
Automatically Identifying Local and Global Circuits
with Linear Computation Graphs

Xuyang Ge 1 Fukang Zhu 1 Wentao Shu 1 Junxuan Wang 1 Zhengfu He 1 Xipeng Qiu 1

Abstract
Circuit analysis of any certain model behavior
is a central task in mechanistic interpretability.
We introduce our circuit discovery pipeline with
sparse autoencoders (SAEs) and a variant called
transcoders. With these two modules inserted into
the model, the model’s computation graph with
respect to OV and MLP circuits becomes strictly
linear. Our methods do not require linear approxi-
mation to compute the causal effect of each node.
This fine-grained graph enables identifying both
end-to-end and local circuits accounting for either
logits or intermediate features. We can scalably
apply this pipeline with a technique called Hierar-
chical Attribution. We analyze three kind of cir-
cuits in GPT2-Small, namely bracket, induction
and Indirect Object Identification circuits. Our
results reveal new findings underlying existing
discoveries.

1. Introduction
Recent years have seen the rapid progress of mechanistically
reverse engineering Transformer language models (Vaswani
et al., 2017). Conventionally, researchers seek to find out
how neural networks organize information in its hidden ac-
tivation space (Olah et al., 2020a; Gurnee et al., 2023; Zou
et al., 2023) (i.e. features) and how learnable weight ma-
trices connect and (de)activate them (Olsson et al., 2022;
Wang et al., 2023; Conmy et al., 2023) (i.e. circuits). One
fundamental problem of studying attention heads and MLP
neurons as interpretability primitives is their polysemantic-
ity, which under the assumption of linear representation hy-
pothesis is mostly due to superposition (Elhage et al., 2022;
Larson, 2023; LaurenGreenspan & keith wynroe, 2023).
Thus there is no guarantee to explain how these components
impact model behavior out of the interested distribution.
Additionally, circuit analysis based on attention heads is

*Equal contribution 1Open-MOSS Team, Fudan Univer-
sity, Shanghai, China. Correspondence to: Xipeng Qiu
<xpqiu@fudan.edu.cn>.

Copyright 2024 by the author(s).

coarse-grained in that it lacks effective methods to explain
the intermediate activations.

Probing (Alain & Bengio, 2017) in the activation for a more
fine-grained and monosemantic unit has succeeded in dis-
covering directions indicating a wide range of abstract con-
cepts like truthfulness (Li et al., 2023) and refusal of AI
assistants (Zou et al., 2023; Arditi et al., 2024). However,
this supervised setting may not capture features we did not
expect to present.

Sparse Autoencoders (SAEs) (Bricken et al., 2023; Cun-
ningham et al., 2023) have shown its potential in extracting
features from superposition in an unsupervised manner. This
opens up a new perspective of understanding model inter-
nals by interpreting the activation of SAE features. It also
poses a natural research question: how to gracefully lever-
age SAEs for circuit analysis? Compared to prior work
along this line (Cunningham et al., 2023; He et al., 2024;
Marks et al., 2024), our main contributions are as follows.

• We propose to utilize Transcoders, a variant of Sparse
Autoencoders to sparsely approximate the computation
of MLP layers. This extends the linear analysis of
Transformer circuits (Elhage et al., 2021; He et al.,
2024).

• For a given input, OV + Skip SAE (i.e. MLP) circuits
strictly form a Linear Computation Graph without
linear approximation of any non-linear function. This
precious linearity enables circuit discovery and evalua-
tion with only one forward and one backward.

• We propose Hierarchical Attribution to isolate a sub-
graph of the aforementioned linear graph in an auto-
matic and scalable manner.

• We present a specific example that our analysis offers
more detailed insight into how each single SAE feature
contributes to a desired behavior e.g. forms a crucial
QK attention, or linearly activate a subsequent node
in the computation graph. Such observations are not
reported by existing work studying circuits in coarser
granularity.

1

Automatically Identifying Local and Global Circuits with Linear Computation Graphs

MLP N-1

Attn N

MLP N

1. Forward Process on SAE Feature Basis 2. Isolating a Subgraph
with Hierarchical Attribution

3. Attribute Remarkable QK Scores

Feature

SAE Error

Detached Node

Key Token Query Token Key Token Query Token

Key Token Query Token

OV Contribution

QK Contribution

MLP Contribution

Error Contribution

MLP N-1

Attn N

MLP N

Figure 1. Overview of our method. For a given input, we (1) run forward process once with MLP computation replaced by Transcoders.
(2) Then a subgraph is isolated for a given input with Hierarchical Attribution in one backward. (3) We then interpret important QK
attention involved in the identified circuit.

2. Linear Computation Graphs Connecting
SAE Features

2.1. Sparse Autoencoder Features as Analytic Primitives

Sparse Autoencoder (SAE) is a recently emerging method
to take features of model activation out of superposition (El-
hage et al., 2022). Existing work has suggested empirical
success in the interpretability of SAE features concerning
both human evaluation (Bricken et al., 2023) and automatic
evaluation (Bills et al., 2023).

Concretely, an SAE and its optimization objective can be
formalized as follows:

f = ReLU(WEx+ bE)

x̂ = WDf

L = ∥x− x̂∥22 + λ∥f∥1,
(1)

where WE ∈ RdSAE×dmodel is the SAE encoder weight,
bE ∈ RdSAE encoder bias, WD ∈ Rdmodel×dSAE decoder
weight, x ∈ Rdmodel input activation. λ is the coefficient
of L1 loss for balance between sparsity and reconstruction.
We refer readers to Appendix A for implementation details.

We train Sparse Autoencoders on GPT-2 (Radford et al.,
2019) to decompose all modules that write into the resid-
ual stream (i.e. Word Embedding, Attention output and
MLP output). Then, we can derive how a residual stream
activation is composed of SAE features:

x =
∑

S∈Upstream SAEs

(
dSAE∑
i=1

fS
i W

S
Di + εS

)
+ p, (2)

where fS
i and εS are feature activation and SAE error term

of each upstream SAE S. p is the positional embedding of
the current token. Since all submodules read and write into
the residual stream, such a partition is crucial to connect
upstream SAE features to downstream ones.

2.2. Tackling MLP Non-linearity with Transcoders

The denseness and non-linearity of MLP in Transformers
make sparse attribution of MLP features difficult. Since
MLP activation functions have a privileged basis (Elhage
et al., 2023), computation of MLP non-linearity must go
through such an orthogonal basis of the MLP hidden space.
There is no guarantee of observing sparse and informative
correspondence between MLP neurons and learned SAE
features. This annoying non-linearity cuts off the connection
of upstream SAE features and MLP output (with linear
algebraic operations).

To tackle this problem, we develop a new method
called Transcoders to get around the MLP non-linearity.
Transcoders are generalized forms of SAEs, which decouple
the input and output of SAEs and allow for predicting future
activations given an earlier model activation. Transcoders
take in the pre-MLP activation and yield a sparse decom-
position of MLP output. Formally, a Transcoder and its
optimization objective can be written as:

2

Automatically Identifying Local and Global Circuits with Linear Computation Graphs

f = ReLU(WEx+ bE)

ŷ = WDf

L = ∥y − ŷ∥22 + λ∥f∥1,
(3)

,

which only differs from those of an SAE (Eq. 1) by the label
activation y ∈ Rdmodel unbound with input activation x.

Key difference between Transcoders and MLP We may
find Transcoders and MLP with similar architecture: both
are two fully connected blocks interspersed with an acti-
vation function. It’s natural to ask why the non-linear ac-
tivation function in MLP is deemed as an obstacle in cir-
cuit analysis but that in Transcoders is allowed. The key
difference is that by constraining the sparsity, Transcoders
neurons (which are just features) have an interpretable basis.
When computing how upstream feature fS

i contributes to
activated downstream feature fT

j of Transcoder T , it holds
that fT

j = fS
i

(
W T

E WS
D

)
ji

. The
(
W T

E WS
D

)
ji

part remains
constant across inputs, which leads to an edge invariance
between upstream and downstream features.

Intuitively, this means when a main upstream contributor
to a downstream feature has been activated in a different
input, we can largely expect this downstream feature to
be activated again unless some new resistances (upstream
features with negative edges) have also been introduced.

In contrast, we cannot find such invariant edges through
MLP. Any connection from upstream to MLP output is
indefinite, so we could only find linear approximations to
measure these connections under local changes.

2.3. QK and OV Circuits Are Independent Linear
Operators on SAE Features

QK and OV circuits account for how tokens attend to one
another and how information passes to downstream lay-
ers, respectively. The linearity and independence of these
two components have been widely discussed in previous
work (Elhage et al., 2021; He et al., 2024). Specifically,
QK circuits serve as a bilinear operator of any two residual
streams w.r.t token i and j:

AttnScoreh(x)ij = xiW
h
Q

T
Wh

KxT
j

=
∑

S,T ∈Upstream SAEs

dSAE∑
p=1

dSAE∑
q=1

fS
i,pW

S
DpW

h
Q

T
Wh

KW T
D

T

q f
T
j,q,(4)

where fi,p means the activation of the feature p at token i,
and Wh

Q,W
h
K are a given head h’s the query and key trans-

formation. This decomposition shows how every pair of

upstream features contributes to the attention score, making
tokens containing critical information get attended.

Once the attention score is determined, we can then move
on to the OV circuits, which apply a linear transformation
to all past residual streams and take a weighted sum:

Attn(x)i =
∑
h

AttnOutputh(x)i

=
∑
h

∑
j

AttnPatternh(x)i,jW
h
OW

h
V xj ,

(5)

where Wh
O,W

h
V are a given head h’s output and value trans-

formation. With AttnPattern determined in the QK
circuits, how upstream features affect downstream are suc-
cessively determined since Wh

OW
h
V is invariant.

From an input-independent perspective, the quadratic coeffi-
cient WS

DpW
h
Q

T
Wh

KW T
D q shows how feature pairs co-work

for every attention score. Then, WS
EpW

h
OW

h
V W

T
D q (ob-

tained by adding SAE encoder and decoder terms to Eq. 5)
determines the edge connecting upstream features and atten-
tion output features under a specific attention pattern. This
two-step paradigm gives us a simplified and feature-based
version of attention functionality and allows a fine-grained
analysis through attention in a non-approximated manner.

In real-world applications, we often want to attribute an
interested output (e.g., logits) to filter out critical features,
which is a backward procedure. For the sake of a linear
and exact attribution result, we can reverse the above two-
step paradigm and 1) attribute through OV + Transcoder
circuits and then 2) select important attention, attribute its
attention score through the current QK and once again the
upstream OV + Transcoder circuits (showed in Figure. 2(a)).
The second step may be repeated several times to attribute
attention important to another attention.

3. Isolating Interpretable Circuits with
Hierarchical Attribution

We have now obtained a linear computation graph including
all OV and MLP modules, reflecting the model’s internal
information flow. This section introduces how to isolate and
evaluate a subgraph of the key SAE features related to any
interested output.

Formulation We are given a linear computation graph
G = (V,E), which is a directed acyclic graph. Each node
v ∈ V refers to an activated feature in the model forward
pass. The node weight av refers to the activation of node v.
Each edge v → u ∈ E represents that av linearly affects au
by the edge weight kv,u. For any non-leaf node u, its acti-

3

Automatically Identifying Local and Global Circuits with Linear Computation Graphs

Feature

Detached Node

Backward Attribution

Forward Contribution

Detached Contribution

Hierarchical Attribution

Standard Attribution

(a) Workflow of performing Hierarchical Attribution and standard
attribution.

10 2 5 100 2 5 1000 2 5 10k

5

1

2

5

10

2

5

100

2

5

1000

2

5

10k

2

5

Hierarchical Attribution

Standard Attribution

Hierarchical Attribution Outperforms Standard Attribution

#Nodes

L
o
g
it

 D
iff

e
r
e
n
c
e

(b) Comparison between Hierarchical Attribution and standard attri-
bution.

Figure 2. Our Hierarchical Attribution detaches unrelated nodes
immediately after they receive gradient and stops their backpropa-
gation. While standard attribution detaches nodes after the back-
ward process is completed. (Figure 2(a)). We sweep the number
of remaining nodes i.e. sparsity and compare the logit recovery i.e.
faithfulness of the identified subgraph. Experiments are conducted
on 20 IOI samples (See Section 5) across 30 sparsity thresholds.
Results in Figure 2(b) show that Hierarchical Attribution consis-
tently outperforms standard attribution.

vation is completely determined by its direct predecessors,
i.e., au = ReLU

(∑
v→u∈E kv,uav

)
.

The term linear computation graph means every edge in
the graph represents a linear function (under fixed attention
scores). This guarantees a one-hop linear effect of activated
features. It’s not necessary that indirect effects between any
two nodes are still linear since we allow a ReLU gate in-
side the nodes, stopping unactivated nodes from forwarding
further.

Two Types of Leaf Nodes We denote word embedding
SAE features and the position embedding as interpretable
leaf nodes1. SAE errors also have zero in degree, but we
cannot establish any explanation for these nodes. Thus, we
call them uninterpretable leaf nodes.

Isolating a Subgraph with Node Detaching We prune
unrelated nodes in the original linear computation graph to
identify a subgraph accounting for the desired output.

Definition 3.1 (Detaching a node). The operation of detach-
ing a node v from graph G is to get an induced subgraph
G′ = G[V/v], which removes v and all edges connecting to
v from G.

We first need to detach all SAE errors since they cannot be
interpreted, despite their empirically positive correlation to
model performance (Gurnee, 2024). In the rest of the graph,
with all leaf nodes being interpretable leaf nodes, we need
to detach nodes unrelated to the task.

Manual Pruning with Direct Contribution For graphs
with a small number of nodes, a simple solution is to man-
ually inspect the interpretation of SAE features and their
causal relation. This is often useful in understanding local
behaviors but may be labor-intensive at scale.

Automatic Circuit Discovery with Hierarchical Attribu-
tion We present how to perform scalable circuit discovery
on this linear computation graph with gradient-based attri-
bution (Kramár et al., 2024).

Definition 3.2 (Attribution Score). The attribution score
of node v w.r.t. an interested output node t is attrv,t :=
av · ∇atav .

A natural idea would be running backward once and de-
taching nodes with attrv,t lower than a given threshold τ ,
as adopted in most prior work (Conmy et al., 2023; Marks
et al., 2024). We propose to operate a breadth-first search
style attribution pipeline we call Hierarchical Attribution.

Hierarchical Attribution detaches nodes on backward pass
instead of after backward, as shown in Figure 2(a) and a
pseudo-code implementation in Appendix C. When perform-
ing model backward, we stop the gradient propagation of
any node v that has attrv,t < τ . This affects the attribution
score of all predecessors of v. After we finish the backward
propagation, all nodes with gradients make up our desired
subgraph. Intuitively, attribution through detached nodes
should not be taken into account; otherwise, their effect
depends on excluded nodes in the final subgraph.

1We notice that not all SAE features are interpretable. We adopt
a series of methods to improve the interpretability of SAEs further.
See Appendix A

4

Automatically Identifying Local and Global Circuits with Linear Computation Graphs

In-Square-Bracket
L1A.11421

“ [”
L0M.7327

“]”
L0M.15786, L0M.20934

In-Round-Bracket
L1A.11913

“ (”
L0M.10491, L0M.2554

“ [”
L0M.10853

Activate

Suppress

(a) Formation of In-Bracket Features

0 0 [1 1 1 [2] 3] 4

10.L0M.20934 "]"

8.L0M.20934 "]"

10.L0M.15786 "]"

8.L0M.15786 "]"

6.L0M.7327 "["

2.L0M.7327 "["

−4

−2

0

2

4

Activation

Direct Contribution to Activation of L1A.11421

Position

U
p
s
t
r
e
a
m

 F
e
a
t
u
r
e
s

(b) Contribution to a specific In-Bracket feature from each token’s open
or closing bracket features

(c) Attention Score Trends of a Significant
Bracket Head

Figure 3. (a) Opening Bracket features and Closing Bracket features have positive and negative contributions to In-Bracket features
respectively. (b) Closer ” [”s activates the In-Bracket feature more prominently. (c) Tokens after ” [”s start with strong attention to ” [”s
and become weaker as the sentence continues. This explains the trend in Figure 3(b).

Evaluation We leverage a good property of linear graphs
to evaluate identified circuits.
Theorem 3.3. For any subgraph G′ = G[V/v], the node
weight of the root node is the sum of the attribution scores
of all leaf nodes.

at =
∑

degin(v)=0

attrv,t

We refer readers to Appendix D for the proof.

This theorem allows us to instantly obtain how much
G′ = G[V/v] accounts for the root node activation after
we finish the pruning. Besides efficiency, another advan-
tage of such evaluation is that it derives the causal effect
of circuits without any intervention in the forward pass. It
saves circuit evaluation from backup behaviors (Wang et al.,
2023) (also known as hydra effects (McGrath et al., 2023))
due to ablation.

In Figure 2(b), we empirically validate the advantage of Hi-
erarchical Attribution over the standard attribution method
in Indirect Object Identification circuit discovery (Wang
et al., 2023).

4. Attributing Intermediate SAE Features
An exciting application of Sparse Autoencoders is that they
serve as unsupervised feature extractors in the vast hidden
activation space. This opens up opportunities for under-
standing intermediate activations and local circuit discovery
i.e. identifying a subgraph activating a given SAE feature
instead of end-to-end circuits.

4.1. How Transformers Implement In-Bracket Features

We start from a series of In-Bracket features in attention
blocks of early layer, which activate on tokens inside of
brackets e.g. deactivated [activated] deactivated. These
features will demonstrate higher activation in deeper nest-
ing of brackets, imitating the behavior of finite state au-
tomata (Bricken et al., 2023) with states of bracket nesting
hierarchy. We find an In-Square-Bracket feature and an
In-Round-Bracket feature in SAEs trained on layer 1 atten-
tion block output, which we call L1A throughout this paper.
Since they are at rather early layers, we leverage our Direct
Contribution analysis to see how earlier features produce
them.

5

Automatically Identifying Local and Global Circuits with Linear Computation Graphs

Video

Web

video

in

Web

A1

A2

“Web”
L0M.1270, L1M.23399

Capital Induction
L5A.20004

“Web”
L0M.1270, L1M.23399

Query

M

“Web”Preceding
L2A.14876, L2A.17068

Value

Key

in

MB1 “M”
L0M.88

support
...

Single Capital Token

Value

…
…

…

(a) Information Flow in Induction Circuit

L0M
.1270

L1M
.23399

L2A.14771

blocks.5.attn.b_K

L2A.17608

L2A.14876

−0.2

0

0.2

Score

Attention Score for L5A.H1 (Q17K3)

Query Partition

K
e
y
 P

a
r
t
it

io
n

(b) QK Top Contributors to a Significant Induc-
tion Head

Figure 4. ”Web”(L0M.1270 and L1M.23399) and ”Web” Preceding features (L2A.14876 and L2A.17608) jointly lead to QK attention of
an induction head. The ”M” feature is copied to the last token for next token prediction.

Open-bracket features activate in-bracket ones. Fig-
ure 3(a) illustrates a simple two-layer bracket circuit in the
wild. We inspect contributions to the In-Square-Bracket
feature in a template e.g. ”0 0 [1 1 1 [2] 3] 4”, at token
”1”s, ”2”, ” 3” and ” 4”. Experiments show that the acti-
vation is mainly promoted by an L0M feature activated by
token ” [”. It takes on 104.1%, 102.6% and 314.2% of the
In-Square-Bracket feature’s activation respectively at token
”1”, ”2”, and ” 3”, respectively. An average of 83.8% of
these contribution comes through attention head 1 of L1A
i.e. L1A.H1.

Closing-bracket features deactivate in-bracket ones. The
activation of the In-Square-Bracket feature is mostly sup-
pressed by a ”]” feature in L0M (Figure 3(b)). The suppres-
sion goes through L1A.H1 as well.

Interpreting QK attention to ” [” and ”]”. We study the
QK circuit of L1A.H1, as shown in Figure 3(c). This head
attends to ” [”s and ”]”s regardless of the current token. This
is mainly caused by bQ in L1A.H1 attending to the above
” [” and ”]” features.

4.2. Revisiting Induction Behavior from the SAE Lens

Induction Heads (Olsson et al., 2022) are an important type
of compositional circuit with two attention layers which
try to repeat any 2-gram that occured before i.e. [A][B]
... [A] -¿ [B]. These circuits are believed to account for a
majority of in-context learning functionality in large trans-
formers. Compared to massive existing literature in un-
derstanding the induction mechanism in the granularity of
attention heads (Olsson et al., 2022; Hendel et al., 2023; Ren
et al., 2024), inter alia, we seek to present a finer-grained

level interpretation of such behavior.

Induction features form a huge feature family. These fea-
tures are found to be identified by the logit of tokens they
enhance through the logit lens (nostalgebraist, 2020). We
first study a Capital Induction feature contributing to logits
of single capital letters, on a curated input ”Video in WebM
support: Your browser doesn’t support HTML5 video in
WebM.” (Figure 4(a)). This feature is activated on the sec-
ond ” Web”, and amplifies the prediction of ”M”, copying
its previous occurrence.

Upstream Contribution through OV Circuit We notice
that a series of ”M” features in the residual stream of the first
”M” constitute most of the Capital Induction feature’s acti-
vation through OV circuits. L0M.88 takes the lead, which
contributes 35.0% of the feature activation. Auxiliary fea-
tures from L0A, L1M and L3M either directly indicate
current token as ”M”, or indicate current token as a sin-
gle capital letter. Top 7 of the auxiliary features account
for another 33.0% of the feature activation. Most of these
contributions come from L5A.H1, which we along with a
concurrent research (?) identify as an induction head.

Upstream Contribution to QK Attention To study how
this induction head attend to the first ”M”, we attribute the
attention score to upstream feature pairs. The commonality
of top contributors is a ” Web” feature attending to a ” Web”
Preceding feature (i.e. its previous token is ” Web”), as
shown in Figure 4(b).

Attributing Preceding features We further study how
” Web” Preceding features indicate previous tokens. These
contributions mainly come through L2A.H2, which we think
to be a previous token head. The relatively high attention

6

Automatically Identifying Local and Global Circuits with Linear Computation Graphs

score for previous token can be attributed to a group of L0A
features collecting information from positional embeddings.

5. Revisiting Indirect Object Identification
Circuits from the SAE Lens

For end-to-end circuits in GPT2-small, we choose to investi-
gate a task called Indirect Object Identification (IOI) (Wang
et al., 2023) with Hierarchical Attribution. For instance,
GPT2 is able to predict ” Mary” following the prompt
”When Mary and John went to the store, John gave the bag to”.
We call this prompt sMary since it starts with ” Mary”
and a variant sJohn with a swap in the first two names i.e.
”When John and Mary went to the store, John gave the bag to”.
The answer to both prompts is ” Mary”, which GPT2 is
able to predict. Existing literature studying this problem
does not distinguish between these two templates. Through
the lens of SAE circuit, we validate conclusions in previous
work and also discover some subtle mechanistic distinction
in their corresponding circuits.

5.1. SAE Circuits Closely Agree with Head-Level Ones

We manage to find the end-to-end information flow in the
IOI task example sMary and its variant sJohn with Hierar-
chical Attribution. Then we identify the pivotal attention
heads in the isolated subgraph and attribute their QK scores
to earlier SAE features. Discovered SAE feature circuits
are of strong consistency with those found on the basis
of attention heads: (1) Name Mover features correspond
to Name Mover Heads (L9A.H6, L9A.H9); (2) Associa-
tion features correspond to S-Inhibition Heads (L7A.H3,
L7A.H6, L8A.H10); (3) Induction features correspond to
Induction Heads (L5A.H5, L6A.H9); (4) Preceding features
correspond to Previous Token Heads (L2A.H2, L3A.H2,
L4A.H1).

5.2. Zooming in on SAE Circuits Yields New Discoveries

We present a concrete example in the wild that SAE cir-
cuits convey more information than their coarse-grained
counterparts. We believe this is a positive signal for us
to obtain deeper understanding of language model circuits.
Despite the consistency of involved attention heads in sJohn
and sMary, these two circuits are actually composed of com-
pletely different SAE features, as shown in Figure 5(b).

We start with interpreting how GPT2 predicts ” Mary” given
the prompt ”When John and Mary went to the store, John
gave the bag to” (sJohn). Though greatly simplified, the
information flow is still somehow complicated. We further
pick four pivotal feature clusters, as marked in Figure 5. A
non-rigorous interpretation of them is as follows.

A ” Mary” is recognized as a Consecutive Entity because

it occurs after an ” and”.

B S2 i.e. the second ”John” activates an induction feature.
It enhances the logit of ”and” though its next token is
not.

C ” to” is a representative token indicating the next token
is some object or entity. It activates an association
feature to retrieve possible entities occurring before.
It copies information from feature group B and is in-
formed of the existence of an entity going after an ”
and”.

D The Name Mover Head receives this information and
easily copies the token ” Mary” to its residual stream.

The interpretation above is highly dependent on the fact
that the Indirect Object is present after an ” and”. However,
things are quite different in sMary since it comes before the
”and”. In fact, token ” Mary” first activates a Center Entity
feature, whose explanation given by GPT-4 is ”People or
Objects that is likely to be the main topic of the article”.
The last token still seeks to associate a previously occurring
entity but is informed to retrieve the Center Entity instead
since the Consecutive Entity Association feature has been
suppressed by repeated ” John”s.

6. Related Work
Mechanistic and Representational Interpretability
Mechanistic Interpretability (Olah et al., 2020b;a) deems
model components e.g. attention heads and MLP neurons
as primitives and explain how they interact with model in-
put and output. This line of research has succeeded in
identifying attention-based circuits implementing various
NLP tasks (Olsson et al., 2022; Wang et al., 2023; Ste-
fan Heimersheim, 2023). Efforts are also made to interpret
polysemantic MLP neurons (Gurnee et al., 2023) and editing
information stored in MLP parameters (Meng et al., 2022;
Sharma et al., 2024).

By placing intermediate activations at the center of anal-
ysis, Representational Interpretability approaches mostly
use linear probes to isolate a targeted behavior in a super-
vised manner (Kim et al., 2018; Geiger et al., 2023; Zou
et al., 2023). However, such methods may fail to capture
unanticipated behaviors.

Sparse Autoencoders stand in between these two ap-
proaches. SAEs disentangle features in the model’s hid-
den activation (Chen et al., 2017; Subramanian et al., 2018;
Zhang et al., 2019; Panigrahi et al., 2019; Yun et al., 2021;
Bricken et al., 2023; Cunningham et al., 2023) into more
interpretable primitives than MLP neurons, in an unsuper-
vised manner. Albeit reconstruction errors, Rajamanoharan

7

Automatically Identifying Local and Global Circuits with Linear Computation Graphs

(a) Overview of sJohn circuit

When Mary and John went to the store, John gave the bag to (Answer: Mary)

When John and Mary went to the store, John gave the bag to (Answer: Mary)

A

John identified as Center Entity
Mary goes after and

Inform Association features
with John goes before and

Inform Name Mover Head
to perform induction

Name Mover Head fetches
Mary

Mary identified as Center Entity
John goes after and

Inform Association features
with John goes after and

Inform Name Mover Head
to fetch Center Entity

Name Mover Head fetches
Mary

B C D

(b) A non-rigorous illustration of the key differences between sJohn and sMary circuits

Figure 5. In sJohn, the consecutive entity feature (denoted as A in Figure 5(a)) serves as the key vector for Name Mover Heads to attend to
and copy the answer entity to the last token’s residual stream. Such mechanism does not work in sMary because the correct answer is
no longer a consecutive entity (i.e. the entity present after the token and). See Appendix E for a detailed interpretation for these two
examples.

et al. (2024); Wright & Sharkey (2024) have proposed to
improve SAE training with lower loss and more sparsity.

Circuit Discovery with SAE Features Previous work
mechanistically interprets circuits connecting attention
heads and MLP neurons (Olsson et al., 2022; Wang et al.,
2023; Conmy et al., 2023). As for SAE circuits, He et al.
(2024) makes a linear approximation of MLP layers by

fixing the gate mask of the non-linear activation function;
Marks et al. (2024) estimate the indirect effect of each
SAE feature with attribution patching (Kramár et al., 2024),
which also makes linear assumption of non-linear func-
tions. In contrast, we refactor our computation graph to
be completely linear w.r.t. OV and MLP circuits without
approximation.

8

Automatically Identifying Local and Global Circuits with Linear Computation Graphs

7. Conclusion and Limitation
We frame a pipeline to identify fine-grained circuits in Trans-
former language models. With Sparse Autoencoders and
Transcoders, we refactor the model’s computation to linear
(with respect to a single input). We also propose an efficient
approach to isolate subgraphs (i.e. circuits). We showcase
that finer-grained circuit analysis provides more beautiful
and detailed structures in Transformers. One limitation of
our work is that our analysis is specific to certain inputs
and might not generalize to other settings. We deem this
as a trade-off between granularity and universality. Some
extension can be made to extract more general circuits in
regard to more abstract behaviors. We leave this for future
work.

References
Alain, G. and Bengio, Y. Understanding intermediate

layers using linear classifier probes. In 5th Interna-
tional Conference on Learning Representations, ICLR
2017, Toulon, France, April 24-26, 2017, Workshop
Track Proceedings. OpenReview.net, 2017. URL https:
//openreview.net/forum?id=HJ4-rAVtl.

Arditi, A., Obeso, O., Aaquib111, wesg, and Nanda,
N. Refusal in llms is mediated by a single direction.
LessWrong, 2024. URL https://www.lesswrong.
com/posts/KicP8fBdHNjZBXxRB/
an-ov-coherent-toy-model-of-attention-head-superposition.

Bills, S., Cammarata, N., Mossing, D., Tillman, H.,
Gao, L., Goh, G., Sutskever, I., Leike, J., Wu,
J., and Saunders, W. Language models can
explain neurons in language models. https:
//openaipublic.blob.core.windows.net/
neuron-explainer/paper/index.html,
2023.

Bricken, T., Templeton, A., Batson, J., Chen, B., Jermyn, A.,
Conerly, T., Turner, N., Anil, C., Denison, C., Askell, A.,
Lasenby, R., Wu, Y., Kravec, S., Schiefer, N., Maxwell,
T., Joseph, N., Hatfield-Dodds, Z., Tamkin, A., Nguyen,
K., McLean, B., Burke, J. E., Hume, T., Carter, S.,
Henighan, T., and Olah, C. Towards monosemanticity:
Decomposing language models with dictionary learning.
Transformer Circuits Thread, 2023. https://transformer-
circuits.pub/2023/monosemantic-features/index.html.

Chen, Y., Li, G., and Jin, Z. Learning sparse overcom-
plete word vectors without intermediate dense repre-
sentations. In Li, G., Ge, Y., Zhang, Z., Jin, Z., and
Blumenstein, M. (eds.), Knowledge Science, Engineer-
ing and Management - 10th International Conference,
KSEM 2017, Melbourne, VIC, Australia, August 19-
20, 2017, Proceedings, volume 10412 of Lecture Notes

in Computer Science, pp. 3–15. Springer, 2017. doi:
10.1007/978-3-319-63558-3\ 1. URL https://doi.
org/10.1007/978-3-319-63558-3_1.

Conmy, A., Mavor-Parker, A. N., Lynch, A., Heimer-
sheim, S., and Garriga-Alonso, A. Towards auto-
mated circuit discovery for mechanistic interpretability.
CoRR, abs/2304.14997, 2023. doi: 10.48550/ARXIV.
2304.14997. URL https://doi.org/10.48550/
arXiv.2304.14997.

Cunningham, H., Ewart, A., Riggs, L., Huben, R., and
Sharkey, L. Sparse autoencoders find highly interpretable
features in language models. CoRR, abs/2309.08600,
2023. doi: 10.48550/ARXIV.2309.08600. URL https:
//doi.org/10.48550/arXiv.2309.08600.

Elhage, N., Nanda, N., Olsson, C., Henighan, T., Joseph,
N., Mann, B., Askell, A., Bai, Y., Chen, A., Conerly,
T., DasSarma, N., Drain, D., Ganguli, D., Hatfield-
Dodds, Z., Hernandez, D., Jones, A., Kernion, J., Lovitt,
L., Ndousse, K., Amodei, D., Brown, T., Clark, J.,
Kaplan, J., McCandlish, S., and Olah, C. A math-
ematical framework for transformer circuits. Trans-
former Circuits Thread, 2021. https://transformer-
circuits.pub/2021/framework/index.html.

Elhage, N., Hume, T., Olsson, C., Schiefer, N.,
Henighan, T., Kravec, S., Hatfield-Dodds, Z., Lasenby,
R., Drain, D., Chen, C., Grosse, R., McCandlish,
S., Kaplan, J., Amodei, D., Wattenberg, M., and
Olah, C. Toy models of superposition. Trans-
former Circuits Thread, 2022. https://transformer-
circuits.pub/2022/toy model/index.html.

Elhage, N., Lasenby, R., and Olah, C. Privileged bases in the
transformer residual stream. Transformer Circuits Thread,
2023. https://transformer-circuits.pub/2023/privileged-
basis/index.html.

Geiger, A., Potts, C., and Icard, T. Causal abstraction for
faithful model interpretation. CoRR, abs/2301.04709,
2023. doi: 10.48550/ARXIV.2301.04709. URL https:
//doi.org/10.48550/arXiv.2301.04709.

Gurnee, W. Sae reconstruction errors are
(empirically) pathological. LessWrong,
2024. URL https://www.lesswrong.
com/posts/rZPiuFxESMxCDHe4B/
sae-reconstruction-errors-are-empirically-pathological.

Gurnee, W., Nanda, N., Pauly, M., Harvey, K., Troitskii,
D., and Bertsimas, D. Finding neurons in a haystack:
Case studies with sparse probing. CoRR, abs/2305.01610,
2023. doi: 10.48550/ARXIV.2305.01610. URL https:
//doi.org/10.48550/arXiv.2305.01610.

9

https://openreview.net/forum?id=HJ4-rAVtl
https://openreview.net/forum?id=HJ4-rAVtl
https://www.lesswrong.com/posts/KicP8fBdHNjZBXxRB/an-ov-coherent-toy-model-of-attention-head-superposition
https://www.lesswrong.com/posts/KicP8fBdHNjZBXxRB/an-ov-coherent-toy-model-of-attention-head-superposition
https://www.lesswrong.com/posts/KicP8fBdHNjZBXxRB/an-ov-coherent-toy-model-of-attention-head-superposition
https://openaipublic.blob.core.windows.net/neuron-explainer/paper/index.html
https://openaipublic.blob.core.windows.net/neuron-explainer/paper/index.html
https://openaipublic.blob.core.windows.net/neuron-explainer/paper/index.html
https://doi.org/10.1007/978-3-319-63558-3_1
https://doi.org/10.1007/978-3-319-63558-3_1
https://doi.org/10.48550/arXiv.2304.14997
https://doi.org/10.48550/arXiv.2304.14997
https://doi.org/10.48550/arXiv.2309.08600
https://doi.org/10.48550/arXiv.2309.08600
https://doi.org/10.48550/arXiv.2301.04709
https://doi.org/10.48550/arXiv.2301.04709
https://www.lesswrong.com/posts/rZPiuFxESMxCDHe4B/sae-reconstruction-errors-are-empirically-pathological
https://www.lesswrong.com/posts/rZPiuFxESMxCDHe4B/sae-reconstruction-errors-are-empirically-pathological
https://www.lesswrong.com/posts/rZPiuFxESMxCDHe4B/sae-reconstruction-errors-are-empirically-pathological
https://doi.org/10.48550/arXiv.2305.01610
https://doi.org/10.48550/arXiv.2305.01610

Automatically Identifying Local and Global Circuits with Linear Computation Graphs

He, Z., Ge, X., Tang, Q., Sun, T., Cheng, Q., and Qiu, X.
Dictionary learning improves patch-free circuit discovery
in mechanistic interpretability: A case study on othello-
gpt. CoRR, abs/2402.12201, 2024. doi: 10.48550/ARXIV.
2402.12201. URL https://doi.org/10.48550/
arXiv.2402.12201.

Hendel, R., Geva, M., and Globerson, A. In-context learn-
ing creates task vectors. In Bouamor, H., Pino, J., and
Bali, K. (eds.), Findings of the Association for Compu-
tational Linguistics: EMNLP 2023, Singapore, Decem-
ber 6-10, 2023, pp. 9318–9333. Association for Com-
putational Linguistics, 2023. doi: 10.18653/V1/2023.
FINDINGS-EMNLP.624. URL https://doi.org/
10.18653/v1/2023.findings-emnlp.624.

Kim, B., Wattenberg, M., Gilmer, J., Cai, C. J., Wexler,
J., Viégas, F. B., and Sayres, R. Interpretability beyond
feature attribution: Quantitative testing with concept ac-
tivation vectors (TCAV). In Dy, J. G. and Krause, A.
(eds.), Proceedings of the 35th International Conference
on Machine Learning, ICML 2018, Stockholmsmässan,
Stockholm, Sweden, July 10-15, 2018, volume 80 of Pro-
ceedings of Machine Learning Research, pp. 2673–2682.
PMLR, 2018. URL http://proceedings.mlr.
press/v80/kim18d.html.

Kramár, J., Lieberum, T., Shah, R., and Nanda, N. Atp*:
An efficient and scalable method for localizing LLM
behaviour to components. CoRR, abs/2403.00745, 2024.
doi: 10.48550/ARXIV.2403.00745. URL https://
doi.org/10.48550/arXiv.2403.00745.

Larson, D. Expanding the scope of superposition. Less-
Wrong, 2023. URL https://www.lesswrong.
com/posts/wHHdJdhKBqoKAMC5d/
expanding-the-scope-of-superposition.

LaurenGreenspan and keith wynroe. An ov-coherent
toy model of attention head superposition. Less-
Wrong, 2023. URL https://www.lesswrong.
com/posts/KicP8fBdHNjZBXxRB/
an-ov-coherent-toy-model-of-attention-head-superposition.

Li, K., Patel, O., Viégas, F. B., Pfister, H., and Wattenberg,
M. Inference-time intervention: Eliciting truthful answers
from a language model. In Oh, A., Naumann, T., Glober-
son, A., Saenko, K., Hardt, M., and Levine, S. (eds.),
Advances in Neural Information Processing Systems 36:
Annual Conference on Neural Information Processing
Systems 2023, NeurIPS 2023, New Orleans, LA, USA,
December 10 - 16, 2023, 2023. URL http://papers.
nips.cc/paper_files/paper/2023/hash/
81b8390039b7302c909cb769f8b6cd93-Abstract-Conference.
html.

Marks, S., Rager, C., Michaud, E. J., Belinkov, Y., Bau, D.,
and Mueller, A. Sparse feature circuits: Discovering and
editing interpretable causal graphs in language models.
CoRR, abs/2403.19647, 2024. doi: 10.48550/ARXIV.
2403.19647. URL https://doi.org/10.48550/
arXiv.2403.19647.

McGrath, T., Rahtz, M., Kramár, J., Mikulik, V., and Legg,
S. The hydra effect: Emergent self-repair in language
model computations. CoRR, abs/2307.15771, 2023. doi:
10.48550/ARXIV.2307.15771. URL https://doi.
org/10.48550/arXiv.2307.15771.

Meng, K., Bau, D., Andonian, A., and Belinkov, Y.
Locating and editing factual associations in GPT. In
Koyejo, S., Mohamed, S., Agarwal, A., Belgrave,
D., Cho, K., and Oh, A. (eds.), Advances in Neural
Information Processing Systems 35: Annual Conference
on Neural Information Processing Systems 2022,
NeurIPS 2022, New Orleans, LA, USA, November 28
- December 9, 2022, 2022. URL http://papers.
nips.cc/paper_files/paper/2022/hash/
6f1d43d5a82a37e89b0665b33bf3a182-Abstract-Conference.
html.

nostalgebraist. interpreting gpt: the logit lens. Less-
Wrong, 2020. URL https://www.lesswrong.
com/posts/AcKRB8wDpdaN6v6ru/
interpreting-gpt-the-logit-lens.

Olah, C., Cammarata, N., Schubert, L., Goh, G., Petrov,
M., and Carter, S. An overview of early vision in incep-
tionv1. Distill, 2020a. doi: 10.23915/distill.00024.002.
https://distill.pub/2020/circuits/early-vision.

Olah, C., Cammarata, N., Schubert, L., Goh, G., Petrov,
M., and Carter, S. Zoom in: An introduction to cir-
cuits. Distill, 2020b. doi: 10.23915/distill.00024.001.
https://distill.pub/2020/circuits/zoom-in.

Olsson, C., Elhage, N., Nanda, N., Joseph, N., DasSarma,
N., Henighan, T., Mann, B., Askell, A., Bai, Y., Chen,
A., Conerly, T., Drain, D., Ganguli, D., Hatfield-Dodds,
Z., Hernandez, D., Johnston, S., Jones, A., Kernion, J.,
Lovitt, L., Ndousse, K., Amodei, D., Brown, T., Clark, J.,
Kaplan, J., McCandlish, S., and Olah, C. In-context learn-
ing and induction heads. Transformer Circuits Thread,
2022. https://transformer-circuits.pub/2022/in-context-
learning-and-induction-heads/index.html.

Panigrahi, A., Simhadri, H. V., and Bhattacharyya, C.
Word2sense: Sparse interpretable word embeddings. In
Korhonen, A., Traum, D. R., and Màrquez, L. (eds.),
Proceedings of the 57th Conference of the Association
for Computational Linguistics, ACL 2019, Florence,
Italy, July 28- August 2, 2019, Volume 1: Long Pa-
pers, pp. 5692–5705. Association for Computational

10

https://doi.org/10.48550/arXiv.2402.12201
https://doi.org/10.48550/arXiv.2402.12201
https://doi.org/10.18653/v1/2023.findings-emnlp.624
https://doi.org/10.18653/v1/2023.findings-emnlp.624
http://proceedings.mlr.press/v80/kim18d.html
http://proceedings.mlr.press/v80/kim18d.html
https://doi.org/10.48550/arXiv.2403.00745
https://doi.org/10.48550/arXiv.2403.00745
https://www.lesswrong.com/posts/wHHdJdhKBqoKAMC5d/expanding-the-scope-of-superposition
https://www.lesswrong.com/posts/wHHdJdhKBqoKAMC5d/expanding-the-scope-of-superposition
https://www.lesswrong.com/posts/wHHdJdhKBqoKAMC5d/expanding-the-scope-of-superposition
https://www.lesswrong.com/posts/KicP8fBdHNjZBXxRB/an-ov-coherent-toy-model-of-attention-head-superposition
https://www.lesswrong.com/posts/KicP8fBdHNjZBXxRB/an-ov-coherent-toy-model-of-attention-head-superposition
https://www.lesswrong.com/posts/KicP8fBdHNjZBXxRB/an-ov-coherent-toy-model-of-attention-head-superposition
http://papers.nips.cc/paper_files/paper/2023/hash/81b8390039b7302c909cb769f8b6cd93-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2023/hash/81b8390039b7302c909cb769f8b6cd93-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2023/hash/81b8390039b7302c909cb769f8b6cd93-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2023/hash/81b8390039b7302c909cb769f8b6cd93-Abstract-Conference.html
https://doi.org/10.48550/arXiv.2403.19647
https://doi.org/10.48550/arXiv.2403.19647
https://doi.org/10.48550/arXiv.2307.15771
https://doi.org/10.48550/arXiv.2307.15771
http://papers.nips.cc/paper_files/paper/2022/hash/6f1d43d5a82a37e89b0665b33bf3a182-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2022/hash/6f1d43d5a82a37e89b0665b33bf3a182-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2022/hash/6f1d43d5a82a37e89b0665b33bf3a182-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2022/hash/6f1d43d5a82a37e89b0665b33bf3a182-Abstract-Conference.html
https://www.lesswrong.com/posts/AcKRB8wDpdaN6v6ru/interpreting-gpt-the-logit-lens
https://www.lesswrong.com/posts/AcKRB8wDpdaN6v6ru/interpreting-gpt-the-logit-lens
https://www.lesswrong.com/posts/AcKRB8wDpdaN6v6ru/interpreting-gpt-the-logit-lens

Automatically Identifying Local and Global Circuits with Linear Computation Graphs

Linguistics, 2019. doi: 10.18653/V1/P19-1570. URL
https://doi.org/10.18653/v1/p19-1570.

Radford, A., Wu, J., Child, R., Luan, D., Amodei,
D., and Sutskever, I. Language models are unsu-
pervised multitask learners. 2019. URL https:
//api.semanticscholar.org/CorpusID:
160025533.

Rajamanoharan, S., Conmy, A., Smith, L., Lieberum, T.,
Varma, V., Kramár, J., Shah, R., and Nanda, N. Improving
dictionary learning with gated sparse autoencoders. arXiv
preprint arXiv:2404.16014, 2024.

Ren, J., Guo, Q., Yan, H., Liu, D., Qiu, X., and Lin, D.
Identifying semantic induction heads to understand in-
context learning. CoRR, abs/2402.13055, 2024. doi:
10.48550/ARXIV.2402.13055. URL https://doi.
org/10.48550/arXiv.2402.13055.

Sharma, A. S., Atkinson, D., and Bau, D. Locating and
editing factual associations in mamba. arXiv preprint
arXiv:2404.03646, 2024.

Stefan Heimersheim, J. J. A circuit for python
docstrings in a 4-layer attention-only transformer.
2023. URL https://www.alignmentforum.
org/posts/u6KXXmKFbXfWzoAXn/
a-circuit-for-python-docstrings-in-a-4-layer-attention-only.

Subramanian, A., Pruthi, D., Jhamtani, H., Berg-
Kirkpatrick, T., and Hovy, E. H. SPINE: sparse inter-
pretable neural embeddings. In McIlraith, S. A. and Wein-
berger, K. Q. (eds.), Proceedings of the Thirty-Second
AAAI Conference on Artificial Intelligence, (AAAI-18),
the 30th innovative Applications of Artificial Intelligence
(IAAI-18), and the 8th AAAI Symposium on Educational
Advances in Artificial Intelligence (EAAI-18), New Or-
leans, Louisiana, USA, February 2-7, 2018, pp. 4921–
4928. AAAI Press, 2018. doi: 10.1609/AAAI.V32I1.
11935. URL https://doi.org/10.1609/aaai.
v32i1.11935.

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J.,
Jones, L., Gomez, A. N., Kaiser, L., and Polosukhin, I.
Attention is all you need. In Guyon, I., von Luxburg, U.,
Bengio, S., Wallach, H. M., Fergus, R., Vishwanathan,
S. V. N., and Garnett, R. (eds.), Advances in Neural
Information Processing Systems 30: Annual Conference
on Neural Information Processing Systems 2017,
December 4-9, 2017, Long Beach, CA, USA, pp. 5998–
6008, 2017. URL https://proceedings.
neurips.cc/paper/2017/hash/
3f5ee243547dee91fbd053c1c4a845aa-Abstract.
html.

Wang, K. R., Variengien, A., Conmy, A., Shlegeris, B., and
Steinhardt, J. Interpretability in the wild: a circuit for indi-
rect object identification in GPT-2 small. In The Eleventh
International Conference on Learning Representations,
ICLR 2023, Kigali, Rwanda, May 1-5, 2023. OpenRe-
view.net, 2023. URL https://openreview.net/
pdf?id=NpsVSN6o4ul.

Wright, B. and Sharkey, L. Addressing
feature suppression in saes. LessWrong,
2024. URL https://www.lesswrong.
com/posts/3JuSjTZyMzaSeTxKk/
addressing-feature-suppression-in-saes.

Yun, Z., Chen, Y., Olshausen, B. A., and LeCun, Y. Trans-
former visualization via dictionary learning: contextual-
ized embedding as a linear superposition of transformer
factors. In Agirre, E., Apidianaki, M., and Vulic, I.
(eds.), Proceedings of Deep Learning Inside Out: The
2nd Workshop on Knowledge Extraction and Integra-
tion for Deep Learning Architectures, DeeLIO@NAACL-
HLT 2021, Online, June 10 2021, pp. 1–10. Association
for Computational Linguistics, 2021. doi: 10.18653/
V1/2021.DEELIO-1.1. URL https://doi.org/10.
18653/v1/2021.deelio-1.1.

Zhang, J., Chen, Y., Cheung, B., and Olshausen, B. A. Word
embedding visualization via dictionary learning. CoRR,
abs/1910.03833, 2019. URL http://arxiv.org/
abs/1910.03833.

Zou, A., Phan, L., Chen, S., Campbell, J., Guo, P., Ren, R.,
Pan, A., Yin, X., Mazeika, M., Dombrowski, A., Goel,
S., Li, N., Byun, M. J., Wang, Z., Mallen, A., Basart, S.,
Koyejo, S., Song, D., Fredrikson, M., Kolter, J. Z., and
Hendrycks, D. Representation engineering: A top-down
approach to AI transparency. CoRR, abs/2310.01405,
2023. doi: 10.48550/ARXIV.2310.01405. URL https:
//doi.org/10.48550/arXiv.2310.01405.

11

https://doi.org/10.18653/v1/p19-1570
https://api.semanticscholar.org/CorpusID:160025533
https://api.semanticscholar.org/CorpusID:160025533
https://api.semanticscholar.org/CorpusID:160025533
https://doi.org/10.48550/arXiv.2402.13055
https://doi.org/10.48550/arXiv.2402.13055
https://www.alignmentforum.org/posts/u6KXXmKFbXfWzoAXn/a-circuit-for-python-docstrings-in-a-4-layer-attention-only
https://www.alignmentforum.org/posts/u6KXXmKFbXfWzoAXn/a-circuit-for-python-docstrings-in-a-4-layer-attention-only
https://www.alignmentforum.org/posts/u6KXXmKFbXfWzoAXn/a-circuit-for-python-docstrings-in-a-4-layer-attention-only
https://doi.org/10.1609/aaai.v32i1.11935
https://doi.org/10.1609/aaai.v32i1.11935
https://proceedings.neurips.cc/paper/2017/hash/3f5ee243547dee91fbd053c1c4a845aa-Abstract.html
https://proceedings.neurips.cc/paper/2017/hash/3f5ee243547dee91fbd053c1c4a845aa-Abstract.html
https://proceedings.neurips.cc/paper/2017/hash/3f5ee243547dee91fbd053c1c4a845aa-Abstract.html
https://proceedings.neurips.cc/paper/2017/hash/3f5ee243547dee91fbd053c1c4a845aa-Abstract.html
https://openreview.net/pdf?id=NpsVSN6o4ul
https://openreview.net/pdf?id=NpsVSN6o4ul
https://www.lesswrong.com/posts/3JuSjTZyMzaSeTxKk/addressing-feature-suppression-in-saes
https://www.lesswrong.com/posts/3JuSjTZyMzaSeTxKk/addressing-feature-suppression-in-saes
https://www.lesswrong.com/posts/3JuSjTZyMzaSeTxKk/addressing-feature-suppression-in-saes
https://doi.org/10.18653/v1/2021.deelio-1.1
https://doi.org/10.18653/v1/2021.deelio-1.1
http://arxiv.org/abs/1910.03833
http://arxiv.org/abs/1910.03833
https://doi.org/10.48550/arXiv.2310.01405
https://doi.org/10.48550/arXiv.2310.01405

Automatically Identifying Local and Global Circuits with Linear Computation Graphs

A. Sparse Autoencoder Training
We trained an SAE (Section 2.1) on each of the outputs of
the 12 attention layers and 24 residual stream activation (be-
fore entering attention layers and MLP layers). We trained
a Skip SAE (Section 2.2) through each MLP layer, using
residual stream activation before MLP as input and MLP
output activation as label. Here’s our training settings:

• Each SAE has 24,576 dictionary features, which is 32
times the hidden dimension of GPT-2 Small.

• We use the Adam optimizer with a learning rate of
4e-4 and betas of (0, 0.9999) for 1 billion tokens from
the OpenWebText (Radford et al., 2019) corpus. We
trained against a reconstruction loss (measured by MSE
of input and reconstructed output), a sparsity loss (prox-
imated by the L1 norm of the feature activations, with a
coefficient of 8e-5 (1.2e-4 for attention output SAEs)),
and a ghost gradient loss. A batch size of 4,096 is used.
We use an NVIDIA A100-80GB GPU for training of
each SAE, which lasts for 20 hours.

• First 256 tokens of each sequence are used as input,
discarding the rest tokens and sequences shorter than
256 tokens. Generated activations are shuffled actively
in an activation buffer.

• We normalize the input activations to have a norm of
the square root of LM hidden size (i.e.

√
768 for GPT-

2 Small). We further normalize the MSE loss by the
variance of output along the hidden dimension (a bit
like the latter part in LayerNorm, except that we’re not
taking the mean of output).

LMSE = (xnormed − x̂normed)/∥x̂normed − ¯̂xnormed∥2

• We use untied weights for the encoder and decoder.
Decoder bias (or pre-encoder bias) is removed (for the
sake of simplier circuit analysis). Decoder norm are
reset to less than or equal to 1 after each training step.

• *We prune the dictionary features with norm less than
0.99, max activation less than 1, and activation fre-
quency less than 1e-6 after training.

• *We finetuned the decoder and a feature activation
scaler of the pruned SAEs on the same dataset to deal
with feature suppression.

A.1. Feature Pruning

Some of the SAE features obtained from end-to-end training
are too sparse (i.e. can hardly be activated) to reflect a cer-
tain aspect of the input corpus. These features are more like

”local codes” (in neuroscience). They are activated by very
specific tokens. These features are trivial and not helpful for
understanding an activation pattern from a compositional
perspective. Feature pruning aims to remove these trivial
features and keep the more meaningful ones.

In practice, a dictionary feature will be pruned if it meets
one of the following criteria:

Norm less than 0.99: In SAE training, we use an L1 loss
as a differentiable approximation of L0 loss, to encourage
sparsity in the feature activations. The side effect is that
the L1 loss as well encourages a lower value of the feature
activations, and a larger feature norm. Thus, if a feature is
really ”useful” in reconstructing the input, it should have a
norm as large as possible. We prune the features without
the tendency to grow.

Max activation less than 1: Given a fixed norm of the
feature, a feature with a low max activation value makes
little contribution to reconstructing the input. We find this
kind of features activated in some non-related situations,
and thus non-interpretable. We empirically set the threshold
to 1 and prune the features below it.

Activation frequency less than 1e-6: A feature with an
ultra-low activation frequency is considered to be too local
to be useful. We find this kind of features often correspond
to some specific tokens in some specific contexts, which is
too trivial to be recognized as a feature. We empirically set
the threshold to 1e-6 and prunes the features activated in a
frequency below it.

A.2. Finetuning against Feature Suppression

Feature suppression refers to a phenomenon where loss
function in SAEs pushes for smaller feature activation val-
ues, leading to suppressed features and worse reconstruction
quality. Wright and Sharkey deduced that for an L1 coeffi-
cient of c and dimension d, instead of having a ground truth
feature activation of g, the optimal activation SAEs may
learn is g − cd

2 .

To address this issue, we finetune the decoder and a feature
activation scaler of the pruned SAEs on the same dataset.
Only the reconstruction loss (i.e. the MSE loss) is applied
in this finetuning process. Encoder weights are fixed during
this process to keep sparsity of the dictionary. Finetuning
may also repair flaws introduced in the pruning process, and
improve the overall reconstruction quality.

A.3. Statistics of Sparse Autoencoders

We evaluate the L0 loss, variance explained and reconstruc-
tion CE loss of each trained SAEs. The L0 loss computes the
average feature activated at each token. Variance explained

12

Automatically Identifying Local and Global Circuits with Linear Computation Graphs

computes

EV = 1− ∥ŷ − y∥22
σ2(y)

,

which is a measurement of the proportion to which an SAE
accounts for the activation variation. Reconstruction CE loss
is the final cross-entropy loss of the language model where
the activation is replaced with the SAE reconstructed one.
Reconstruction CE score shows how good the reconstruction
CE loss is w.r.t the original CE loss and the ablated CE loss,
by computing

s =
Lrecons − Lablate

Loriginal − Lablate
,

where Lrecons, Loriginal and Lablate refer to the reconstruc-
tion CE loss, the original CE loss and the ablated CE loss
respectively.

The statistics of each SAE is as shown in Table. 1, Table. 2
and Table. 3.

B. General Direct Contribution Computation
In Sec. 2.3 and Sec. 2.2, we have shown how we compute di-
rect contribution towards attention outputs, attention scores,
and SAE feature activation, which is a linear effect of each
input partition. However, it may still remain confusing why
we can compute a linear contribution in such non-linear
functions as attention blocks. For a clarification of how
direct contribution works, we introduce our general mathe-
matical formation of direct contribution computation in this
section.

The term direct contribution refers to how partitions of
upstream model activations respectively contribute to the
downstream (through only direct ways, e.g. a single model
layer), and constitute the downstream model activations. We
start from linear functions, which are the simplest case of
direct contribution computation. Given a model activation
x ∈ RH and its arbitrary n-parted partition x =

∑n
i=1 vi,

where vi ∈ RH is the i-th partition of x. For any affine
transformation f : RH → RK mapping x to a downstream
activation f(x) = Wx+ b, W ∈ RK×H , b ∈ RK , we have

f(x) = W

n∑
i=1

vi + b =

n∑
i=1

Wvi + b, (6)

from which we learned that each partition vi separately
contributes to f(x) by Wvi (since it’s the only term related
to vi in the final summation, and the bias b contributes to
f(x) by its own value b. This contribution ribution is natural

thanks to the additive (w.r.t vector addition) nature of linear
mapping.

Nevertheless, computation in practical neural networks is
often much complicate than the above affine transforma-
tion or its simple nesting. Non-linear transformation (e.g.
LayerNorm, Softmax, ReLU) is ubiquitous. We cannot
simply ignore these non-linear operators since the powerful
fitting capacity of neural networks often just come from the
non-linear parts. To deal with these non-linear transforma-
tions, we propose a more general direct contribution comput-
ing strategy. For any transformation f : RH → RK where
f has a form of f(x) = W (x)x + b, W : RH → RK×H ,
b ∈ RK , we have

f(x) = W (x)

n∑
i=1

vi + b =

n∑
i=1

W (x)vi + b, (7)

where we treat W (x) as a constant linear transformation
matrix. Then we can claim that i-th partition vi contributes
to the result f(x) by W (x)vi through the posterior linear
transformation with a constant W (x). We must state this
contribution computation is nothing but trivial if we don’t
further interpret how partitions affect W (x) and the relating
impact to the following transformation, or further restrict the
W (x)to make sure it’s just close to a constant or its variation
is unimportant. Thus, for W that having a similar form as f ,
e.g. W (x) = W ′(x)x+B, W ′ : RH → R(K×H)×H , B ∈
RK×H , we can iteratively apply the linear decomposition
Eq. 7 to W (which we use to interpret attention pattern in
Sec. 2.3),

W (x) = W ′(x)

n∑
i=1

vi +B =

n∑
i=1

W ′(x)vi +B (8)

The above transformations could be nested to compute direct
contribution to further activations. Take f = f1 ◦ f2 as a
twofold nesting example, where f1(x) = W1x + b1 and
f2(x) = W2(x)x+ b2, it can be easily induced that

f(x) = W1W2(x)

n∑
i=1

vi +W1b2 + b1

=

n∑
i=1

W1W2(x)vi +W1b2 + b1,

(9)

and get the respective contribution of every vi and bi. Direct
contribution through deeper nested transformations can be
computed in similar ways.

As a brief summary, the core idea of direct contribution
computation for any non-linear function is to first compute

13

Automatically Identifying Local and Global Circuits with Linear Computation Graphs

Table 1. Statistics of Attention Output SAEs

SAE Var. Explained L0 Loss Reconstruction CE Score Reconstruction CE Loss

L0A 92.25% 29.66 99.24% 3.2327
L1A 82.48% 65.57 97.19% 3.2138
L2A 83.39% 69.85 94.29% 3.2150
L3A 69.23% 53.59 87.00% 3.2173
L4A 74.91% 87.35 89.99% 3.2171
L5A 82.12% 127.18 97.81% 3.2145
L6A 76.63% 100.89 94.31% 3.2158
L7A 78.51% 103.30 91.32% 3.2182
L8A 79.94% 122.46 88.67% 3.2172
L9A 81.62% 107.81 89.55% 3.2187
L10A 83.75% 100.44 87.70% 3.2201
L11A 84.81% 22.69 85.49% 3.2418

Table 2. Statistics of MLP Transcoders
SAE Var. Explained L0 Loss Reconstruction CE Score Reconstruction CE Loss

L0M 94.16% 19.59 99.65% 3.1924
L1M 82.02% 48.63 86.35% 3.1816
L2M 86.32% 50.90 81.24% 3.1851
L3M 76.55% 56.91 83.43% 3.1867
L4M 73.38% 76.03 80.08% 3.1888
L5M 73.49% 84.11 84.18% 3.1881
L6M 72.79% 90.34 82.85% 3.1912
L7M 73.18% 86.38 81.89% 3.1911
L8M 74.14% 87.29 83.25% 3.1913
L9M 75.89% 90.08 81.89% 3.1930
L10M 79.66% 94.85 81.60% 3.1987
L11M 80.33% 79.12 77.33% 3.2169

𝑣3 𝑣3

𝑣2 𝑣2

𝑣1 𝑣1 𝑊𝑣1 𝑊𝑣1

𝑊𝑣2 𝑊𝑣2

𝑊𝑣3 𝑊𝑣3

𝑊

𝑏

𝑣3

𝑣2

𝑣1 𝑊𝑣1

𝑊𝑣2

𝑊𝑣3

𝑊

𝑏

𝑣3 𝑣3

𝑣2 𝑣2

𝑣1 𝑣1

𝐵 𝐵

+ +

𝑊′𝑣1

𝑊′𝑣2

𝑊′𝑣3

𝑊

𝑣3

𝑣2

𝑣1

𝐵

+

𝑊′𝑣1

𝑊′𝑣2

𝑊′𝑣3

𝑊

𝑣3 𝑣3

𝑣2 𝑣2

𝑣1 𝑣1

𝑥 𝑥

𝑣3

𝑣2

𝑣1

𝑥

Figure 6. The workflow of interpreting a non-linear transformation where the transformation matrix can be linearly decomposed. We first
compute the direct contribution W ′vi to the transformation matrix W of each partition vi of x so as to reveal the formation of W , and
then treat the computed W as constant to compute the final direct contribution Wvi.

14

Automatically Identifying Local and Global Circuits with Linear Computation Graphs

Table 3. Statistics of Residual Stream SAEs
SAE Var. Explained L0 Loss Reconstruction CE Score Reconstruction CE Loss

L0RPr 98.98% 6.89 99.90% 3.1907
L0RM 95.94% 42.50 99.34% 3.2658
L1RPr 96.98% 21.96 99.62% 3.1935
L1RM 95.53% 34.11 99.77% 3.2133
L2RPr 96.03% 28.18 99.01% 3.2268
L2RM 94.45% 40.17 99.32% 3.2662
L3RPr 94.43% 38.22 98.95% 3.2867
L3RM 93.13% 48.44 99.13% 3.2673
L4RPr 92.08% 49.19 99.31% 3.2782
L4RM 91.00% 61.66 99.26% 3.2771
L5RPr 90.68% 60.34 99.09% 3.2950
L5RM 89.90% 76.22 99.11% 3.2839
L6RPr 90.03% 70.06 98.93% 3.2899
L6RM 89.57% 88.95 98.59% 3.2830
L7RPr 88.86% 79.91 98.88% 3.2943
L7RM 88.28% 98.60 98.94% 3.2828
L8RPr 87.99% 89.37 98.55% 3.2952
L8RM 87.32% 108.72 98.70% 3.2863
L9RPr 87.38% 100.68 99.17% 3.2938
L9RM 86.66% 119.59 98.15% 3.2889
L10RPr 86.72% 115.35 98.59% 3.2984
L10RM 86.07% 126.19 98.14% 3.3036
L11RPr 85.76% 120.86 97.93% 3.3212
L11RM 85.40% 94.20 98.42% 3.3910

15

Automatically Identifying Local and Global Circuits with Linear Computation Graphs

how the non-linear part is formed w.r.t each input partition
by iteratively applying direct contribution computation, and
then consider the non-linear part as determined, regard the
function to be linear, and compute a linear contribution to
the function output. We usually allow the determined non-
linear part to go through a simple extra activation function
like Softmax or ReLU, since this will not undermine the
understanding of this non-linear part. This workflow can
be applied to non-linear function like bi-linear function and
attention.

C. Hierachical Attribution Algorithm
In this section, we introduce the detailed implementation of
Hierachical Attribution algorithm, to obtain a subgraph G′

from original computational graph G with threshold τ , as
shown in Algorithm 1.

Algorithm 1 Hierachical Attribution
Input: τ > 0, G, t {t for the root node}
Output: Optimized subgraph G′

N ′ ← ∅
for all v in reversed topological sort of G do

if v = t then
v.grad← 1

else
v.grad← 0
for all u in direct successors of v in G do
v.grad← v.grad+∇av

au ·u.grad {Do normal
back-propagation}

end for
if v.grad · av < τ then

v.grad← 0
attrv ← 0

else
attrv ← v.grad · av
N ′ ← N ′ ∪ {v}

end if
end if

end for
G′ → G[N ′]

Afterwards, we can compute the contribution of G′ by
adding up the attribution score of all its leaf nodes.

D. Equality of Output Activation and Leaf
Nodes Attribution

We demonstrate the proof for Theorem 3.3 as below, which
is quite simple:

Proof. For any activated node u (i.e., au > 0), it holds that

au = ReLU

(∑
v→u∈E

kv,uav

)
=

∑
v→u∈E

kv,uav

=
∑

v→u∈E,at>0

kv,uav

(10)

By iteratively applying Eq. 10, we can obtain

at =
∑

degin(v)=0,av>0

av · ∇at
av

=
∑

degin(v)=0

av · ∇atav

=
∑

degin(v)=0

attrv,t

(11)

E. Additional Explanation of IOI Circuit
We further explain the feature circuit we discovered in sMary
and sJohn, by listing the meaning or functionality of pivotal
features in these two exemplars.

The pivotal features in sJohn (Figure 5(a)):

• ”John”, ”and” and ”Mary” features simply imply cur-
rent token as ”John”, ”and”, and ”Mary”;

• Entity Indicator features are activated on prepositions
or transitive verbs, indicating that its next token is
likely to be an entity.

• ”John” Preceding features collect information from the
previous token, and imply its previous token as ”John”;

• ”And” Preceding features collect information from the
previous token, and imply its previous token as ”and”;

• Consecutive Entity features are a mixture of ”Mary”
features and ”And” Preceding features, and imply the
current token as the [B] part of an [A] and [B] pattern,
where [A] and [B] serve as entities.

• ”And” Induction features attend to ”and” (by matching
S1 and S2), and collects the ”and” information from
S1+1, implying there’s an ”and” goes after ”John”.

• Consecutive Entity Association features take advantage
of the structural information from ”And” Induction
features, and decide to retrieve the entity lying after
”and”, by attending to Consecutive Entity features in
Name Mover Heads.

16

Automatically Identifying Local and Global Circuits with Linear Computation Graphs

When

Mary

and

John

went

to the store,

John

gave a drink

to

IO

S1

S1+1

S2

END Name Mover
L9A.15384, L9A.9767, L9A.14631, L9A.22905

Centered Entity Association
L7A.1932, L8A.15499, L9RPr.16905

Centered Entity
L9RPr.6577, L9RPr.10768

“Mary”
L0M.95, L7M.5063

Value Key

Query

“John”
L0M.22594

“And”Connected Entities Induction
L5A.12458

Entity Indicator
L0A.23630, L0M.393

“And”Connected Entities Preceding
L3A.3334

“John”
L0M.22594

Key Value

Query

“John” Preceding
L3A.3226, L2A.3950

Query

Key

Value

Value

IO+1 “and”
L0M.13739, L0A.6383

Value

Mary

Figure 7. Overview of sMary circuit.

• Nave Mover features conduct the final step to move
the ”Mary” information from the targeted Consecutive
Entity token.

The pivotal features in sMary (Figure 7):

• ”John”, ”and”, ”Mary”, Entity Indicator and ”John”
Preceding features play the same role as in sJohn.

• Centered Entity features are activated at the first occur-
rence of a seemingly important name or object, mark-
ing it out for potential future reference.

• ”And”-Connected Entities Preceding features collect
information from several previous tokens (mainly the
token ”and”), and imply there’s an [A] and [B] pattern
before this token.

• ”And”-Connected Entities Induction features collect
information from ”And”-Connected Entities Preceding,
again by matching S1 and S2.

• Centered Entity Association features take advantage
of the structural information from ”And”-Connected
Entities Induction features, and decide to retrieve the
entity lying before ”and”, by attending to Centered
Entity features in Name Mover Heads. This behavior is
not completely symmetrical to that with Consecutive
Entity features, since Centered Entity features do not

know about the token ”and” after it. However, this
behavior is still reasonable since if there’s another Cen-
tered Entity before IO, then this entity can be another
correct answer.

• Nave Mover features again conduct the final step to
move the ”Mary” information from the targeted Con-
secutive Entity token.

17

