 298

within the event by altering its components, ex- 299

tracted from the previous step, by generating 300

their abstractions or numerical variations. Follow- 301

ing (Wang et al., 2024), we guide ChatGPT by 302

modifying <TASK-PROMPT> with the objective of 303

generating abstract concepts for s, v, o, se and nu- 304

merical variations for t, l, n within a specified event. 305

For each <INPUT1−10> and <OUTPUT1−10> pair, we 306

populate the input with a specific event and one 307

of its components. The output consists of three 308

human-authored component abstractions or numer- 309

ical variations that align with the event’s context. 310

Subsequently, ChatGPT is tasked with generating 311

three abstractions or numerical variations for the fi- 312

nal pair of the given event and a component within 313

the event (<INPUT11>). Replacing the original com- 314

ponents in the event with their generated changes 315

forms changed event candidates for the metaphysi- 316

cal event discrimination task. 317

4.3 Inference Generation 318

We then collect inferential states of the modified 319

events by similarly instructing ChatGPT to au- 320

tonomously generate them. For each altered event, 321

we prompt ChatGPT to separately generate one 322

plausible inference and one metaphysical infer- 323

ence. We first modify <TASK-PROMPT> to gener- 324

ate a state that could potentially be caused by the 325

altered event, and populate <INPUT1−10> with 10 326

modified events and <OUTPUT1−10> with 10 cor- 327

responding plausible inferences authored by hu- 328

man experts. ChatGPT is then requested to gener- 329

ate an additional plausible state inference for the 330

given changed event (<INPUT11>). Next, we adjust 331

<TASK-PROMPT> to generate a metaphysical state 332

that is infrequently caused by the changed event 333

in reality, yet remains contextually relevant. We 334

replace <OUTPUT1−10> with 10 metaphysical infer- 335

ences and then collect a metaphysical inference 336
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Dataset / Task #Text #Event #Avg.Token #Train #Dev #Test #Total. #Unlabel. Expert.

AbsATM (He et al., 2024) N/A 7,196 1.060 107,384 12,117 11,503 131,004 372,584 N/A
AbsPyramid (Wang et al., 2023c) N/A 16,944 1.690 176,691 22,050 22,056 220,797 0 N/A
Meta. Event. 9,998 55,190 1.040 96,004 12,013 11,982 119,999 329,540 92.0%

AbsATM (He et al., 2024) N/A 7,196 6.413 65,386 8,403 7,408 81,197 5,921,195 N/A
Meta. Inference. 9,837 35,528 10.40 96,009 12,010 11,981 120,000 497,590 96.5%

Propara (Dalvi et al., 2018) 9,051 9,051 N/A 7,043 913 1,095 9,051 0 N/A
TRAC (He et al., 2023b) 15,000 15,000 N/A 10,000 2,000 3,000 15,000 0 N/A
PlanBench (Valmeekam et al., 2023) 26,250 26,250 N/A 0 0 26,250 26,250 0 N/A
Meta. Transition. 9,677 31,447 1.810 92,495 11,563 11,560 115,618 273,474 93.5%

Table 1: Statistics of the MARS benchmark in comparison against other benchmarks. Meta. refers to three tasks
in MARS. Expert. refers to expert verification results.
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Figure 3: Hypernym distribution of the top 5,000 popu-
lar component variations.

from ChatGPT. This, along with the generated plau-337

sible inference, forms two candidate data entries for338

each changed event in the metaphysical inference339

discrimination task.340

4.4 Metaphysical Transition Generation341

Given that half of the inferential states generated342

in the previous step remain metaphysical, we then343

collect the additional changes necessary to trans-344

form these states into plausible real-world infer-345

ences. We adjust the <TASK-PROMPT> to describe346

such required changes and populate <INPUT1−10>347

with 10 pairs of modified events and their corre-348

sponding metaphysical inferences. <OUTPUT1−10>349

are filled with 10 corresponding human-authored350

changes in events that can render the inferences351

plausible. Subsequently, ChatGPT generates the352

required change for the final pair of the modified353

event and its metaphysical inference (<INPUT11>).354

Note that the generated change still needs to be one355

of the seven types we defined in §3. We collect one356

additional change for each metaphysical inference357

and use it as a candidate data entry for the last task.358

However, we discard event and inference pairs that359

ChatGPT deems impossible to render plausible,360

even with an additional change.361

4.5 Human Annotations362

Annotation: Finally, we carry out large-scale hu-363

man annotations to label candidate data for each364

task via Amazon Mechanical Turk (AMT). We pro- 365

vide detailed instructions with examples to quali- 366

fied workers and task them with annotating (1) the 367

plausibility of the changed events generated in §4.2, 368

(2) the plausibility of the plausible/metaphysical 369

inferences produced in §4.3, and (3) the plausibil- 370

ity of the transitions generated in §4.4. We collect 371

five votes for each entry and the majority vote is 372

used as the final label. The overall inter-annotator 373

agreement (IAA) is 81% in terms of pairwise agree- 374

ment, and the Fleiss kappa (Fleiss, 1971) is 0.56, 375

indicating sufficient agreement (see Appendix C). 376

Verification: To verify the quality of our col- 377

lected labels, we recruit three postgraduate students 378

with rich experience in NLP research to perform 379

a second round annotation. Each of them is asked 380

to annotate a sample of 100 data entries for each 381

task, following the same instructions provided to 382

the AMT annotators. Results in Table 1 show that, 383

on average, 93.67% labels collected from human 384

annotations align with the expert’s vote, demon- 385

strating the reliability of our collected labels. 386

5 Evaluations and Analysis 387

5.1 MARS Statistics 388

Table 1 presents statistics of the MARS benchmark, 389

which comprises a total of 355,617 annotated data 390

distributed across three tasks. We partition the an- 391

notated data into training, development, and testing 392

splits following an 8:1:1 ratio, ensuring there is no 393

overlap of text and events between the different 394

splits to preserve the evaluation’s generalizability. 395

On average, 1.4 tokens are generated to describe 396

changes in action for the metaphysical event and 397

transition discrimination tasks, while 10.4 tokens 398

are used for inferences in the metaphysical infer- 399

ence discrimination task. To the best of our knowl- 400

edge, we are the first in proposing such a triad of 401

tasks concurrently within a single benchmark. To 402

compare MARS with other datasets, we select those 403

with analogous task objectives for each task and 404

compare them individually (see Appendix D). We 405
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Methods Backbone Event Inference Transition

Acc AUC Ma-F1 Acc AUC Ma-F1 Acc AUC Ma-F1

Random - 50.00 - 49.56 50.00 - 49.56 50.00 - 49.56
Majority - 60.98 - 37.99 58.56 - 36.93 50.25 - 33.37

PTLM
(Zero-shot)

RoBERTa-Base 211M 38.60 49.40 27.90 44.30 55.11 30.80 51.13 53.37 38.36
RoBERTa-Large 340M 38.57 50.94 27.83 44.37 56.49 30.73 50.90 53.08 33.92
DeBERTa-Base 214M 60.55 49.41 42.89 50.10 47.57 48.96 49.05 41.32 33.19
DeBERTa-Large 435M 48.27 49.88 45.87 47.73 49.94 44.44 50.73 46.96 46.15
GPT2-XL 1.5B 38.62 51.12 27.93 44.40 51.88 31.45 49.92 48.35 48.09
CAR 435M 54.63 49.34 49.96 48.33 42.85 41.93 52.97 35.05 46.94
CANDLE 435M 51.90 49.12 50.30 46.77 44.03 38.48 53.49 34.95 47.95
VERA 11B 51.82 50.48 48.52 60.97 62.54 59.09 61.31 66.32 61.17

PTLM
(Fine-tuned)

RoBERTa-Base 211M 63.32 62.76 61.76 69.08 70.54 68.90 71.24 72.73 70.65
RoBERTa-Large 340M 64.22 63.18 62.62 69.04 70.63 68.90 69.68 71.70 68.73
DeBERTa-Base 214M 63.82 63.98 63.39 69.50 70.59 69.31 71.96 73.85 71.17
DeBERTa-Large 435M 64.45 64.16 63.27 69.57 71.15 69.33 72.93 74.00 72.01
GPT2-XL 1.5B 46.68 47.63 46.96 43.70 44.22 30.41 44.57 45.03 45.89
VERA 11B 61.95 61.43 60.81 63.90 66.93 70.84 71.75 74.57 73.27

LLM
(Zero-shot)

Meta-LLaMa-2-7B 50.64 - 41.41 49.87 - 49.23 50.94 - 50.64
Meta-LLaMa-2-13B 51.50 - 49.48 50.81 - 50.57 50.81 - 50.80
Meta-LLaMa-2-70B 52.40 - 49.03 56.13 - 46.81 48.45 - 48.34
Meta-LLaMa-3-8B 50.62 - 49.12 51.33 - 50.98 51.95 - 51.07
Meta-LLaMa-3-70B 57.41 - 50.59 63.40 - 61.82 60.15 - 60.01
Gemma-1.1-7B 56.88 - 48.53 51.83 - 51.76 49.41 - 45.01
Falcon-7B 54.32 - 49.51 51.77 - 50.30 50.42 - 49.02
Falcon-40B 52.35 - 50.36 49.67 - 49.38 50.27 - 50.22
Mistral-7B 49.90 - 48.94 50.23 - 50.06 51.75 - 51.75

LLM
(Fine-tuned)

Meta-LLaMa-2-7B 60.10 59.90 59.00 63.51 66.44 62.55 66.06 70.38 65.12
Meta-LLaMa-2-13B 60.67 60.64 60.00 64.61 67.67 63.59 68.22 72.19 66.37
Meta-LLaMa-3-8B 60.06 60.54 59.58 65.76 67.88 65.72 69.83 74.59 68.74
Gemma-1.1-7B 61.23 61.25 60.28 69.24 70.76 69.00 73.30 76.91 69.18
Mistral-7B 60.35 60.77 60.07 66.91 70.06 65.95 71.87 75.47 68.53

LLM
(API)

ChatGPT 51.00 - 50.35 61.35 - 57.63 60.40 - 60.12
ChatGPT (5-shots) 53.61 - 53.28 58.05 - 57.42 62.40 - 59.35
ChatGPT (COT) 53.20 - 52.61 50.40 - 50.32 49.95 - 49.83
ChatGPT (SC-COT) 53.98 - 53.47 52.47 - 51.99 51.25 - 51.13
GPT4 53.90 - 53.45 51.20 - 50.95 49.41 - 49.33
GPT4 (5-shots) 49.85 - 49.58 51.47 - 51.30 48.88 - 48.73
GPT4 (COT) 51.28 - 50.73 51.49 - 51.35 47.62 - 47.58
GPT4 (SC-COT) 51.97 - 51.26 52.05 - 52.27 48.24 - 48.11

Table 2: Evaluation results (%) of various language models on the testing sets of MARS. The best performances
within each method are underlined and the best among all methods are bold-faced.

find MARS tends to be significantly larger than406

other benchmarks, covering a broader range of407

events and providing training sets for evaluating408

the performance of fine-tuned models.409

To further illustrate the diverse coverage of410

events and changes in MARS, we match each com-411

ponent variation against hypernyms in Probase (Wu412

et al., 2012) and plot their distribution according413

to their number of occurrences in Figure 3. Our414

results indicate that MARS covers over 170,000415

hypernyms in Probase, spanning broad categories416

such as event, activity, concept, unit, and more.417

5.2 Main Evaluations on MARS418

5.2.1 Task Setup and Model Selections419

We then experiment with a selection of (L)LMs420

to investigate their performances on our cu-421

rated MARS benchmark. Accuracy, AUC, and422

Macro-F1 scores are used as evaluation metrics.423

The evaluation of different models are cate-424

gorized into three types: (1) ZERO-SHOT: We 425

first evaluate several (L)LMs in a zero-shot man- 426

ner. For small-sized Pre-Trained Language Models 427

(PTLMs), we evaluate RoBERTa (Liu et al., 2019), 428

DeBERTa-v3 (He et al., 2023a), GPT2 (Radford 429

et al., 2019), CAR (Wang et al., 2023a), CAN- 430

DLE (Wang et al., 2024), and VERA (Liu et al., 431

2023a), following the design of zero-shot ques- 432

tion answering (Ma et al., 2021). For LLMs, 433

we evaluate LLaMa2, LLaMa3 (Touvron et al., 434

2023a,b), Gemma (Mesnard et al., 2024), Fal- 435

con (Almazrouei et al., 2023), and Mistral (Jiang 436

et al., 2023) using direct zero-shot prompting (Qin 437

et al., 2023). (2) FINETUNING: We then assess 438

the performance of (L)LMs when fine-tuned on the 439

training set of MARS. For PTLMs, we fine-tune 440

RoBERTa, DeBERTa, GPT2-xl, and VERA. For 441

LLMs, we fine-tune LLaMa2, LLaMa3, Gemma, 442

and Mistral using LoRA (Hu et al., 2022). (3) 443

LLM API: Finally, we evaluate the performance 444
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Backbone Training Data Event Inference Transition

Acc AUC Ma-F1 Acc AUC Ma-F1 Acc AUC Ma-F1

DeBERTa
435M

Zero-shot 58.27 49.88 45.87 47.73 49.94 44.44 50.73 46.96 46.15
CANDLE 57.94 58.22 57.31 59.43 59.03 58.18 62.00 62.19 61.50
MARS 64.45 64.16 63.27 69.57 71.15 69.33 72.93 74.00 72.01
CANDLE + MARS 64.95 64.27 63.74 71.85 73.32 71.64 74.39 77.97 73.30

VERA
11B

Zero-shot 41.82 50.48 38.52 60.97 62.54 59.09 61.31 66.32 61.17
CANDLE 57.81 57.24 56.77 56.59 56.08 55.25 59.79 59.88 59.19
MARS 61.95 61.43 60.81 63.90 66.93 70.84 71.75 74.57 73.27
CANDLE + MARS 62.21 61.77 61.17 71.45 74.46 67.61 73.95 77.35 78.26

LLaMa-3
8B

Zero-shot 50.62 - 49.12 51.33 - 50.98 51.95 - 51.07
CANDLE 56.47 56.75 56.07 58.29 57.81 57.00 58.74 58.81 58.19
MARS 60.06 60.54 59.58 65.76 67.88 65.72 69.83 74.59 68.74
CANDLE + MARS 60.93 60.80 60.12 69.13 70.84 72.12 74.09 79.38 71.42

Table 3: Evaluation results (%) of transfering knowledge from CANDLE to aid MARS. The best performances
among each method is underlined and best ones among all methods are bold-faced.

of ChatGPT (OpenAI, 2022) and GPT-4 (OpenAI,445

2023), which represent proprietary LLMs, under446

zero-shot, five-shots, Chain-of-Thought prompting447

(COT; Wei et al., 2022), and Self-Consistent COT448

(SC-COT; Wang et al., 2023b) settings. Please also449

find implementation details in Appendix B, multi-450

task fine-tuning experiments in Appendix E, and451

few-shot fine-tuning experiments in Appendix F.452

5.2.2 Results and Analysis453

Evaluation results are reported in Table 2. From the454

results, we observe that: (1) Most models exhibit455

subpar performance under the zero-shot setting.456

Among PTLMs, only VERA delivers acceptable457

results across all three tasks, while the rest signifi-458

cantly underperform. Though models fine-tuned on459

commonsense knowledge and conceptualizations,460

such as CAR and CANDLE, show some improve-461

ment compared to their DeBERTa-v3-Large back-462

bone, these performances are still unsatisfactory,463

even falling below the level of majority voting. For464

LLMs, LLaMa-3-70B outperforms all other LLMs465

on the three tasks, making it the best zero-shot466

model. Nevertheless, all models perform poorly467

across all tasks in MARS, emphasizing the diffi-468

culty of our tasks. (2) Fine-tuning only offers lim-469

ited benefits. With fine-tuning, all models improve470

significantly. For example, DeBERTa-Large’s ac-471

curacy increases by 16.18%, 21.84%, and 22.2%472

on three tasks, respectively. However, the best re-473

sults for all tasks are still capped at around 74%,474

indicating a shared difficulty and significant room475

for future enhancements. One potential reason for476

this is that, since we split the data according to the477

source of text in Wikitext and BookCorpus, the dis-478

tribution between different splits may differ signifi-479

cantly, as the domain and topics could be diverse480

from each other. (3) The GPT series models un-481

derperform compared to other LLMs, and COT 482

does not consistently aid performance. Surpris- 483

ingly, GPT series models fall short when compared 484

to open LLMs, such as LLaMa-3-70B. One possi- 485

ble explanation is that negative examples in MARS 486

are sourced from ChatGPT’s generation and are 487

obtained via post-human annotation. This makes 488

it challenging to discriminate as these negative ex- 489

amples contradict ChatGPT’s internal knowledge. 490

More advanced prompting methods, like COT, tend 491

to negatively impact the models’ performance. 492

5.3 Analysis 493

5.3.1 Transferring from Conceptualization 494

Improving the performance of LLMs on MARS re- 495

quires extensive fine-tuning on large-scale human- 496

annotated data, making it non-trivial. Since we 497

observe that approximately 80% of action changes 498

are executed by modifying a component along 499

with its abstracted concepts (see Table 4), we first 500

study whether exposing LLMs to more concep- 501

tualizations and abstract knowledge can enhance 502

their metaphysical reasoning capabilities. For 503

this purpose, we select CANDLE (Wang et al., 504

2024) as the knowledge source, which is an au- 505

tomatically constructed knowledge base contain- 506

ing 382K conceptualizations of events and abstract 507

inferential knowledge. We first convert event- 508

conceptualization pairs into the task format of meta- 509

physical event discrimination and reformat com- 510

monsense inferential knowledge to align with the 511

objectives of the metaphysical inference and tran- 512

sition discrimination tasks. More details are in 513

Appendix B.2. Three backbone models are then 514

fine-tuned separately on CANDLE and MARS. An- 515

other group is pre-trained on CANDLE before be- 516

ing fine-tuned on MARS. All models are then eval- 517

uated on the testing set of MARS, with the results 518
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Figure 4: Performances by component types of fine-tuned LLaMa3-8B on three tasks of MARS.

reported in Table 3. From the results, a significant519

improvement is observed across all tasks when520

the models are sequentially fine-tuned on CAN-521

DLE and MARS, compared to solely fine-tuning522

on CANDLE or MARS. These findings indicate523

that the transfer of conceptualizations and abstract524

knowledge from CANDLE effectively enhances525

the performance of LMs in metaphysical reasoning526

tasks. Since CANDLE is constructed by distilling527

from an LLM without human labor, this opens up528

a scalable and cost-efficient approach to improving529

the metaphysical reasoning capabilities of LLMs.530

5.3.2 Impact of Component Types531

We then analyze the performance of LLMs on each532

component type to understand the reasons for their533

subpar performance. We select LLaMa-3-8B as the534

representative model and compare its accuracy on535

each component type when fine-tuned on MARS536

and CANDLE + MARS. The results are illustrated537

in Figure 4. We observe that while pre-training538

the model on CANDLE consistently enhances per-539

formance, LLaMa3 still struggles when reasoning540

with changes in spatial quantifiers, temporal quan-541

tifiers, and numerical properties. This is in line542

with recent studies that demonstrate weaknesses in543

temporal and numerical reasoning for LLMs (Tan544

et al., 2023; Shi et al., 2023). Another possible545

reason is that since CANDLE only contains con-546

ceptualizations for subjects, verbs, objects, and547

sub-events in social events, pre-training models on548

it cannot provide benefits for the aforementioned549

aspects of change. Moreover, we only observe lim-550

ited improvement for the metaphysical event dis-551

crimination task. Future works could focus on how552

to further enhance LLM’s metaphysical reasoning553

capabilities in these weaker dimensions.554

5.3.3 Error Analysis of GPT-Series Models555

Finally, we select GPT4 as a representative model556

and conduct a manual analysis to identify the557

causes of errors by categorizing the mistakes found558

in their COT responses. We sample 150 COT re-559

sponses from each task, all of which result in in-560

consistent results compared to human annotated561

labels and present our classifications of these er- 562

rors as follows: (1) Hallucinations: 41.7% of er- 563

rors are caused by factual or metaphysical halluci- 564

nations by GPT4, where it creates a context that 565

accommodates changes in actions and inferences 566

that are not mentioned in the original text. For 567

instance, in the event “The poet enjoys writing 568

poems about western festivals,” GPT4 incorrectly 569

interprets the poet as Du Fu. This leads to a conflict 570

when reasoning about his life and the subsequent 571

inference “He was famous in the west,” resulting 572

in faulty reasoning. (2) Confusion between Con- 573

cepts and Hypernyms: 36.3% errors are attributed 574

to GPT4’s tendency to perceive abstract compo- 575

nents within changed actions as hypernyms that 576

fulfill the change, without considering all potential 577

entities within the original concept. For instance, in 578

a modified event, “He jumps down from very high 579

altitude and lands peacefully,” GPT4 interprets very 580

high altitude as a diving platform, deeming it plau- 581

sible. However, this concept could also encompass 582

high buildings, which would not be suitable for the 583

event. (3) Internal Conflict: 17.7% errors are at- 584

tributed to internal conflicts within GPT4’s reason- 585

ing rationales, as well as inconsistencies between 586

the binary predictions made and the correspond- 587

ing reasoning rationales. (4) Annotation Error: 588

4.3% errors are erroneously identified due to incor- 589

rect labels, potentially caused by spamming or a 590

misunderstanding of the task by human annotators. 591

6 Conclusions 592

In conclusion, this paper proposes Metaphysi- 593

cal Reasoning to delineate the process of rea- 594

soning with changes in distribution and construct 595

MARS as the associated evaluation benchmark 596

in a non-trivial manner. Our experiments show the 597

challenge of our task, which advanced prompting 598

and fine-tuning can’t easily solve. Analysis reveals 599

why LMs struggle with metaphysical reasoning 600

and suggests a possible improvement. We hope to 601

illuminate the path toward achieving conscious pro- 602

cessing in LLMs through System II reasoning by 603

effectively comprehending changes in distribution. 604
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Limitations605

Though we consider our work to be a fundamen-606

tal step towards understanding the capabilities of607

LMs in reasoning with changes in distribution, we608

do acknowledge that several limitations still ex-609

ist that just cannot be covered within one single610

work. Here, we discuss some important limitations611

that future works can address: (1) Include more612

types of changes in our current formulation. In613

our work, we primarily focus on seven types of614

changes, covering the subject, verb, object, spatial615

quantifier, temporal quantifier, numerical proper-616

ties, and sub-events of the event. While these seven617

types encompass most of the potential changes,618

there are other components within an event that619

can be modified, such as adjectives, adverbs, and620

prepositional phrases. Nevertheless, our flexible621

and automated benchmark curation pipeline, em-622

powered by an LLM, allows for future research to623

extend the benchmark to cover a broader range of624

component types. (2) Enabling multiple changes625

simultaneously. For simplicity, we consider only626

one change occurring per event in each data entry.627

However, it is also possible for multiple changes628

to occur simultaneously, thereby modifying more629

than one component. This, however, could lead630

to a significantly larger dataset, rendering it im-631

practical to construct a benchmark with human632

annotation. (3) Reliance of LLM on benchmark633

curation. Our data construction process relies sig-634

nificantly on ChatGPT, an expensive and propri-635

etary language model used for data collection, as636

well as human annotation for data verification. Fu-637

ture research could consider utilizing robust open-638

source language models (Reid et al., 2024) and639

general statement plausibility estimators (Liu et al.,640

2023a) to replace these methods. (4) Verifying641

metaphysical reasoning on downstream tasks.642

While this paper establishes a comprehensive eval-643

uation benchmark for metaphysical reasoning, we644

leave the exploration of potential benefits of utiliz-645

ing MARS and metaphysical reasoning for down-646

stream tasks into future works. These tasks may647

include planning (Yuan et al., 2023; Ouyang and Li,648

2023) or reasoning with changes (He et al., 2023b).649

Ethics Statement650

Offensive Content Elimination. Our benchmark651

curation pipeline, which involves generating con-652

tent with ChatGPT, necessitates stringent measures653

to ensure the absence of offensive content in both654

the prompts and the generated responses. For this 655

purpose, we apply two strategies to eliminate of- 656

fensive content. First, we use the highest level of 657

Azure AI Content Safety Filter to filter out any 658

content that contains personal privacy, promotes 659

violence, racial discrimination, hate speech, sexual 660

content, or self-harm. If any such unsafe content 661

is detected in the prompts or generated responses, 662

it automatically triggers a system failure, which 663

prevents the inclusion of such data in our dataset. 664

Second, we manually inspect a random sample of 665

500 data entries from three tasks in MARS for 666

offensive content. Based on our annotations, we 667

have not detected any offensive content. We thus 668

believe that our dataset is safe and will not yield 669

any negative societal impact. 670

Licenses. We will share our code and models 671

under the MIT license, thereby granting other re- 672

searchers free access to our assets for research pur- 673

poses. Other datasets used in this paper, includ- 674

ing Wikitext and Bookcorpus, are shared under 675

the CC-SA license, permitting us to use them for 676

research. As for language models, we access all 677

open-source LMs via the Huggingface Hub (Wolf 678

et al., 2020). All associated licenses permit user 679

access for research purposes, and we have agreed 680

and committed to follow all terms of use. 681

Annotations. We conduct large scale human an- 682

notations on the Amazon Mechanical Turk (AMT) 683

platform. We invite annotation workers from the 684

US, Europe, and India due to their proficiency in 685

English. The annotators are paid on average at an 686

hourly rate of 19 USD, which is comparable to the 687

minimum wages in the US. The selection of these 688

annotators is solely based on their performance 689

on the evaluation set, and we do not collect any 690

personal information about the participants from 691

AMT. For expert verifications, we have secured 692

IRB approval and support from our institution’s de- 693

partment, which allows us to invite expert graduate 694

students to validate the quality of our data. They 695

all agree to participate voluntarily without being 696

compensated. We have made concerted efforts to 697

eliminate offensive content, thereby ensuring that 698

no annotators are offended. 699
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Appendices 1210

A Prompts for Generations and 1211

Evaluations with LLMs 1212

A.1 MARS Benchmark Curation 1213

An overview of our benchmark construction 1214

pipeline is shown in Figure 5. We first present 1215

our prompts used in each step for sequentially 1216

instructing ChatGPT to generate candidate data 1217

for MARS. 1218

A.1.1 Text Decomposition and Event 1219

Component Extraction 1220

To decompose a lengthy text from the source cor- 1221

pora into several action events, we use the follow- 1222

ing prompt to instruct ChatGPT. 1223

You are required to decompose the 1224

given long sentence into several short 1225

yet semantically complete events, each 1226

describing an action. An action 1227

event refers to those describing an 1228

action or a state change that occurs 1229

at a specific time and place. The 1230

key components of each event should 1231

be preserved: including the subject, 1232

verb, object, temporal and spatial 1233

quantifiers, numerical properties of the 1234

subject and objects, and sub-events. 1235

Generate one event as a whole sentence 1236

per line. You can generate as many events 1237

as you need. Below are some examples: 1238

. . . 1239

Sentence <i>: In November 2010, after 1240

years of planning and development, 1241

SpaceX successfully launched their 1242

Falcon 9 rocket into orbit for the 1243

first time. The launch took place at 1244

Cape Canaveral Air Force Station in 1245

Florida. The Falcon 9 carried a Dragon 1246

spacecraft mock-up, representing a major 1247

milestone in SpaceX’s efforts to develop 1248

a reliable and cost-effective means 1249

of transporting cargo and eventually 1250

astronauts to the International Space 1251

Station. 1252

Event 1: SpaceX successfully launched 1253

their Falcon 9 rocket into orbit for the 1254

first time in November 2010. 1255

Event 2: The Falcon 9 carried a Dragon 1256

spacecraft mock-up. 1257

Event 3: The launch of the Falcon 9 1258
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4.1 Event Decomposition

<Source Text About Caesar>

Event: Caesar ruled the Rome 
emperor for more than 10 
years

4.1 Component Extraction

Event: Caesar ruled the Rome 
emperor for more than 10 years

Subject: Caesar | Verb: rule | 
… Temporal: more than 10 
years | …

4.2 Component Abstraction / Variation

Event: <Caesar> ruled the 
Rome emperor for more than 10 
years

Original: Caesar
Abstraction: King, Human, 
Mammal

4.3 Inference Generation

Event: If <King> ruled the 
Rome emperor for more than 10 
years

Inference: people admired his 
leadership.

4.3 Metaphysical Inference Generation

Event: If <King> ruled the 
Rome emperor for more than 10 
years

Metaphysical Inference: his 
people suffer from chaos and 
instability.

4.4 Metaphysical Transition Generation

If <King> ruled the Rome emperor for 
more than 10 years, then his people suffer 
from chaos and instability?

Transition: more than 10 years 
-> less than 10 days (temporal 
quantifier)MARS

4.5 Human Annotation & Expert Verification

Amazon MTurk

Expert

(Candidate Data)

Meta. Event Discrim.
Meta. Inference 
Discrim.
Meta. Transition 
Discrim.

Figure 5: An overview of our benchmark curation pipeline with running examples.

took place at Cape Canaveral Air Force1259

Station in Florida.1260

. . .1261

Sentence <N>: In May 1934, following1262

reports of a Japanese spy operating1263

out of Dutch Harbor, the United1264

States Navy dispatched Edwin T. Layton1265

to the Aleutians to investigate the1266

allegations.1267

We then use the following prompt to extract1268

seven types of components from the decomposed1269

events.1270

Given a short event, extract these1271

components:1272

1. Subject: The noun that performs the1273

action in the sentence.1274

2. Verb: The action word in the1275

sentence.1276

3. Object: The noun that receives the1277

action of the verb.1278

4. Temporal Quantifier: The time or time1279

period of the event in the sentence.1280

5. Spatial Quantifier: The location1281

or spatial extent of the event in the1282

sentence.1283

6. Numerical Quantities and Properties1284

of Objects: Numerical values describing1285

the number or properties of the subject,1286

object, or sub-events.1287

7. Sub-events: Complete events that are1288

part of the main event in the sentence.1289

For each component, if there are more1290

than one, separate them with |. If1291

you cannot find one for a component,1292

generate “None” only. Below are some1293

examples:1294

. . .1295

Event <i>: After the First Battle1296

of Naktong Bulge, the US Army’s 2nd1297

Infantry Division was moved to defend 1298

the Naktong River line. 1299

Subject: US Army’s 2nd Infantry Division 1300

Verb: moved | defend 1301

Object: None 1302

Temporal Quantifier: After the First 1303

Battle of Naktong Bulge 1304

Spatial Quantifier: Naktong River line 1305

Quantities and Properties of Objects: 1306

None 1307

Sub-events: The US Army’s 2nd Infantry 1308

Division was moved | The US Army’s 2nd 1309

Infantry Division was moved to defend 1310

the Naktong River line. 1311

. . . 1312

Event <N>: The University of Colorado 1313

created the Department of Medicine in 1314

September 1883 in the Old Main building 1315

on the Boulder campus. 1316

A.1.2 Component Abstraction and Variation 1317

For each type of component, we customize the 1318

prompt according to the nature of the component 1319

and whether the changes are implemented via ab- 1320

straction or numerical variation. Here, we take the 1321

subject category with its abstraction as an example. 1322

Given an event and a subject within the 1323

event, abstract the given subject in 1324

the given sentence into three different 1325

concepts. Each concept should be more 1326

abstract than the previous one. You are 1327

encouraged to be creative, but please 1328

ensure the three concepts gradually 1329

cover more instances. Below are some 1330

examples: 1331

. . . 1332

Event <i>: World’s leading scientists 1333

announce breakthrough in clean energy 1334

technology, revolutionizing global 1335

sustainability efforts. 1336
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Subject: World’s leading scientists1337

Concepts: expert, human, organism1338

. . .1339

Event <N>: A driver is speeding down1340

the highway.1341

Subject: A driver1342

Note that leveraging LLM to perform contex-1343

tualized abstraction (Wang et al., 2024; Yu et al.,1344

2023) has been shown to result in better quality,1345

larger coverage, and stronger downstream bene-1346

fits compared to previous conceptualization meth-1347

ods (He et al., 2024), such as retrieving from a1348

pre-defined concept taxonomy or human annota-1349

tion. Our knowledge distillation-based method is1350

justifiable and enables large-scale benchmark con-1351

struction.1352

A.1.3 Inference Generation1353

We use different prompts to collect plausible infer-1354

ential states and metaphysical inferential states for1355

each changed action event. Here, we provide the1356

prompt for generating a metaphysical inference as1357

an example.1358

Given an action event, generate a1359

short metaphysical if-then inferential1360

statement that describes an inferential1361

state that only occurs in metaphysical1362

space. A state is a condition or1363

situation in which someone or something1364

exists in the past or present that1365

will last for a certain time if no1366

changes occur. An action is a thing1367

that can be done in a time interval1368

that is usually not long. Metaphysical1369

inference is a type of inference that1370

is not based on empirical evidence but1371

rather on the nature of things. It1372

can be a counterfactual inference that1373

is contrary to the facts or reality,1374

meaning that it is usually not true in1375

reality world. Below are some examples:1376

. . .1377

Event <i>: In 2003, he played a1378

recurring role on two episodes of The1379

Bill.1380

Metaphysical Inference: Everyone1381

criticizes his performance in the show.1382

. . .1383

Event <N>: Sam drives down the road1384

with fast speed.1385

A.1.4 Metaphysical Transition Generation 1386

Finally, we use the prompt below to collect the 1387

change needed to transition a metaphysical infer- 1388

ence into a plausible one. 1389

You will be given an event and its 1390

metaphysical inference, meaning that 1391

such an inference is impossible or 1392

rarely occurring in reality. Please 1393

generate a transition that would make 1394

the inference plausible or possible 1395

in real life. Specifically, you are 1396

required to only change a component 1397

of the event. The component must 1398

be one of the Subject, Verb, Object, 1399

Temporal Quantifier, Spatial Quantifier, 1400

Numerical Properties of Subject or 1401

Objects, and Sub-events of the event. 1402

Below are some examples: 1403

. . . 1404

Event <i>: The boss of the company is 1405

monitoring the employees. 1406

Metaphysical Inference: The boss feels 1407

nervous and is expecting a rise. 1408

Transition: employees -> stocks (Object) 1409

. . . 1410

Event <N>: The man is being chased by a 1411

100 meters butterfly in the forest. 1412

Metaphysical Inference: The man is not 1413

scared and is laughing. 1414

A.2 Additional Statistics on MARS 1415

Table 4 presents detailed statistics on the number of 1416

unique identified and modified components by type 1417

in the annotated splits of each task. The majority 1418

(approximately 80%) of the components focus on 1419

the subject, verb, and object, while the remainder 1420

(around 20%) concentrate on temporal quantifiers, 1421

spatial quantifiers, numerical properties, and sub- 1422

events. On average, each annotated event in MARS 1423

features 8.15 identified components for changes 1424

and 7.81 transitions. 1425

A.3 Main Evaluations on MARS 1426

To evaluate LLMs on three tasks in MARS, we 1427

show our evaluating prompts in zero-shot scenario 1428

in Table 5. Note that we are aware that LLMs 1429

may not be familiar with the word “metaphysical.” 1430

Therefore, we also experimented with replacing 1431

the word with “implausible,” and the best perfor- 1432

mances from both types of prompts are reported. 1433
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Component Type Identified Modified

ME. MI. MT. #Avg. ME. MI. MT. #Avg.

Subject 4,376 3,907 3,507 1.116 3,106 2,950 2,591 1.094
Verb 9,874 8,856 8,061 3.647 4,408 4,146 3,760 3.457
Object 12,645 11,302 9,986 1.760 5,949 5,494 4,865 1.703
Temporal Quantifier 3,003 2,560 2,288 0.472 1,394 1,253 1,110 0.435
Spatial Quantifier 3,866 3,741 3,301 0.459 2,064 1,979 1,718 0.476
Numerical Properties 5,619 4,932 4,355 0.652 3,570 3,353 2,920 0.612
Sub-events 419 385 326 0.040 425 402 332 0.037

Total 39,802 35,683 31,824 8.146 20,916 19,577 17,296 7.814

Table 4: Number of unique components by type in annotated splits of MARS. #Avg. refers to the average number of
unique identified/modified component per event.

These models are consistent across all models’ eval-1434

uations for fair comparison.1435

For few-shot evaluations, few shot examples1436

are added after task descriptions and before the1437

prompted test entry. The exemplars are randomly1438

sampled for each different test entry. For COT1439

prompting, we specifically ask LLMs to “think step1440

by step and generate a short rationale to support1441

your reasoning.” Then, we ask it to give an answer1442

based on its generated rationale. The sampling1443

temperature τ is set to 0.1 by default, and 5 COT1444

responses are sampled with τ set to 0.7 in the SC-1445

COT setting.1446

B Implementation Details1447

This section provides further implementation de-1448

tails for the main evaluations and subsequent anal-1449

yses.1450

For all experiments, we use the Huggingface11451

Library (Wolf et al., 2020) to build all models.1452

For each LLM, we conduct experiments with1453

both its instruction fine-tuned version (if any)1454

and the original version. The one achieving1455

higher performances will be included in the1456

reported results. For LLaMa2, the model code is1457

meta-llama/Llama-2-7b/13b/70b(-chat)-hf.1458

For LLaMa3, the model code is1459

meta-llama/Meta-Llama-3-8B/70B(-Instruct).1460

For Mistral, we use mistralai/1461

Mistral-7B(-Instruct)-v0.3.1462

For ChatGPT and GPT4, we access it through1463

Microsoft Azure APIs2. The code of the accessed1464

version for ChatGPT is gpt-35-turbo, and for1465

GPT4 is gpt-4. Both models are of the ver-1466

sion dated 2024-02-01. The maximum generation1467

length is set to 50 tokens in zero-shot and few-shot1468

1https://huggingface.co/
2https://azure.microsoft.com/en-us/products/ai-services/

settings, while for COT and SC-COT evaluations, 1469

the maximum generation length is set at 200 to- 1470

kens. 1471

All experiments are conducted on eight NVIDIA- 1472

V100 (32G) GPUs, with 8E disk space, 48 CPU 1473

cores, and 1T memory. Each experiment is re- 1474

peated three times with different random seeds, 1475

and the average performances are reported. 1476

B.1 Main Evaluations on MARS 1477

First, we add random voting and majority voting as 1478

another two baselines for revealing the characteris- 1479

tics of the MARS benchmark. 1480

To evaluate PTLMs in a zero-shot manner, we 1481

adopt the evaluation pipeline used for zero-shot 1482

question answering (Ma et al., 2021; Wang et al., 1483

2023a). Specifically, we convert each discrimi- 1484

nation data entry into two declarative statements, 1485

which serve as natural language assertions cor- 1486

responding to ‘yes” or “no” options. For in- 1487

stance, when determining whether an event is meta- 1488

physical, we generate two assertions: “The event 1489

<EVENT> is metaphysical as it’s unlikely to occur in 1490

reality,” and “The event <EVENT> is not metaphysi- 1491

cal; it’s plausible in reality.” The models are then 1492

tasked with computing the loss of each assertion. 1493

The assertion with the lowest loss is considered as 1494

the model’s prediction. This approach allows any 1495

PTLM to be evaluated under classification tasks 1496

with an arbitrary number of options or even type 1497

classification based on a single assertion. We use 1498

the open code library3 as our code base and follow 1499

the default hyperparameter settings. For VERA, 1500

we follow the exact same implementation4 (Liu 1501

et al., 2023a). The accessed backbone model is 1502

liujch1998/vera, and all other hyperparameter 1503

3https://github.com/Mayer123/HyKAS-CSKG
4https://github.com/liujch1998/vera
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Task Prompt

ME.

Given an event, determine whether it is a metaphysical event or not.
A metaphysical event refers to event that is implausible or rarely occurring in reality.
If it is plausible and commonly accepted in the real world, answer yes.
On the contrary, if the event is metaphysical, answer No.
The event you need to discriminate is: <TEST-ENTRY-EVENT>.
Answer Yes or No only with one word:

MI.

Given an assertion that describes a if-then inference, determine whether the inference is plausible or metaphysical.
A plausible inference is an inference that is likely to be true or reasonable based on the information provided in the assertion.
A metaphysical inference is an inference that is not based on empirical evidence but rather on the nature of things,
it rarely occurs in the real world and can be counterfactual or implausible.
The assertion is: <TEST-ENTRY-INFERENCE>.
Answer Yes or No only with one word.

MT.

You are given an event, an inference based on the event that rarely occurs in the real world (a metaphysical inference),
and a transition in the event that would make the inference plausible or possible in the real world,
please determine whether the transition is correct or not in terms of making the inference plausible or possible.
The event is: <TEST-ENTRY-EVENT>.
The inference is: <TEST-ENTRY-INFERENCE>.
The transition is: <TEST-ENTRY-TRANSITION>.
Answer Yes or No only with one word.

Table 5: Prompts used for evaluating LLMs across three tasks in MARS in zero-shot scenario. ME. MI., and MT.
stand for three tasks, respectively.

settings follow the default implementation.1504

For fine-tuning PTLMs, we connect each PTLM1505

backbone with five fully connected classification1506

layers. The entire model is then fine-tuned using1507

a classification objective with cross-entropy loss.1508

We employ a default setting of a learning rate of1509

5e-6 and a batch size of 64. The models are op-1510

timized using an AdamW optimizer (Loshchilov1511

and Hutter, 2019), with the model’s performance1512

evaluated every 50 steps. We set the maximum se-1513

quence lengths for the tokenizers to 70 for all three1514

discriminative subtasks. Early stopping is also im-1515

plemented to select the best checkpoint when the1516

highest validation accuracy is achieved. To ensure1517

convergence, we train all models with five epochs.1518

For evaluating LLMs in a zero-shot manner, we1519

transform the input for each task into assertions1520

using natural language prompts, as illustrated in1521

Table 5. The models are then prompted to deter-1522

mine the plausibility of the provided assertions by1523

answering yes or no questions. We parse their re-1524

sponses using pre-defined rules to derive binary pre-1525

dictions. When generating each token, we consider1526

the top 10 tokens with the highest probabilities.1527

For fine-tuning LLMs, we use LoRA for fine-1528

tuning, and the LoRA rank and α are set to 161529

and 32, respectively. We adopt the open code li-1530

brary from LlamaFactory5 (Zheng et al., 2024) for1531

model training and evaluation. We similarly use1532

5https://github.com/hiyouga/LLaMA-Factory

an Adam (Kingma and Ba, 2015) optimizer with 1533

a learning rate of 5e-5 and a batch size of 8. The 1534

maximum sequence length for the tokenizer is set 1535

at 300. All models are fine-tuned over three epochs, 1536

selecting the checkpoint with the highest accuracy 1537

on the validation set. 1538

Finally, for evaluating proprietary LLMs, such as 1539

ChatGPT and GPT4, we similarly prompt them as 1540

with open LLMs. Detailed prompts are explained 1541

in Appendix A.3. 1542

B.2 Improving Metaphysical Reasoning via 1543

Transferring from Conceptualization 1544

Taxonomy 1545

In this section, we elaborate further on how we 1546

transform CANDLE into the format of three tasks 1547

in MARS for large-scale pre-training in improv- 1548

ing LMs’ metaphysical reasoning abilities. 1549

CANDLE’s data is primarily divided into two 1550

sections. The first section comprises conceptualiza- 1551

tions of instances or events, which can be reformat- 1552

ted into metaphysical event discrimination. Each 1553

data entry in CANDLE represents a conceptualiza- 1554

tion of an abstracted instance within an event or 1555

the abstraction of an entire event. Following our 1556

definition in Section 3, we interpret each concep- 1557

tualization as a change in the event. For each data 1558

entry, replacing the original instance with its con- 1559

ceptualization forms a plausible change that could 1560

occur in reality. Subsequently, we randomly select 1561

negative conceptualizations for an event from con- 1562
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ceptualizations of other events that do not share any1563

common words with the anchor event. These nega-1564

tive conceptualizations form metaphysical events.1565

Three models are then pre-trained on four million1566

events, with a balanced ratio of plausible events1567

and metaphysical events. The hyperparameters1568

for fine-tuning all models remain consistent with1569

the implementation details described above in Ap-1570

pendix B.1.1571

The second part contains the commonsense in-1572

ferential knowledge of abstracted events, which1573

can be interpreted as inferential states of the modi-1574

fied events. To synchronize with our task structure,1575

we exclusively select relations that imply a state1576

in the inferential knowledge. We obtain negative1577

inference samples in a similar manner by sampling1578

from inference tails of events without common key-1579

words. Subsequently, we pre-train models for both1580

the metaphysical inference discrimination task and1581

the metaphysical transition reasoning task. These1582

models are trained to determine whether the infer-1583

ence is plausible or metaphysical in relation to the1584

altered event. As CANDLE does not include tran-1585

sitions, this approach serves as the most accurate1586

simulation of the metaphysical transition reasoning1587

task. It’s also important to note that CANDLE is1588

exclusively predicated on social events, covering1589

only subject, object, and sub-events as types of ab-1590

straction changes. In contrast, MARS contains1591

a significantly wider array of events, incorporates1592

more types of changes, and also evaluates (L)LMs’1593

capabilities in discerning what additional change1594

is requisite to instigate a transition. These features1595

make MARS distinct from tasks in CANDLE.1596

C Annotation Details1597

C.1 Worker Selection Protocol1598

To ensure the high quality of our human annotation,1599

we implement strict quality control measures. Ini-1600

tially, we invite only those workers to participate1601

in our qualification rounds who meet the follow-1602

ing criteria: 1) a minimum of 1K HITs approved,1603

and 2) an approval rate of at least 95%. We se-1604

lect workers separately for each task and conduct1605

three qualification rounds per task to identify those1606

with satisfactory performance. In each qualifica-1607

tion round, we create a qualification test suite that1608

includes both easy and challenging questions, each1609

with a gold label from the authors. Workers are1610

required to complete a minimum of 20 questions.1611

To qualify, they must achieve an accuracy rate of at1612

least 80% on the qualification test. After our selec- 1613

tion process, we chose 36, 24, and 32 workers for 1614

three tasks, respectively, from a pool of 481, 377, 1615

and 409 unique annotators. On average, our worker 1616

selection rate stands at 7.26%. Following the quali- 1617

fication rounds, workers are required to complete 1618

another instruction round. This round contains 1619

complex questions selected by the authors, and 1620

workers are required to briefly explain the answer 1621

to each question. The authors will then double- 1622

check the explanations provided by the annotators 1623

and disqualify those with a poor understanding. 1624

C.2 Annotation Interface 1625

For each task, we provide workers with compre- 1626

hensive task explanations in layman’s terms to en- 1627

hance their understanding. We also offer detailed 1628

definitions and several examples of each choice to 1629

help annotators understand how to make decisions. 1630

Each entry requires the worker to annotate using a 1631

four-point Likert scale. Workers are asked to rate 1632

the plausibility of the given question using such 1633

scale, where 1 signifies strong agreement and 4 1634

indicates strong disagreement. We consider anno- 1635

tations with a value of 1 or 2 as plausible and those 1636

with a value of 3 or 4 as implausible. A snapshot of 1637

our annotation instructions, along with a snapshot 1638

showing the question released to the worker, are 1639

shown in Figure 6 and Figure 7. To ensure com- 1640

prehension, we require annotators to confirm that 1641

they have thoroughly read the instructions by tick- 1642

ing a checkbox before starting the annotation task. 1643

We also manually monitor the performance of the 1644

annotators throughout the annotation process and 1645

provide feedback based on common errors. Spam- 1646

mers or underperforming workers will be disquali- 1647

fied. The overall inter-annotator agreement (IAA) 1648

stands at 81% in terms of pairwise agreement, and 1649

the Fleiss kappa (Fleiss, 1971) is 0.56. These statis- 1650

tics are generally comparable to or slightly higher 1651

than those of other high-quality dataset construc- 1652

tion works (Sap et al., 2019; Fang et al., 2021a,b; 1653

Hwang et al., 2021), which indicates that the an- 1654

notators are close to achieving a strong internal 1655

agreement. 1656

C.3 Expert Verification 1657

Finally, we enlist the help of three postgraduate 1658

students, each with extensive experience in NLP re- 1659

search, to validate the annotations. These students 1660

are given the same instructions as those provided to 1661

the crowd-sourcing workers and are asked to verify 1662
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a sample of 100 annotations for each task. The1663

high level of consistency between our expert anno-1664

tators and the AMT annotators, as demonstrated1665

in Table 1, suggests that our AMT annotation is of1666

high quality.1667

D Task-Oriented Benchmark1668

Comparisons1669

Table 1 shows a comparison of MARS with sev-1670

eral other datasets, underscoring the unique value1671

of MARS. In this section, we delve deeper into1672

the differences between various benchmarks for1673

each task, and further elaborates on the distinctive1674

characteristics of MARS.1675

Metaphysical Event Discrimination. In the task1676

of metaphysical event discrimination, we com-1677

pare MARS with the discriminative event con-1678

ceptualization task in AbstractATOMIC and the ab-1679

straction detection task in AbsPyramid. Both tasks1680

aim to determine whether a concept feasibly repre-1681

sents an instance within an event (instance abstrac-1682

tion) or the entire event (event abstraction). Despite1683

their similarities to the metaphysical event discrim-1684

ination task, there are several notable differences.1685

Firstly, none of the previous benchmarks encom-1686

pass instances of temporal quantifiers, spatial quan-1687

tifiers, and numerical properties in events, thereby1688

limiting their coverage of instances. This sacrifices1689

a large number of potential changes that could oc-1690

cur within events. Secondly, the concepts in their1691

formulation are disorganized, unlike the increas-1692

ing abstractive granularity collected in MARS.1693

Lastly, the primary objective of metaphysical event1694

discrimination is to assess a language model’s abil-1695

ity to discern various abstractions as changes in1696

events, rather than merely evaluating their plausi-1697

bility in representing instances as concepts.1698

Metaphysical Inference Discrimination. In1699

the task of metaphysical inference discrimina-1700

tion, MARS shares a similar objective with the1701

discriminative triple conceptualization task in Ab-1702

stractATOMIC. Both tasks evaluate the plausibility1703

of the inference of an abstracted event. However,1704

AbstractATOMIC is limited to featuring social1705

events and, consequently, social inferences. It also1706

only contains nine commonsense relations, and all1707

inference tails are sourced from ATOMIC (Sap1708

et al., 2019), resulting in very limited semantic1709

coverage. Conversely, MARS covers a broad1710

range of text events and inferences within various1711

contexts, thanks to the robust generative ability 1712

of ChatGPT. MARS also features inferences when 1713

the same event is conceptualized in different ways 1714

by abstracting different components. This unique 1715

feature provides additional value in studying the 1716

transition of inferences caused by varying abstrac- 1717

tions or variations as changes in the event. 1718

Metaphysical Transition Discrimination. To 1719

the best of our knowledge, no previous bench- 1720

marks have covered similar task objective as the 1721

metaphysical transition discrimination task. The 1722

most comparable tasks are those related to reason- 1723

ing with changes in logical reasoning or planning, 1724

which aim to determine the next necessary step to 1725

achieve a goal. This is somewhat akin to inferring 1726

the required change in an event to make a meta- 1727

physical inference plausible. However, previous 1728

works primarily rely on game datasets or feature 1729

only a limited number of handcrafted examples, 1730

which restricts their effectiveness in evaluating a 1731

reasoner’s ability to generalize and understand the 1732

consequences of changes across broad domains. 1733

MARS addresses this limitation by incorporating a 1734

variety of events sourced from Wikitext and Book- 1735

corpus. Previous works also tend to focus solely on 1736

selecting the next step from a finite set of possible 1737

steps, rather than in an open-ended generative man- 1738

ner. MARS, on the other hand, utilizes ChatGPT 1739

to gather additional changes that drive transitions, 1740

making it significantly more challenging to reason 1741

with transitions in an open-world setting. This ap- 1742

proach, however, promotes the development of a 1743

generalizable agent with System II reasoning capa- 1744

bilities. 1745

E Multi-task Fine-tuning on MARS 1746

E.1 Setup 1747

To achieve conscious processing, an ideal language 1748

model should be capable of performing three tasks 1749

uniformly and sequentially. However, fine-tuning 1750

each task separately contradicts this objective, as it 1751

results in a model that can only perform one task 1752

after one training. Therefore, in this section, we 1753

investigate the possibility of enabling a language 1754

model to master all tasks simultaneously through 1755

multitask fine-tuning. Given that all three tasks 1756

are binary classification tasks, we adopt a straight- 1757

forward approach. The language model is trained 1758

using a randomly shuffled combination of training 1759

data from all three tasks. This anticipates that the 1760

model will learn all tasks collectively. The best 1761
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Methods Backbone Event Inference Transition

Acc AUC Ma-F1 Acc AUC Ma-F1 Acc AUC Ma-F1

Random - 50.00 - 49.56 50.00 - 49.56 50.00 - 49.56
Majority - 60.98 - 37.99 58.56 - 36.93 50.25 - 33.37

LLM
(Zero-shot)

Meta-LLaMa-2-7B 50.64 - 41.41 49.87 - 49.23 50.94 - 50.64
Meta-LLaMa-2-13B 51.50 - 49.48 50.81 - 50.57 50.81 - 50.80
Meta-LLaMa-2-70B 52.40 - 49.03 56.13 - 46.81 48.45 - 48.34
Meta-LLaMa-3-8B 50.62 - 49.12 51.33 - 50.98 51.95 - 51.07
Meta-LLaMa-3-70B 57.41 - 50.59 63.40 - 61.82 60.15 - 60.01
Gemma-1.1-7B 56.88 - 48.53 51.83 - 51.76 49.41 - 45.01
Falcon-7B 54.32 - 49.51 51.77 - 50.30 50.42 - 49.02
Falcon-40B 52.35 - 50.36 49.67 - 49.38 50.27 - 50.22
Mistral-7B 49.90 - 48.94 50.23 - 50.06 51.75 - 51.75

LLM
(Fine-tuned)

Meta-LLaMa-2-7B 60.10 59.90 59.00 63.51 66.44 62.55 66.06 70.38 65.12
Meta-LLaMa-2-13B 60.67 60.64 60.00 64.61 67.67 63.59 68.22 72.19 66.37
Meta-LLaMa-3-8B 60.06 60.54 59.58 65.76 67.88 65.72 69.83 74.59 68.74
Gemma-1.1-7B 61.23 61.25 60.28 69.24 70.76 69.00 73.30 76.91 69.18
Mistral-7B 60.35 60.77 60.07 66.91 70.06 65.95 71.87 75.47 68.53

LLM
(Multi-task)

Meta-LLaMa-2-7B 60.70 59.88 59.17 66.15 64.67 64.34 70.40 70.89 70.20
Meta-LLaMa-2-13B 61.36 61.42 60.69 67.07 66.44 65.68 70.44 69.15 68.62
Meta-LLaMa-3-8B 61.38 61.85 61.02 67.20 67.13 66.60 71.64 72.06 71.12
Gemma-1.1-7B 61.54 62.36 61.15 67.71 67.60 66.98 73.12 72.82 71.89
Mistral-7B 61.03 61.16 60.38 67.69 67.20 66.16 72.34 72.52 71.78

Table 6: Evaluation results (%) of LLMs fine-tuned on MARS under the multi-task setting.

checkpoint is chosen based on achieving the high-1762

est accuracy on the validation sets of all three tasks.1763

After training, the model performance is evaluated1764

separately on the testing sets of each task. All train-1765

ing details remain consistent with those explained1766

in the Appendix B.1.1767

E.2 Results and Analysis1768

The results are presented in Table 6. Upon analyz-1769

ing these results, we observe that LLMs fine-tuned1770

in a multi-task setting generally outperform those1771

simply fine-tuned on the respective training data for1772

each task. This observation is interesting as it sug-1773

gests that training the model uniformly across all1774

three tasks can enhance the entire process simulta-1775

neously, thereby improving reasoning with changes1776

in distribution. This implies that LLMs can poten-1777

tially mimic human learning abilities, which are1778

better equipped to reason with changes by collec-1779

tively understanding the feasibility, consequence,1780

and necessity of such changes. Such a phenomenon1781

indirectly indicates that our task formulation is in-1782

deed interconnected and collectively forms a rea-1783

soning pipeline. However, it’s important to note1784

that this improvement is only marginal. LLMs still1785

exhibit limited metaphysical reasoning ability, par-1786

ticularly in the metaphysical event discrimination1787

task. More advanced methods are still required to1788

enable LLMs to achieve metaphysical reasoning.1789

F Few-shot Fine-tuning on MARS 1790

F.1 Setup 1791

From the main evaluation results in Table 2, it is 1792

evident that fine-tuning consistently enhances the 1793

performance of all models on MARS. In this sec- 1794

tion, we delve deeper into the impact of fine-tuning 1795

in a few-shot setting, with the aim of analyzing 1796

the performance of models trained with limited 1797

data. More specifically, we aim to examine how 1798

models perform with varying sizes of training data. 1799

This will enable us to determine whether collecting 1800

more data invariably benefits fine-tuning, thereby 1801

leading to the development of more robust meta- 1802

physical reasoners. To achieve this, we sample the 1803

training data for each task in a progressively in- 1804

creasing ratio of 0.2, 0.4, 0.6, 0.8, and 1.0, and use 1805

each sampled training data to fine-tune LLMs for 1806

each task individually. The models are then eval- 1807

uated on the complete validation sets to select the 1808

optimal checkpoint, and on the full testing set for 1809

performance assessment. All fine-tuning parame- 1810

ters remain consistent across all models, as detailed 1811

in Appendix B.1. 1812

F.2 Results and Analysis 1813

The results are reported in Table 7. From these 1814

results, we observe that training the model with a 1815

few-shot training data sample generally has a nega- 1816
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Backbone Training Data Event Inference Transition

Acc AUC Ma-F1 Acc AUC Ma-F1 Acc AUC Ma-F1

LLaMa-2
7B

20% 58.03 58.24 57.62 62.43 64.47 60.43 63.11 63.08 62.73
40% 58.81 58.40 57.69 64.03 67.48 61.58 66.44 70.04 64.15
60% 59.09 59.41 58.62 64.75 68.10 62.79 67.00 70.85 64.15
80% 59.48 60.54 59.82 64.15 68.01 61.53 66.42 70.64 64.92

100% 60.10 59.90 59.00 63.51 66.44 62.55 66.06 70.38 65.12

LLaMa-2
13B

20% 59.95 59.75 58.57 63.80 66.86 61.80 64.11 68.73 64.08
40% 59.45 59.18 58.25 65.49 68.98 63.54 68.52 71.61 64.82
60% 60.19 59.46 58.92 65.90 69.59 64.18 68.24 72.17 65.59
80% 60.24 60.05 59.43 65.99 69.70 64.27 68.35 72.43 65.97

100% 60.67 60.64 60.00 64.61 67.67 63.59 68.22 72.19 66.37

LLaMa-3
8B

20% 60.56 59.91 58.99 63.40 66.77 61.06 65.23 70.50 64.60
40% 60.68 59.98 59.23 62.35 69.00 61.81 69.43 72.72 65.27
60% 60.74 60.88 60.49 65.90 69.59 61.81 69.00 72.78 65.55
80% 60.91 61.03 60.29 66.73 69.71 61.72 68.71 73.15 66.43

100% 60.06 60.54 59.58 65.76 67.88 65.72 69.83 74.59 68.74

Gemma-v1.1
7B

20% 59.07 59.54 59.18 64.70 70.42 62.43 68.41 73.64 67.08
40% 60.79 59.93 59.72 62.80 70.57 62.26 69.83 73.91 62.18
60% 59.26 60.31 59.25 67.83 70.22 60.56 70.68 74.56 66.98
80% 59.31 59.32 58.73 64.03 70.77 63.73 69.66 73.51 67.05

100% 61.23 61.25 60.28 69.24 70.76 69.00 73.30 76.91 69.18

Mistral-v1.1
7B

20% 60.67 60.27 59.61 65.28 69.22 63.16 68.37 72.85 66.15
40% 60.53 60.78 60.03 65.92 70.21 63.96 69.79 72.97 69.46
60% 61.82 61.86 61.07 67.65 70.46 64.09 67.92 73.38 66.76
80% 59.35 59.55 58.85 68.07 70.43 66.49 69.84 73.63 65.84

100% 60.35 60.77 60.07 66.91 70.06 65.95 71.87 75.47 68.53

Table 7: Evaluation results (%) of LLMs fine-tuned on MARS under the few-shot setting. Training data refers to
the ratio of sampled training data from the full training sets of MARS.

tive impact across all tasks in MARS. However,1817

this impact is not significant, and on rare occasions,1818

the sampled training data even leads to superior1819

results compared to training on the full sets. When1820

the training data is reduced to different ratios (80%,1821

60%, 40%, and 20%), the performance of the mod-1822

els is not significantly affected. This suggests that1823

the models are capable of learning from a small1824

amount of training data and that performance is1825

not significantly influenced by the size of the train-1826

ing data. In other words, annotating more data for1827

training does not necessarily result in better perfor-1828

mance, indicating that our task cannot be simply re-1829

solved by increasing training data. Future research1830

can explore more advanced reasoning paradigms or1831

training methods to further enhance the capabilities1832

of LLMs in metaphysical reasoning.1833

G Case Studies1834

In this section, we present some examples for each1835

of the three tasks in MARS to help readers bet-1836

ter understand our benchmark. The examples are1837

displayed in Table 8. We observe that examples1838

in MARS typically require careful reasoning and1839

consideration of the plausibility of occurrences in 1840

reality or the metaphysical realm to make the cor- 1841

rect discrimination. 1842
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Survey Instructions (Click to Collapse)

Is the given inference correct?
Hi! Welcome to our main round HITs. Thanks for contributing to our HIT!
Please read the following instructions carefully before starting the survey. Please don't spam our HITs as there are pre-defined answers. If
your performance is too poor we will disqualify you.
In this survey, you will be given some events and their inferential inferences in the format of if... then...
For each sentence, your task is to determine whether you think it is plausible and commonly appears in our normal life (in the reality) or it's a metaphysical
inference that is implausible and unlikely to happen in our real world.
If you cannot understand the sentence as there are fatal logic, wordings, or grammar mistakes, please select the implausible option.
Note that for each sentence, there is a pre-defined answer. Please answer carefully! Too low correctness rate will lead to the disqualification of the HITs.

Choice Explanations
To determine each sentence, you are required to select one choice from below:

Frequently seen / commonly happening

Definition: The inference is correct and plausible. It's logically correct and can surely happens in our daily life.

If "it is raining heavily outside", then "the streets are likely to be wet". If "a person studies consistently and prepares well for an exam", then "they are
more likely to perform better than someone who does not study as diligently".

If "a person eats a balanced diet and exercises regularly", then "they
are likely to be healthier and have a longer lifespan".

If "a student attends all their classes and completes all their assignments", then
"they are more likely to pass the course with a good grade".

May happen or occur but with low probability

Definition: The inference is plausible and generally logical but has a low probability of happening. It's a rare inference that can occur but not
frequently. In some cases, it may happen but not always.

If a person buys a lottery ticket, then there is a chance they could win
a significant amount of money.

If a person encounters a rare species of bird in their backyard, then it is possible
that the bird is migrating and has made an unusual stop.

If a person randomly selects a book from a library shelf, then there is
a slight possibility that they will stumble upon a valuable and rare first
edition.

If a person visits a particular coffee shop every day for a month, then there is a
small chance they may be offered a free cup of coffee as a gesture of appreciation
from the staff.

Not likely to happen in real world

Definition: The inference has a very low probability of happening in reality. It's an inference that is highly unlikely to occur in our daily life. It's a
metaphysical inference that is not possible in our world.

If a person jumps off a building, then they will be able to fly. If a person wishes hard enough, then they can make objects levitate without any
external force.

If a person walks through a solid wall, then they will reach a parallel
dimension.

If a person concentrates deeply, then they can communicate telepathically with
others.

Implausible

Definition: The inference is logically incorrect and implausible. It's an inference that is not possible in our world and has no chance of happening in
reality. Or you cannot understand the sentence due to fatal logic, wordings, or grammar mistakes.

If a person sneezes, then they will immediately transform into a
unicorn.

If a person touches a rainbow, then they will gain the ability to breathe underwater.

If a person eats a sandwich, then they will become invisible for 24
hours.

If a person takes a nap under a tree, then they will wake up with the ability to
control the weather.

Inference 1: ${event1_id}

If "the driver is speeding down the highway fast", then "the driver is not in a hurry".

How likely do you think this inference will happen in reality?

This is logically correct. In the given context, it can be frequently seen or commonly happening!

While I think this is plausible, it may only occur in specific cases I can think of.

This is not possible or very unlikely to happen in real world.

The inference is implausible. I don't understand it as there are too many grammar errors or meaningless words.

Inference 2: ${event2_id}
${event2_type}-${event2_component_type}-${event2_original}-${event2_variation}-${event2_generation_label}-${event2_transition_original}-${event2_transition_modified}-${event2_transition_type}

If "${event2_replaced}", then "${event2_inference}".

How likely do you think this inference will happen in reality?

This is logically correct. In the given context, it can be frequently seen or commonly happening!

While I think this is plausible, it may only occur in specific cases I can think of.

This is not possible or very unlikely to happen in real world.

The inference is implausible. I don't understand it as there are too many grammar errors or meaningless words.

Inference 3: ${event3_id}
${event3_type}-${event3_component_type}-${event3_original}-${event3_variation}-${event3_generation_label}-${event3_transition_original}-${event3_transition_modified}-${event3_transition_type}

If "${event3_replaced}", then "${event3_inference}".

Previewing Answers Submitted by Workers
This message is only visible to you and will not be shown to Workers.
You can test completing the task below and click "Submit" in order to preview the data and format of the submitted results.

26/05/2024, 01:39 localhost:63342/MARS/Annotations/template/Transition_Inference_Discrimination_Main_demo.html?_ijt=oqm4k0jrvl1qvc25gqd9a52gjv&_ij_reload=RELOAD_ON_SAVE

localhost:63342/MARS/Annotations/template/Transition_Inference_Discrimination_Main_demo.html?_ijt=oqm4k0jrvl1qvc25gqd9a52gjv&_ij_reload=RELOAD_ON_SAVE 1/3

Figure 6: Our annotation instruction for the workers at the metaphysical inference discrimination task. Workers are
provided with both task explanations and detailed examples.
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Survey Instructions (Click to Collapse)

Is the given inference correct?
Hi! Welcome to our main round HITs. Thanks for contributing to our HIT!
Please read the following instructions carefully before starting the survey. Please don't spam our HITs as there are pre-defined answers. If
your performance is too poor we will disqualify you.
In this survey, you will be given some events and their inferential inferences in the format of if... then...
For each sentence, your task is to determine whether you think it is plausible and commonly appears in our normal life (in the reality) or it's a metaphysical
inference that is implausible and unlikely to happen in our real world.
If you cannot understand the sentence as there are fatal logic, wordings, or grammar mistakes, please select the implausible option.
Note that for each sentence, there is a pre-defined answer. Please answer carefully! Too low correctness rate will lead to the disqualification of the HITs.

Choice Explanations
To determine each sentence, you are required to select one choice from below:

Frequently seen / commonly happening

Definition: The inference is correct and plausible. It's logically correct and can surely happens in our daily life.

If "it is raining heavily outside", then "the streets are likely to be wet". If "a person studies consistently and prepares well for an exam", then "they are
more likely to perform better than someone who does not study as diligently".

If "a person eats a balanced diet and exercises regularly", then "they
are likely to be healthier and have a longer lifespan".

If "a student attends all their classes and completes all their assignments", then
"they are more likely to pass the course with a good grade".

May happen or occur but with low probability

Definition: The inference is plausible and generally logical but has a low probability of happening. It's a rare inference that can occur but not
frequently. In some cases, it may happen but not always.

If a person buys a lottery ticket, then there is a chance they could win
a significant amount of money.

If a person encounters a rare species of bird in their backyard, then it is possible
that the bird is migrating and has made an unusual stop.

If a person randomly selects a book from a library shelf, then there is
a slight possibility that they will stumble upon a valuable and rare first
edition.

If a person visits a particular coffee shop every day for a month, then there is a
small chance they may be offered a free cup of coffee as a gesture of appreciation
from the staff.

Not likely to happen in real world

Definition: The inference has a very low probability of happening in reality. It's an inference that is highly unlikely to occur in our daily life. It's a
metaphysical inference that is not possible in our world.

If a person jumps off a building, then they will be able to fly. If a person wishes hard enough, then they can make objects levitate without any
external force.

If a person walks through a solid wall, then they will reach a parallel
dimension.

If a person concentrates deeply, then they can communicate telepathically with
others.

Implausible

Definition: The inference is logically incorrect and implausible. It's an inference that is not possible in our world and has no chance of happening in
reality. Or you cannot understand the sentence due to fatal logic, wordings, or grammar mistakes.

If a person sneezes, then they will immediately transform into a
unicorn.

If a person touches a rainbow, then they will gain the ability to breathe underwater.

If a person eats a sandwich, then they will become invisible for 24
hours.

If a person takes a nap under a tree, then they will wake up with the ability to
control the weather.

Inference 1: ${event1_id}

If "the driver is speeding down the highway fast", then "the driver is not in a hurry".

How likely do you think this inference will happen in reality?

This is logically correct. In the given context, it can be frequently seen or commonly happening!

While I think this is plausible, it may only occur in specific cases I can think of.

This is not possible or very unlikely to happen in real world.

The inference is implausible. I don't understand it as there are too many grammar errors or meaningless words.

Inference 2: ${event2_id}
${event2_type}-${event2_component_type}-${event2_original}-${event2_variation}-${event2_generation_label}-${event2_transition_original}-${event2_transition_modified}-${event2_transition_type}

If "${event2_replaced}", then "${event2_inference}".

How likely do you think this inference will happen in reality?

This is logically correct. In the given context, it can be frequently seen or commonly happening!

While I think this is plausible, it may only occur in specific cases I can think of.

This is not possible or very unlikely to happen in real world.

The inference is implausible. I don't understand it as there are too many grammar errors or meaningless words.

Inference 3: ${event3_id}
${event3_type}-${event3_component_type}-${event3_original}-${event3_variation}-${event3_generation_label}-${event3_transition_original}-${event3_transition_modified}-${event3_transition_type}

If "${event3_replaced}", then "${event3_inference}".

Previewing Answers Submitted by Workers
This message is only visible to you and will not be shown to Workers.
You can test completing the task below and click "Submit" in order to preview the data and format of the submitted results.

26/05/2024, 01:40 localhost:63342/MARS/Annotations/template/Transition_Inference_Discrimination_Main_demo.html?_ijt=oqm4k0jrvl1qvc25gqd9a52gjv&_ij_reload=RELOAD_ON_SAVE

localhost:63342/MARS/Annotations/template/Transition_Inference_Discrimination_Main_demo.html?_ijt=oqm4k0jrvl1qvc25gqd9a52gjv&_ij_reload=RELOAD_ON_SAVE 1/3

Figure 7: An example of a question that has been released to the worker. Workers are asked to annotate in a
four-point Likert scale.

Task Data Examples Label

ME. The tax offices were devastation (burnt down) P.

ME. Keith and Vinnie are running (competition) against each other in the sheriff’s election P.

ME. We worked together environment (in the marina) for years M.

ME. The sun is melting horizon (over the landscape) like an orange popsicle M.

ME. Mammal (human) seek food for their own survival P.

MI. If I perception (felt) the tension leave me, then I feel more relaxed now P.

MI. If they both reached the excellence (world top 100) in 2005, then they both worked hard to
achieve their goals

P.

MI. If Parker and Garbajosa were adaptable (two very versatile players) who could both
defend and attack, then they were actually terrible basketball players.

M.

MI. If Stevens success (won) his first eight games, then Steven is a skilled player. P.

MI. If I communication (have to talk) to my insurance company, then my insurance company
is not responsive and does not provide good customer service.

M.

MT. If he was respectful (overpowering and right intrusion), then he will apologize for his
actions and make amends.

P.

MT. If the other guests have just been invited to participate in a karaoke session (join commu-
nity on the dance floor), then the other guests decline the invitation and choose to sit and
watch instead.

P.

MT. If Australia opposed (supported) South Vietnam in that time period, then Australia support
South Vietnam during that time period.

M.

MT. If Churchill has ignoring (communication) to the requests for verification in various ways,
then Churchill is not interested in verifying the requests and is avoiding them.

P.

MT. If Tikal has hundreds (thousands) of history structures, then archaeologists have not yet
discovered the true purpose of Tikal’s structures.

M.

Table 8: Case studies of three tasks in the MARS benchmark. ME, MI, and MT refer to three tasks in metaphysical
reasoning, respectively. P. refers to plausible in reality and M. refers to metaphysical. The original component
before the change/transition is marked in (grey).
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