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Abstract

Transformer architectures in deep learning are increasingly relied on across do-
mains with impressive results, but the observed growth of model parameters may
be unsustainable and failures in robustness limit application. Tasks that are targeted
across domains by transformers are enabled in biology by the mammalian neocor-
tex, yet there is no clear understanding of the relationship between processing in
the neocortex and the transformer architecture. While the relationship between con-
volutional neural networks (CNNs) and the cortex has been studied, transformers
have more complex computations and multi-scale organization, offering a richer
foundation for analysis and co-inspiration. We introduce a framework for enabling
details of cortical connectivity at multiple organizational scales (micro-, meso-,
and macro-) to be related to transformer processing, and investigate how cortical
connectivity principles affect performance, using the CIFAR-10-C computer vision
robustness benchmark task. Overall, we demonstrate the efficacy of our framework
and find that incorporating components of cortical connectivity at multiple scales
can reduce learnable attention parameters by over an order of magnitude, while
being more robust against the most challenging examples in computer vision tasks.
The cortical transformer framework and design changes we investigate are gen-
eralizable across domains, may inform the development of more efficient/robust
attention-based systems, and further an understanding of the relationship between
cortical and transformer processing.

1 Introduction

Transformers [30] have enabled many recent successes, especially in computer vision [8; 20], but
open challenges remain for increasing robustness and reducing model size [15]. Tasks across domains
typically targeted by transformers are enabled by the mammalian neocortex [24], which achieves
efficient processing and real-world robustness. While connections between transformer networks
and principles of processing in biological networks have been made (e.g. between models and
encoding in the hippocampal formation [31] and between principles of attractor dynamics and
sparse reconstruction [27]), it is unknown how to leverage cortical connectivity properties explicitly
into transformer networks. Relative to convolutional neural networks (CNNs) which have been
studied [19; 17; 18], transformer networks offer many potential advantages in regards to connections
to cortical processing yet remain under-explored. In particular, transformers 1) have a more complex
multi-scale organization, with attention being calculated at the smallest scale as in the cortical
microcircuit 2) enable the seamless incorporation of recurrence and feedback within and across levels
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Figure 1: Incorporating multi-scale connectivity properties of the cortex. A. Macro-scale: 1) recurrent
processing between cortical blocks, 2) sparsity, between-block connections have exponentially in-
creasing levels of sparsity, 3) token-interactions (twisted arrows), learnable parameters are introduced
for how tokens can interact to break the fixed spatial correspondence through subsequent layers.
Meso-scale: model embeddings are parallelized between attention heads, with partial overlap based
on a 2D structure. Micro-scale: attention-embeddings (A) are based on inhibitory (I) neurons with re-
duced population size (dimensionality-reduction) and denser connections , while forward-embeddings
(blue) are based on excitatory (E) neurons (sparser connectivity). B. Recurrent processing of the
model’s latent space zt (R regions, N tokens, D dimensionality per region), can support feedforward
region connectivity (top), or support more complex region-to-region connectivity (bottom). Note:
Macro-/Micro-Cortical Processing figure components adapted from [16] and [29] respectively.

of processing, and 3) naturally support multi-modal processing. Additionally, while CNNs embody
explicit inductive biases based on observed hierarchical properties of cortical neural responses,
attention-based networks implicitly instantiate, replace, and/or expand on these biases [5; 25; 14].
In this work, we introduce a framework for integrating a series of structural cortical properties
into transformer networks which enables both a method to study the computational effects of these
properties as well as a way to augment modern deep learning architectures.

To investigate details of cortical processing for transformer networks, we focus across macro-, meso-,
and micro-scales. At the macro-scale, we make the comparison between cortical areas and successive
layers in a transformer network, extending the correspondences between areas and layers utilized
in CNN models of cortical processing [33; 19; 17]. In this work, we focus on three macro-scale
connectivity principles: 1) recurrence: Standard transformer networks use purely feedforward layers,
which is starkly different than the recurrent and feedback processing that is observed between cortical
areas [16]; 2) sparsity: Cortico-cortico connections between areas at varying hierarchical levels
become exponentially more sparse as distance between areas increases [22]; 3) token-interactions:
Unlike the cortex where visual receptive fields vary considerably in size between areas [26], standard
transformer networks in vision [8] rely on a fixed set of patch-wise feature tokens with specific spatial
correspondences which are preserved throughout subsequent layers of processing.

At the micro-scale, we relate cortical micro-circuity properties [11] of excitatory neurons (which have
longer-range output connectivity) and inhibitory [29] neurons (which have shorter-range connectivity)
to the transformer attention head calculation. The computational role of inhibitory neurons can be
complex, especially in the case where inhibitory neurons, that synapse onto dendritic regions (e.g.,
Sst neurons), non-linearly and multiplicatively interact with patterns of excitatory input [28]. In
the transformer’s attention head, the attention-embeddings (Q,K) utilize non-linear, multiplicative
interactions whereas forward-embeddings (V ) propagate only to downstream layers. We inform the
structure of these calculations with inhibitory and excitatory neuron population properties respectively.
In this work, we focus on two micro-scale connectivity principles: 1) dimensionality-reduction, where
excitatory neurons outnumber inhibitory neurons; 2) sparsity, where excitatory-excitatory connections
have greater sparsity than inhibitory-excitatory connections [10].
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Between the micro-/macro-scales lies a meso-scale, where neurons lie in the same area of the cortical
sheet, but still exhibit distance-dependent connectivity [22], which we implement by imposing a 2D
partially overlapping input to each attention head.

For experiments, while transformers have already shown impressive performance on standard vision
benchmarks [8; 32; 3], we consider dimensions of performance where biological vision is still
dominant. We examine the challenge of robustness to natural corruptions where transformers
have demonstrated improvements over CNNs [2; 23] yet the robustness problem remains far from
solved [9].

In this work, we first introduce the Cortical Transformer architecture which incorporates several
multi-scale cortical connectivity properties across macro-, meso-, and micro-scales. In a series of
computational experiments using the CIFAR-10-C [13] corruption benchmark, we demonstrate the
efficacy of our model and investigate how these cortical properties affect robustness and model
compression. We find that incorporating the investigated cortical properties improves performance on
the most difficult image corruptions for baseline transformer networks while reducing model size.

2 Methods

To study the properties of cortical connectivity, we introduce a series of generalizations of the
transformer networks across macro, micro, and meso scales which comprise a single Cortical Block.
Stacking these Cortical Blocks depth-wise, produces our Cortical Transformer (CT).

Macro At the macro-level, we introduce a recurrence-enabled generalization of the standard
feedforward transformer, where the latent space, zt ∈ RN×D×R is divided into R regions and
processed recursively for each timestep t (with N tokens and D dimensionality per region). First,
a multi-region self-attention (MRSA) is calculated, which is a generalization of multi-headed self
attention (MHSA),

z′t = MRSA(RN(zt−1)) + zt−1, (1)
where MHSA is first calculated separately for the latent space in each region, zr ∈ RN×D, then
concatenated across regions, followed by normalizing using Region Normalization (RN) as further
specified in the Appendix A. Next, a multi-region perceptron (MRP) is calculated, which is a
generalization of the multi-layer perceptron that allows interactions between regions,

z(t) = MRP (RN(z′t)), MRP (z) =

R∑
r=1

u(zrBr) + u(WM,rg(zrW
1,r)W 2,r) (2)

The MRP (.) calculation is performed in a parallel fashion for the latent space in each region, with:

• learnable parameters for MLP weights (W 1,r ∈ RD×DFF , W 2,r ∈ RDFF×D) and WM,r ∈
RNR×N enabling interactions between tokens in different regions,

• Br ∈ RD×DR, a binary weight matrix that controls how the residuals propagate,
• g(.), a GeLU nonlinearity, and
• u(.), an unstacking/reshaping operation of a matrix with a total of NDR elements to a

tensor in ∈ RN×D×R (applied to zrBr ∈ RN×DR and WM,rg(zrW
1,r)W 2,r ∈ RNR×D).

When Br and WM,r are frozen with identity matrix configurations further specified in Appendix A,
(1) and (2) simplify to a standard feedforward transformer architecture with L layers when the
total number or timesteps and number of regions both equal L. Alternatively, Br and WM,r can
be structured to enable different forms of region-to-region interactions and modeled on observed
exponential drop-off cortical connectivity (See Appendix A). Furthermore, the number of timesteps
can be increased to enable further levels of processing with a fixed number of parameters.

Micro As further outlined in Appendix A, the self-attention calculation is parameterized by WQ ∈
RD×Dq , WK ∈ RD×Dq , and WV ∈ RD×Dv for each of the H attention heads for each region
and W 0 ∈ RDvH×D for each region. These parameters can be sorted by use as either attention-
embeddings (WQ and WK) or forward-embeddings (WV and W 0). Dimensionality-reduction may
be applied by reducing Dq relative to Dv by a factor of d and sparsity may be applied by initializing
each element of WV and W 0 to be sparse with probability s.
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Figure 2: CIFAR-10-C accuracy and model compression with multi-scale cortical connectivity
properties. A. Model accuracy on uncorrupted CIFAR-10 is slightly reduced for cortical and naive
compression network variants. B. Model accuracy (relative to baseline) versus corruption difficulty.
For more difficult corruptions, cortical network variants have increased accuracy over the baseline
network and naive compression variants. The 71 evaluated corruptions are binned by decile of
baseline accuracy. C. Average model accuracy on the subset of the most difficult corruptions for the
baseline model (corruptions that reduced baseline model accuracy by over 40%). Dotted lines signify
baseline network averages. All comparisons are run with 3 random initialization seeds. Error bars in
A and C are min and max values, error bands in B are bootstrapped 95% confidence intervals.

Meso At the meso-scale we constrain the input dimensionality (D) of each attention head separately.
We decompose each of the WE,h, E ∈ {Q,K, V }, h ∈ {1...H} attention embedding matrices,
WE,h = ShW̃E,h using a smaller set of learnable weights (W̃E,h). The binary matrix Sh ∈ RD×Ds ,
(Ds < D) has at most one non-zero element in each row so that that each head receives input from
a different subset of elements along the dimensionality, D. The specification of Sh can enable
completely parallel inputs to each attention head or 1D and 2D patterns of overlap as further described
in Appendix A.

3 Experiments and Results

To investigate properties of cortical processing in transformer networks, we perform a series of
computational experiments using the CIFAR-10-C benchmark. We utilize CCT [12] as a baseline
network given its parameter efficiency and competitive performance on the standard CIFAR-10
benchmark compared to other vision transformers. Importantly, the CCT network preserves a
standard transformer-based backbone, obtaining parameter efficiency and performance gains through
an updated image tokenizer before the transformer-based backbone and a sequence pooling operation
for classification after the transformer-based backbone. We leverage the convolutional tokenizer from
this architecture and replace the transformer backbone with our Cortical Blocks to evaluate cortical
design principles. Additional model and training details are found in Appendix B.1 and all code
will be released at https://github.com/aplbrain/cortical_transformers_22. For both the
CCT baseline and our Cortical Transformer, a baseline depth of four transformer layers/Cortical
Blocks respectively is used, consistent with the four cortical regions associated with visual object
recognition in the primate ventral stream [7].

Setup: For a general comparison of robustness performance and network size, we train networks with
all cortical design principles on CIFAR-10 and evaluate them on CIFAR-10-C. We compare networks
with macro+micro+meso and macro+micro cortical variations to a baseline transformer network as
well as networks that achieve similar model compression with naive downscaling approaches (Fig. 2).
For measuring robustness to corruptions, we quantify the difficulty of a corruption type and severity
level as the baseline transformer performance (considering that corruption type has a considerable
influence on the practical difficulty of a task in addition to the benchmark annotated severity level).

Macro-, Meso-, and Micro-Analysis We first examine how combinations of cortical principles
(outlined in Section 2) impact performance. In aggregate, these cortical variations (which have
a 5× and 15× compression in attention parameters) yield minor decreases in uncorrupted image
accuracy, but as the corruption difficulty increases, the cortical variations have higher relative
performance (Fig. 3). Naively reducing attention parameters by reducing the dimensionality of
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Figure 3: Effect of individual connectivity properties on CIFAR-10-C accuracy and model com-
pression. A-B. Macro analysis, recurrence (-sparsity) increases all performance, token-interactions
enhance performance on difficult corruptions. C-D. Micro and Meso analysis, all micro and meso
connectivity principles reduce learnable attention parameters. While there is some trade-off in perfor-
mance for most micro and meso network variants, the micro variant with dimensionality reduction
only (-sparsity) has increased performance. In comparison to null non-cortical control network
variants, the micro variant with dimensionality reduction only (-sparsity) and the meso-2D network
variants have increased performance. (A, C). Model accuracy on uncorrupted CIFAR-10. (B,D).
Average model accuracy on the subset of the most difficult CIFAR-10-C corruptions for the baseline
model (corruptions that reduced the baseline model accuracy by over 40%). Error bars signify
min/max values for three seeds. Dotted lines signify baseline network averages. Feedforward macro
results are with the same number of processing steps (8).

WQ,WK ,WV ,W 0 in standard transformers by similar factors (reducing both Dv an Dq by a factor
of 4 or 8), fails to improve accuracy for both the uncorrupted and most difficult corruptions. Thus,
using the Cortical Transformer enables the number of attention parameters to be reduced by over an
order of magnitude while having increased performance on the most difficult corruptions.

Ablation studies We perform additional ablation studies to quantify the relative contributions of
the macro-/meso-/micro- design principles investigated (Fig. 3). At the macro-level, investigated
principles include recurrence, sparsity, and token-interactions. Adding recurrence is the only macro-
principle investigated that increases performance across the board for uncorrupted and the most
difficult corruptions (and even has better performance on difficult corruptions than baseline models
with twice the depth). Intuitively, recurrence may be beneficial by increasing the virtual depth of
the network via additional processing steps but without increasing parameters. Token-interactions
improve average accuracy on difficult corruptions across all tested comparisons (with the strongest
gains seen in the most compressed networks). A potential interpretation for the benefit of token-
interactions for difficult corruptions is that expected visual features in heavily corrupted data may
be imputed better by breaking the fixed spatial correspondence per token and adding computations
that enable additional interactions between spatial features. Adding sparsity does reduce model
parameters, but at the expense of decreasing relative performance which is in line with a general
expected tradeoff between model size and performance.

The investigated micro- and meso- connectivity principles can be further examined both in isolation
and relative to null non-cortical variants that can further probe the benefits of the investigated cortical
principles. The investigated micro- connectivity principles include dimensionality reduction and spar-
sity (see Section 2). The dimensionality reduction enhanced the performance on difficult corruptions,
and was the only investigated parameter-reducing principle which enhanced performance, bucking
an expected tradeoff between model size and performance. With both sparsity and dimensionality
reduction, the total number of attention parameters can be reduced further to a factor of 5, but
with exhibiting some trade-off in model size and performance. We test a null non-cortical control
by switching the parameters for dimensionality-reduction ({WQ,WK} to {WV ,W 0}), and find
a marked drop in performance. A similar null non-cortical control is also introduced for sparsity
({WV ,W 0} to {WQ,WK}), with a minimal difference in performance, further highlighting the
relative contribution of the dimensionality-reduction as a micro- connectivity principle.

The investigated meso- cortical connectivity principle with a 2D overlap in input dimensionality has
two general properties: 1) the input to each attention head is not the full model dimensionality and 2)
the organization of the overlap to each attention head follows a two dimensional pattern of overlap
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(Fig. 3C-D). To further understand these properties, two null comparison are run: 1) where input
dimensionality to each attention head is completely parallelized and 2) where the overlap of input
dimensionality has a 1D instead of a 2D overlap. When the input to each attention head is completely
parallelized, there is an expected trade-off in model size and performance. When the overlap of input
dimensionality is 2D vs. 1D, however, the 2D overlap has a greater accuracy on difficult corruptions,
suggesting the importance of the 2D organization of overlap in dimensionality.

4 Discussion

In this work, we introduce a framework for relating cortical to transformer processing at multiple
organizational scales: 1) (macro) between area-to-between block, 2) (meso) within area-to-within
block, and 3) (micro) microcircuitry properties-to-within attention head calculation. We introduce a
set of principles across these scales and generalizations of the transformer architecture to support
them. Using a CIFAR-10-C robustness benchmark, we found that these principles could reduce
learnable attention parameters by over an order of magnitude while increasing the performance on the
most difficult corruptions. In a series of ablation studies to better understand the relative importance
of these principles, we found that the macro principles of recurrence and token interactions had the
largest effects on increasing performance. The majority of the meso and micro principles exhibited
a trade-off in performance when reducing model size (however with enhanced performance over
null non-cortical variants). The micro dimensionality reduction (motivated by a reduction in the
number of attention-calculating inhibitory neurons), however, enhanced model performance while
reducing the number of parameters. When all investigated principle are combined, even though the
observed performance increases were modest, the total number of learnable attention parameters
are reduced by a factor of 15, which is a significant gain in model compression. Furthermore, the
largest performance increases were observed for the most difficult natural corruptions, highlighting
the potential utility of the investigated principles for domain shift in both biological and artificial
systems.

For practitioners utilizing transformer networks, some of these investigated principles can be readily
incorporated, such as micro-dimensionality-reduction or token-interactions, which had improvement
in model compression and robustness respectively. Several of these principles are also related to
existing design augmentations for transformer networks. For example, macro-sparsity is related to
sparse transformer implementations [4] (which are applied to the token dimension as opposed to the
model dimension). Additionally, the macro-recurrence extends recurrence approaches applied to
encoder-decoder language processing models [6]. Finally, the learned token-interactions introduced
here are a flexible method of enabling hierarchical token representation, related to more rigid patch
merging operations utilized in hierarchical vision transformers [20].

Our work also extends research into the relationship between visual cortical processing and
convolution-based networks [19; 17] by 1) adding the ability to investigate the relationship at
multiple spatial scales (including the calculation of attention in cortical microcircuity) and 2) adding
the ability to make comparisons with networks utilized across domains, such as language. To gain a
more thorough understanding of the investigated connectivity principles, it will be critical to evaluate
them on a wider range of tasks. Further investigation into the relationship between cortical processing
across scales and transformer networks could also lead to additional experimental comparisons,
for example by comparing properties of inhibitory neural responses to calculated attention masks.
Overall, the framework, multi-scale connectivity principles, and computational experiments presented
in this work have considerable room for further investigation to enable more compressed/robust
transformer networks and to further an understanding of the relationship between cortical processing
and modern deep learning approaches.
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A Cortical Block

A.1 Macro Details

Multi-region self attention For the latent space in each region (zr ∈ RN×D), self-attention (SA)
and multi-headed self-attention (MHSA) is calculated as in standard transformer networks [30] across
all H attention heads,

q = zrW
Q, k = zrW

K , v = zrW
V , A = softmax(qkT /

√
D), SA(zr) = Av (3)

MHSA(zr) = [SA1(zr);SA2(zr); ...;SAH(zr)]W
0
r (4)

For multi-region self-attention (MRSA), the MHSA is concatenated between all regions,

MRSA(z) = Concat(MHSA(zr=1),MHSA(zr=2), ...,MHSA(zr=R)). (5)

Multi-region perceptron In Eq. 2, which specificies the calculation of the multi-region perceptron,
there are learnable output token-interactions parameters for each regions, WM,r ∈ RNR×N . There
is a block structure to WM,r, which is created by stacking the effective token-interactions for each
output region (W rout=1,W rout=2, ...,W rout=R), where W rout ∈ RN×N . To enable a standard
feedforward architecture, the block in W rout where rout = r + 1 is an identity matrix and the rest of
WM,r is all zero. To enable fully recurrent interactions between regions, WM,r is fully learnable and
non-zero. To model exponential drop-off in connectivity between regions, each element in W rout is
masked to zero with a probability pm = 1− e(|r−rout|)/λ, where λ controls the rate of exponential
connectivity drop-off.

Similar to specification of WM,r, configurations of residual propagation can be enabled with Br ∈
RD×DR, composed of stacked (Brout=1, Brout=2, ..., Brout=R) blocks, where Brout ∈ RD×D. To
enable a standard feedforward architecture, Brout is an identity matrix at rout = r + 1 and zero
otherwise. To enable fully recurrent interactions, all Brout blocks are an identity matrix. To model
differences in connectivity between regions, the same calculation of pm above is used to control the
probability of masking elements to zero.

An additional variation of the multi-region perceptron can be formulated that enables region to region
connectivity specification, but without token-interactions,

˜MRP (z) =

R∑
r=1

u(zrBr) + u(g(zrW
1,r) ˜W 2,r), (6)

where ˜W 2,r ∈ RN×DR is configured in a block structure with blocks W̃ rout ∈ RN×D. In this case,
a standard feedforward architecture is specified by making W̃ rout where rout = r + 1 learnable and
W̃ rout equal to zero in other blocks.

A.2 Meso details

When decomposing WE,h = ShW̃ j,h for E ∈ {Q,K, V }, the learnable parameters, {W̃Q ∈
RDs×Dq , W̃K ∈ RDs×Dq , W̃V ∈ RDs×Dv} are lower dimensional than W j,h by a factor of Ds/D.
When Ds = D/H , the input space can be completely parallelized between heads. When Ds > D/H ,
there can be overlap of input space between heads. To approximate a sheet-like two dimensional
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organization of the input space between heads, the D dimensions are reshaped to a two dimensional
D/m × m matrix, M. The input of each attention head is parameterized with a center location
(xh

center, y
h
center) evenly distributed across M and a width, which controls the amount of input

overlap between heads.

A.3 Region Normalization

Just as LayerNorm [1] plays a key role in standard Transformer layers, we consider normalization
within and across regions in the context of our Cortical Transformer. For input x to the RegionNorm
layer, we compute

z = γ
x− µ

σ
+ β (7)

where γ and β are learnable parameters. Our RegionNorm differs from LayerNorm with respect to
the calculation of µ, σ and the dimensions along which γ, β are learned and applied. In particular, we
allow the dimensions for computing µ, σ to be decoupled from the learnable paramter dimensions for
γ, β. Our intent was to allow for variations where the normalizing factors could be global or local to
regions (via the shape of µ, σ) and the affine paramters could be global, by region, or elementwise
(via the shape of γ, β).

In cases where µ, σ were computed globally, the regions become coupled. For instance, if activations
in specific later regions are zero, then the activations in those regions will become non-zero (i.e.,
for region i, zi = −µ

σ assuming γ = 1, β = 0 here). Our RegionNorm layer enables investigation
of multiple interpretations of normalization in the context of cortical connectivity as they relate to
within and across-region behavior. We explored many of these configurations, but for all experiments,
we computed µ, σ along the token dimension only, and learn element-wise gains and biases (γ, β) for
region and token dimensions.

B Experiment Details

B.1 Baseline Architecture

We utilize the CCT architecture [12] both as a baseline network and a foundation for our cortical
transformer model. A primary motivation of CCT was to reduce the trainable parameters by replacing
the patch-wise tokenization in ViTs [8] with a convolutional tokenizer implemented as:

x0 = MaxPool(ReLU(Conv2D(x))) (8)

for input image x and where MaxPool, ReLU,Conv2D follow their standard implementations.
The result is a decrease in the total number of parameters and an increase in the number of tokens.
Following [12], we use the 3× 2 tokenization which equates to two layers of 3× 3 convolutional
kernels with 3× 3 (stride=1), and 3× 3 pooling (stride=2). In the baseline and cortical transformer
cases, convolutional layers were set to output feature maps with the channel dimension equal to
128. We utilize the Sequence Pooling operation from the original CCT formulation which uses
attention-based pooling over the output tokens prior to a final classification layer. This considers the
case that tokens may contain varying amounts of information and the learnable attention pooling
parameters help to account for this variation.

B.2 Training Hyperparameters

For training, hyperparameters are described in Table 1. We use cosine annealing [21] to adjust the
learning rate over all epochs.

B.3 Cortical Block Hyperparameters

Baseline The baseline configuration for all variants have the number of heads per region, H=4, the
dimensionality per region, D = 128, and number of regions, R = 4.
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Hyperparameter Value
Base learning rate 5e-4

Batch size 64
Optimizer AdamW

Weight decay 3e-2
Epochs 200

Table 1: Training Hyperparameters

Macro The rate of exponential drop-off, λ = 0.5.

Micro The investigated micro configurations dimensionality reduction by a factor of d = 4 and
sparsity level, s = 0.125.

Meso For the tested meso variants, H is increased to 8 to investigate enhanced parallelization
between heads. For specifying the investigated fully parallel configuration, m = 8 and width = 4.
For the configuration investigating 2D overlap, width = 6. The null comparison with 1D input
overlap is configured with m = 1, width = 23.

C Compute Resources

Experiments were run on an internal cluster containing NVIDIA v100 and a100 GPUs as well as
additional g4dn.2xlarge AWS instances.

D Societal Impacts

We believe this work poses minimal societal risks as our primary objective is to make stronger
connections between transformer architectures and cortical processing. We aim to improve model
performance for challenging/corrupted inputs which should enable more positive uses of these
models in real-world settings. Nonetheless, persisting failures of these models and/or their improved
performance in the hands of bad actors could have negative societal impact.
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