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Abstract

Data-driven (DD) interatomic potentials (IPs) trained on large collections of first
principles calculations are rapidly becoming essential tools in the fields of com-
putational materials science and chemistry for discovery pipelines and performing
atomic-scale simulations. Despite this, apart from a few notable exceptions, there
is a distinct lack of well-organized, public datasets in common formats available
for use with IP development. This deficiency precludes the research community
from implementing widespread benchmarking, which is essential for gaining in-
sight into model performance and transferability, and also limits the development
of more general universal (perhaps even multi-source) IPs. To address this issue,
last year we introduced the ColabFit Exchange, the first database providing open
access to a large collection of systematically organized datasets from multiple do-
mains that is especially designed for IP development. It has now grown to contain
369 datasets spanning nearly 400,000 unique chemistries. Here we discuss recent
updates to the ColabFit Exchange, including data statistics for the ever-growing
database, modifications to the data standard and database backend, and new tools
to utilize the data for machine learning (ML) applications.
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1 Introduction

Leveraging modern computing infrastructures, high-throughput pipelines for density functional the-
ory (DFT) calculations have been able to produce results for millions of atomic configurations span-
ning a wide range of chemistries and applications [1, 2, 3, 4, 5, 6]. These methods have led to the
creation of a number of massive datasets of first principles calculations, such as Materials Project [7],
OpenCatalyst Project [8, 9], and Alexandria [10], among others [11, 12, 13, 14], which have served
as critical resources for materials discovery and interatomic potential (IP) development. While these
repositories have proven extremely useful, there still exist opportunities for continued development
and dissemination of datasets specifically tailored to fit the needs of developers of data-driven (DD)
IPs. In particular, datasets intended for use with IP development typically include a variety of non-
equilibrium atomic configurations or hand-selected structures depending on the target application.
Furthermore, datasets intended for fitting DDIPs are often carefully pruned and refined to enable
the models to efficiently learn the physical behaviors relevant for the accurate prediction of a given
material property, and to achieve stable simulations. This is in contrast to many of the largest and
most used datasets that are commonly derived from (relaxation) trajectories. Conversely, exist-
ing databases of quantum mechanical (QM) calculations focus predominantly on stable equilibrium
structures relevant to material discovery. Even in the case of databases that do contain portions of the
data that may be suitable for use in DDIP fitting, they are rarely organized in a way that facilitates
model benchmarking or targeted analysis of model behavior across chemical compound space.

In addition to the issues of content and structure of existing QM calculation databases, common
methods for organizing and distributing DDIP training datasets, such as the use of personal GitHub
repositories [9, 15, 16, 17, 18], uploads to Figshare [19, 20, 21, 22, 23], Zenodo [24, 25, 26, 27], or
other file sharing methods are inconsistent and not conducive to interpretability and interoperability
of the datasets. Datasets stored in this manner often use custom formats (Extended XYZ, HDF5,
VASP OUTCARs, CSV, JSON) depending upon the specific research group that generated them,
and despite government insistence [28, 29] typically lack metadata necessary for interpretability and
reproducibility of the data (missing units, unspecified DFT settings, undocumented inconsistencies
in data structure). Unfortunately, even this limited approach for sharing data is pursued by only
a handful of researchers, with the vast majority of DDIP datasets being entirely inaccessible to
the general public or made available through private correspondence “upon reasonable request,”
without always honoring such requests. The end result is a significant decrease in reproducibility of
published results and the effective loss of non-trivial amounts of effort and computational time spent
on data generation, inevitably hindering scientific progress.

Therefore, to address these concerns, the ColabFit Exchange was developed [30]. It serves as a
FAIR[31] (findable, accessible, interoperable, and reusable) exchange of datasets designed for DDIP
training to help to facilitate collaboration and drive innovation by: 1) defining a consistent, efficient,
and standardized method for storing the data; 2) enabling the organization of the data into mean-
ingful, well-documented groupings; and 3) providing tools for easily accessing and contributing to
the database in order to promote community engagement. In this work, we describe recent updates
to the ColabFit Exchange, including the manner in which the data is represented, changes to the
database backend infrastructure, and new ways to utilize the data.

2 Database Structure

The original storage backend used in the ColabFit Exchange was a non-relational database (Mon-
goDB), chosen for the potential flexibility of data point representation. To increase speed of data
ingestion and retrieval and facilitate long-term growth of the database, the ColabFit Exchange has
moved to a relational (SQL-style) database, Vast DB [32], which is designed as a high speed, flash-
based data lake. For full details on data components that remain largely unchanged, please refer to
the original ColabFit Exchange publication [30]. More significant changes are detailed below.

2.1 Changes to low-level components (COs and POs)

Briefly, the two fundamental building blocks of the ColabFit Data Standard are Configurations (COs)
and Property Objects (POs). Each CO stores a representation of an atomistic object of interest and
typically serves as input (x) to a DD pipeline. POs, on the other hand, store instances of property
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Table 1: Counts of objects of interest in the ColabFit Exchange, excluding the data from the
OpenCatalyst datasets. These values do not double count in the case where there exist duplicates of
a given object (e.g., when an identical configuration was uploaded in multiple datasets, or an author
is credited on multiple publications). Here, a “chemical system” refers to a set of unique
constituent atom types.

Objects Count
Datasets 369
Configuration sets 1,327
Property objects 125,291,927
Configurations 86,888,666
Atoms 3,385,190,598
Chemical systems 395,338
Publications 168
Authors 724

values associated with COs and typically serve as predictive targets (y). To streamline the process of
data selection and use, properties belonging to the same calculation, e.g. energy and atomic forces
from one snapshot of a relaxation trajectory, are now stored together. This greatly improves data
retrieval and export, which is essential for efficient downstream machine learning (ML) applications.
Additionally, calculated values have been converted to standard units, rather than being documented
in their original units, as was done previously. This simplifies multi-source training, an increasingly
important strategy towards the development of foundation models.

As a primary target for DDIP tasks, representation of appropriate energy calculations is critical. The
ColabFit Exchange now stores a single value for the energy that would be considered conjugate with
atomic forces (those forces representing the negative gradient of the calculated energy with respect
to changes in atomic positions). Due to differences in terminology between different calculation
software, this energy value, regardless of its designation in the software or data files, has been stored
under a single designation, allowing the user to choose the appropriate target without confusion
caused by inconsistent property naming.

2.2 Changes to other components (MDs and DSs)

Metadata was previously stored as a separate object of nested attribute names and values. To remain
true to the mission of enabling data reproducibility, with the resulting potential size and complexity
of metadata content, metadata is now stored on disk as a high performance dual NFS/object, with a
direct file address stored in the corresponding PO or CO.

3 Data Overview

Table 1 provides a summary of the contents of the ColabFit Exchange, which is currently (Septem-
ber 2024) composed of 369 unique datasets contributed by their authors or gathered from the liter-
ature. These datasets are further broken down into 1,327 configuration sets, which can be readily
combined, split, or grouped in order to define new datasets based on the needs of the community. In
total, the ColabFit Exchange contains over 125 million POs, corresponding to over 218 million com-
puted properties. Note that the OpenCatalyst datasets (which are included in the ColabFit Exchange)
are not included in these summary statistics, as they are already well-documented elsewhere in the
literature [8, 9] and their large sizes (∼114 million COs for OC20) would obscure the results from
the other datasets. As the ColabFit Exchange continues to grow, updated statistics summarizing its
contents can be found at https://colabfit.org.

The ∼86 million atomic configurations (for a total of ∼3.4 billion atoms) spanning nearly 400,000
chemical systems can be further analyzed based on their chemical composition, as shown in Fig. S1.
Here, a “chemical system” is defined as a set of unique constituent atom types, e.g., C, C-H, C-H-N,
. . . , and is indicative of the types of chemistries explored within the ColabFit Exchange. Though
single element datasets are the most common (see Fig. S2), 95% of the configurations in the ColabFit
Exchange include at least two elements, meaning the ColabFit Exchange may be used as a starting
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point for the development of many multi-element models. Much of the multi-element data comes
from larger datasets designed for the construction of “universal” IPs intended to model all relevant
types of atomic interactions [33, 34, 35], such as the Materials Project trajectory dataset [35], and
others from the literature [21, 34, 36]. By providing access to all of these datasets within a unified
framework, the ColabFit Exchange will simplify the process of constructing training datasets for
new chemical systems that have not yet been explicitly sampled by the datasets currently in the
ColabFit Exchange.

The values in Table 2 provide a further breakdown of the most prevalent computed properties stored
within the ColabFit Exchange that are available for supervised training. Energies are the most com-
monly computed property, followed by forces. Note that the energy counts in Table 2 represent the
energy conjugate with atomic forces, as discussed above. The force property count in Table 2 repre-
sents the number of POs with calculated forces. Each PO typically represents a multi-atom system,
and may therefore contain multiple individual force vectors. Stresses are available for about 11% of
the POs in the ColabFit Exchange. The ColabFit Exchange also includes additional properties that
are well-defined within the schema but are generally less relevant to DDIP development, e.g, band
gap.

Table 2: Counts of property instances in the ColabFit Exchange, excluding the data from the
OpenCatalyst datasets. These values do double count in the case where two identical copies of a
property exist (e.g., two distinct configurations were uploaded with identical potential energies) in
order to accurately reflect the number of target values in the ColabFit Exchange. Though many of
the datasets currently in the ColabFit Exchange contain more computed properties than the three
shown here, energies, forces, and stresses are the three that are predominantly used for training
DDIPs.

Property Instance (PI) Count
Energy 123,096,727
Atomic forces 75,200,861
Stress 13,804,217

At the dataset level, Fig. S2 shows that the ColabFit Exchange has a wide range of dataset sizes, both
in terms of the total number of atoms and the number of unique atom types contained within a given
dataset. Since the original ColabFit publication, the number of datasets with greater than 20 atom
types has grown from 3 to 42. The increased number of multi-element and larger datasets reflects
our effort to gather such datasets, as well as a broader trend within the community to generate such
datasets.

4 Data Integration

In the original ColabFit publication [30], we highlighted a streamlined ML workflow taking data
from the ColabFit Exchange, using that data for training within the KLIFF [37] package, and storing
and deploying the resulting model via the OpenKIM [38] platform. Since then we have developed
new and integrated with existing tools to help facilitate the use of data on the ColabFit exchange
for the development of DDIPs and other advanced material/chemical ML models. For example, we
have integrated with the Open MatSci ML Toolkit [39] for the training of state-of-the-art graph neu-
ral networks. Within this framework, models in a variety of common architectures can be trained
from data downloaded from the ColabFit Exchange in pre-formatted Lightning Memory-Mapped
Database (LMDB) files and benchmarked against existing models. In addition, improved query
and data fetching performance enabled by changes to the data structure and database backend has
allowed for the integration of a streaming PyTorch DataLoader within KLIFF. During training,
batches of data are efficiently fetched and processed on-the-fly directly from the ColabFit exchange.
As datasets become larger, and multi-source training becomes more common, we envision this be-
coming an increasingly important avenue for utilizing data on the ColabFit Exchange.
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5 Conclusion

In this work we have provided an overview of the key updates made to the ColabFit infrastructure.
The database has undergone significant growth in the past year. This growth can be summarized
by the following counts: datasets more than doubled from 139 to over 360; distinct systems more
than quadrupled from ∼70,000 to ∼400,000; total properties increased from ∼28 million to over
200 million. In addition, as detailed, improvements to the data standard and the database back-
end will accelerate further sustained growth and allow for the development of new features and
tools. Of particular interest is the development of high-throughput data transformation pipelines,
improved inter-dataset analytics, e.g. similarity metrics, and new ways to interface and utilize the
data for large-scale ML applications. Along these lines, we have developed several new ways to
integrate ColabFit data into fitting pipelines, including integration with MatSciML [39] and the ad-
dition of a streaming dataloader into KLIFF [37]. We hope that these and future integrations will
enable and simplify workflows for leveraging the full power of data maintained on the ColabFit
Exchange. We invite the community to upload data by visiting https://colabfit.org or the
GitHub repository https://github.com/colabfit/data-lake, which in turn strengthens our
mission to make DDIP data findable, accessible, interoperable, and reusable.
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Christof Wöll, and Claudia Draxl. Fair data – new horizons for materials research. Nature,
604(April):1–20, 2022.

[32] The vast data platform. https://www.vastdata.com/whitepaper. Accessed: 2024-09-06.

[33] Justin S. Smith, Ben Nebgen, Nicholas Lubbers, Olexandr Isayev, and Adrian E. Roitberg.
Less is more: Sampling chemical space with active learning. The Journal of Chemical Physics,
148(24):241733, June 2018.

[34] Chi Chen and Shyue Ping Ong. A universal graph deep learning interatomic potential for the
periodic table. Nature Computational Science, 2(11):718–728, Nov 2022.

[35] Bowen Deng, Peichen Zhong, KyuJung Jun, Kevin Han, Christopher J. Bartel, and Gerbrand
Ceder. Chgnet: Pretrained universal neural network potential for charge-informed atomistic
modeling, 2023.

[36] Leonid Komissarov and Toon Verstraelen. Zeo-1, a computational data set of zeolite structures.
Scientific Data, 9(1), February 2022.

[37] Mingjian Wen, Yaser Afshar, Ryan S. Elliott, and Ellad B. Tadmor. KLIFF: A framework to
develop physics-based and machine learning interatomic potentials. Computer Physics Com-
munications, 272:108218, 2022.

[38] E. B. Tadmor, R. S. Elliott, J. P. Sethna, R. E. Miller, and C. A. Becker. The potential of
atomistic simulations and the Knowledgebase of Interatomic Models. JOM, 63(7):17, 2011.

[39] Kin Long Kelvin Lee, Carmelo Gonzales, Marcel Nassar, Matthew Spellings, Mikhail Galkin,
and Santiago Miret. Matsciml: A broad, multi-task benchmark for solid-state materials mod-
eling. arXiv preprint arXiv:2309.05934, 2023.

8



Supplemental Information

Fig. S1: Chemical composition of the ColabFit Exchange, spanning 91 of the 118 elements on the
periodic table, for a total of 395,338 unique chemical systems. After excluding the OpenCatalyst
data (which is not represented in this figure), the majority of the database is composed of organic
molecules (C, H, and O alone make up ∼67% of the data shown in this figure) due to the relative
popularity and availability of molecular datasets. There is currently no data for elements with
atomic numbers between 86 and 88, or greater than 94. The bottom panel shows histograms of the
number of unique chemical systems (left) or configurations (right) present in the ColabFit
Exchange for different numbers of atomic types (i.e., the number of unary/binary/ternary/...
systems or configurations). Four datasets account for all data with greater than 10 atom types.
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Fig. S2: Histogram showing the sizes of the datasets currently in the ColabFit Exchange. The
distribution of the total number of atoms summed over all COs in a given dataset is Gaussian-like,
centered about a mean of 106.
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