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Abstract

Probabilistic survival analysis models seek to es-
timate the distribution of the future occurrence
(time) of an event given a set of covariates. In re-
cent years, these models have preferred nonpara-
metric specifications that avoid directly estimating
survival distributions via discretization. Specifi-
cally, they estimate the probability of an individ-
ual event at fixed times or the time of an event at
fixed probabilities (quantiles), using supervised
learning. Borrowing ideas from the quantile re-
gression literature, we propose a parametric sur-
vival analysis method based on the Asymmetric
Laplace Distribution (ALD). This distribution al-
lows for closed-form calculation of popular event
summaries such as mean, median, mode, varia-
tion, and quantiles. The model is optimized by
maximum likelihood to learn, at the individual
level, the parameters (location, scale, and asym-
metry) of the ALD distribution. Extensive results
on synthetic and real-world data demonstrate that
the proposed method outperforms parametric and
nonparametric approaches in terms of accuracy,
discrimination and calibration.

1. Introduction
Survival models (Nagpal et al., 2021), also known as time-to-
event models, are statistical frameworks designed to predict
the time until a specific event of interest occurs, given a
set of covariates. These models are particularly valuable
in situations where the timing of the event is crucial and
often subject to censoring, which means that in some cases
the event has not yet occurred or remains unobserved by
the end of the data collection period. The flexibility and
adaptability of survival models have led to their widespread
application in various fields, including engineering (Lai &
Xie, 2006), finance (Gepp & Kumar, 2008), marketing (Jung
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et al., 2012), and, notably, healthcare (Zhang et al., 2017;
Voronov et al., 2018; Lánczky & Győrffy, 2021; Emmerson
& Brown, 2021).

Survival models can be broadly categorized into parametric,
semiparametric, and nonparametric methods, each offering
unique strengths depending on the characteristics of the data
and the underlying assumptions. Parametric survival models
assume that survival times follow a specific statistical distri-
bution, enabling explicit mathematical modeling of the sur-
vival function. Common examples include the exponential
distribution for constant hazards rates (Feigl & Zelen, 1965),
the Weibull distribution for flexible hazards rate modeling
(Scholz & Works, 1996), and the log-normal distribution
for positively skewed survival times (Royston, 2001). Semi-
parametric methods, such as the Cox proportional hazards
model (Cox, 1972), assume a proportional hazards structure
without specifying a baseline hazard distribution, which
offers robustness and interpretability. Nonparametric meth-
ods, including the Kaplan-Meier estimator (Kaplan & Meier,
1958) and the Nelson-Aalen estimator (Aalen, 1978), rely
solely on observed data, avoiding distributional assumptions
while directly estimating survival and hazards (risk) func-
tions. More flexible nonparametric models such as Gradient
Boosting Machines (GBM) (Dembek et al., 2014) and Ran-
dom Survival Forests (RSF) (Ishwaran et al., 2008) have
also been proposed, which learn survival quantities directly
from data using ensemble learning techniques.

More recently, neural networks have significantly advanced
survival models across parametric, semiparametric, and
nonparametric settings. In parametric methods, LogNorm
MLE (Hoseini et al., 2017) improves estimation by fitting a
single log-normal distribution using maximum likelihood,
while Deep Survival Machines (DSM) (Nagpal et al., 2021)
extend this by modeling survival times as mixtures of mul-
tiple parametric distributions (e.g., log-normal or Weibull),
allowing greater flexibility in capturing heterogeneous risk
profiles. Semiparametric approaches, exemplified by Deep-
Surv (Katzman et al., 2018), integrate neural networks to
capture nonlinear relationships while preserving the struc-
ture of models such as the Cox proportional hazards model.
Nonparametric approaches, such as DeepHit (Lee et al.,
2018) and CQRNN (Pearce et al., 2022), leverage deep
learning to directly estimate survival functions without re-
lying on traditional assumptions. These advances allow
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survival models to handle complex, high-dimensional data
with greater precision and flexibility.

Naturally, each approach has limitations that may affect
its suitability for different applications. Parametric models
rely on strong assumptions about the underlying distribu-
tion, which may not accurately capture true survival patterns.
Semiparametric models are dependent on the proportional
hazards assumption, which can be invalid in certain datasets.
Nonparametric models, such as DeepHit and CQRNN, tend
to be computationally intensive and require large datasets
for effective training, making them less practical in resource-
constrained settings. Additionally, these models often pro-
duce discrete estimates, which may compromise interpreta-
tion and summarization flexibility compared to the continu-
ous modeling offered predominantly by parametric models.
To address these limitations, we propose a parametric sur-
vival analysis method based on the Asymmetric Laplace
Distribution (ALD). Our contributions are listed below.

• We introduce a flexible parametric survival model based
on the Asymmetric Laplace Distribution, which offers
superior flexibility in capturing diverse survival patterns
compared to other distributions (parametric methods).

• The continuous nature of the ALD-based approach of-
fers great flexibility in summarizing distribution-based
predictions, thus addressing the limitations of existing
discretized nonparametric methods.

• Experiments on 14 synthetic datasets and 7 real-world
datasets in terms of 9 performance metrics demonstrate
that our proposed framework consistently outperforms
both parametric and nonparametric approaches in terms
of both discrimination and calibration. These results un-
derscore the robust performance and generalizability of
our method in diverse datasets.

2. Background
Survival Data. A survival dataset D is represented as a set
of triplets {(xn, yn, en)}Nn=1, where xn ∈ Rd denotes the
set of covariates in d dimensions, yn = min(on, cn) ∈ R+

represents the observed time, and en is the event indicator.
If the event of interest is observed, e.g. death, then on < cn
and the event indicator is set to en = 1, otherwise, the event
is censored and en = 0. In this work, we make the common
assumption that the distributions of observed and censored
variables are conditionally independent given the covariates,
i.e., o ⊥⊥ c | x. Moreover, while we primarily consider
right-censored data, less common types of censoring can
be readily implemented (Klein & Moeschberger, 2006),
e.g., left-censoring can be data handled by changing the
likelihood accordingly (see Section 3.3 for an example of
how the maximum likelihood loss proposed here can be
adapted for such a case).

Survival and Hazard Functions. Survival and hazards
functions are two fundamental concepts in survival analy-
sis. The survival function is denoted as S(t) = P (T > t),
which represents the probability that an individual has sur-
vived beyond time t. It can also be expressed in terms of the
cumulative distribution function (CDF), F (t), which gives
the probability that the event has occurred by the time t, as
S(t) = 1 − F (t). The hazards function, denoted as λ(t),
describes the instantaneous risk that the event occurs at a
specific time t, given that the individual has survived up to
that point. Formally, it is defined as:

λ(t) = lim
∆t→0

P (t ≤ T < t+∆t|T ≥ t)

∆t
.

The hazards function is related to the survival function
through:

λ(t) = − d

dt
logS(t) , or S(t) = exp

(
−
∫ t

0

λ(u) du

)
.

Furthermore, the probability density function (PDF), f(t),
which represents the likelihood that the event occurs at time
t, can be derived as:

f(t) = − d

dt
S(t) = λ(t)S(t).

These relationships establish a unified framework linking
S(t), F (t), λ(t), and f(t), highlighting their interdepen-
dence in survival analysis. Importantly, for the purpose
of making predictions, we are interested in distributions
conditioned on observed covariates, namely S(t|x), F (t|x),
λ(t|x) and f(t|x).

Survival Models. Survival models can be broadly classified
into three main categories. Parametric models assume that
the survival PDF follows a specific probability distribution
as described above. These models thus use a predefined
closed-form distribution to describe f(t|x) and F (t|x), for
which a model estimating its parameters can be specified.
Alternatively, semiparametric models, such as the Cox pro-
portional hazards model (Cox, 1972), first decompose the
conditional hazards function as λ(t | x) = λ(t)λ(x), then
estimate λ(t) from the data and specify a model for λ(x).
In contrast, nonparametric models, such as DeepHit and
CQRNN (Pearce et al., 2022) circumvent directly modeling
conditional distributions by discretizing f(t|x) (DeepHit,
Lee et al., 2018), learning summaries of f(t|x) such as (a
fixed set of) quantiles Pearce et al. (CQRNN, 2022), or even
learning to sample from f(t|x) (Chapfuwa et al., 2018).
More details can be found in Appendix A.2.

3. Methods
3.1. Asymmetric Laplace Distribution (ALD)

Definition 3.1 (Kotz et al. (2012)). A random variable
Y is said to have an asymmetric Laplace distribution with
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Figure 1. The proposed neural network architecture for predict-
ing the parameters of the Asymmetric Laplace Distribution
AL(θ, σ, κ). Here, FC denotes the fully connected layer.

parameters (θ, σ, κ), if its PDF is:

fALD(y; θ, σ, κ) =
√
2

σ
κ

1+κ2


exp

(√
2κ
σ (θ − y)

)
, if y ≥ θ ,

exp
(√

2
σκ (y − θ)

)
, if y < θ ,

(1)

where θ, σ > 0, and κ > 0, are the location, scale and
asymmetry parameters.

Moreover, its CDF can be expressed as:

FALD(y; θ, σ, κ) =


1− 1

1+κ2 exp
(√

2κ
σ (θ − y)

)
, if y ≥ θ ,

κ2

1+κ2 exp
(√

2
σκ (y − θ)

)
, if y < θ .

(2)

We denote the distribution of Y as AL(y; θ, σ, κ).
Corollary 3.2. The Asymmetric Laplace Distribution,
denoted as AL(θ, σ, κ), can be reparameterized as
AL(θ, σ, q) to facilitate quantile regression (Yu & Moyeed,
2001), where q ∈ (0, 1) is the percentile parameter that
represents the desired quantile. The relationship between q
and κ is given by q = κ2/(κ2 + 1).

Additional details are provided in Appendix A.1.

3.2. Model for the ALD

The structure of the proposed model is illustrated in Fig-
ure 1, where a shared encoder is followed by three inde-
pendent heads to estimate the parameters θ, σ, and κ of
the ALD distribution. For the purpose of the experiments
in Section 5 with structured data, we use fully connected
layers with ReLU activation functions. The outputs of the
model connected to θ, σ and κ are further constrained to
be non-negative through an exponential (Exp) activation.
In addition, a residual connection is included to enhance
gradient flow and improve model stability. See Appendix
B.3 for more details about the architecture of the model.

3.3. Learning for the ALD

We propose learning the model for the ALD through maxi-
mum likelihood estimation (MLE). Since the event of inter-
est can be either observed or censored, we specify separate
objectives for these two types of data. For observed events,
for which e = 1, we directly seek to optimize the parameters
of the model to maximize fALD(t|x) in (1). Alternatively,

for censored events, for which e = 0, we optimize the
parameters of the model to maximize the survival function
SALD(t|x) = 1−FALD(t|x) in (2). In this manner, the ALD
objective below accounts for both the occurrence of events
and their respective timing while explicitly incorporating
the survival probability constraint for censored data:

−LALD =
∑
n∈DO

log fALD(yn | xn)

+
∑
n∈DC

logSALD(yn | xn) , (3)

where DO and DC are the subsets of D = DO ∪ DC for
which e = 1 and e = 0, respectively. Detailed derivations
of the objective in (3) be found in Appendix A.1.

The simplicity of the objective in (3) is a consequence of
the ability to write the relevant distributions, fALD(t|x) and
SALD(t|x), in closed form. Moreover, we make the follow-
ing remarks.

• The objective in (3) has the same form as the one used in
other parametric approaches, for instance Royston (2001)
for the log-normal distribution.

• We can readily adapt the loss for other forms of censoring,
for instance, if events are left censored, we only have to
replace the second term of (3) by 1− SALD(t|x).

• We do not consider additional loss terms, as is usually
done for other approaches, e.g., DeepHit optimizes a form
similar to (3), where the density function and cumulative
distribution are replaced by discretized approximations,
but also consider an additional loss term to improve dis-
crimination (Lee et al., 2018).

• Although the ALD in (1) has support for t < 0, we have
observed empirically that this is unlikely to happen, as we
will demonstrate in the experiments.

3.4. Comparison between our Method and CQRNN

CQRNN (Pearce et al., 2022) adopts the widely-used ob-
jective for quantile regression, which is also based on the
Asymmetric Laplace Distribution AL(θ, σ, q), and uses the
transformation in Corollary 3.2. Specifically, they use the
maximum likelihood estimation approach to optimize the
following objective:

LQR(y; θq, σ, q) = log σ − log[q(1− q)]

+
1

σ

{
q(y − θq), if y ≥ θq ,

(1− q)(θq − y), if y < θq .
(4)

Following the quantile regression framework, their approach
optimizes a model to predict θq for a predefined collection
of quantile values, e.g., q = {0.1, 0.2, . . . , 0.9}. Effectively
and similarly to ours, Pearce et al. (2022) specify a shared
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encoder with multiple heads to predict {θq}q . Note that the
objective in (4) does not require one to specify σ, which
results in the following simplified loss:

LQR(y; θq, q) =

{
q(y − θq), if y ≥ θq ,

(1− q)(θq − y), if y < θq ,

= (y − θq)(q − I[θq > y]) , (5)

where I[·] is the indicator function. The formulation in (5)
is also known as the pinball or checkmark loss (Koenker
& Bassett Jr, 1978), which is widely used in the quantile
regression literature.

Importantly, unlike in the objective for our approach in
(3), CQRNN does not maximize the survival probability
directly. Instead, they adopt the also widely used approach
based on the Portnoy’s estimator (Neocleous et al., 2006),
which optimizes an objective function tailored for censored
quantile regression. Specifically, this approach introduces a
re-weighting scheme to handle the censored data:

LCQR(y, y
∗; θq, q, w) = wLQR(y; θq, q)

+ (1− w)LQR(y
∗; θq, q) , (6)

where where y∗ is a pseudo value set to be “sufficiently”
larger than all the observed values of y in the data. Specif-
ically, in CQRNN (Pearce et al., 2022) it is defined as
y∗ = 1.2maxi yi. However, Portnoy (Neocleous et al.,
2006) indicates that y∗ could be set to any sufficiently large
value approximating ∞. For example, Koenker (2022) sets
y∗ = 1e6. This means that in practice, this parameter of-
ten requires careful tuning based on the specific dataset,
provided that different datasets exhibit varying levels of
sensitivity to it. In some cases, we have observed that small
perturbations in y∗ can lead to considerable variation on per-
formance metrics. Consequently, optimizing this parameter
can be non-trivial, making the use of CQRNN, and other
censored quantile regression methods, challenging.

The other parameter in (6) that requires attention is the
weight w ∈ (0, 1), which is defined as w = (q−qc)/(1−qc),
and where qc is the quantile at which the data point was cen-
sored (e = 0, y = c), with respect to the observed value
distribution, i.e., p(o < c|x). The challenge is that qc is not
known in practice. To address this issue, CQRNN proposes
two strategies: a sequential grid algorithm and the quantile
grid output algorithm. The core idea of both strategies is
to approximate qc using the proportion q corresponding to
the quantile that is closest to the censoring value c using the
distribution of observed events y, which are readily avail-
able. Even with this approach, qc is an inherently inaccurate
approximation. Its precision heavily depends on the initial
grid of q values, specifically, the intervals between consecu-
tive q values. Consequently, smaller intervals provide finer
granularity, but increased computational costs, while larger

intervals may lead to coarser approximations that tend to
affect model performance. This means that in some cases,
the model is sensitive to the choice of the grid of q values.

In contrast, our approach enjoys a simple objective function
resulting in parametric estimates of several distribution sum-
maries such as mean, median, standard deviation, and quan-
tiles without additional cost. Additional details of CQRNN
are provided for completeness in Appendix A.2.

4. Related Work
Survival analysis is a fundamental area of study in statistics
and machine learning, focusing on modeling time-to-event
data while accounting for censoring. A wide range of mod-
els has been developed that span parametric, semiparametric,
and nonparametric methods.

Parametric models assume a specific distribution for the
time-to-event variable, providing a structured approach to
modeling survival and hazard functions. Commonly used
distributions include the exponential (Feigl & Zelen, 1965),
Weibull (Scholz & Works, 1996), and log-normal (Roys-
ton, 2001) distributions, as well as more flexible formula-
tions based on mixtures of these distributions (Nagpal et al.,
2021). For example, the log-normal model assumes that the
logarithm of survival times follows a normal distribution, en-
abling straightforward parameterization of survival curves.
In modern approaches (Hoseini et al., 2017), neural net-
works are employed to learn the parameters of the assumed
distribution, e.g., the mean and variance for the log-normal.
This combination allows the model to leverage the power
of neural networks to capture complex, nonlinear relation-
ships between covariates and survival times, while keeping
the interpretability and structure inherent to the parametric
framework. However, these models face challenges despite
their simplicity when the true event distribution significantly
deviates from that assumed.

Semiparametric methods strike a balance between flexibil-
ity and interpretability. One notable example is the Cox
proportional hazards model (Cox, 1972), which assumes a
multiplicative effect of covariates on the hazard function.
Building on this foundation, DeepSurv (Katzman et al.,
2018), a deep learning-based extension, replaces the lin-
ear assumption with neural network architectures to model
complex feature interactions. DeepSurv has demonstrated
improved performance in handling high-dimensional covari-
ates while maintaining the interpretability of hazard ratios.
However, semiparametric models face challenges in effec-
tively handling censored data, particularly when censoring
rates are very high. In such cases, the limited amount of
usable information can lead to degraded performance and
reduced reliability of the model’s estimates.

The Kaplan–Meier (KM) estimator (Kaplan & Meier, 1958)

4



Learning Survival Distributions with the Asymmetric Laplace Distribution

is a widely used nonparametric method for survival analy-
sis. KM estimates the survival function directly from the
data without assuming any underlying distribution. The
KM estimator is particularly effective for visualizing sur-
vival curves and computing survival probabilities. How-
ever, its inability to incorporate covariates limits its ap-
plicability in complex scenarios. To address this, more
advanced nonparametric approaches have been developed.
Tree-based ensemble methods such as Random Survival
Forests (RSF) (Ishwaran et al., 2008) and Gradient Boosting
Machines (GBM) (Dembek et al., 2014) extend traditional
nonparametric modeling by incorporating covariate informa-
tion while avoiding strict distributional assumptions. These
models are capable of capturing nonlinear relationships and
interactions, and provide robust survival estimates even in
the presence of high-dimensional features. In parallel, neu-
ral network-based models such as DeepHit (Lee et al., 2018)
and CQRNN (Pearce et al., 2022) have emerged, which
directly estimate survival probabilities or quantiles with-
out predefined hazard or survival function forms. These
methods offer high flexibility and are particularly effec-
tive in modeling complex, high-dimensional, and heteroge-
neous datasets. Nevertheless, a notable shortcoming of these
models (e.g., DeepHit and CQRNN) is that they produce
piecewise constant or point-mass distribution estimates, re-
spectively, which lack continuity and smoothness. This can
lead to survival estimates that are difficult to summarize,
interpret, and use in downstream analysis.

5. Experiments
5.1. Datasets

We utilize two types of datasets, following Pearce et al.
(2022): (Type 1) synthetic data with synthetic censoring
and (Type 2) real-world data with real censoring. Table 1
presents a summary of general statistics for all datasets.
To account for training and model initialization variabil-
ity, we run all experiments 10 times with random splits
of the data with partitions consistent with Table 1. The
source code required to reproduce the experiments pre-
sented in this paper is available at: https://github.
com/demingsheng/ALD.

For synthetic observed data with synthetic censoring, the
input features x are generated uniformly as x ∼ U(0, 2)d,
where d represents the number of features. The observed
variable o ∼ p(o|x) and the censored variable c ∼ p(c|x)
follow distinct distributions, with each distribution param-
eterized differently, depending on the specific dataset con-
figuration. This variability in distributions and parameters
allows for the evaluation of the model’s robustness under
diverse synthetic data scenarios.

For real target data with real censoring, we utilize datasets
that span various domains, characterized by distinct features,

Table 1. Dataset summaries: number of features (Feats), train-
ing/test data size, and proportion of censored events (PropCens).

Dataset Feats Train data Test data PropCens

Type 1 – Synthetic target data with synthetic censoring
Norm linear 1 500 1000 0.20

Norm non-linear 1 500 1000 0.24
Exponential 1 500 1000 0.30

Weibull 1 500 1000 0.22
LogNorm 1 500 1000 0.21

Norm uniform 1 500 1000 0.62
Norm heavy 4 2000 1000 0.80
Norm med 4 2000 1000 0.49
Norm light 4 2000 1000 0.25
Norm same 4 2000 1000 0.50

LogNorm heavy 8 4000 1000 0.75
LogNorm med 8 4000 1000 0.52
LogNorm light 8 4000 1000 0.23
LogNorm same 8 4000 1000 0.50

Type 2 – Real target data with real censoring
METABRIC 9 1523 381 0.42

WHAS 6 1310 328 0.57
SUPPORT 14 7098 1775 0.32

GBSG 7 1785 447 0.42
TMBImmuno 3 1328 332 0.49
BreastMSK 5 1467 367 0.77
LGGGBM 5 510 128 0.60

sample sizes, and censoring proportions. Four of these
datasets: METABRIC, WHAS, SUPPORT, and GBSG,
were retrieved from the DeepSurv GitHub repository1.
Other details are available in Katzman et al. (2018). The
remaining three datasets: TMBImmuno, BreastMSK, and
LGGGBM were sourced from cBioPortal2 for Cancer Ge-
nomics. These datasets constitute a diverse benchmark
across domains such as oncology and cardiology, allowing a
comprehensive evaluation of survival analysis methods. Ad-
ditional details of all datasets can be found in Appendix B.1.

5.2. Metrics

Predictive Accuracy Metrics: Mean Absolute Error
(MAE) and Integrated Brier Score (IBS) (Graf et al., 1999),
measure the accuracy of survival time predictions. MAE
quantifies the average magnitude of errors between pre-
dicted and observed survival times ỹi and yi, respectively.
For synthetic data, ground truth values are obtained directly
from the observed distribution, while for real data, only
observed events (e = 1) are considered. For the IBS calcu-
lation, we select 100 time points evenly from the 0.1 to 0.9
quantiles of the distribution for y in the training set.

Concordance Metrics: Harrell’s C-Index (Harrell et al.,
1982) and Uno’s C-Index (Uno et al., 2011), which evaluate
the ability of the model to correctly order survival times in a
pairwise manner, while accounting for censoring. Harrell’s
C-Index is known to be susceptible to bias, when the censor-
ing rate is high. This happens because censoring dominates

1https://github.com/jaredleekatzman/DeepSurv/
2https://www.cbioportal.org/
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the pairwise ranking when estimating the proportion of cor-
rectly ordered event pairs. Alternatively, Uno’s C-Index
adjusts for censoring by using inverse probability weighting,
which provides a more robust estimate when the proportion
of censored events is high.

Calibration Metrics: There are several metrics to assess
calibration. We consider summaries (slope and intercept)
of the calibration curves using the predicted PDF f(t|x) or
the survival distribution S(t|x). Moreover, we use the cen-
sored D-Calibration (CensDcal) (Haider et al., 2020). For
the former, Cal[f(t | x)], 9 prediction interval widths are
considered, e.g., 0.1 for [0.45, 0.55], 0.2 for [0.4, 0.6], etc.
These are used to define the time ranges for each prediction,
after which we calculate the proportion of test events that
fall within each interval. The calculation of the proportion
of censored and observed cases follows the methodology in
Goldstein et al. (2020), with further details provided in Ap-
pendix B.2. This calibration curve of expected vs. observed
events is summarized with an ordinary least squares linear fit
parameterized by its slope and intercept. A well-calibrated
model is expected to have a unit slope and a zero intercept.
For the survival distribution, Cal[S(t|x)], we follow a sim-
ilar procedure, however, we consider 10 non-overlapping
intervals in the range (0, 1), i.e., (0, 0.1], (0.1, 0.2], etc and
then calculating the proportion of test events that fall within
each interval. The calculation of CensDcal starts with that
of Cal[S(t|x)], which is followed by computing the sum
of squared residuals between the observed and expected
proportions, i.e., 0.1 for the 10 intervals defined above.

These three groups of metrics provide a robust framework
for evaluating predictive accuracy, calibration, and concor-
dance in survival analysis. For the results we calculate
averages and standard deviations for all metrics over 10 ran-
dom test sets. The metrics that require a point estimate, i.e.,
MAE and C-Index are obtained using the expected value
of f(t|x), which can be calculated in closed form. More
details about all metrics can be found in Appendix B.2.

5.3. Baselines

We compare the proposed method against eight baselines
representative of related work to evaluate performance and
effectiveness. LogNorm (Royston, 2001): A classical para-
metric survival model that assumes event times follow a
log-normal distribution. DSM (LogNorm / Weibull) (Nag-
pal et al., 2021): A neural parametric model that represents
survival times as mixtures of either log-normal or Weibull
distributions, allowing flexible modeling of complex event-
time distributions and adaptable hazard dynamics through
deep learning. DeepSurv (Katzman et al., 2018): A semi-
parametric survival model based on the Cox proportional
hazards framework, leveraging neural networks to model
nonlinear covariate effects on the hazard function. RSF (Ish-

waran et al., 2008): A nonparametric ensemble model that
builds multiple decision trees to estimate survival functions
without strong distributional assumptions. GBM (Dembek
et al., 2014): A tree-based gradient boosting model adapted
for survival analysis, capable of modeling complex nonlin-
earities in covariates. DeepHit (Lee et al., 2018): A deep
learning-based survival model that predicts piece-wise prob-
ability distributions over event times using a fully neural
network architecture. CQRNN (Pearce et al., 2022): A
censored quantile regression model that employs a neural
network architecture, and whose objective is based on the
Asymmetric Laplace Distribution. Together, these base-
lines span parametric, semi-parametric, and nonparametric
survival modeling paradigms and include both traditional
statistical models and contemporary neural architectures,
thereby providing a comprehensive benchmark for perfor-
mance evaluation. The implementation details, including
model selection, of our method and the other baselines can
be found in Appendix B.3.

5.4. Results

Table 2 provides a comprehensive summary of the com-
parisons between our model and the eight baselines in 21
datasets and 9 evaluation metrics, which is 189 comparisons
in total. When assessing the statistical significance of the
different metrics we use a Student’s t test with p < 0.05
considered significant after correction for false discovery
rate using Benjamini-Hochberg (Benjamini & Hochberg,
1995). These results underscore several key insights:

Overall Superiority: Our model is significantly better than
the baselines consistently more often. For instance, our
model significantly outperforms CQRNN in 23% of the
comparisons while the opposite only occurs 12%, and these
proportions are higher for the comparisons against the other
baselines, namely, 41%, 52%, 55%, 60%, 69%, 71% and
73% for DeepSurv, GBM, RSF, LogNorm, DSM (Weibull),
DSM (LogNorm) and DeepHit, respectively.

Accuracy: Our model demonstrates strong improvements in
predictive accuracy. In particular, it achieves superior MAE
performance on 10 out of 21 datasets relative to LogNorm,
11 datasets compared to GBM, DSM (LogNorm), and DSM
(Weibull), and 12 datasets compared against DeepHit. Al-
though performance in MAE is mixed when compared to
CQRNN and DeepSurv, our method still performs competi-
tively. Moreover, it consistently outperforms the baselines
on nearly every dataset when evaluated with the IBS metric.
This consistent superiority in IBS underscores our model’s
ability to provide accurate and reliable predictions over the
entire time range, not just at specific time points. Table 4
and Figure 4 in the Appendix further support this, showing
that our method achieves significantly lower IBS values,
which reflects its effectiveness in learning from censored
data without exacerbating bias in survival estimates.
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Table 2. Summary of benchmarking results across 21 datasets. Each column group shows three figures: the number of datasets where our
method significantly outperforms, underperforms or is comparable with the baseline indicated. The last two rows summarize the column
totals and proportions to simplify the comparisons. For reference, the total number of comparisons is 189.

Metric vs. CQRNN vs. LogNorm vs. DeepSurv vs. DeepHit
Better Worse Same Better Worse Same Better Worse Same Better Worse Same

MAE 6 8 7 10 3 8 6 8 7 12 6 3
IBS 19 1 1 21 0 0 21 0 0 21 0 0

Harrell’s C-Index 4 2 15 10 3 8 6 2 13 15 0 6
Uno’s C-Index 2 3 16 9 2 10 6 1 14 15 0 6

CensDcal 8 4 9 10 1 10 8 5 8 15 1 5
Cal [S(t|x)](Slope) 0 0 21 15 0 6 13 0 8 12 0 9

Cal [S(t|x)](Intercept) 0 0 21 14 0 7 0 11 10 16 0 5
Cal [f(t|x)](Slope) 4 0 17 14 0 7 9 0 12 14 0 7

Cal [f(t|x)](Intercept) 0 4 17 10 0 11 8 0 13 18 0 3

Total 43 / 189 22 / 189 124 / 189 113 / 189 9 / 189 67 / 189 77 / 189 27 / 189 85 / 189 138 / 189 7 / 189 44 / 189
Proportion 0.228 0.116 0.656 0.598 0.048 0.354 0.407 0.143 0.450 0.730 0.037 0.233

Metric vs. GBM vs. RSF vs. DSM (LogNorm) vs. DSM (Weibull)
Better Worse Same Better Worse Same Better Worse Same Better Worse Same

MAE 11 7 3 9 6 6 11 6 4 11 5 5
IBS 17 1 3 14 2 5 19 1 1 19 1 1

Harrell’s C-Index 14 2 5 16 2 3 17 0 4 15 0 6
Uno’s C-Index 13 1 7 14 2 5 16 0 5 14 0 7

CensDcal 0 2 19 6 4 11 21 0 0 21 0 0
Cal [S(t|x)](Slope) 6 0 15 12 0 9 12 0 9 16 0 5

Cal [S(t|x)](Intercept) 12 0 9 10 0 11 13 0 8 17 0 4
Cal [f(t|x)](Slope) 14 0 7 15 0 6 13 0 8 11 0 10

Cal [f(t|x)](Intercept) 11 0 10 8 0 13 12 0 9 6 0 15

Total 98 / 189 13 / 189 78 / 189 104 / 189 16 / 189 69 / 189 134 / 189 7 / 189 48 / 189 130 / 189 6 / 189 53 / 189
Proportion 0.519 0.069 0.413 0.550 0.085 0.365 0.709 0.037 0.254 0.688 0.032 0.280

Concordance: Our model shows performance comparable
to CQRNN for Harrell’s and Uno’s C-indices, yielding sta-
tistically indistinguishable results on most datasets (15 and
16 ties, respectively). However, when compared to a broader
set of baselines, including LogNorm, GBM, RSF, DeepHit,
and DSM variants, our method consistently achieves greater
concordance. In particular, for Harrell’s C-index, our model
attains better results on 10 datasets compared to LogNorm,
14 compared to GBM, 15 compared to DeepHit and DSM
(LogNorm), 16 compared to RSF, and 17 datasets compared
to DSM (Weibull), respectively. A similar trend is evident
for Uno’s C-index, with our method outperforming Log-
Norm on 9 datasets, GBM on 13, RSF and DSM (Weibull)
on 14, DeepHit on 15, and DSM (LogNorm) on 16 datasets.
These findings underscore the robustness of our model in
capturing relative risk and generating accurate survival time
rankings across a variety of baselines, ranging from classical
parametric approaches to contemporary neural methods.

Calibration: Our model demonstrates strong performance
in calibration metrics, particularly in CensDcal, Cal[S(t|x)]
(slope) and Cal[f(t|x)] (slope). The results for CensDcal
highlight its ability to effectively handle censored obser-
vations. Furthermore, our model shows significant supe-
riority in slope- and intercept-related metrics, particularly
compared to LogNorm, DeepHit, RSF, and DSM variants.
However, the improvement over CQRNN remains relatively

subtle. These results indicate that our model achieves a
better calibration of the predicted survival probabilities, en-
suring a closer alignment between predictions and observed
outcomes in both the survival CDF S(t|x) and PDF f(t|x).
This underscores the reliability and robustness of our model
in accurately capturing true survival behavior across diverse
datasets.

For illustration purposes, Figure 2 shows the performance of
all models and datasets using Harrell’s C-index and CensD-
cal. Specifically, Figure 2(a) provides a comparison of Har-
rell’s C-index, highlighting the discriminative performance
of our proposed model, ALD, alongside other baseline mod-
els. The x axis lists all the datasets, both synthetic datasets
(e.g., Gaussian linear, exponential, etc.) and real-world
datasets (e.g., METABRIC, WHAS, etc.), while the y axis
indicates the range of corresponding mean C-index values,
with error bars representing standard deviation across 10
model runs. Our method demonstrates consistently strong
performance across both synthetic and real-world datasets,
frequently achieving higher or comparable C-index values
in relation to the baseline models. Among these, CQRNN
stands out as the most competitive alternative, achieving
similar levels of performance on certain datasets. However,
in most cases, our model outperforms CQRNN, reflecting
its robustness and superior discriminative capability. In par-
ticular, ALD excels under scenarios with high censorsing
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(a) Concordance metric (Harrell’s C-index).

(b) Calibration metric (CensDcal).

Figure 2. Performance on discrimination and calibration metrics. (a) concordance and (b) calibration. Reported are test averages with
standard deviations over 10 runs.

Figure 3. Examples of best and worst calibration curves. Slope
and intercept of the linear fit are shown in the legend.

rates. For example, on Norm heavy (PropCens: 0.80), Norm
med (PropCens: 0.49), LogNorm heavy (PropCens: 0.75),
and LogNorm med (PropCens: 0.52), ALD consistently out-
performs other models. This performance highlights ALD’s
ability to effectively handle challenging scenarios. Such ro-
bustness under high censorship further underscores ALD’s
reliability and adaptability in various survival analysis tasks.

Using a similar comparison framework, Figure 2(b) presents
the calibration results using CensDcal. Concisely, the pro-
posed model achieves consistently better (lower) CensDcal
figures across most datasets, reflecting superior calibration
performance compared to the baseline models.

Complementary to the CensDcal calibration metric, the
slope and intercept summaries of the calibration curve pro-
vide a more intuitive (and graphical) perspective of the
calibration results. Figure 3 presents the best (first row) and
worst (second row) results from our model on real-world
data. For comparative analysis, we include results from
CQRNN, LogNorm, DeepSurv, and DeepHit. The left and
right columns represent the curves for Cal[S(t|x)] and for
Cal[f(t|x)], respectively. The gray dashed line represents
the idealized result for which the slope is one and the inter-
cept is zero. A full set of calibration visualizations across
all datasets and methods is provided in Appendix C.2.

The proposed model demonstrates exceptional performance
on the TMBImmuno dataset for Cal[f(S|x)] summaries,
as well as on the LGGGBM dataset for Cal[f(t|x)] sum-
maries indicating robust calibration across both versions of
the calibration metrics. In contrast, the performance on the
SUPPORT dataset is relatively weaker. This discrepancy
can largely be attributed to our method’s reliance on the as-
sumption of the ALD, which may not be appropriate across
all datasets. This limitation is particularly evident in datasets
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like SUPPORT. Notably, the SUPPORT data exhibit high
skewness with a relatively small range of y. Specifically,
Figure 12 in the Appendix shows the event distribution for
the SUPPORT data, from which we can see that it is heavily
skewed. Such an skewness manifested as the concentration
of events close to 0 makes it challenging to achieve good
calibration in that range, i.e., t → 0. Similarly, our method
attempted to predict smaller values for the initial quantiles
but still allocated a disproportionately large weight to the
first two intervals because of the small and highly concen-
trated predicted quantiles, which significantly reduced the
capacity for the remaining intervals and ultimately degraded
calibration performance. However, the calibration results
for this dataset remain within reasonable ranges and more
importantly, comparable to those from the baselines. De-
tailed results for all datasets are provided in Appendix C.1.
Overall and consistent with the summary results in Table 2,
our model demonstrates a clear advantage on the slope and
intercept metrics, consistently achieving better performance
compared to the baselines.

Case Studies To further support our empirical findings, we
include additional case studies in Appendix C.3, providing
a robustness analysis and a deeper understanding of the
behavior of our method in various scenarios.

Case Study 1: Robustness under High Censoring and Quan-
tile Extremes. We assess the robustness of our model un-
der varying levels of censoring and at key survival quan-
tiles (25%, 50%, 75%), following the experimental proto-
col of Nagpal et al. (2021). Figures 7 and 8 report time-
dependent concordance scores for the METABRIC and SUP-
PORT datasets, which exhibit distinct censoring rates and
distributional properties. Our method maintains strong per-
formance across all settings and demonstrates particular
robustness at higher quantiles on METABRIC, where cen-
soring and skewness are more severe. Although perfor-
mance is comparatively lower on SUPPORT, which likely
reflects its deviation from the ALD assumption, our model
remains comparable to DSM-based baselines, indicating
stable behavior even under distributional mismatch.

Case Study 2: Capturing Diverse Survival Patterns. To
evaluate the ability of our model to capture various survival
behaviors, we perform a clustering analysis on the predicted
cumulative distribution functions. Figure 9 presents six rep-
resentative patterns obtained through K-means clustering
on the estimated parameters from our method and DeepHit
on seven real-world datasets. Although both models cap-
ture multiple behaviors, the CDFs produced by DeepHit
tend to converge to one at 120% of the maximum observed
event time (1.2maxi yi), thus suggesting that all individ-
uals eventually experience the event by that time horizon,
which in practice is unlikely. In contrast, our model bet-
ter reflects long-term survival characteristics by keeping

FALD(1.2maxi yi|x) < 1 for some x. We further validate
this behavior using synthetic datasets with known ground-
truth CDFs. Figures 10 and 11 compare the worst-estimated
instances within each cluster for our method and Deep-
Hit. Across clusters, our model consistently achieves lower
Wasserstein distances, demonstrating superior accuracy and
robustness in modeling heterogeneous survival distributions.

Case Study 3: Alternative Distribution Summaries. We also
explore other distribution summaries, i.e., the mode and me-
dian, to evaluate their impact on the performance of MAE
and C-index. As shown in Table 5, different summaries can
offer improved performance on specific datasets, demon-
strating the flexibility of our probabilistic formulation to
adapt the summary statistic depending of the downstream
evaluation needs.

Case Study 4: Empirical Behavior of FALD(0|x). Finally,
recognizing that the ALD has support for t < 0, we sum-
marized the empirical quantiles of the predicted FALD(0|x),
i.e., the probability that events occur up to t = 0. Interest-
ingly, Table 6 indicates that this is not an issue as in most
cases FALD(0|x) → 0 for the majority of the predictions
made by the model on the test set.

6. Conclusion
In this paper, we proposed a parametric survival model based
on the ALD and provided a comprehensive comparison and
analysis with existing methods, particularly CQRNN, which
uses the same distribution. Our model produces closed-form
distributions, which enables flexible summarization and in-
terpretation of predictions. Experimental results on a diverse
range of synthetic and real-world datasets demonstrate that
our approach offers very competitive performance in rela-
tion to multiple baselines across accuracy, concordance, and
calibration metrics.

Limitations. First, our method relies on the assumption of
the ALD, which may not be universally applicable. This lim-
itation was particularly evident in certain cases, such as with
the SUPPORT dataset, as highlighted in Section 5.4, where
the performance of our method faced challenges, especially
in terms of calibration. Second, while our approach facili-
tates the calculation of different distribution metrics, such
as mean, median, mode, and even distribution quantiles,
selecting the most suitable summary statistic for specific
datasets or applications remains a non-trivial task. In this
study, we selected the mean as the main summary statistic,
which results in relatively balanced performance metrics.
However, it does not offer an advantage, for example, in
terms of C-index and MAE when compared to CQRNN.
Nevertheless, considering other summary statistics as part
of model selection, which we did not attempt, may improve
performance on these metrics for certain datasets, as detailed
in Appendix C.3.

9



Learning Survival Distributions with the Asymmetric Laplace Distribution

Acknowledgments
This work was supported by grant 1R61-NS120246-02 from
the National Institute of Neurological Disorders and Dis-
eases (NINDS).

Impact Statement
The proposed survival analysis method utilizes the Asym-
metric Laplace Distribution (ALD) to deliver closed-form
solutions for key event summaries, such as means and quan-
tiles, facilitating more interpretable predictions. The method
outperforms both traditional parametric and nonparametric
approaches in terms of discrimination and calibration by
optimizing individual-level parameters through maximum
likelihood. This advancement has significant implications
for applications like personalized medicine, where accurate
and interpretable predictions of event timing are crucial.

References
Aalen, O. Nonparametric inference for a family of counting

processes. The Annals of Statistics, pp. 701–726, 1978.

Benjamini, Y. and Hochberg, Y. Controlling the false dis-
covery rate: a practical and powerful approach to multiple
testing. Journal of the Royal statistical society: series B
(Methodological), 57(1):289–300, 1995.

Chapfuwa, P., Tao, C., Li, C., Page, C., Goldstein, B., Duke,
L. C., and Henao, R. Adversarial time-to-event modeling.
In International Conference on Machine Learning, pp.
735–744. PMLR, 2018.

Cox, D. R. Regression models and life-tables. Journal of
the Royal Statistical Society: Series B (Methodological),
34(2):187–202, 1972.

Dembek, K. A., Hurcombe, S. D., Frazer, M. L., Morresey,
P. R., and Toribio, R. E. Development of a likelihood of
survival scoring system for hospitalized equine neonates
using generalized boosted regression modeling. PLoS
One, 9(10):e109212, 2014.

Emmerson, J. and Brown, J. Understanding survival analysis
in clinical trials. Clinical Oncology, 33(1):12–14, 2021.

Feigl, P. and Zelen, M. Estimation of exponential survival
probabilities with concomitant information. Biometrics,
pp. 826–838, 1965.

Gepp, A. and Kumar, K. The role of survival analysis
in financial distress prediction. International research
journal of finance and economics, 16(16):13–34, 2008.

Goldstein, M., Han, X., Puli, A., Perotte, A., and Ran-
ganath, R. X-cal: Explicit calibration for survival analy-

sis. Advances in neural information processing systems,
33:18296–18307, 2020.

Graf, E., Schmoor, C., Sauerbrei, W., and Schumacher, M.
Assessment and comparison of prognostic classification
schemes for survival data. Statistics in medicine, 18(17-
18):2529–2545, 1999.

Haider, H., Hoehn, B., Davis, S., and Greiner, R. Effective
ways to build and evaluate individual survival distribu-
tions. Journal of Machine Learning Research, 21(85):
1–63, 2020.

Harrell, F. E., Califf, R. M., Pryor, D. B., Lee, K. L., and
Rosati, R. A. Evaluating the yield of medical tests. Jama,
247(18):2543–2546, 1982.

Hoseini, M., Bahrampour, A., and Mirzaee, M. Comparison
of weibull and lognormal cure models with cox in the
survival analysis of breast cancer patients in rafsanjan.
Journal of research in health sciences, 17(1):369, 2017.

Ishwaran, H., Kogalur, U. B., Blackstone, E. H., and Lauer,
M. S. Random survival forests. The Annals of Applied
Statistics, pp. 841–860, 2008.

Jung, E.-Y., Baek, C., and Lee, J.-D. Product survival
analysis for the app store. Marketing Letters, 23:929–
941, 2012.

Kaplan, E. L. and Meier, P. Nonparametric estimation from
incomplete observations. Journal of the American statis-
tical association, 53(282):457–481, 1958.

Katzman, J. L., Shaham, U., Cloninger, A., Bates, J., Jiang,
T., and Kluger, Y. Deepsurv: personalized treatment rec-
ommender system using a cox proportional hazards deep
neural network. BMC medical research methodology, 18:
1–12, 2018.

Klein, J. P. and Moeschberger, M. L. Survival analysis:
techniques for censored and truncated data. Springer
Science & Business Media, 2006.

Koenker, R. Quantile Regression, ‘quantreg’. R Pack-
age. Cambridge University Press, 2022. doi: 10.1017/
CBO9780511754098.

Koenker, R. and Bassett Jr, G. Regression quantiles. Econo-
metrica: journal of the Econometric Society, pp. 33–50,
1978.

Kotz, S., Kozubowski, T., and Podgorski, K. The Laplace
distribution and generalizations: a revisit with applica-
tions to communications, economics, engineering, and
finance. Springer Science & Business Media, 2012.

Lai, C. D. and Xie, M. Stochastic ageing and dependence
for reliability. Springer Science & Business Media, 2006.

10



Learning Survival Distributions with the Asymmetric Laplace Distribution
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A. Analytical Results
This section provides the analytical results. Detailed proofs for the Asymmetric Laplace Distribution Loss can be found in
Appendix A.1, while the analysis of all the baselines, including CQRNN, LogNormal MLE, DeepSurv, and DeepHit, is
presented in Appendix A.2.

A.1. Proofs for the Asymmetric Laplace Distribution Loss

Theorem 1. If Y ∼ AL(θ, σ, κ), where AL denotes the Asymmetric Laplace Distribution with location parameter θ, scale
parameter σ > 0, and asymmetry parameter κ > 0, then the ALD loss is given by:

LALD = Lo(y; θ, σ, κ) + Lc(y; θ, σ, κ) = −
∑
n∈Do

log fALD(yn | xn)−
∑
n∈Dc

log (1− FALD(yn | xn)) , (7)

where DO and DC are the subsets of D for which e = 1 and e = 0, respectively. The first term maximizes the likelihood
fALD(t | x) for the observed data, while the second term maximizes the survival probability SALD(t | x) for the censored
data. To achieve this, the parameters θ, σ, κ predicted by a multi-layer perceptron (MLP) conditioned on the input features,
x, enabling the model to adapt flexibly to varying input distributions. The observed component Lo(y; θ, σ, κ) is defined as:

Lo(y; θ, σ, κ) = log σ − log
κ

κ2 + 1
+

√
2

σ

κ(y − θ), if y ≥ θ,

1
κ (θ − y), if y < θ.

(8)

The censored loss component Lc(y; θ, σ, κ) is computed using the survival probability function:

Lc(y; θ, σ, κ) =


log(κ2 + 1) +

√
2

σ κ(y − θ), if y ≥ θ,

log(κ2 + 1)− log
[
1 + κ2

(
1− exp

(
−

√
2

σκ (θ − y)
))]

, if y < θ.

(9)

Proposition 2. (Mean, Mode, Variance of Y ) The mean, mode, variance of Y are given by:

E[Y ] = θ +
σ√
2

(
1

κ
− κ

)
, (10)

Mode[Y ] = θ, (11)

Var[Y ] =
σ2

2

(
1

κ2
+ κ2

)
. (12)

Proposition 3. (Quantiles of Y ) Let θALD
q denotes the q-th quantile of Y . Then, the quantiles can be expressed as:

θALD
q =


θ + σκ√

2
log

[
1+κ2

κ2 q
]
, if q ∈

(
0, κ2

1+κ2

]
,

θ − σ√
2κ

log
[
(1 + κ2)(1− q)

]
, if q ∈

(
κ2

1+κ2 , 1
)
.

(13)

A.2. Analysis of All the Baselines

CQRNN. CQRNN (Pearce et al., 2022) combines the likelihood of the Asymmetric Laplace Distribution, fALD(t | x),
with the re-weighting scheme w introduced by Portnoy (Neocleous et al., 2006). For the observed data, CQRNN employs
the Maximum Likelihood Estimation (MLE) approach to directly maximize the likelihood of the Asymmetric Laplace
Distribution AL(θ, σ, q). The likelihood is defined over all quantiles of interest. For censored data, CQRNN splits each
censored data point into two pseudo data points: one at the censoring location y = c and another at a large pseudo value y∗.
This approach enables the formulation of a weighted likelihood for censored data, resulting in the following loss function:
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LCQR = Lo(y; θ, σ, q) + Lc(y, y
∗; θ, σ, q, w), (14)

where Lo represents the negative log-likelihood for observed data, and Lc accounts for the weighted negative log-likelihood
of censored data using the re-weighting scheme. Expanding this, the loss can be expressed as:

LCQR = −
∑
n∈Do

log fALD(yn | xn)−
∑
n∈Dc

[log fALD(yn | xn) + (1− w)fALD(y
∗ | xn)]. (15)

where Do and Dc are the subsets of D for which e = 1 and e = 0, respectively. Here, CQRNN utilizes the Asymmetric
Laplace Distribution AL(θ, σ, q) to model the data. The Asymmetric Laplace Distribution, denoted as AL(θ, σ, κ), can
be reparameterized as AL(θ, σ, q) to facilitate quantile regression within a Bayesian inference framework (Yu & Moyeed,
2001), where q ∈ (0, 1) is the percentile parameter that represents the desired quantile. The relationship between q and κ is
given by:

q =
κ2

κ2 + 1
. (16)

Thus, the probability density function for Y ∼ AL(θ, σ, q) is:

fALD(y; θ, σ, q) =
q(1− q)

σ


exp

(
q
σ (θ − y)

)
, if y ≥ θ,

exp
(

(1−q)
σ (y − θ)

)
, if y < θ.

(17)

And the cumulative distribution function is:

FALD(y; θ, σ, q) =

1− (1− q) exp
(
q
σ (θ − y)

)
, if y ≥ θ,

q exp
(
1−q
σ (y − θ)

)
, if y < θ.

(18)

Thus, the negative log-likelihood LQR(y; θ, σ, q) then can be explicitly derived as:

LQR(y; θ, σ, q) = log σ − log[q(1− q)] +
1

σ

{
q(y − θ), if y ≥ θ

(1− q)(θ − y), if y < θ
. (19)

In their implementation, the scale parameter σ is omitted, and the percentile parameter q is predefined, typically set to values
such as q = {0.1, 0.2, . . . , 0.9}. A multi-layer perceptron (MLP) in CQRNN, conditioned on the input features x, predicts
θq for the predefined quantile values, corresponding to the location parameter θ. The negative log-likelihood LQR(y; θ, σ, q)
is then further simplified as:

LQR(y; θq, q) =


q(y − θq), if y ≥ θq,

(1− q)(θq − y), if y < θq.

= (y − θq)(q − I[θq > y]). (20)

This formulation is also referred to as the pinball loss or “checkmark” loss (Koenker & Bassett Jr, 1978), which is widely
used in quantile regression to directly optimize the q-th quantile estimate. For censored data, CQRNN adopts Portnoy’s
estimator (Neocleous et al., 2006), which minimizes a specific objective function tailored for censored quantile regression.
This approach introduces a re-weighting scheme to handle all censored data, with the formula defined as:

Lc(y, y
∗; θq, q, w) = wLQR(y; θq, q) + (1− w)LQR(y

∗; θq, q), (21)
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where y∗ is a pseudo value set to be significantly larger than all observed values of y in the dataset. Specifically, it is
defined as y∗ = 1.2maxi yi in CQRNN (Pearce et al., 2022). The weight parameter w is apportioned between each pair of
pseudo-data points as:

w =
q − qc
1− qc

, (22)

where qc is the quantile at which the data point was censored (e = 0, y = c) with respect to the observed value distribution,
i.e., p(o < c | x). However, the exact value of qc is not accessible in practice. To address this issue, CQRNN approximates
qc using the proportion q corresponding to the quantile that is closest to the censoring value c, based on the distribution of
observed events y, which are readily available.

LogNormal MLE. LogNormal MLE (Hoseini et al., 2017) enhances parameter estimation using neural networks for
LogNormal distributions. Specifically, a random variable Y follows a LogNormal distribution if the natural logarithm of Y ,
denoted as ln(Y ), follows a Normal distribution, i.e., ln(Y ) ∼ N (µ, η2). Here, µ represents the mean, and η is the standard
deviation (SD) of the normal distribution. The probability density function of the LogNormal distribution is given by:

fLogNormal(y;µ, η) =
1

yη
√
2π

exp

(
− (ln y − µ)2

2η2

)
, (23)

where y > 0 and η > 0. The cumulative distribution function is expressed as:

FLogNormal(y, µ, η) = Φ

(
ln(y)− µ

η

)
, (24)

where Φ(z) is the standard normal cumulative distribution function:

Φ(z) =
1√
2π

∫ z

−∞
exp

(
− t2

2

)
dt. (25)

The maximum likelihood estimation (MLE) loss with censored data is then defined as:

LLogNormal = −
∑
n∈Do

log fLogNormal(yn | xn)−
∑
n∈Dc

log (1− FLogNormal(yn | xj)) . (26)

A multi-layer perceptron (MLP) in LogNormal MLE, conditioned on the input features x, is used to predict the mean µ and
the standard deviation η of the corresponding normal distribution. The quantiles θLogNormal

q for the LogNormal distribution
can be expressed as:

θLogNormal
q = exp(µ+ ηΦ−1(q)), (27)

where Φ−1(q) is the inverse CDF (quantile function) of the standard normal distribution.

DeepSurv. DeepSurv (Katzman et al., 2018) is a semi-parametric survival model based on the Cox proportional hazards
framework, leveraging deep neural networks for feature representation. A multi-layer perceptron (MLP) in DeepSurv,
conditioned on the input features x, is used to predict the log hazard function h(x):

λ(t | x) = λ0(t)e
h(x), (28)

where λ0(t) is the baseline hazard function. The hazard function is defined as:

λ(t | x) = lim
∆t→0

P (t ≤ T < t+∆t | T ≥ t,x)

∆t
. (29)
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This can be rewritten as:

λ(t | x) = −dS(t | x)/dt
S(t | x)

, (30)

where S(t | x) = P (T > t | x) is the survival function. By integrating both sides, we have:

∫
λ(t | x) dt =

∫
−dS(t | x)

S(t | x)
, (31)

which simplifies to:

Λ(t | x) = − logS(t | x) + C, (32)

where C is the constant of integration and Λ(t | x) is the cumulative hazard function:

Λ(t | x) = Λ0(t)e
h(x), (33)

where Λ0(t) is the baseline cumulative hazard function. For survival analysis, C is typically set to 0 when starting from
t = 0. Thus, the survival function can be expressed as:

S(t | x) = e−Λ(t|x) = e−Λ0(t)e
h(x)

= [S0(t)]
eh(x)

, (34)

where S0(t) is the baseline survival function, typically estimated by the Kaplan-Meier method (Kaplan & Meier, 1958)
using the training data. The cumulative distribution function (CDF) can then be derived as:

FDeepSurv(t | x) = 1− S(t | x) = 1− [S0(t)]
eh(x)

. (35)

The quantiles θDeepSurv
q for DeepSurv can be obtained from the inverse CDF F−1

DeepSurv(t | x) (quantile function).

DeepHit. A multi-layer perceptron (MLP) in DeepHit (Lee et al., 2018), conditioned on the input features x, is used to
predict the probability distribution f(t | x) over event times using a fully nonparametric approach. The quantiles θDeepHit

q

can be obtained from the inverse cumulative distribution function F−1
DeepHit(t | x), where FDeepHit(t | x) =

∑
fDeepHit(t | x).

Gradient Boosting Machine (GBM). GBM for survival analysis (Dembek et al., 2014) is a nonparametric, additive
ensemble of decision trees trained to minimize a loss function tailored to censored data, such as the Cox partial likelihood
or the Brier score. Similar to DeepHit, the model directly learns a discrete probability distribution f(t | x) over event
times. The quantiles θGBM

q can be obtained via the inversion of cumulative distribution function F−1
GBM(t | x), where

FGBM(t | x) =
∑

fGBM(t | x).

Random Survival Forests (RSF). RSF (Ishwaran et al., 2008) is a nonparametric ensemble method that extends Breiman’s
random forests to survival analysis. Each decision tree is trained on a bootstrap sample of the data and uses the log-rank test
statistic to determine optimal splits. The survival function SRSF(t | x) for a given input x is estimated by aggregating the
survival estimates from all trees in the forest:

SRSF(t | x) =
1

B

B∑
b=1

Sb(t | x), (36)

where Sb(t | x) is the survival function from the b-th tree and B is the total number of trees. The corresponding cumulative
distribution function is FRSF(t | x) = 1 − ŜRSF(t | x). The quantiles θRSF

q then can be obtained via the inversion of
cumulative distribution function F−1

RSF(t | x), where FRSF(t | x) =
∑

fRSF(t | x).
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Deep Survival Machines (DSM). DSM (Nagpal et al., 2021) is a neural parametric model that represents the survival
distribution as a mixture of K components from a chosen parametric family (e.g., LogNormal, Weibull). Given input x, the
model outputs both the parameters {µk, ηk}Kk=1 for each component and a mixture weight πk(x) using a neural network.
The probability density function is expressed as:

fDSM(t | x) =
K∑

k=1

πk(x)fk(t;µk, ηk), (37)

and the cumulative distribution function is:

FDSM(t | x) =
K∑

k=1

πk(x)Fk(t;µk, ηk), (38)

where fk and Fk are the PDF and CDF of the k-th parametric component (e.g., LogNormal or Weibull). The quantiles θDSM
q

are obtained from the inverse CDF θDSM
q = F−1

DSM(q | x).

Summary of Comparative Advantages. In summary, our proposed method offers a unified and efficient solution that
bridges the strengths of both classical and modern survival modeling approaches. Compared to traditional parametric models,
it retains closed-form, differentiable PDF and CDF formulations that facilitate stable neural optimization and achieve robust
empirical performance across diverse data settings. Compared to nonparametric models, it avoids the drawbacks of temporal
discretization and excessive memory usage, providing compact, continuous, and interpretable estimates of survival quantities.
Finally, relative to mixture-based models such as DSM, our method is simpler, faster, and more robust—requiring fewer
parameters, introducing less architectural complexity, and demonstrating greater stability across datasets and censoring
regimes. These advantages collectively establish the ALD framework as a compelling and scalable alternative for survival
modeling in both synthetic and real-world applications.

B. Experimental Details
This section provides additional details about the experiments conducted. The experiments were implemented using the
PyTorch framework. Detailed information about the datasets, metrics, baselines and implementation details can be found in
Appendix B.1, Appendix B.2, and Appendix B.3, respectively.

Hardware. All experiments were conducted on a MacBook Pro with an Apple M3 Pro chip, featuring 12 cores (6
performance and 6 efficiency cores) and 18 GB of memory. CPU-based computations were utilized for all experiments, as
the models primarily relied on fully-connected neural networks.

B.1. Datasets

Our datasets are designed following the settings outlined in Pearce et al. (2022). The first type of dataset consists of synthetic
target data with synthetic censoring. In these datasets, the input features, x, are generated uniformly as x ∼ U(0, 2)D, where
D denotes the number of features. The observed variable, o ∼ p(o | x), and the censored variable, c ∼ p(c | x), follow
distinct distributions, with their parameters varying based on the specific dataset configuration. Table 3 provides detailed
descriptions of the distributions for the observed and censored variables. Additionally, the coefficient vector used in some
datasets is defined as β = [0.8, 0.6, 0.4, 0.5,−0.3, 0.2, 0.0,−0.7].

The other type of dataset comprises real-world target data with real censoring, sourced from various domains and character-
ized by distinct features, sample sizes, and censoring proportions:

• METABRIC (Molecular Taxonomy of Breast Cancer International Consortium): This dataset contains genomic
and clinical data for breast cancer patients. It includes 9 features, 1523 training samples, and 381 testing samples, with
a censoring proportion of 0.42. Retrieved from the DeepSurv Repository.

• WHAS (Worcester Heart Attack Study): This dataset focuses on predicting survival following acute myocardial
infarction. It includes 6 features, 1310 training samples, and 328 testing samples, with a censoring proportion of 0.57.
Retrieved from the DeepSurv Repository.
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Table 3. Characteristics of synthetic datasets encompassing the number of features, parameterized distributions of observed variables, and
censored variables, as utilized in the experimental framework.

Synthetic Dataset Feats (D) Observed Variables o ∼ p(o | x) Censored Variables c ∼ p(c | x)
Norm linear 1 N (2x+ 10, (x+ 1)2) N (4x+ 10, (0.8x+ 0.4)2)

Norm non-linear 1 N (xsin(2x) + 10, (0.5x+ 0.5)2) N (2x+ 10, 22)
Exponential 1 Exp(2x+ 4) Exp(−3x+ 15)

Weibull 1 Weibull(xsin(2x− 2) + 10, 5) Weibull(−3x+ 20, 5)
LogNorm 1 LogNorm((x− 1)2,x2) U(0, 10)

Norm uniform 1 N (2xcos(2x) + 13, (x+ 0.5)2) U(0, 18)
Norm heavy 4 N (3x0 + x2

1 − x2
2 + 2sin(x2x3) + 6, (x+ 0.5)2) U(0, 12)

Norm med 4 —”— U(0, 20)
Norm light 4 —”— U(0, 40)
Norm same 4 —”— Equal to observed dist.

LogNorm heavy 8 LogNorm(
∑8

i=1 βixi, 1)/10 U(0, 0.4)
LogNorm med 8 —”— U(0, 1.0)
LogNorm light 8 —”— U(0, 3.5)
LogNorm same 8 —”— Equal to observed dist.

• SUPPORT (Study to Understand Prognoses Preferences Outcomes and Risks of Treatment): This dataset provides
survival data for critically ill hospitalized patients. It includes 14 features, 7098 training samples, and 1775 testing
samples, with a censoring proportion of 0.32. Covariates include demographic information and basic diagnostic data.
Retrieved from the DeepSurv Repository.

• GBSG (Rotterdam & German Breast Cancer Study Group): Originating from the German Breast Cancer Study
Group, this dataset tracks survival outcomes of breast cancer patients. It includes 7 features, 1785 training samples, and
447 testing samples, with a censoring proportion of 0.42. Retrieved from the DeepSurv Repository.

• TMBImmuno (Tumor Mutational Burden and Immunotherapy): This dataset predicts survival time for patients
with various cancer types using clinical data. It includes 3 features, 1328 training samples, and 332 testing samples,
with a censoring proportion of 0.49. Covariates include age, sex, and mutation count. Retrieved from the cBioPortal.

• BreastMSK: Derived from the Memorial Sloan Kettering Cancer Center, this dataset focuses on predicting survival
time for breast cancer patients using tumor-related information. It includes 5 features, 1467 training samples, and 367
testing samples, with a censoring proportion of 0.77. Retrieved from the cBioPortal.

• LGGGBM: This dataset integrates survival data from low-grade glioma (LGG) and glioblastoma multiforme (GBM),
frequently used for model validation in cancer genomics. It includes 5 features, 510 training samples, and 128 testing
samples, with a censoring proportion of 0.60. Retrieved from the cBioPortal.

B.2. Metrics

We employ nine distinct evaluation metrics to assess model performance comprehensively: Mean Absolute Error (MAE),
Integrated Brier Score (IBS) (Graf et al., 1999), Harrell’s C-Index (Harrell et al., 1982), Uno’s C-Index (Uno et al., 2011),
censored D-calibration (CensDcal) (Haider et al., 2020), along with the slope and intercept derived from two versions
of censored D-calibration (Cal [S(t|x)] (Slope), Cal[S(t|x)](Intercept), Cal[f(t|x)](Slope), and Cal[f(t|x)](Intercept)).
These metrics provide a holistic evaluation framework, effectively capturing the survival models’ predictive accuracy,
discriminative ability, and calibration quality.

• MAE:

MAE =
1

N

N∑
i=1

|yi − ỹi|, (39)

where yi represents the observed survival times, ỹi denotes the predicted survival times, and N is the total number of
data points in the test set.
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• IBS:

BS(t) =
1

N

N∑
i=1


(
1− F̃ (t | xi)

)2

I (yi ≤ t, ei = 1)

G̃(yi)
+

F̃ (t | xi)
2I (yi > t)

G̃(t)

 , (40)

IBS =
1

t2 − t1

∫ t2

t1

BS(y) dy, (41)

where BS(t) represents the Brier score at time t, and 100 time points are evenly selected from the 0.1 to 0.9 quantiles
of the y-distribution in the training set. F̃ (t | xi) denotes the estimated cumulative distribution function of the survival
time for test subjects, I(·) is the indicator function, and ei is the event indicator (ei = 1 if the event is observed).
xi represents the covariates, and G̃(·) refers to the Kaplan-Meier estimate (Kaplan & Meier, 1958) of the censoring
survival function.

• Harrell’s C-Index:

CH = P (ϕi > ϕj | yi < yj , ei = 1) =

∑
i ̸=j

[
I(ϕi > ϕj) + 0.5 ∗ I(ϕi = ϕj)

]
I(yi < yj)ei∑

i̸=j I(yi < yj)ei
, (42)

where ϕi = S̃(yi | xi) = 1− F̃ (t | xi) represents the risk score predicted by the survival model. For implementation,
we utilize the concordance index censored function from the sksurv.metrics module, as documented
in the scikit-survival API.

• Uno’s C-Index:

CU = P (ϕi > ϕj | yi < yj , yi < yτ )

=

∑n
i=1

∑n
j=1 G̃(yi)

−2[I(ϕi > ϕj) + 0.5 ∗ I(ϕi = ϕj)]I(yi < yj , yi < yτ )ei∑n
i=1

∑n
j=1 G̃(yi)−2I(yi < yj , yi < yτ )ei

, (43)

where yτ is the cutoff value for the survival time. For implementation, we utilize the concordance index ipcw
function from the sksurv.metrics module, as documented in the scikit-survival API.

• CensDcal:

CensDcal = 100×
10∑
j=1

(
(qj+1 − qj)−

1

N
ζ

)2

, (44)

where ζ is defined by (Goldstein et al., 2020) as:

ζ =
∑

i∈Sobserved

I[θ̃i,qj < yi ≤ θ̃i,qj+1 ] +
∑

i∈Scensored

(qj+1 − qi)I[θ̃i,qj < yi ≤ θ̃i,qj+1
]

1− qi
+

(qj+1 − qj)I[qi < qj ]

1− qi
. (45)

Here, the percentile parameter qj is predefined as [0.1, 0.2, . . . , 0.9] at the outset, and qi is the quantile at which the data
point was censored (e = 0, y = c) with respect to the observed value distribution, i.e., p(o < c | x). θ̃i,qj represents
the estimated qth quantile of yi.

• Slope & Intercept: The Slope and Intercept metrics evaluate the calibration quality of predicted survival quantiles
relative to observed data under censoring. We utilize the np.polyfit function from the NumPy module, as docu-

mented in the NumPy API, to fit the 10 points
{(

0.1j,
∑

j
1
N ζj

)}10

j=1
and subsequently obtain the Slope and Intercept

metrics. Two versions of the Slope and Intercept (Cal[S(t|x)](Slope), Cal[S(t|x)](Intercept), Cal[f(t|x)](Slope), and
Cal[f(t|x)](Intercept)) are calculated, differing in how the quantile intervals are defined:

– Version 1 (Measuring S(t | x)): The predicted survival probabilities are divided into intervals based on the target
proportions, i.e., q = [0.1, 0.2, . . . , 0.9, 1.0]. For each quantile interval, the proportion of ground truth values
(observed survival times) that fall within the corresponding predicted quantile 1

N ζ is calculated. For example,
the ratio for 0.1 (j = 1) is calculated within the interval [0, 0.1], and for 0.2 (j = 2), within [0, 0.2]. Thus, the
horizontal axis represents the target proportions 0.1j, while the vertical axis represents the observed proportions∑

j
1
N ζj derived from predictions. In the end, this metric is suitable for evaluating the Survival Function S(t | x)

(or CDF F (t | x)).
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– Version 2 (Measuring f(t | x)): Narrower intervals centered around target proportions are used, i.e., q =
[. . . , 0.4, 0.45, 0.55, 0.6, . . .]. For each quantile, the observed proportions are calculated within these narrower
intervals. For example, the ratio for 0.1 is calculated within the interval [0.45, 0.55], and for 0.2, within [0.4, 0.6].
In the end, this metric is ideal for assessing the probability density function (PDF) f(t | x).

B.3. Implementation Details

Baselines. We compare our method against four baselines to evaluate performance and effectiveness: LogNorm (Royston,
2001), DeepSurv (Katzman et al., 2018), DeepHit (Lee et al., 2018), and CQRNN (Pearce et al., 2022). All methods
were trained using the same optimization procedure and neural network architecture to ensure a fair comparison. The
implementations for CQRNN and LogNorm were sourced from the official CQRNN repository (GitHub Link). The
implementations for DeepSurv and DeepHit were based on the pycox.methods module (GitHub Link).

Hyperparameter settings. All experiments were repeated across 10 random seeds to ensure robust and reliable results. The
hyperparameter settings were as follows:

• Default Neural Network Architecture: Fully-connected network with two hidden layers, each consisting of 100
hidden nodes, using ReLU activations.

• Default Epochs: 200

• Default Batch Size: 128

• Default Learning Rate: 0.01

• Dropout Rate: 0.1

• Optimizer: Adam

• Batch Norm: FALSE

Our Method. We incorporate a residual connection between the shared feature extraction layer and the first hidden layer to
enhance gradient flow. To satisfy the parameter constraints of the Asymmetric Laplace Distribution (ALD), the final output
layer applies an exponential (Exp) activation function, ensuring that the outputs of the θ, σ and κ branches remain positive.
Each of the two hidden layers contains 32 hidden nodes. A validation set is created by splitting 20% of the training set.
Early stopping is utilized to terminate training when the validation performance ceases to improve.

CQRNN. We followed the hyperparameter settings tuned in the original paper (Pearce et al., 2022), where three random
splits were used for validation (ensuring no overlap with the random seeds used in the final test runs). The following settings
were applied:

• Weight Decay: 0.0001

• Grid Size: 10

• Pseudo Value: y∗ = 1.2×maxi yi

• Dropout Rate: 0.333

The number of epochs and dropout usage were adjusted based on the dataset type:

• Synthetic Datasets:

– Norm linear, Norm non-linear, Exponential, Weibull, LogNorm, Norm uniform: 100 epochs with dropout
disabled.

– Norm heavy, Norm medium, Norm light, Norm same: 20 epochs with dropout disabled.
– LogNorm heavy, LogNorm medium, LogNorm light, LogNorm same: 10 epochs with dropout disabled.

• Real-World Datasets:
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– METABRIC: 20 epochs with dropout disabled.
– WHAS: 100 epochs with dropout disabled.
– SUPPORT: 10 epochs with dropout disabled.
– GBSG: 20 epochs with dropout enabled.
– TMBImmuno: 50 epochs with dropout disabled.
– BreastMSK: 100 epochs with dropout disabled.
– LGGGBM: 50 epochs with dropout enabled.

LogNorm. The output dimensions of the default neural network architecture are 2, where the two outputs represent the
mean and standard deviation of a Log-Normal distribution. To ensure the standard deviation prediction is always positive
and differentiable, the output representing the standard deviation is passed through a SoftPlus activation function. We
followed the hyperparameter settings tuned in the original paper (Pearce et al., 2022), with a Dropout Rate of 0.333. The
number of epochs and dropout usage were adjusted based on the dataset type as follows:

• Synthetic Datasets: The same settings as described above for CQRNN.

• Real-World Datasets:

– METABRIC: 10 epochs with dropout disabled.
– WHAS: 50 epochs with dropout disabled.
– SUPPORT: 20 epochs with dropout disabled.
– GBSG: 10 epochs with dropout enabled.
– TMBImmuno: 50 epochs with dropout disabled.
– BreastMSK: 50 epochs with dropout disabled.
– LGGGBM: 20 epochs with dropout enabled.

DeepSurv. We adhered to the official hyperparameter settings from the pycox.methods module (GitHub Link). Each of
the two hidden layers contains 32 hidden nodes. A validation set was created by splitting 20% of the training set. Early
stopping was employed to terminate training when the validation performance ceased to improve. Batch normalization was
applied.

DeepHit. We adhered to the official hyperparameter settings from the pycox.methods module (GitHub Link). Each of
the two hidden layers contains 32 hidden nodes. A validation set was created by splitting 20% of the training set. Early
stopping was employed to terminate training when the validation performance ceased to improve. Batch normalization was
applied, with additional settings: num durations = 100, alpha = 0.2, and sigma = 0.1.

GBM. We implemented GBM model using the GradientBoostingSurvivalAnalysis class from the
sksurv.ensemble module.3 The model was configured with n estimators = 100, learning rate = 0.01,
and max depth = 3, following standard practices for tree-based boosting in survival analysis.

RSF. The RSF model was implemented using the RandomSurvivalForest class from sksurv.ensemble.4 We
used the default configuration with n estimators = 100, which has been shown to provide a good trade-off between
performance and efficiency.

DSM. We adopted the Deep Survival Machines (DSM) model from the auton-survival library5, using the
DeepSurvivalMachines class. The neural network consisted of two hidden layers, each with 32 hidden units. For the
LogNorm variant, we used k = 10 mixture components, as higher values of k were observed to degrade performance due to
overfitting and instability. For the Weibull variant, we followed the library’s default configuration with k = 100, which
was necessary to maintain sufficient model capacity. Training was performed using observed event times and censoring
indicators, and the final predictions were computed by evaluating the learned mixture distribution over a fixed 1000-point
discretized time grid to estimate the cumulative distribution function (CDF).

3https://scikit-survival.readthedocs.io/en/stable/api/ensemble.html
4https://scikit-survival.readthedocs.io/en/stable/api/ensemble.html
5https://autonlab.org/auton-survival/models/dsm/index.html
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C. Additional Results
This section presents additional empirical results to support the evaluation of our method. The results include comprehensive
comparisons across datasets and metrics, as well as calibration plots and case studies to illustrate key behaviors. Full
benchmarking results are provided in Appendix C.1, calibration curve visualizations in Appendix C.2, and detailed case
analyses in Appendix C.3.

C.1. Overall Results.

Table 5 summarizes the full results across 21 datasets, comparing our method with 8 baselines across 9 metrics. Figure 4
visualizes these results for a more intuitive comparison. In Table 5, the best performance is highlighted in bold. Figure 4
provides a graphical representation of nine distinct evaluation metrics to comprehensively assess predictive performance,
including Mean Absolute Error (MAE), Integrated Brier Score (IBS), Harrell’s C-Index, Uno’s C-Index, Censored D-
calibration (CensDcal), and the slope and intercept derived from two versions of censored D-calibration (Cal[S(t|x)](Slope),
Cal[S(t|x)](Intercept), Cal[f(t|x)](Slope), and Cal[f(t|x)](Intercept)). Specifically, the following transformations were
applied to enhance the clarity of the results:

• MAE and CensDcal were log-transformed to better illustrate their value distributions and differences.

• For Cal[S(t|x)](Slope) and Cal[f(t|x)](Slope), |1− Cal[S(t|x)](Slope)| and |1− Cal[f(t|x)](Slope)| were computed
to measure their deviation from the ideal value of 1.

• For Cal[S(t|x)](Intercept) and Cal[f(t|x)](Intercept), |Cal[S(t|x)](Intercept)| and |Cal[f(t|x)](Intercept)| were com-
puted to measure their deviation from the ideal value of 0.

These transformations allow for a more intuitive comparison of the performance differences across metrics and models. In
the end, each subfigure in Figure 4 provides a comparison of its corresponding metric. The x-axis lists all the datasets, both
synthetic datasets (e.g., Gaussian linear, exponential, etc.) and real-world datasets (e.g., METABRIC, WHAS, etc.), the
y-axis indicates the range of corresponding its metric, and error bars represent standard deviation across 10 model runs.

Table 4. Full results for all datasets, methods, and metrics. The values represent the mean ± 1 standard error for the test set over 10 runs.
Dataset Method MAE IBS Harrell’s C-index Uno’s C-index CensDcal Cal[S(t|x)](Slope) Cal[S(t|x)](Intercept) Cal[f(t|x)](Slope) Cal[f(t|x)](Intercept)

N
or

m
lin

ea
r

ALD 0.865 ± 1.337 0.278 ± 0.008 0.653 ± 0.014 0.648 ± 0.011 0.407 ± 0.343 1.025 ± 0.016 0.005 ± 0.030 1.027 ± 0.042 -0.016 ± 0.037
CQRNN 0.278 ± 0.144 0.326 ± 0.034 0.657 ± 0.008 0.651 ± 0.007 0.466 ± 0.150 1.001 ± 0.062 -0.003 ± 0.026 1.007 ± 0.039 -0.020 ± 0.047
LogNorm 0.372 ± 0.228 0.709 ± 0.028 0.652 ± 0.016 0.646 ± 0.014 0.496 ± 0.399 0.965 ± 0.024 0.005 ± 0.014 0.978 ± 0.041 0.014 ± 0.067
DeepSurv 0.239 ± 0.114 0.676 ± 0.026 0.657 ± 0.008 0.651 ± 0.007 0.139 ± 0.071 0.983 ± 0.018 0.015 ± 0.016 1.007 ± 0.018 -0.005 ± 0.014
DeepHit 1.481 ± 0.527 0.503 ± 0.025 0.635 ± 0.024 0.628 ± 0.025 6.540 ± 1.458 0.967 ± 0.036 0.098 ± 0.070 1.216 ± 0.051 -0.302 ± 0.029

GBM 0.631 ± 0.054 0.305 ± 0.007 0.641 ± 0.012 0.633 ± 0.010 0.146 ± 0.078 0.997 ± 0.023 0.003 ± 0.018 1.008 ± 0.014 -0.014 ± 0.014
RSF 1.234 ± 0.120 0.328 ± 0.009 0.588 ± 0.014 0.584 ± 0.013 0.994 ± 0.256 0.886 ± 0.015 -0.025 ± 0.017 0.880 ± 0.021 0.069 ± 0.020

DSM(LogNorm) 1.039 ± 0.046 0.324 ± 0.007 0.652 ± 0.009 0.646 ± 0.008 2.514 ± 0.523 1.028 ± 0.017 -0.016 ± 0.016 0.968 ± 0.019 0.071 ± 0.022
DSM(Weibull) 1.045 ± 0.050 0.323 ± 0.007 0.654 ± 0.008 0.647 ± 0.007 3.659 ± 0.593 1.104 ± 0.018 0.004 ± 0.017 1.068 ± 0.010 0.000 ± 0.015

N
or

m
no

nl
in

ea
r

ALD 0.243 ± 0.080 0.212 ± 0.006 0.670 ± 0.015 0.644 ± 0.016 0.406 ± 0.179 1.072 ± 0.021 -0.011 ± 0.015 1.038 ± 0.025 -0.016 ± 0.040
CQRNN 0.117 ± 0.037 0.507 ± 0.026 0.674 ± 0.014 0.651 ± 0.014 0.241 ± 0.099 0.983 ± 0.026 0.002 ± 0.018 0.987 ± 0.012 0.011 ± 0.027
LogNorm 0.396 ± 0.432 0.560 ± 0.058 0.630 ± 0.087 0.617 ± 0.074 2.136 ± 3.886 1.003 ± 0.052 0.051 ± 0.054 1.097 ± 0.060 -0.098 ± 0.059
DeepSurv 0.197 ± 0.047 0.623 ± 0.013 0.670 ± 0.015 0.650 ± 0.014 0.196 ± 0.128 1.015 ± 0.019 0.007 ± 0.016 1.019 ± 0.022 -0.007 ± 0.026
DeepHit 1.099 ± 0.130 0.515 ± 0.049 0.610 ± 0.051 0.596 ± 0.040 3.886 ± 3.682 0.999 ± 0.064 -0.007 ± 0.061 1.064 ± 0.067 -0.161 ± 0.084

GBM 0.323 ± 0.027 0.226 ± 0.004 0.653 ± 0.018 0.636 ± 0.016 0.179 ± 0.104 1.004 ± 0.017 0.004 ± 0.018 1.012 ± 0.027 -0.013 ± 0.031
RSF 0.489 ± 0.045 0.242 ± 0.004 0.622 ± 0.013 0.604 ± 0.012 0.910 ± 0.300 0.885 ± 0.023 -0.017 ± 0.012 0.890 ± 0.019 0.063 ± 0.025

DSM(LogNorm) 0.510 ± 0.038 0.234 ± 0.005 0.598 ± 0.016 0.565 ± 0.016 2.683 ± 0.282 0.988 ± 0.017 0.080 ± 0.022 1.072 ± 0.034 0.004 ± 0.035
DSM(Weibull) 0.477 ± 0.029 0.235 ± 0.005 0.634 ± 0.018 0.610 ± 0.016 3.861 ± 0.316 0.988 ± 0.015 0.135 ± 0.016 1.157 ± 0.022 -0.067 ± 0.026

N
or

m
un

if
or

m

ALD 0.473 ± 0.344 0.045 ± 0.002 0.785 ± 0.010 0.703 ± 0.019 0.115 ± 0.030 1.019 ± 0.020 0.002 ± 0.016 1.016 ± 0.015 -0.006 ± 0.021
CQRNN 0.301 ± 0.104 0.535 ± 0.015 0.786 ± 0.009 0.706 ± 0.015 0.162 ± 0.141 1.018 ± 0.033 -0.013 ± 0.013 1.002 ± 0.015 -0.007 ± 0.017
LogNorm 17.079 ± 5.833 0.387 ± 0.013 0.615 ± 0.118 0.578 ± 0.083 3.799 ± 0.354 0.951 ± 0.059 0.159 ± 0.043 1.186 ± 0.016 -0.129 ± 0.021
DeepSurv 0.627 ± 0.180 0.516 ± 0.009 0.781 ± 0.014 0.701 ± 0.020 0.466 ± 0.149 1.038 ± 0.017 0.022 ± 0.013 1.069 ± 0.012 -0.051 ± 0.016
DeepHit 1.468 ± 0.458 0.364 ± 0.048 0.758 ± 0.033 0.688 ± 0.028 3.150 ± 1.142 1.015 ± 0.045 0.024 ± 0.047 1.128 ± 0.051 -0.209 ± 0.027

GBM 1.134 ± 0.093 0.058 ± 0.003 0.739 ± 0.019 0.674 ± 0.015 0.101 ± 0.054 0.991 ± 0.013 0.013 ± 0.009 1.013 ± 0.012 -0.008 ± 0.017
RSF 1.160 ± 0.115 0.055 ± 0.003 0.665 ± 0.021 0.621 ± 0.019 0.412 ± 0.101 0.915 ± 0.011 -0.002 ± 0.007 0.930 ± 0.013 0.043 ± 0.012

DSM(LogNorm) 1.319 ± 0.023 0.063 ± 0.003 0.782 ± 0.012 0.691 ± 0.018 6.693 ± 1.280 0.920 ± 0.015 0.102 ± 0.019 1.069 ± 0.025 -0.035 ± 0.022
DSM(Weibull) 1.352 ± 0.020 0.063 ± 0.003 0.768 ± 0.017 0.683 ± 0.018 3.963 ± 0.695 0.984 ± 0.020 0.038 ± 0.011 1.041 ± 0.015 -0.025 ± 0.019

E
xp

on
en

tia
l

ALD 2.942 ± 2.389 0.309 ± 0.018 0.560 ± 0.008 0.560 ± 0.007 0.432 ± 0.405 0.978 ± 0.047 -0.015 ± 0.014 0.964 ± 0.049 0.016 ± 0.053
CQRNN 1.943 ± 0.297 0.317 ± 0.013 0.558 ± 0.013 0.557 ± 0.011 0.305 ± 0.129 0.976 ± 0.066 0.012 ± 0.043 1.001 ± 0.027 -0.008 ± 0.019
LogNorm 3.223 ± 0.823 0.455 ± 0.010 0.527 ± 0.028 0.528 ± 0.028 0.419 ± 0.141 0.983 ± 0.026 0.042 ± 0.018 1.057 ± 0.022 -0.051 ± 0.021
DeepSurv 1.913 ± 0.269 0.486 ± 0.015 0.558 ± 0.007 0.558 ± 0.006 0.119 ± 0.066 0.986 ± 0.033 0.009 ± 0.022 1.003 ± 0.018 -0.008 ± 0.018
DeepHit 2.626 ± 2.759 0.471 ± 0.012 0.526 ± 0.032 0.526 ± 0.031 1.205 ± 1.060 0.960 ± 0.027 -0.012 ± 0.021 0.907 ± 0.055 0.127 ± 0.066

GBM 2.089 ± 0.249 0.295 ± 0.007 0.541 ± 0.011 0.540 ± 0.010 0.137 ± 0.055 0.977 ± 0.034 0.007 ± 0.025 0.995 ± 0.019 -0.004 ± 0.017
RSF 3.422 ± 0.208 0.343 ± 0.016 0.515 ± 0.015 0.513 ± 0.014 0.778 ± 0.335 0.885 ± 0.026 -0.009 ± 0.011 0.897 ± 0.024 0.066 ± 0.020

DSM(LogNorm) 2.374 ± 0.229 0.294 ± 0.007 0.547 ± 0.013 0.546 ± 0.012 1.935 ± 0.344 0.976 ± 0.025 0.040 ± 0.016 1.040 ± 0.025 -0.028 ± 0.024
DSM(Weibull) 1.921 ± 0.230 0.292 ± 0.007 0.557 ± 0.007 0.557 ± 0.006 1.571 ± 0.345 0.990 ± 0.022 0.012 ± 0.010 1.004 ± 0.022 0.002 ± 0.022

21



Learning Survival Distributions with the Asymmetric Laplace Distribution

Dataset Method MAE IBS Harrell’s C-index Uno’s C-index CensDcal Cal[S(t|x)](Slope) Cal[S(t|x)](Intercept) Cal[f(t|x)](Slope) Cal[f(t|x)](Intercept)

W
ei

bu
ll

ALD 5.135 ± 9.533 0.219 ± 0.028 0.767 ± 0.009 0.763 ± 0.009 0.648 ± 0.511 1.044 ± 0.023 -0.023 ± 0.033 0.993 ± 0.049 0.021 ± 0.060
CQRNN 0.350 ± 0.098 0.461 ± 0.030 0.775 ± 0.005 0.769 ± 0.005 0.346 ± 0.131 0.989 ± 0.057 -0.001 ± 0.042 0.995 ± 0.022 -0.003 ± 0.023
LogNorm 0.862 ± 0.121 0.840 ± 0.021 0.773 ± 0.006 0.767 ± 0.006 0.598 ± 0.172 0.993 ± 0.026 0.029 ± 0.016 1.050 ± 0.028 -0.053 ± 0.038
DeepSurv 0.381 ± 0.098 0.969 ± 0.019 0.772 ± 0.004 0.766 ± 0.006 0.118 ± 0.049 0.989 ± 0.023 0.006 ± 0.012 1.005 ± 0.018 -0.009 ± 0.021
DeepHit 1.975 ± 0.172 0.618 ± 0.032 0.769 ± 0.006 0.763 ± 0.007 3.020 ± 1.157 0.998 ± 0.058 0.122 ± 0.071 1.206 ± 0.056 -0.187 ± 0.069

GBM 1.467 ± 0.100 0.254 ± 0.006 0.766 ± 0.005 0.759 ± 0.006 0.359 ± 0.143 1.025 ± 0.022 0.012 ± 0.020 1.053 ± 0.025 -0.057 ± 0.021
RSF 1.259 ± 0.155 0.233 ± 0.011 0.747 ± 0.009 0.740 ± 0.010 0.986 ± 0.299 0.863 ± 0.030 -0.009 ± 0.014 0.886 ± 0.024 0.066 ± 0.021

DSM(LogNorm) 2.608 ± 0.072 0.328 ± 0.007 0.745 ± 0.005 0.743 ± 0.005 2.713 ± 0.469 1.015 ± 0.016 -0.004 ± 0.022 0.985 ± 0.033 0.046 ± 0.026
DSM(Weibull) 2.661 ± 0.073 0.329 ± 0.007 0.745 ± 0.004 0.742 ± 0.004 3.569 ± 0.486 1.079 ± 0.015 -0.013 ± 0.020 1.026 ± 0.027 0.018 ± 0.023

L
og

N
or

m

ALD 0.363 ± 0.068 0.376 ± 0.013 0.588 ± 0.014 0.585 ± 0.014 0.256 ± 0.150 1.005 ± 0.021 0.006 ± 0.011 1.011 ± 0.028 -0.004 ± 0.029
CQRNN 0.950 ± 0.091 0.407 ± 0.019 0.588 ± 0.016 0.584 ± 0.016 0.459 ± 0.220 1.024 ± 0.066 -0.019 ± 0.034 0.996 ± 0.042 0.000 ± 0.031
LogNorm 0.267 ± 0.062 0.645 ± 0.021 0.588 ± 0.015 0.584 ± 0.015 0.103 ± 0.020 1.009 ± 0.012 0.006 ± 0.009 1.016 ± 0.015 -0.010 ± 0.017
DeepSurv 0.963 ± 0.058 0.658 ± 0.029 0.589 ± 0.016 0.586 ± 0.016 0.137 ± 0.049 0.996 ± 0.021 0.001 ± 0.020 0.997 ± 0.025 0.002 ± 0.021
DeepHit 0.902 ± 0.504 0.568 ± 0.025 0.551 ± 0.032 0.548 ± 0.031 2.088 ± 1.666 0.988 ± 0.031 -0.026 ± 0.050 0.892 ± 0.072 0.162 ± 0.090

GBM 1.034 ± 0.049 0.385 ± 0.010 0.579 ± 0.015 0.575 ± 0.015 0.163 ± 0.052 0.999 ± 0.028 -0.002 ± 0.018 0.999 ± 0.018 -0.003 ± 0.016
RSF 1.182 ± 0.074 0.428 ± 0.012 0.542 ± 0.019 0.541 ± 0.018 0.907 ± 0.247 0.881 ± 0.019 -0.017 ± 0.015 0.887 ± 0.019 0.062 ± 0.020

DSM(LogNorm) 0.939 ± 0.060 0.388 ± 0.011 0.506 ± 0.009 0.505 ± 0.008 1.191 ± 0.335 1.008 ± 0.022 -0.006 ± 0.016 0.988 ± 0.021 0.020 ± 0.020
DSM(Weibull) 0.762 ± 0.055 0.382 ± 0.011 0.501 ± 0.013 0.501 ± 0.012 2.153 ± 0.480 1.059 ± 0.019 -0.010 ± 0.011 1.021 ± 0.017 0.011 ± 0.016

N
or

m
he

av
y

ALD 0.667 ± 0.139 0.019 ± 0.001 0.919 ± 0.007 0.870 ± 0.029 0.036 ± 0.017 1.009 ± 0.005 -0.004 ± 0.004 1.001 ± 0.009 -0.002 ± 0.010
CQRNN 0.574 ± 0.031 0.538 ± 0.006 0.914 ± 0.008 0.863 ± 0.033 0.062 ± 0.099 1.000 ± 0.019 -0.002 ± 0.007 1.000 ± 0.012 -0.004 ± 0.011
LogNorm 33.140 ± 12.004 0.411 ± 0.014 0.781 ± 0.071 0.679 ± 0.126 2.249 ± 0.490 1.122 ± 0.022 0.001 ± 0.029 1.111 ± 0.031 -0.074 ± 0.032
DeepSurv 1.662 ± 0.157 0.558 ± 0.007 0.726 ± 0.035 0.582 ± 0.056 0.577 ± 0.067 1.070 ± 0.006 -0.002 ± 0.009 1.065 ± 0.011 -0.065 ± 0.010
DeepHit 0.814 ± 0.104 0.475 ± 0.037 0.913 ± 0.009 0.856 ± 0.034 1.349 ± 0.374 1.051 ± 0.044 0.055 ± 0.035 1.139 ± 0.027 -0.121 ± 0.036

GBM 1.627 ± 0.034 0.041 ± 0.002 0.874 ± 0.009 0.796 ± 0.084 0.043 ± 0.011 1.003 ± 0.009 0.011 ± 0.008 1.019 ± 0.006 -0.015 ± 0.007
RSF 0.607 ± 0.016 0.020 ± 0.001 0.910 ± 0.008 0.802 ± 0.111 0.038 ± 0.016 1.015 ± 0.006 0.002 ± 0.006 1.015 ± 0.009 -0.008 ± 0.010

DSM(LogNorm) 1.915 ± 0.037 0.047 ± 0.002 0.782 ± 0.026 0.706 ± 0.067 7.049 ± 0.555 0.997 ± 0.008 0.023 ± 0.007 1.027 ± 0.005 -0.015 ± 0.005
DSM(Weibull) 1.906 ± 0.037 0.047 ± 0.002 0.827 ± 0.014 0.771 ± 0.032 6.828 ± 0.605 1.008 ± 0.008 0.006 ± 0.007 1.013 ± 0.005 -0.006 ± 0.005

N
or

m
m

ed
.

ALD 0.238 ± 0.036 0.047 ± 0.003 0.894 ± 0.005 0.872 ± 0.004 0.157 ± 0.044 1.058 ± 0.012 -0.035 ± 0.011 0.997 ± 0.012 0.004 ± 0.014
CQRNN 0.312 ± 0.033 0.608 ± 0.010 0.888 ± 0.005 0.867 ± 0.005 0.097 ± 0.045 0.984 ± 0.026 0.001 ± 0.013 0.989 ± 0.019 0.007 ± 0.020
LogNorm 7.300 ± 2.579 0.430 ± 0.019 0.810 ± 0.048 0.777 ± 0.048 8.192 ± 0.660 0.751 ± 0.073 0.350 ± 0.052 1.280 ± 0.021 -0.192 ± 0.036
DeepSurv 0.253 ± 0.026 0.722 ± 0.012 0.893 ± 0.004 0.871 ± 0.004 0.609 ± 0.111 1.054 ± 0.014 0.008 ± 0.015 1.061 ± 0.019 -0.051 ± 0.017
DeepHit 0.916 ± 0.077 0.576 ± 0.012 0.886 ± 0.006 0.863 ± 0.005 1.655 ± 0.409 1.056 ± 0.032 0.038 ± 0.026 1.130 ± 0.032 -0.130 ± 0.066

GBM 1.443 ± 0.035 0.096 ± 0.004 0.859 ± 0.004 0.837 ± 0.003 0.121 ± 0.045 1.014 ± 0.011 0.015 ± 0.009 1.037 ± 0.011 -0.033 ± 0.011
RSF 0.406 ± 0.022 0.051 ± 0.003 0.884 ± 0.004 0.861 ± 0.004 0.072 ± 0.035 1.016 ± 0.016 0.003 ± 0.010 1.017 ± 0.012 -0.012 ± 0.014

DSM(LogNorm) 1.918 ± 0.035 0.118 ± 0.006 0.692 ± 0.028 0.662 ± 0.027 1.404 ± 0.176 1.019 ± 0.014 0.030 ± 0.009 1.058 ± 0.009 -0.036 ± 0.012
DSM(Weibull) 1.920 ± 0.038 0.117 ± 0.005 0.757 ± 0.018 0.728 ± 0.017 1.174 ± 0.191 1.031 ± 0.018 0.009 ± 0.013 1.032 ± 0.010 -0.010 ± 0.012

N
or

m
lig

ht

ALD 0.236 ± 0.051 0.090 ± 0.007 0.882 ± 0.004 0.874 ± 0.004 0.339 ± 0.076 1.087 ± 0.017 -0.050 ± 0.011 0.999 ± 0.014 0.005 ± 0.021
CQRNN 0.271 ± 0.032 0.671 ± 0.013 0.879 ± 0.002 0.871 ± 0.002 0.149 ± 0.097 0.999 ± 0.027 -0.014 ± 0.017 0.985 ± 0.022 0.004 ± 0.027
LogNorm 3.152 ± 2.154 0.548 ± 0.023 0.832 ± 0.022 0.821 ± 0.022 12.884 ± 1.700 0.804 ± 0.162 0.358 ± 0.126 1.351 ± 0.018 -0.256 ± 0.038
DeepSurv 0.247 ± 0.016 0.941 ± 0.024 0.882 ± 0.002 0.874 ± 0.002 0.582 ± 0.127 1.038 ± 0.014 0.016 ± 0.019 1.057 ± 0.023 -0.040 ± 0.023
DeepHit 0.959 ± 0.051 0.691 ± 0.030 0.875 ± 0.004 0.867 ± 0.004 1.854 ± 0.461 1.044 ± 0.041 0.063 ± 0.022 1.159 ± 0.023 -0.157 ± 0.053

GBM 1.329 ± 0.029 0.174 ± 0.011 0.849 ± 0.004 0.841 ± 0.004 0.250 ± 0.079 1.015 ± 0.013 0.023 ± 0.013 1.056 ± 0.013 -0.055 ± 0.013
RSF 0.365 ± 0.013 0.096 ± 0.006 0.875 ± 0.003 0.866 ± 0.003 0.113 ± 0.053 1.014 ± 0.014 -0.001 ± 0.013 1.014 ± 0.016 -0.013 ± 0.015

DSM(LogNorm) 1.931 ± 0.035 0.227 ± 0.014 0.653 ± 0.020 0.643 ± 0.020 0.888 ± 0.119 1.040 ± 0.016 0.024 ± 0.008 1.069 ± 0.012 -0.048 ± 0.014
DSM(Weibull) 1.926 ± 0.039 0.222 ± 0.014 0.727 ± 0.016 0.717 ± 0.016 0.531 ± 0.130 1.044 ± 0.016 0.013 ± 0.012 1.044 ± 0.012 -0.014 ± 0.014

N
or

m
sa

m
e

ALD 0.405 ± 0.079 0.066 ± 0.003 0.890 ± 0.005 0.847 ± 0.008 0.114 ± 0.036 1.007 ± 0.014 0.006 ± 0.012 1.004 ± 0.018 0.010 ± 0.022
CQRNN 0.301 ± 0.024 0.568 ± 0.018 0.886 ± 0.006 0.841 ± 0.016 0.147 ± 0.109 0.988 ± 0.028 0.003 ± 0.014 0.999 ± 0.024 -0.007 ± 0.031
LogNorm 0.379 ± 0.202 0.770 ± 0.039 0.894 ± 0.005 0.850 ± 0.009 0.900 ± 0.801 0.994 ± 0.032 0.017 ± 0.030 1.036 ± 0.087 -0.048 ± 0.110
DeepSurv 0.254 ± 0.036 0.787 ± 0.015 0.889 ± 0.004 0.837 ± 0.025 0.227 ± 0.053 1.033 ± 0.014 -0.014 ± 0.011 1.010 ± 0.016 -0.010 ± 0.018
DeepHit 1.303 ± 0.132 0.572 ± 0.032 0.882 ± 0.006 0.832 ± 0.017 1.798 ± 0.770 1.041 ± 0.049 0.060 ± 0.047 1.142 ± 0.041 -0.124 ± 0.059

GBM 1.534 ± 0.062 0.142 ± 0.005 0.838 ± 0.009 0.798 ± 0.007 0.130 ± 0.042 0.991 ± 0.019 0.029 ± 0.011 1.038 ± 0.010 -0.031 ± 0.009
RSF 0.444 ± 0.020 0.076 ± 0.003 0.878 ± 0.005 0.828 ± 0.010 0.072 ± 0.030 1.014 ± 0.007 0.001 ± 0.009 1.005 ± 0.016 0.008 ± 0.016

DSM(LogNorm) 2.135 ± 0.054 0.179 ± 0.006 0.651 ± 0.018 0.615 ± 0.016 3.858 ± 0.295 0.981 ± 0.015 0.049 ± 0.008 1.052 ± 0.013 -0.030 ± 0.011
DSM(Weibull) 2.182 ± 0.053 0.178 ± 0.006 0.738 ± 0.017 0.689 ± 0.013 3.834 ± 0.328 1.012 ± 0.013 0.011 ± 0.007 1.021 ± 0.012 -0.007 ± 0.011

L
og

N
or

m
he

av
y

ALD 0.385 ± 0.193 0.095 ± 0.006 0.777 ± 0.012 0.727 ± 0.021 0.043 ± 0.019 1.003 ± 0.014 -0.005 ± 0.005 0.998 ± 0.014 -0.003 ± 0.014
CQRNN 0.717 ± 0.027 0.436 ± 0.035 0.767 ± 0.009 0.718 ± 0.018 0.235 ± 0.104 0.992 ± 0.026 -0.007 ± 0.013 0.998 ± 0.032 -0.019 ± 0.035
LogNorm 0.755 ± 0.194 0.401 ± 0.012 0.643 ± 0.053 0.609 ± 0.046 0.066 ± 0.056 1.018 ± 0.012 -0.002 ± 0.005 1.011 ± 0.019 -0.003 ± 0.020
DeepSurv 0.842 ± 0.019 0.459 ± 0.013 0.497 ± 0.034 0.465 ± 0.029 0.102 ± 0.068 1.031 ± 0.008 -0.010 ± 0.007 1.015 ± 0.017 -0.018 ± 0.015
DeepHit 0.724 ± 0.020 0.402 ± 0.012 0.756 ± 0.012 0.712 ± 0.019 0.282 ± 0.121 1.036 ± 0.020 -0.012 ± 0.006 1.030 ± 0.014 -0.045 ± 0.018

GBM 0.689 ± 0.018 0.118 ± 0.006 0.666 ± 0.032 0.618 ± 0.029 0.030 ± 0.016 1.004 ± 0.009 0.003 ± 0.003 1.009 ± 0.011 -0.007 ± 0.012
RSF 0.695 ± 0.018 0.099 ± 0.006 0.715 ± 0.016 0.663 ± 0.018 0.031 ± 0.020 1.008 ± 0.007 0.002 ± 0.004 1.010 ± 0.011 -0.006 ± 0.012

DSM(LogNorm) 0.656 ± 0.016 0.125 ± 0.007 0.695 ± 0.054 0.654 ± 0.051 18.733 ± 1.302 0.994 ± 0.010 -0.004 ± 0.003 0.984 ± 0.012 0.020 ± 0.013
DSM(Weibull) 0.680 ± 0.018 0.123 ± 0.007 0.697 ± 0.009 0.659 ± 0.026 18.884 ± 1.516 0.997 ± 0.011 -0.007 ± 0.004 0.980 ± 0.013 0.021 ± 0.013

L
og

N
or

m
m

ed
.

ALD 0.178 ± 0.046 0.174 ± 0.005 0.747 ± 0.004 0.718 ± 0.007 0.087 ± 0.052 1.008 ± 0.017 -0.004 ± 0.010 1.002 ± 0.009 -0.001 ± 0.012
CQRNN 0.540 ± 0.059 0.368 ± 0.053 0.746 ± 0.005 0.716 ± 0.006 0.376 ± 0.166 0.985 ± 0.069 -0.001 ± 0.037 0.994 ± 0.035 -0.006 ± 0.041
LogNorm 0.549 ± 0.101 0.452 ± 0.012 0.694 ± 0.024 0.665 ± 0.021 0.085 ± 0.067 1.002 ± 0.016 0.007 ± 0.011 1.008 ± 0.022 0.000 ± 0.026
DeepSurv 0.654 ± 0.029 0.545 ± 0.015 0.638 ± 0.011 0.596 ± 0.011 0.138 ± 0.058 1.020 ± 0.017 -0.015 ± 0.009 0.994 ± 0.016 0.005 ± 0.018
DeepHit 0.600 ± 0.018 0.426 ± 0.010 0.729 ± 0.019 0.702 ± 0.015 0.344 ± 0.118 1.046 ± 0.018 -0.032 ± 0.017 0.986 ± 0.018 0.018 ± 0.020

GBM 0.626 ± 0.016 0.205 ± 0.008 0.711 ± 0.008 0.684 ± 0.008 0.067 ± 0.012 1.006 ± 0.017 0.008 ± 0.011 1.017 ± 0.011 -0.014 ± 0.014
RSF 0.506 ± 0.016 0.180 ± 0.008 0.733 ± 0.008 0.702 ± 0.005 0.060 ± 0.028 1.015 ± 0.017 0.002 ± 0.012 1.014 ± 0.010 -0.005 ± 0.014

DSM(LogNorm) 0.643 ± 0.014 0.223 ± 0.008 0.720 ± 0.006 0.694 ± 0.008 7.020 ± 0.465 0.996 ± 0.022 -0.003 ± 0.014 0.983 ± 0.013 0.025 ± 0.015
DSM(Weibull) 0.637 ± 0.014 0.221 ± 0.008 0.670 ± 0.011 0.648 ± 0.009 7.371 ± 0.618 1.039 ± 0.021 -0.036 ± 0.014 0.973 ± 0.012 0.030 ± 0.014

L
og

N
or

m
lig

ht

ALD 0.184 ± 0.035 0.310 ± 0.011 0.725 ± 0.007 0.713 ± 0.008 0.185 ± 0.095 0.985 ± 0.015 0.007 ± 0.009 1.001 ± 0.014 -0.001 ± 0.017
CQRNN 0.356 ± 0.073 0.418 ± 0.045 0.725 ± 0.007 0.714 ± 0.008 0.976 ± 0.602 0.988 ± 0.077 -0.012 ± 0.045 0.962 ± 0.071 0.044 ± 0.072
LogNorm 0.311 ± 0.022 0.794 ± 0.026 0.709 ± 0.009 0.698 ± 0.010 0.231 ± 0.170 0.972 ± 0.027 -0.007 ± 0.014 0.964 ± 0.035 0.029 ± 0.041
DeepSurv 0.403 ± 0.027 0.833 ± 0.025 0.715 ± 0.009 0.700 ± 0.011 0.211 ± 0.123 1.010 ± 0.017 -0.000 ± 0.012 1.004 ± 0.017 0.005 ± 0.018
DeepHit 0.581 ± 0.018 0.654 ± 0.017 0.702 ± 0.008 0.692 ± 0.008 0.253 ± 0.174 1.006 ± 0.030 -0.013 ± 0.016 0.974 ± 0.021 0.042 ± 0.026

GBM 0.616 ± 0.017 0.363 ± 0.010 0.693 ± 0.005 0.683 ± 0.006 0.104 ± 0.042 1.007 ± 0.029 0.009 ± 0.017 1.022 ± 0.016 -0.019 ± 0.018
RSF 0.442 ± 0.019 0.317 ± 0.009 0.714 ± 0.006 0.703 ± 0.007 0.114 ± 0.032 1.025 ± 0.020 -0.000 ± 0.012 1.017 ± 0.018 -0.006 ± 0.020

DSM(LogNorm) 0.643 ± 0.014 0.386 ± 0.010 0.698 ± 0.007 0.688 ± 0.008 1.809 ± 0.275 0.997 ± 0.029 0.002 ± 0.017 0.988 ± 0.018 0.026 ± 0.019
DSM(Weibull) 0.622 ± 0.014 0.384 ± 0.011 0.647 ± 0.010 0.639 ± 0.010 2.292 ± 0.343 1.037 ± 0.028 -0.013 ± 0.016 0.998 ± 0.018 0.023 ± 0.019

L
og

N
or

m
sa

m
e

ALD 0.191 ± 0.044 0.154 ± 0.006 0.739 ± 0.009 0.697 ± 0.008 0.076 ± 0.057 1.012 ± 0.011 -0.001 ± 0.008 1.009 ± 0.011 -0.005 ± 0.010
CQRNN 0.319 ± 0.079 0.300 ± 0.049 0.740 ± 0.008 0.698 ± 0.009 0.787 ± 0.336 0.986 ± 0.086 -0.003 ± 0.040 0.971 ± 0.058 0.041 ± 0.056
LogNorm 0.273 ± 0.068 0.528 ± 0.017 0.736 ± 0.012 0.695 ± 0.010 0.213 ± 0.117 0.972 ± 0.015 -0.006 ± 0.010 0.963 ± 0.028 0.033 ± 0.040
DeepSurv 0.362 ± 0.026 0.511 ± 0.012 0.743 ± 0.010 0.700 ± 0.007 0.138 ± 0.040 1.017 ± 0.013 -0.005 ± 0.012 1.004 ± 0.014 0.001 ± 0.013
DeepHit 0.560 ± 0.098 0.385 ± 0.022 0.652 ± 0.066 0.633 ± 0.047 1.265 ± 1.911 0.925 ± 0.071 -0.010 ± 0.011 0.925 ± 0.088 0.058 ± 0.108

GBM 0.571 ± 0.023 0.196 ± 0.006 0.696 ± 0.011 0.661 ± 0.011 0.064 ± 0.031 1.011 ± 0.007 0.008 ± 0.009 1.023 ± 0.010 -0.017 ± 0.007
RSF 0.397 ± 0.019 0.167 ± 0.007 0.724 ± 0.011 0.682 ± 0.010 0.123 ± 0.045 1.006 ± 0.012 0.024 ± 0.012 1.032 ± 0.010 -0.009 ± 0.010

DSM(LogNorm) 0.606 ± 0.025 0.215 ± 0.006 0.678 ± 0.026 0.646 ± 0.020 4.464 ± 0.674 0.996 ± 0.014 -0.007 ± 0.007 0.978 ± 0.013 0.029 ± 0.012
DSM(Weibull) 0.597 ± 0.024 0.216 ± 0.006 0.639 ± 0.013 0.612 ± 0.010 4.947 ± 0.520 1.036 ± 0.011 -0.025 ± 0.007 0.983 ± 0.009 0.029 ± 0.008
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Dataset Method MAE IBS Harrell’s C-index Uno’s C-index CensDcal Cal[S(t|x)](Slope) Cal[S(t|x)](Intercept) Cal[f(t|x)](Slope) Cal[f(t|x)](Intercept)
M

E
TA

B
R

IC

ALD 1.626 ± 0.194 0.245 ± 0.012 0.637 ± 0.021 0.633 ± 0.031 0.293 ± 0.125 1.001 ± 0.033 -0.011 ± 0.016 0.993 ± 0.028 -0.009 ± 0.024
CQRNN 0.998 ± 0.074 0.344 ± 0.027 0.632 ± 0.017 0.630 ± 0.033 0.641 ± 0.391 0.972 ± 0.048 0.007 ± 0.018 1.001 ± 0.042 -0.022 ± 0.051
LogNorm 1.329 ± 0.041 0.526 ± 0.015 0.609 ± 0.019 0.613 ± 0.046 0.619 ± 0.247 0.964 ± 0.026 -0.024 ± 0.011 0.937 ± 0.017 0.040 ± 0.018
DeepSurv 0.981 ± 0.029 0.533 ± 0.019 0.645 ± 0.016 0.635 ± 0.035 0.159 ± 0.075 1.009 ± 0.011 -0.008 ± 0.013 1.003 ± 0.022 -0.010 ± 0.023
DeepHit 1.177 ± 0.065 0.462 ± 0.008 0.563 ± 0.040 0.577 ± 0.053 0.659 ± 0.212 1.070 ± 0.022 -0.036 ± 0.014 1.018 ± 0.015 -0.024 ± 0.029

GBM 0.949 ± 0.043 0.250 ± 0.007 0.639 ± 0.018 0.632 ± 0.042 0.199 ± 0.049 1.016 ± 0.025 -0.001 ± 0.019 1.017 ± 0.021 -0.018 ± 0.021
RSF 1.079 ± 0.059 0.241 ± 0.008 0.632 ± 0.017 0.619 ± 0.043 0.180 ± 0.071 1.020 ± 0.022 -0.004 ± 0.019 1.011 ± 0.020 -0.007 ± 0.020

DSM(LogNorm) 0.980 ± 0.031 0.265 ± 0.007 0.613 ± 0.024 0.591 ± 0.051 4.601 ± 0.307 1.002 ± 0.026 0.004 ± 0.016 1.004 ± 0.018 0.001 ± 0.018
DSM(Weibull) 1.025 ± 0.032 0.266 ± 0.007 0.602 ± 0.025 0.598 ± 0.024 4.998 ± 0.510 1.042 ± 0.023 -0.035 ± 0.014 0.982 ± 0.019 0.016 ± 0.019

W
H

A
S

ALD 2.196 ± 0.612 0.134 ± 0.013 0.823 ± 0.016 0.824 ± 0.014 0.198 ± 0.094 0.972 ± 0.027 0.003 ± 0.016 0.981 ± 0.021 0.009 ± 0.023
CQRNN 0.798 ± 0.049 0.636 ± 0.018 0.838 ± 0.016 0.846 ± 0.016 0.564 ± 0.248 0.974 ± 0.060 0.002 ± 0.022 0.998 ± 0.057 -0.024 ± 0.053
LogNorm 1.976 ± 0.232 0.614 ± 0.025 0.600 ± 0.042 0.575 ± 0.039 0.584 ± 0.233 0.920 ± 0.032 0.041 ± 0.021 0.994 ± 0.032 -0.002 ± 0.033
DeepSurv 0.867 ± 0.050 0.699 ± 0.023 0.711 ± 0.014 0.637 ± 0.025 0.228 ± 0.101 0.997 ± 0.020 0.005 ± 0.018 1.012 ± 0.020 -0.019 ± 0.019
DeepHit 0.966 ± 0.077 0.604 ± 0.023 0.806 ± 0.018 0.811 ± 0.018 0.269 ± 0.172 0.963 ± 0.036 0.018 ± 0.022 1.008 ± 0.026 -0.015 ± 0.031

GBM 1.157 ± 0.073 0.165 ± 0.009 0.817 ± 0.018 0.816 ± 0.015 0.363 ± 0.174 1.055 ± 0.034 0.042 ± 0.020 1.076 ± 0.022 -0.044 ± 0.023
RSF 0.603 ± 0.055 0.082 ± 0.011 0.866 ± 0.017 0.898 ± 0.015 11.243 ± 3.013 3.177 ± 0.275 0.163 ± 0.049 1.607 ± 0.091 0.113 ± 0.024

DSM(LogNorm) 2.055 ± 0.175 0.211 ± 0.009 0.779 ± 0.016 0.788 ± 0.015 11.200 ± 1.181 0.908 ± 0.026 0.070 ± 0.021 1.015 ± 0.025 -0.001 ± 0.027
DSM(Weibull) 1.748 ± 0.127 0.208 ± 0.010 0.786 ± 0.023 0.794 ± 0.017 10.569 ± 1.295 0.907 ± 0.028 0.064 ± 0.022 1.001 ± 0.024 0.010 ± 0.026

SU
PP

O
R

T

ALD 1.121 ± 0.107 0.362 ± 0.013 0.568 ± 0.015 0.572 ± 0.015 2.197 ± 0.667 1.084 ± 0.043 -0.113 ± 0.023 0.900 ± 0.056 0.084 ± 0.046
CQRNN 0.659 ± 0.047 0.344 ± 0.007 0.612 ± 0.005 0.613 ± 0.006 0.724 ± 0.428 1.034 ± 0.066 -0.019 ± 0.034 0.992 ± 0.051 0.019 ± 0.049
LogNorm 1.311 ± 0.150 0.688 ± 0.020 0.597 ± 0.011 0.597 ± 0.011 2.792 ± 0.942 0.942 ± 0.040 -0.114 ± 0.008 0.769 ± 0.041 0.169 ± 0.042
DeepSurv 0.511 ± 0.021 0.629 ± 0.014 0.599 ± 0.008 0.597 ± 0.009 0.092 ± 0.036 0.989 ± 0.016 -0.003 ± 0.011 0.986 ± 0.012 0.006 ± 0.014
DeepHit 0.574 ± 0.034 0.530 ± 0.009 0.577 ± 0.008 0.582 ± 0.009 0.829 ± 0.213 0.891 ± 0.013 0.006 ± 0.008 0.909 ± 0.014 0.086 ± 0.021

GBM 0.427 ± 0.008 0.359 ± 0.005 0.597 ± 0.006 0.601 ± 0.007 0.111 ± 0.041 1.065 ± 0.018 -0.010 ± 0.011 1.005 ± 0.010 0.019 ± 0.015
RSF 0.647 ± 0.027 0.339 ± 0.005 0.619 ± 0.006 0.618 ± 0.006 0.122 ± 0.058 1.132 ± 0.013 -0.027 ± 0.009 1.006 ± 0.010 0.037 ± 0.015

DSM(LogNorm) 0.512 ± 0.012 0.379 ± 0.006 0.570 ± 0.007 0.570 ± 0.007 16.664 ± 1.442 1.147 ± 0.011 -0.145 ± 0.010 0.928 ± 0.009 0.057 ± 0.012
DSM(Weibull) 0.581 ± 0.013 0.375 ± 0.007 0.565 ± 0.010 0.569 ± 0.010 14.725 ± 1.066 1.209 ± 0.010 -0.147 ± 0.010 0.941 ± 0.009 0.056 ± 0.012

G
B

SG

ALD 1.713 ± 0.208 0.279 ± 0.014 0.671 ± 0.013 0.665 ± 0.013 0.283 ± 0.106 1.000 ± 0.035 -0.018 ± 0.016 0.977 ± 0.025 0.014 ± 0.034
CQRNN 0.865 ± 0.070 0.357 ± 0.021 0.680 ± 0.015 0.672 ± 0.014 0.573 ± 0.577 0.953 ± 0.043 -0.008 ± 0.016 0.967 ± 0.030 0.002 ± 0.040
LogNorm 1.469 ± 0.105 0.577 ± 0.015 0.660 ± 0.012 0.653 ± 0.012 0.817 ± 0.303 0.968 ± 0.025 -0.057 ± 0.011 0.886 ± 0.025 0.086 ± 0.035
DeepSurv 0.709 ± 0.036 0.569 ± 0.016 0.611 ± 0.017 0.602 ± 0.016 0.180 ± 0.126 1.002 ± 0.021 -0.003 ± 0.013 0.996 ± 0.013 0.004 ± 0.018
DeepHit 0.773 ± 0.037 0.495 ± 0.016 0.649 ± 0.016 0.644 ± 0.016 2.020 ± 1.450 0.967 ± 0.049 -0.045 ± 0.014 0.952 ± 0.031 -0.025 ± 0.016

GBM 0.837 ± 0.037 0.289 ± 0.008 0.669 ± 0.013 0.662 ± 0.012 0.165 ± 0.139 1.006 ± 0.022 0.009 ± 0.017 1.018 ± 0.020 -0.012 ± 0.020
RSF 0.900 ± 0.052 0.283 ± 0.011 0.658 ± 0.010 0.648 ± 0.010 0.192 ± 0.054 0.995 ± 0.029 -0.007 ± 0.016 0.984 ± 0.024 0.011 ± 0.026

DSM(LogNorm) 0.989 ± 0.025 0.308 ± 0.009 0.636 ± 0.023 0.629 ± 0.020 7.079 ± 0.384 1.048 ± 0.017 -0.052 ± 0.010 0.960 ± 0.015 0.034 ± 0.017
DSM(Weibull) 1.075 ± 0.026 0.308 ± 0.009 0.638 ± 0.011 0.632 ± 0.011 8.698 ± 0.718 1.102 ± 0.015 -0.077 ± 0.009 0.968 ± 0.014 0.031 ± 0.016

T
M

B
Im

m
un

o

ALD 3.002 ± 1.497 0.245 ± 0.015 0.561 ± 0.037 0.547 ± 0.040 0.835 ± 0.604 1.053 ± 0.045 -0.038 ± 0.025 0.994 ± 0.021 0.004 ± 0.025
CQRNN 1.008 ± 0.053 0.272 ± 0.013 0.567 ± 0.022 0.557 ± 0.017 0.251 ± 0.123 0.967 ± 0.037 0.011 ± 0.026 0.988 ± 0.027 0.009 ± 0.020
LogNorm 1.880 ± 0.156 0.420 ± 0.011 0.561 ± 0.028 0.557 ± 0.028 0.617 ± 0.196 0.949 ± 0.028 -0.027 ± 0.019 0.913 ± 0.025 0.066 ± 0.027
DeepSurv 0.948 ± 0.097 0.395 ± 0.012 0.543 ± 0.034 0.526 ± 0.039 0.246 ± 0.168 1.019 ± 0.030 -0.001 ± 0.023 1.009 ± 0.020 -0.003 ± 0.018
DeepHit 1.117 ± 0.141 0.400 ± 0.011 0.560 ± 0.023 0.554 ± 0.021 0.464 ± 0.214 0.963 ± 0.039 -0.018 ± 0.026 0.935 ± 0.020 0.058 ± 0.026

GBM 0.897 ± 0.032 0.243 ± 0.009 0.576 ± 0.021 0.555 ± 0.023 0.694 ± 0.279 1.320 ± 0.057 -0.019 ± 0.034 1.049 ± 0.028 0.079 ± 0.026
RSF 1.607 ± 0.069 0.263 ± 0.008 0.550 ± 0.017 0.536 ± 0.018 0.448 ± 0.112 1.266 ± 0.046 -0.018 ± 0.019 1.017 ± 0.021 0.081 ± 0.019

DSM(LogNorm) 0.956 ± 0.018 0.248 ± 0.009 0.518 ± 0.033 0.522 ± 0.033 7.414 ± 0.791 1.005 ± 0.022 -0.028 ± 0.019 0.963 ± 0.016 0.035 ± 0.015
DSM(Weibull) 1.020 ± 0.020 0.248 ± 0.009 0.551 ± 0.026 0.542 ± 0.029 9.625 ± 1.314 1.077 ± 0.017 -0.053 ± 0.015 0.984 ± 0.016 0.021 ± 0.016

B
re

as
tM

SK

ALD 2.593 ± 0.289 0.086 ± 0.008 0.617 ± 0.032 0.568 ± 0.036 0.066 ± 0.027 1.002 ± 0.019 -0.007 ± 0.010 0.993 ± 0.020 0.003 ± 0.021
CQRNN 1.864 ± 0.354 0.316 ± 0.035 0.599 ± 0.044 0.561 ± 0.036 0.172 ± 0.083 0.993 ± 0.036 -0.005 ± 0.013 0.990 ± 0.030 0.003 ± 0.034
LogNorm 6.675 ± 0.597 0.310 ± 0.015 0.610 ± 0.029 0.573 ± 0.046 0.208 ± 0.089 1.044 ± 0.010 -0.004 ± 0.009 1.031 ± 0.012 -0.023 ± 0.015
DeepSurv 1.639 ± 0.217 0.334 ± 0.018 0.614 ± 0.033 0.582 ± 0.049 0.212 ± 0.099 1.046 ± 0.024 -0.006 ± 0.011 1.036 ± 0.019 -0.036 ± 0.019
DeepHit 1.523 ± 0.076 0.303 ± 0.016 0.614 ± 0.036 0.563 ± 0.046 0.411 ± 0.213 1.062 ± 0.011 -0.021 ± 0.006 1.032 ± 0.011 -0.040 ± 0.014

GBM 1.598 ± 0.087 0.091 ± 0.007 0.635 ± 0.030 0.582 ± 0.026 0.071 ± 0.053 1.011 ± 0.016 0.000 ± 0.007 1.006 ± 0.015 -0.003 ± 0.017
RSF 1.640 ± 0.163 0.087 ± 0.008 0.628 ± 0.037 0.575 ± 0.033 0.077 ± 0.057 1.016 ± 0.033 0.002 ± 0.009 1.001 ± 0.020 0.005 ± 0.017

DSM(LogNorm) 1.613 ± 0.088 0.095 ± 0.008 0.622 ± 0.051 0.548 ± 0.036 13.508 ± 1.830 1.002 ± 0.013 -0.010 ± 0.005 0.983 ± 0.015 0.014 ± 0.017
DSM(Weibull) 1.643 ± 0.075 0.097 ± 0.008 0.620 ± 0.047 0.549 ± 0.027 15.107 ± 1.812 1.018 ± 0.014 -0.021 ± 0.006 0.978 ± 0.015 0.017 ± 0.017

L
G

G
G

B
M

ALD 1.232 ± 0.325 0.108 ± 0.011 0.778 ± 0.021 0.736 ± 0.030 0.450 ± 0.267 0.995 ± 0.047 0.003 ± 0.022 0.996 ± 0.038 0.009 ± 0.040
CQRNN 0.808 ± 0.197 0.375 ± 0.041 0.790 ± 0.024 0.754 ± 0.034 0.543 ± 0.273 0.989 ± 0.071 0.001 ± 0.037 0.990 ± 0.052 0.011 ± 0.058
LogNorm 1.191 ± 0.214 0.382 ± 0.017 0.795 ± 0.022 0.758 ± 0.037 0.327 ± 0.190 1.005 ± 0.025 0.007 ± 0.026 1.020 ± 0.040 -0.018 ± 0.044
DeepSurv 0.785 ± 0.155 0.472 ± 0.024 0.728 ± 0.057 0.664 ± 0.079 0.481 ± 0.219 1.022 ± 0.027 0.002 ± 0.025 1.018 ± 0.040 -0.012 ± 0.046
DeepHit 2.062 ± 0.285 0.377 ± 0.024 0.769 ± 0.022 0.734 ± 0.035 1.176 ± 0.539 1.085 ± 0.034 -0.052 ± 0.023 0.968 ± 0.035 0.066 ± 0.037

GBM 0.621 ± 0.094 0.138 ± 0.012 0.765 ± 0.013 0.734 ± 0.028 0.392 ± 0.163 1.032 ± 0.029 0.009 ± 0.028 1.032 ± 0.035 -0.018 ± 0.037
RSF 1.046 ± 0.325 0.114 ± 0.016 0.759 ± 0.035 0.723 ± 0.031 0.333 ± 0.106 1.030 ± 0.043 -0.005 ± 0.027 0.995 ± 0.038 0.024 ± 0.045

DSM(LogNorm) 0.955 ± 0.083 0.169 ± 0.015 0.577 ± 0.048 0.623 ± 0.052 9.428 ± 1.991 1.026 ± 0.021 -0.034 ± 0.013 0.964 ± 0.034 0.035 ± 0.036
DSM(Weibull) 1.042 ± 0.082 0.171 ± 0.016 0.766 ± 0.023 0.741 ± 0.033 10.756 ± 2.509 1.079 ± 0.017 -0.051 ± 0.012 0.987 ± 0.033 0.019 ± 0.034
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Figure 4. Performance on all datasets, methods, and metrics.

C.2. Calibration Plots.

Figures 5 and 6 present the complete calibration curve fitting results, offering a comprehensive and visual assessment of
model calibration performance. Specifically, Figure 5 compares our method (ALD) with CQRNN, LogNorm, DeepSurv, and
DeepHit, while Figure 6 extends the comparison to GBM, RSF, and both DSM variants (LogNorm and Weibull). Each plot
shows the observed event probabilities against the expected target proportions [0.1, 0.2, . . . , 0.9, 1.0]. The ideal calibration
corresponds to the identity line, where predictions align perfectly with the empirical outcomes. Deviations from this line
highlight calibration errors. These plots provide intuitive insight into the degree and nature of miscalibration across models.
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Figure 5. Calibration curves (linear fit) for ALD, CQRNN, LogNorm, DeepSurv and DeepHit. The blue and orange lines represent the
curves for Cal[S(t | x)] and Cal[f(t | x)], respectively. The gray dashed line represents the idealized result where the slope is one and
the intercept is zero.
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Figure 6. Calibration curves (linear fit) for ALD, GBM, RSF, DSM(LogNorm) and DSM(Weibull). The blue and orange lines represent
the curves for Cal[S(t | x)] and Cal[f(t | x)], respectively. The gray dashed line represents the idealized result where the slope is one
and the intercept is zero.
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C.3. Case Studies

Case Study 1: Robustness Under High Censoring and Quantile Extremes

To further assess the robustness of our model under varying levels of data censoring and across different event-time
quantiles, we conduct experiments following the setup proposed by Nagpal et al. (2021). Specifically, we simulate additional
censoring by uniformly sampling censoring times from the interval [0, T ) and applying them to a randomly selected subset
of uncensored training samples, reducing the proportion of uncensored data to approximately 50% and 25%. Test splits
remain unchanged to ensure unbiased estimation of the time-dependent concordance index (Ctd). This procedure is applied
to the METABRIC and SUPPORT datasets, which differ markedly in their censoring rates and event time distributions.

Figure 7. Ctd for METABRIC dataset at different quantiles of event times for different levels of censoring.

Figure 8. Ctd for SUPPORT dataset at different quantiles of event times for different levels of censoring.

Figures 7 and 8 illustrate Ctd values across three quantiles (25%, 50%, 75%) under default, 25%, and 50% censoring
regimes. On the METABRIC dataset, our method demonstrates strong performance across all settings, particularly at
higher quantiles where skewness and right-censoring are more pronounced. This suggests that our model is well-suited for
capturing long-term survival signals even under substantial information loss due to censoring.

On the more challenging SUPPORT dataset, our model’s performance is comparatively lower, especially under extreme
censoring. This outcome can be attributed to the SUPPORT data’s distributional properties, which deviate significantly
from the ALD assumption and exhibit heavy skewness and short survival times. Nevertheless, our method still matches
the performance of DSM-based baselines, indicating that it retains stable and competitive predictive behavior even under
distributional mismatch and extreme censoring.
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Overall, this analysis confirms the resilience of our method to both reduced observed events and variability in event-time
horizons, with particularly strong performance on datasets aligned with ALD assumptions.

Case Study 2: Capturing Diverse Survival Patterns

To assess the expressiveness of our model in characterizing heterogeneous survival behaviors, we perform a clustering-based
analysis on both real-world and synthetic datasets.

Figure 9. Clustered survival patterns in real datasets estimated by ALD and DeepHit.

Figure 9 visualizes six representative survival patterns identified via K-means clustering on the estimated parameters from
our model and DeepHit across seven real-world datasets. Each curve represents the average cumulative distribution function
(CDF) within a cluster. Although both models demonstrate the ability to represent distinct survival behaviors, the CDFs
produced by DeepHit consistently converge to one at 1.2maxi yi, which implies that all events are predicted to occur by
that time with high probability (close to 1). This behavior is unlikely in the presence of censoring and indicates a limited
capacity to model long-term survival. In contrast, our model more accurately reflects plausible survival behavior under
right-censoring, with CDFs that appropriately plateau before reaching one.

Figure 10. Worst-estimated instance in each cluster for Gaussian nonlinear dataset (best synthetic dataset).

We extend this analysis to synthetic datasets where ground-truth CDFs are available, allowing a more rigorous evaluation. In
Figures 10 and 11, we compare the worst-estimated instance (based on Wasserstein distance) within each of six clusters for
the best-case dataset (Gaussian nonlinear) and most challenging dataset (LogNorm med), respectively. In both cases, our
method consistently yields lower Wasserstein distances compared to DeepHit, highlighting its robustness and precision in
modeling diverse survival distributions across various difficulty regimes.

These results collectively demonstrate our model’s enhanced ability to recover realistic and heterogeneous survival patterns,
both in real-world settings and under controlled synthetic evaluations.
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Figure 11. Worst-estimated instance in each cluster for LogNorm med dataset (most challenging synthetic dataset).

Case Study 3: Alternative Distribution Summaries

To examine the flexibility of our probabilistic model, we evaluate its predictive performance under three different distribution
summaries: mean, median, and mode. While the mean serves as the default choice in our main experiments, Table 5 shows
that using the median or mode can lead to improved performance on certain datasets, particularly in MAE and concordance
metrics. This highlights the adaptability of our approach, where different summary statistics can be selected based on the
requirements of downstream evaluation. For example, in datasets with high skewness (e.g., Exponential, LogNorm heavy),
the median often outperforms the mean in terms of MAE. Conversely, the mode may yield better alignment with the
underlying survival dynamics on the real datasets. This case study emphasizes the benefit of having access to a closed-form
survival distribution, allowing flexible downstream use of different summaries without retraining.

Table 5. Full results table for all datasets, the ALD method (Mean, Median, Mode), and metrics. The values represent the mean ± 1
standard error on the test set over 10 runs.

Dataset Method MAE IBS Harrell’s C-index Uno’s C-index CensDcal Cal[S(t|x)](Slope) Cal[S(t|x)](Intercept) Cal[f(t|x)](Slope) Cal[f(t|x)](Intercept)

ald (Mean) 0.865 ± 1.336 0.653 ± 0.014 0.648 ± 0.011
Norm linear ald (Median) 0.217 ± 0.037 0.278 ± 0.008 0.654 ± 0.012 0.682 ± 0.037 0.407 ± 0.343 1.027 ± 0.042 -0.016 ± 0.037 1.025 ± 0.016 0.005 ± 0.030

ald (Mode) 0.689 ± 0.186 0.657 ± 0.008 0.718 ± 0.006

ald (Mean) 0.243 ± 0.080 0.670 ± 0.015 0.644 ± 0.016
Norm non-lin ald (Median) 0.253 ± 0.073 0.212 ± 0.006 0.667 ± 0.015 0.582 ± 0.029 0.406 ± 0.179 1.038 ± 0.025 -0.016 ± 0.040 1.072 ± 0.021 -0.011 ± 0.015

ald (Mode) 0.438 ± 0.089 0.632 ± 0.060 0.573 ± 0.054

ald (Mean) 0.473 ± 0.344 0.785 ± 0.010 0.703 ± 0.020
Norm uniform ald (Median) 0.392 ± 0.196 0.045 ± 0.002 0.785 ± 0.011 0.696 ± 0.013 0.115 ± 0.030 1.016 ± 0.014 -0.006 ± 0.021 1.019 ± 0.020 0.002 ± 0.016

ald (Mode) 0.613 ± 0.118 0.788 ± 0.012 0.696 ± 0.014

ald (Mean) 2.942 ± 2.389 0.560 ± 0.008 0.560 ± 0.007
Exponential ald (Median) 1.088 ± 0.308 0.309 ± 0.018 0.559 ± 0.010 0.553 ± 0.020 0.432 ± 0.405 0.964 ± 0.049 0.016 ± 0.053 0.978 ± 0.047 -0.015 ± 0.014

ald (Mode) 5.009 ± 0.235 0.556 ± 0.011 0.555 ± 0.020

ald (Mean) 5.134 ± 9.533 0.768 ± 0.009 0.763 ± 0.010
Weibull ald (Median) 0.484 ± 0.059 0.219 ± 0.028 0.767 ± 0.006 0.691 ± 0.023 0.648 ± 0.511 0.993 ± 0.049 0.021 ± 0.060 1.044 ± 0.023 -0.023 ± 0.033

ald (Mode) 1.163 ± 0.340 0.750 ± 0.008 0.689 ± 0.023

ald (Mean) 0.363 ± 0.068 0.588 ± 0.014 0.585 ± 0.014
LogNorm ald (Median) 0.533 ± 0.097 0.376 ± 0.013 0.589 ± 0.015 0.510 ± 0.023 0.256 ± 0.150 1.011 ± 0.028 -0.004 ± 0.029 1.005 ± 0.021 0.006 ± 0.011

ald (Mode) 1.733 ± 0.190 0.549 ± 0.043 0.496 ± 0.020

ald (Mean) 0.667 ± 0.139 0.919 ± 0.007 0.870 ± 0.029
Norm heavy ald (Median) 0.454 ± 0.081 0.019 ± 0.001 0.916 ± 0.009 0.802 ± 0.008 0.256 ± 0.150 1.011 ± 0.028 -0.004 ± 0.029 1.005 ± 0.021 0.006 ± 0.011

ald (Mode) 0.627 ± 0.072 0.911 ± 0.012 0.802 ± 0.008

ald (Mean) 0.238 ± 0.036 0.894 ± 0.005 0.872 ± 0.004
Norm med. ald (Median) 0.298 ± 0.036 0.047 ± 0.003 0.889 ± 0.006 0.868 ± 0.011 0.157 ± 0.044 0.997 ± 0.012 0.004 ± 0.014 1.058 ± 0.012 -0.036 ± 0.011

ald (Mode) 0.388 ± 0.047 0.884 ± 0.007 0.849 ± 0.011

ald (Mean) 0.236 ± 0.051 0.882 ± 0.004 0.874 ± 0.004
Norm light ald (Median) 0.255 ± 0.016 0.090 ± 0.007 0.880 ± 0.003 0.853 ± 0.017 0.339 ± 0.076 0.998 ± 0.014 0.005 ± 0.021 1.087 ± 0.017 -0.050 ± 0.011

ald (Mode) 0.328 ± 0.029 0.876 ± 0.003 0.850 ± 0.017

ald (Mean) 0.404 ± 0.078 0.890 ± 0.005 0.847 ± 0.008
Norm same ald (Median) 0.281 ± 0.022 0.066 ± 0.003 0.888 ± 0.006 0.886 ± 0.004 0.114 ± 0.036 1.004 ± 0.018 0.010 ± 0.022 1.007 ± 0.014 0.006 ± 0.012

ald (Mode) 0.518 ± 0.065 0.881 ± 0.008 0.880 ± 0.004

ald (Mean) 0.385 ± 0.193 0.777 ± 0.012 0.727 ± 0.022
LogNorm heavy ald (Median) 0.244 ± 0.042 0.095 ± 0.006 0.779 ± 0.011 0.749 ± 0.011 0.043 ± 0.019 0.998 ± 0.014 -0.002 ± 0.014 1.003 ± 0.014 -0.005 ± 0.005

ald (Mode) 0.898 ± 0.045 0.756 ± 0.029 0.724 ± 0.012
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Dataset Method MAE IBS Harrell’s C-index Uno’s C-index CensDcal Cal[S(t|x)](Slope) Cal[S(t|x)](Intercept) Cal[f(t|x)](Slope) Cal[f(t|x)](Intercept)

ald (Mean) 0.178 ± 0.046 0.747 ± 0.004 0.718 ± 0.007
LogNorm med. ald (Median) 0.247 ± 0.024 0.174 ± 0.006 0.748 ± 0.004 0.749 ± 0.013 0.087 ± 0.052 1.002 ± 0.009 -0.001 ± 0.012 1.008 ± 0.017 -0.004 ± 0.010

ald (Mode) 0.896 ± 0.082 0.723 ± 0.013 0.709 ± 0.012

ald (Mean) 0.184 ± 0.035 0.725 ± 0.007 0.713 ± 0.008
LogNorm light ald (Median) 0.221 ± 0.064 0.310 ± 0.011 0.725 ± 0.007 0.696 ± 0.020 0.185 ± 0.095 1.001 ± 0.014 -0.001 ± 0.016 0.985 ± 0.015 0.008 ± 0.009

ald (Mode) 0.921 ± 0.053 0.702 ± 0.014 0.697 ± 0.016

ald (Mean) 0.191 ± 0.044 0.739 ± 0.009 0.697 ± 0.008
LogNorm same ald (Median) 0.259 ± 0.062 0.154 ± 0.006 0.740 ± 0.010 0.751 ± 0.014 0.076 ± 0.057 1.009 ± 0.011 -0.005 ± 0.010 1.012 ± 0.011 -0.001 ± 0.008

ald (Mode) 0.943 ± 0.043 0.710 ± 0.007 0.715 ± 0.014

ald (Mean) 1.626 ± 0.194 0.637 ± 0.021 0.633 ± 0.031
METABRIC ald (Median) 1.123 ± 0.088 0.245 ± 0.012 0.640 ± 0.018 0.588 ± 0.031 0.293 ± 0.125 0.993 ± 0.028 -0.008 ± 0.024 1.001 ± 0.033 -0.012 ± 0.016

ald (Mode) 0.856 ± 0.039 0.605 ± 0.021 0.547 ± 0.018

ald (Mean) 2.196 ± 0.612 0.823 ± 0.016 0.824 ± 0.014
WHAS ald (Median) 1.118 ± 0.152 0.134 ± 0.013 0.784 ± 0.043 0.765 ± 0.017 0.198 ± 0.094 0.981 ± 0.021 0.009 ± 0.023 0.972 ± 0.027 0.003 ± 0.016

ald (Mode) 0.916 ± 0.101 0.802 ± 0.018 0.806 ± 0.022

ald (Mean) 1.121 ± 0.107 0.568 ± 0.015 0.572 ± 0.015
SUPPORT ald (Median) 0.856 ± 0.062 0.362 ± 0.013 0.572 ± 0.015 0.561 ± 0.015 2.197 ± 0.667 0.900 ± 0.056 0.084 ± 0.046 1.084 ± 0.043 -0.113 ± 0.023

ald (Mode) 0.421 ± 0.051 0.532 ± 0.016 0.522 ± 0.044

ald (Mean) 1.713 ± 0.208 0.671 ± 0.014 0.665 ± 0.013
GBSG ald (Median) 1.161 ± 0.094 0.278 ± 0.014 0.672 ± 0.010 0.590 ± 0.035 0.283 ± 0.106 0.977 ± 0.025 0.014 ± 0.034 1.000 ± 0.035 -0.018 ± 0.016

ald (Mode) 0.664 ± 0.072 0.657 ± 0.023 0.554 ± 0.062

ald (Mean) 3.002 ± 1.497 0.561 ± 0.037 0.547 ± 0.040
TMBImmuno ald (Median) 1.085 ± 0.191 0.245 ± 0.015 0.562 ± 0.032 0.548 ± 0.030 0.835 ± 0.604 0.994 ± 0.021 0.004 ± 0.025 1.053 ± 0.045 -0.038 ± 0.025

ald (Mode) 0.609 ± 0.069 0.546 ± 0.024 0.531 ± 0.025

ald (Mean) 2.593 ± 0.289 0.617 ± 0.032 0.568 ± 0.036
BreastMSK ald (Median) 1.116 ± 0.394 0.086 ± 0.008 0.457 ± 0.068 0.538 ± 0.083 0.066 ± 0.027 0.993 ± 0.020 0.003 ± 0.021 1.002 ± 0.019 -0.007 ± 0.010

ald (Mode) 0.686 ± 0.077 0.591 ± 0.071 0.515 ± 0.090

ald (Mean) 1.232 ± 0.325 0.778 ± 0.021 0.736 ± 0.030
LGGGBM ald (Median) 0.846 ± 0.239 0.108 ± 0.011 0.785 ± 0.030 0.750 ± 0.043 0.450 ± 0.267 0.996 ± 0.038 0.008 ± 0.040 0.995 ± 0.047 0.003 ± 0.022

ald (Mode) 0.497 ± 0.100 0.777 ± 0.023 0.739 ± 0.058

Case Study 4: Empirical Behavior of FALD(0|x)

Given that the Asymmetric Laplace Distribution (ALD) has non-zero support over the negative time domain, we investigate
whether the model assigns substantial probability mass to implausible event times t < 0. Specifically, we analyze the
empirical distribution of FALD(0 | x)—the predicted probability that an event occurs before time zero.

Table 6. The 50th, 75th and 95th percentiles of the CDF estimation for t = 0, FALD(0 | x), under the Asymmetric Laplace Distribution.

Dataset 50th Percentile 75th Percentile 95th Percentile

Norm linear 0.0001 0.0007 0.0018
Norm non-linear 1.9878e-06 0.0001 0.0007
Norm uniform 2.9879e-05 0.0028 0.0124
Exponential 0.0194 0.0665 0.1204

Weibull 0.0015 0.0032 0.0046
LogNorm 0.0031 0.0109 0.0134

Norm heavy 1.1804e-06 2.6128e-05 0.0007
Norm med 4.2222e-06 3.5778e-05 0.0004
Norm light 1.1978e-05 0.0001 0.0009
Norm same 7.8051e-07 4.8624e-06 0.0001

LogNorm heavy 0.0001 0.0014 0.0142
LogNorm med 0.0001 0.0007 0.0082
LogNorm light 0.0004 0.0024 0.0150
LogNorm same 0.0004 0.0021 0.0123

METABRIC 0.0068 0.0123 0.0292
WHAS 0.0046 0.0151 0.0507

SUPPORT 0.0957 0.1393 0.2035
GBSG 0.0248 0.0394 0.0668

TMBImmuno 0.0523 0.0681 0.0878
BreastMSK 0.0006 0.0008 0.0130
LGGGBM 0.0570 0.0842 0.1356

Table 6 reports the 50th, 75th, and 95th percentiles of FALD(0 | x) across 21 datasets. The results indicate that this quantity
remains close to zero in the vast majority of cases. Even at the 95th percentile, most values remain below 1–2%, suggesting
that the model rarely assigns significant mass to invalid time regions. This empirically confirms that, despite the ALD’s
unbounded support, the learned parameters stay consistent with the temporal constraints of survival analysis.

Case Study 5: Limitations of ALD on SUPPORT

The model’s performance on the SUPPORT dataset is comparatively lower than on other benchmarks. This shortcoming
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can largely be attributed to the assumption of the Asymmetric Laplace Distribution (ALD), which may not be universally
suitable across datasets. In particular, the SUPPORT dataset exhibits pronounced skewness and a narrow range of event
times, as visualized in Figure 12. A substantial concentration of events occurs near zero, resulting in extreme quantile values
and rendering the distribution challenging to calibrate, especially in the early time horizon (i.e., t → 0).

Figure 12. Distribution of the SUPPORT dataset for the training set and test set.

In response to this skewness, the model assigns high probability mass to early intervals while allocating limited capacity to
later time points. This imbalance compromises calibration accuracy across the full temporal range. Nonetheless, the resulting
calibration metrics remain within acceptable bounds and are generally comparable to those of the baselines. Furthermore,
as shown in Appendix C.1 and Table 2, our model still achieves competitive performance on slope and intercept-based
calibration metrics, reaffirming its robustness despite the dataset-specific limitations.
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