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Abstract

Hierarchical Navigable Small World (HNSW)001
graph is used for approximate nearest neighbor002
(ANN). However, HNSW’s fixed parameters003
can degrade performance when user query dis-004
tributions misalign with training data. In this005
work, we propose a Deep Q-Network (DQN)-006
based framework named Adaptive Deep Q-007
Network (ADQN) to overcome this prob-008
lem. ADQN models HNSW optimization as009
a Markov Decision Process, enabling adapta-010
tion to discrepancies between user query and011
training data distributions without requiring re-012
indexing. We evaluated our system on DBpe-013
dia, IGB and MS Marco datasets with adjust-014
ments of changing user preferences and adap-015
tive query embeddings, and results show that016
our ADQN method achieves superior accuracy-017
latency trade-offs, lower maintenance overhead,018
and remains robust under evolving conditions,019
which can improve the performance of ANN020
through adaptive search.021

1 Introduction022

Hierarchical Navigable Small World023

(HNSW) (Malkov and Yashunin, 2016) graphs are024

a cornerstone for efficient Approximate Nearest025

Neighbor (ANN) search, offering high recall and026

low latency in high-dimensional spaces. Their027

effectiveness makes them a suitable choice for028

applications like Retrieval-Augmented Generation029

(RAG) (Lewis et al., 2021), which critically030

relies on fast and accurate retrieval from large031

knowledge bases. However, the performance of032

HNSW is highly sensitive to its hyperparameters033

(e.g., efc,M, ef ), which are typically configured034

statically. Such fixed parameters can lead to subop-035

timal performance when faced with non-alignment036

between user query distributions and training037

data, or in dynamic environments characterized038

by continuous data updates or evolving user039

preferences. Static configurations struggle to040

maintain an optimal balance across retrieval 041

accuracy, query latency, and index maintenance 042

overhead under these changing conditions. 043

To overcome these limitations, we propose 044

the Adaptive Deep Q-Network (ADQN), a novel 045

framework that leverages Deep Q-Networks 046

(DQNs) (Hasselt, 2010) to dynamically optimize 047

HNSW index parameters. As illustrated in Figure 1 048

(conceptualizing ADQN’s role in a RAG pipeline), 049

ADQN models the HNSW parameter tuning pro- 050

cess as a Markov Decision Process (MDP). The 051

state in this MDP represents the current HNSW 052

index configuration and recent performance met- 053

rics, while actions involve incremental adjustments 054

to the HNSW parameters. By learning a policy 055

through interactions, ADQN can adaptively respond 056

to real-time performance feedback and environmen- 057

tal changes, such as incremental data insertions or 058

query distribution shifts, without necessarily re- 059

quiring full and frequent re-indexing. Our ablation 060

studies (Section 3.5) indicate that a Double DQN 061

with Prioritized Experience Replay offers the best 062

performance-efficiency trade-off for this task, out- 063

performing other Rainbow DQN components and 064

alternative RL algorithms like PPO (Proximal Pol- 065

icy Optimization) in terms of reward convergence 066

and stability for discrete action spaces (see Section 067

3.4 for comparative analysis). 068

The core contribution of ADQN is its ability to 069

learn a policy that balances three competing objec- 070

tives: maximizing retrieval accuracy (Recall@k), 071

minimizing query latency, and reducing mainte- 072

nance overhead. The DQN agent learns to make tar- 073

geted parameter adjustments, thereby minimizing 074

disruptions common with periodic full re-indexing 075

while sustaining high performance in dynamic set- 076

tings. 077

We conduct a comprehensive evaluation of 078

ADQN across three diverse datasets: DBpedia (a 079

knowledge graph), IGB (a high-dimensional graph 080

benchmark), and MS MARCO (a standard dense re- 081
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Figure 1: An example of ADQN in RAG.

trieval passage ranking benchmark). Experiments082

span three challenging scenarios: static corpus083

tuning (S1), incremental data insertion (S2), and084

query distribution drift (S3). Our results (Section 4)085

demonstrate that ADQN consistently achieves supe-086

rior Pareto-optimal trade-offs in accuracy, latency,087

and maintenance cost compared to statically config-088

ured HNSW and other optimization baselines like089

Optuna-BO and PPO. Notably, on the MS MARCO090

benchmark, ADQN effectively optimizes HNSW for091

a real-world NLP retrieval task, underscoring its092

practical applicability.093

2 Related Works094

2.1 Approximate Nearest Neighbor Search095

and HNSW096

The search for efficient ANN methods has evolved097

rapidly, with HNSW graphs emerging as a leading098

approach. HNSW utilizes a multi-layered graph099

structure where each layer represents a subset of100

the data, and edges are formed based on prox-101

imity. This hierarchical organization allows for102

faster search times and high recall rates, outper-103

forming previous methods like k-d trees and Lo-104

cality Sensitive Hashing (LSH), particularly in105

high-dimensional spaces where traditional meth-106

ods struggle. (Malkov and Yashunin, 2020)107

Optimizing HNSW has been an area of active108

research. Speed-ANN (Peng et al., 2022) improves109

search efficiency by introducing intra-query paral-110

lelism, which accelerates query processing with-111

out sacrificing accuracy. Similar optimizations112

delving into HNSW inner structures and exploring 113

parallel computing in GPU are achieved by Zhao 114

et al. (2020) with SONG. Foster and Kimia (2023) 115

further explores the computational enhancements 116

of HNSW in very large datasets. Coleman et al. 117

(2021) demonstrate the significance of graph re- 118

ordering for cache-efficient ANN. Probalistic rout- 119

ing is also introduced by Lu et al. (2024) to identify 120

graph nodes for exact distance calculation in graph- 121

based ANNs. However, most existing methods 122

still rely on manual parameter tuning, which does 123

not adapt to evolving query distributions or data 124

updates. 125

2.2 Reinforcement Learning (RL) for 126

Hyperparameter Tuning 127

DQN for dynamic hyperparameter optimization 128

have been explored and created a lot of works. 129

Zeng et al. (2023) applied DQNs for hyperparam- 130

eter tuning in Genetic Algorithms, showing that 131

DQNs outperform traditional optimization methods 132

like grid search for problems such as the Traveling 133

Salesman Problem (TSP). Similarly, Dong et al. 134

(2021) demonstrated how DQN can optimize pa- 135

rameters for object tracking in real-time, improving 136

tracking accuracy compared to fixed hyperparame- 137

ters. 138

In the context of graph-based search methods, 139

Oyamada et al. (2020) proposed a meta-learning ap- 140

proach to automatically recommend suitable graph 141

configurations for ANN search, reducing the time 142

spent in parameter tuning. Although effective, 143

these methods still rely on pre-defined heuristics 144
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and may not be as adaptable or efficient in environ-145

ments with changing data distributions. Moreover,146

not combined with incremental update of HNSW147

indexing, the maintenance time consumed in fre-148

quent real-time data updates remained undeveloped149

(Oyamada et al., 2023).150

2.3 DQN for Adaptive ANN Hyperparameter151

Tuning152

DQN for HNSW parameter tuning automati-153

cally adjusts the graph’s parameters based on ob-154

served performance, improving search accuracy155

while minimizing maintenance costs. Similar to156

Dantas and Pozo (2021), DQN can be used to fine-157

tune ANN search methods, learning optimal con-158

figurations based on real-time rewards, and out-159

performing traditional methods that rely on fixed160

parameters or manual adjustments.161

The development of HNSW has significantly162

improved the efficiency of ANN search methods,163

but challenges remain in dynamically adapting to164

evolving datasets. DQN offers a promising solu-165

tion by enabling continuous optimization of HNSW166

parameters, allowing for better performance with167

minimal re-indexing. In this research, the integra-168

tion of DQNs into ANN systems will represent169

a novel direction for scalable and efficient high-170

dimensional search in dynamic environments.171

2.4 Enhancements to Deep Q-Networks172

While the standard DQN provides a powerful learn-173

ing framework, its performance can be significantly174

improved by several extensions.175

The Vanilla DQN serves as our foundation, uti-176

lizing a deep neural network to approximate action-177

values Q(s, a), with experience replay and a tar-178

get network for stability. To address its potential179

Q-value overestimation, we consider Double Q-180

Learning (Double DQN) (Hasselt, 2010), which181

decouples action selection (via the policy network)182

from action evaluation (via the target network),183

leading to more stable learning.184

Sample efficiency is enhanced through Prior-185

itized Experience Replay (PER) (Schaul et al.,186

2016). PER replays transitions with higher TD-187

errors more frequently, allowing the agent to fo-188

cus on more informative experiences. The Duel-189

ing Network Architecture (Wang et al., 2016) of-190

fers another improvement by separately estimating191

state values V (s) and action advantages A(s, a).192

This can lead to better policy evaluation, espe-193

cially in states where actions have minimal dif-194

ferential impact. Finally, Multi-step Learning 195

(e.g., 3-step returns) looks ahead multiple steps 196

(R(n)
t =

∑n−1
k=0 γ

krt+k + γnmaxa′ Q(st+n, a
′)), 197

propagating rewards faster and often reducing vari- 198

ance compared to 1-step TD learning. 199

As detailed in Section 3.5, our ADQN implemen- 200

tation combines Double DQN and PER, finding 201

this to be the most effective and efficient configu- 202

ration for the HNSW tuning task. The subsequent 203

sections present experimental results. 204

3 Methodology 205

We formalize the problem of adaptive HNSW in- 206

dex tuning as an MDP and present a theoretically 207

grounded DQN approach to solve it. This section 208

is structured as follows: Section 3.1 introduces a 209

performance model for HNSW; Section 3.2 formal- 210

izes the MDP; Section 3.3 describes the learning 211

algorithm; Section 3.5 presents an ablation over 212

Rainbow DQN (Hessel et al., 2017) components; 213

Section 3.4 compares alternative RL methods; Sec- 214

tion 3.6 defines three benchmark scenarios. 215

3.1 Analytical Performance Model 216

Recall. Let θ = (efc,M, ef) be the HNSW pa- 217

rameters, where we denote efc as efconstruction, 218

and ef as efsearch. During construction, the prob- 219

ability of connecting two points declines exponen- 220

tially with distance due to the small-world nature 221

of HNSW graphs. Given this, we model the ex- 222

pected radius after efc construction attempts and 223

M connections as: 224

r(efc,M) = r0 · exp
(
−αcMefc

d

)
, (1) 225

where αc is a decay constant and d is the embed- 226

ding dimensionality. During query time, the chance 227

of capturing the true nearest neighbor grows with 228

ef , giving: 229

A(θ) = 1−KA exp

(
−αcMefc

d

)(
1− exp

(
−αsef

k

))
(2) 230

This expression reflects diminishing returns in 231

both dimensions: 232

∂2A

∂M2
< 0,

∂2A

∂ef2
c

< 0. (3) 233

The above gradient decay justifies a discrete and 234

bounded action space. 235
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Latency. Query latency arises from search candi-236

date expansion and memory overhead. We model:237

L(θ) = KL (c1ef logN + c2ρef + c3σ(M, ef)) ,
(4)238

where c1, c2, c3 are system-specific constants, ρ is239

the distance computation cost, and σ(M, ef) mod-240

els data structure overhead.241

Maintenance Cost. Cost accumulates from in-242

dex updates, which constitutes most of the mainte-243

nance cost:244

Ct(θ) ≈

{
κ1utM logNt incremental insert,
κ2Nt(efc + logNt) full rebuild.

(5)245

3.2 MDP Specification246

State Space S. Each state encodes the current247

index and recent performance trends:248

st = [θt, At, Lt,∆At,∆Lt, ut], (6)249

where A,L are EWMA-smoothed accuracy and250

latency over the last w = 3000 queries, ∆ denotes251

first differences, and ut is the count of inserts since252

last rebuild.253

Action SpaceA. Nine discrete actions allow con-254

trolled parameter updates:255

Action Description

a0 Increase efc by 10
a1 Decrease efc by 10
a2 Increase M by 2
a3 Decrease M by 2
a4 Increase ef by 5
a5 Decrease ef by 5
a6 Restore previous parameters
a7 Trigger index rebuild
a8 Reset to defaults (200, 16, 50)

Table 1: Action Space Definition

Reward Function. The scalar reward balances256

accuracy, latency, and maintenance:257

Rt = αAt − βLt − γCt, (7)258

with β = β0/L0, γ = γ0/C0 for scale invariance,259

and α = 30.260

Safety Mechanisms and Parameter Bounds. If261

At < τA or ut > τu, action a7 is forcibly ex-262

ecuted to preserve retrieval quality. All parame-263

ters are clamped to efc ∈ [10, 200], M ∈ [4, 64],264

ef ∈ [10, 200]. These ranges are selected based on265

empirical Pareto frontiers and verified via sensitiv-266

ity analysis in Appendix B.267

3.3 Learning Algorithm 268

We adopt a Double DQN with Prioritized Expe- 269

rience Replay (PER). The Q-network is a 2-layer 270

MLP with 128 hidden units each and ReLU activa- 271

tions. 272

Algorithm 1 Adaptive DQN for ANN Parameter
Tuning

1: Initialize Q-network Qw, target network
Qw− ← Qw

2: Initialize prioritized replay buffer D
3: for each episode do
4: Observe initial state s0
5: for t = 0 to T do
6: Select action at via ϵ-greedy policy
7: Apply action at, observe rt, st+1

8: Store (st, at, rt, st+1) in D
9: Sample batch using PER; compute tar-

gets via Double Q-learning
10: Update Qw via gradient descent
11: if tmod target_update == 0 then
12: Qw− ← Qw

13: end if
14: end for
15: end for

3.4 Comparison with Alternative RL Methods 273

We compare our ADQN framework with PPO, A3C 274

(Asynchronous Advantage Actor-Critic) (Mnih 275

et al., 2016), and SAC (Soft Actor Critic) (Haarnoja 276

et al., 2018). PPO is slower to react to non- 277

stationary shifts, A3C is less stable under sparse 278

updates, and SAC’s continuous action space is un- 279

necessary for discrete HNSW tuning. Empirically, 280

ADQN achieves superior reward/cost efficiency 281

across all three evaluation scenarios. 282

Method Reward Std. Dev. CPU Time (s)

ADQN 29.84 0.76 440.3
A3C 26.50 1.50 465.2
PPO 27.15 0.66 450.1
SAC 26.22 1.62 439.9

Table 2: Average reward over final 30 steps and CPU
time (20 runs) on DBpedia (S1 setup). Rewards are
scaled for comparison.

3.5 Rainbow DQN Ablation Study 283

Our ADQN, using Double DQN + PER (Table 3), 284

offers the best reward/CPU trade-off. Adding PER 285
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to Double DQN provided the largest performance286

jump (reward 27.42 to 29.84).287

Variant Reward ↑ CPU Time (s) ↓

Vanilla DQN 27.45 444.6
+ Double Q 27.42 436.7
+ PER (our choice) 29.84 440.3
+ Dueling 28.25 443.0
+ 3-step Return 28.80 440.7

Table 3: Rainbow DQN component ablation.

3.6 Evaluation Scenarios288

S1 Static Corpus. The dataset is fixed. Reward289

ignores maintenance (γ = 0).290

S2 Incremental Insertion. The dataset grows291

in 200 equal stages. Reward includes full cost.292

Parameters are updated continuously.293

S3 Query Shift. Query distributions drift every294

2k queries via Gaussian perturbations:295

pi(t) =
max{pi(t− 1) + ϵi, 0}∑
j max{pj(t− 1) + ϵj , 0}

,

ϵi ∼ N (0, pi(t− 1)/10).

(8)296

Queries sample noisy embeddings: q = vi +297

N (0, σ2I).298

4 Experiments299

We evaluate the proposed ADQN framework across300

three real-world ANN datasets and multiple search301

scenarios, highlighting its ability to adaptively op-302

timize HNSW configurations in both static and dy-303

namic environments. We benchmark ADQN against304

existing optimization methods and analyze its be-305

havior in terms of performance trade-offs, reward306

stability, and cost efficiency. All experiments are307

repeated over 3 random seeds, and reported results308

show mean metrics.309

4.1 Datasets and Setup310

The evaluation is conducted on three datasets: DB-311

pedia (Lehmann et al., 2015) (188,269 entity vec-312

tors, 128 dimensions)1; IGB (Khatua et al., 2023)313

(Illinois Graph Benchmark, heterogeneous ver-314

sion, 80,000 vectors, 1024 dimensions)2; and MS315

1https://downloads.dbpedia.org/repo/dbpedia/generic/
categories/2022.12.01/categories_lang=en_articles.ttl.bz2

2https://github.com/IllinoisGraphBenchmark/IGB-
Datasets

MARCO (Campos et al., 2016) (dense retrieval 316

benchmark, 150,000 sentence embeddings, 384 di- 317

mensions)3. 318

These datasets are evaluated under three scenar- 319

ios: (i) S1: Static corpus; (ii) S2: Dynamic corpus 320

with incremental node insertions (100–300 new 321

vectors per step); (iii) S3: Static corpus with evolv- 322

ing query distribution (user drift). At each RL agent 323

step, 3,000 user queries are simulated. ADQN in- 324

teracts with a FAISS-based HNSW index, adjusting 325

parameters online. Queries return top-10 neighbors, 326

with accuracy measured by Recall@10. 327

4.2 Evaluation Metrics and Baselines 328

We report three key metrics: (1) Recall@10 (A); 329

(2) Latency (L, average time per query in ms); 330

Maintenance Cost (C): Wall-clock time per 3000 331

queries, covering 100–300 node insertions, online 332

network updates, GT computation, and parameter 333

adjustment or rebuild. For breakdown in ADQN, 334

see Appendix D. 335

For MS MARCO dataset, we also introduce 336

MRR@10 (Mean Reciprocal Rank at 10) and 337

NDCG@10 (Normalized Discounted Cumulative 338

Gain at 10), as commonly used in NLP tasks, to 339

further illustrate the performance. 340

ADQN is benchmarked against: Default-HNSW 341

(fixed efc = 200,M = 16, ef = 50); static 342

optimizers Grid Oracle (exhaustive search for 343

best held-out configuration) and Optuna-BO (Ak- 344

iba et al., 2019) (Bayesian Optimization); PPO 345

(Raileanu and Fergus, 2021) as an RL alternative; 346

and IVF-PQ (FAISS’s Inverted File with Product 347

Quantization) (Noh et al., 2021) as a non-graph 348

ANN baseline. 349

During dynamic learning, full recall is costly. 350

We use a stratified caching scheme for internal GT 351

(2,000 initial points, 10–20 new points per step; 352

cache recomputed on rebuild). Table 4 shows this 353

internal GT sampling maintains <0.01 absolute er- 354

ror from external recall. 355

Dataset Mean gap Max gap Std-dev

DBpedia 0.007 0.028 0.008
IGB 0.009 0.025 0.010
MS MARCO 0.006 0.015 0.007

Table 4: Internal vs external Recall@10 absolute
error. Validating the sampling strategy.

3https://msmarco.z22.web.core.windows.net/
msmarcoranking/collection.tar.gz
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Method DBpedia (S1) MS MARCO (S2) IGB (S2)
Recall@10 Lat Recall@10 Lat Maint. Recall@10 Lat Maint.

Default-HNSW 0.936 0.018 0.902 0.075 11.03 0.942 0.197 13.94
Grid Oracle 0.996 0.030 0.973 0.219 224.84 0.988 0.495 185.48
Optuna-BO 0.996 0.034 0.960 0.172 49.168 0.987 0.474 39.80
PPO 0.909 0.009 0.897 0.076 2.84 0.943 0.218 4.082
IVF-PQ 0.833 0.134 0.244 0.027 4.73 0.211 0.018 6.693
ADQN (Ours) 0.976 0.011 0.911 0.079 4.06 0.947 0.208 3.448

Table 5: Performance Comparison (Part 1): DBpedia (S1), MS MARCO (S2), IGB (S2). Latency (Lat) is in
milliseconds. Maintenance Cost (Mat.) is in seconds per step for S2 datasets.

Method DBpedia (S2) DBpedia (S3) MS MARCO (S3)
Rec@10 Lat Maint. Rec@10 Lat Maint. Rec@10 MRR@10 NDCG@10 Lat Maint.

Default-HNSW 0.910 0.014 3.29 0.927 0.013 49.14 0.882 0.986 0.916 0.077 13.96
Grid Oracle 0.988 0.030 41.24 0.984 0.031 602.7 0.956 0.999 0.971 0.227 287.5
Optuna-BO 0.976 0.035 8.96 0.969 0.036 94.42 0.949 0.997 0.962 0.189 52.60
PPO 0.881 0.014 1.81 0.925 0.014 8.80 0.893 0.990 0.924 0.087 10.53
IVF-PQ 0.568 0.048 1.75 0.526 0.031 12.29 0.237 0.669 0.424 0.034 3.77
ADQN (Ours) 0.940 0.021 1.90 0.942 0.011 8.06 0.913 0.995 0.940 0.090 5.87

Table 6: Performance Comparison (Part 2): DBpedia (S2), DBpedia (S3), MS MARCO (S3). Latency (Lat) in
milliseconds, Maintenance (Mat.) in seconds per step.
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Figure 2: Performance under Incremental Insertion (S2). ADQN demonstrates stable recall with significantly lower
maintenance overhead. Note: Figure filenames correspond to IGB, DBpedia S2, MS MARCO S2 recall, and IGB
maintenance respectively, as per user filenames.
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Figure 3: ADQN adapts quickly to changing user preferences, and maintains stable retrieval quality across datasets.

4.3 Static Corpus (S1)356

In this cold-start setting on DBpedia (fixed cor-357

pus, γcost = 0), ADQN optimizes for accuracy-358

latency balance. Figure 4 shows ADQN on the359

Pareto frontier, outperforming Default-HNSW and360

offering better trade-offs than computationally in-361

tensive Grid Oracle or Optuna-BO. The reward362

surface (Figure 9) supports ADQN’s effective local363

search. IVF-PQ performs poorly. Results are in364

Table 5 (DBpedia S1 column).365
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Figure 4: Pareto Frontier (Recall@10 vs Latency) on
DBpedia (S1).

4.4 Incremental Insertion (S2)366

In the dynamic S2 scenario (100-300 new vec-367

tors/step), ADQN excels in efficiency and maintains368

robust performance, as detailed in Tables 5 and 6.369

On IGB, ADQN (R@10 0.946, Mat. 3.448s) cuts370

maintenance by 91.5-98.1% compared to Optuna-371

BO/Grid Oracle, with a minimal <4.5% recall trade-372

off. This demonstrates ADQN’s ability to handle373

high-dimensional data growth efficiently, achiev-374

ing near-peak recall without the prohibitive over-375

head of exhaustive re-optimization. On DBpe-376

dia (S2), ADQN (R@10 0.940, Mat. 1.90s) re- 377

duces maintenance by 78.7-95.4% versus Optuna- 378

BO/Grid Oracle, while also outperforming PPO’s 379

recall (0.881). For MS MARCO, ADQN (R@10 380

0.911, Mat. 4.06s) cuts maintenance by 91.7-98.2% 381

compared to the static optimizers, achieving this ef- 382

ficiency with competitive recall. This performance 383

on a standard NLP benchmark underscores its suit- 384

ability for real-world applications where both re- 385

trieval quality and operational cost are critical. The 386

S2 performance graphs (Figure 2) visually con- 387

firm ADQN’s stable recall across datasets (Fig- 388

ures 2a, 2b, 2c) and its significantly lower main- 389

tenance overhead (Figure 2d) due to intelligent, 390

safety-triggered rebuilds. This efficiency is vital 391

for dynamic NLP systems like RAG. 392

4.5 Query Distribution Shift (S3) 393

S3 tests adaptation to evolving query patterns 394

(shifts every 2k-3k queries) on a static corpus. On 395

DBpedia (S3), ADQN leads with Recall@10 0.942 396

and lowest latency (0.011ms), at an adaptation cost 397

of 8.064s (Table 6). This is a 97.7-98.6% cost re- 398

duction over re-running Optuna-BO/Grid Oracle. 399

Figure 3a shows ADQN maintaining higher, stabler 400

recall than Default-HNSW and volatile PPO. 401

For MS MARCO (S3, simulated drift based 402

on heatmap), ADQN (R@10 0.913, MRR@10 403

0.995, NDCG@10 0.940) outperforms Static- 404

Default (R@10 0.882) by 3.5% in Recall@10 and 405

PPO (R@10 0.893) by 2.2%. While other baselines 406

like Optuna-BO achieved R@10 0.949 with a 10x 407

maintenance cost and 2x latency, ADQN adaptively 408

maintains strong performance across shifts. 409
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4.6 Policy Interpretation and Accuracy410

Reliability411

ADQN’s learned policy, visualized in Figure 5412

(showing action frequencies from a representative413

S2 run, e.g., on IGB), reveals a preference for fine-414

grained adjustments. The agent most frequently415

opts for search beam increases (a4, increasing efs)416

and moderate efc adjustments, while utilizing full417

index rebuilds (a7) sparingly. This behavior under-418

scores ADQN’s cost-aware nature, prioritizing less419

disruptive parameter tuning over frequent, expen-420

sive re-indexing.421

Furthermore, the fidelity of our internal reward422

signal, crucial for effective learning, is confirmed423

by the consistently small gap (mean absolute error424

<0.01 across all datasets) between the internal recall425

(used for reward) and the recall on a fixed external426

evaluation set, as detailed in Table 4. Figure 6 visu-427

ally corroborates this for a representative scenario428

(e.g., MS MARCO S2 training), showing the inter-429

nal accuracy closely tracking the external metric,430

thus validating our online GT sampling strategy for431

reliable reward feedback during dynamic updates.432
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Figure 5: ADQN Action Histogram.
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Figure 6: Internal vs External Recall@10

4.7 Training Insights and Reward Dynamics433

Figure 7 shows consistent improvement and quick434

convergence, with the EWMA-smoothed reward435

typically increasing from initial values around 19 to436

a converged state above 23-24. The observed oscil- 437

lations in raw reward accurately reflect the agent’s 438

response to costs incurred during discrete events 439

like safety-triggered index rebuilds, after which 440

the EWMA trend demonstrates rapid recovery and 441

continued learning. This robust learning pattern is 442

consistent across different experimental setups. 443
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Fig A2: ADQN Training Reward Curve (EWMA Smoothed)

ADQN Raw Reward
ADQN Reward EWMA (span=20)

Figure 7: ADQN Training Reward Curve (S2 example)

4.8 Summary of Findings 444

Across all datasets and scenarios, ADQN achieves 445

an excellent balance of retrieval accuracy, latency, 446

and system overhead (Tables 5 and 6). It signifi- 447

cantly reduces maintenance/adaptation costs by up 448

to 83.6% compared to static baselines while retain- 449

ing high recall in dynamic settings. Its adaptability, 450

particularly on MS MARCO, underscores its value 451

for NLP applications. 452

5 Conclusion 453

This paper presents ADQN, a reinforcement learn- 454

ing framework for adaptive HNSW indexing in 455

ANN search. By modeling tuning as an MDP, 456

ADQN dynamically adjusts ef, efc, and M using 457

Double DQN with prioritized replay, optimizing a 458

reward that balances accuracy, latency, and mainte- 459

nance cost. 460

Our theoretical analysis and empirical results 461

across DBpedia, IGB, and MS MARCO demon- 462

strate that ADQN achieves Pareto-efficient perfor- 463

mance, outperforming static and RL-based base- 464

lines. Key components such as prioritized replay 465

and safety-triggered rebuilds contribute to both ef- 466

fectiveness and stability. 467

ADQN is modular, data-agnostic, and compati- 468

ble with existing ANN systems, making it a practi- 469

cal solution for self-optimizing neural search under 470

dynamic conditions. 471
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Limitations472

While ADQN demonstrates strong adaptabil-473

ity across dynamic scenarios, several limita-474

tions remain. Its scalability to billion-scale475

datasets—particularly with respect to training con-476

vergence time and the memory footprint of the re-477

play buffer and Q-network—requires further empir-478

ical validation. Although our S2/S3 setups capture479

common data and query shifts, robustness under480

more complex or adversarial distributional drifts481

(e.g., sudden topic shifts not well modeled by Gaus-482

sian noise) remains an open question, warranting483

targeted stress-testing. Currently, ADQN tunes only484

high-level HNSW parameters; extending its control485

to finer-grained architectural features (e.g., layer-486

specific settings) or adapting it to other ANN struc-487

tures like IVF-ADC is a promising direction for488

future work. While our reward function performs489

well empirically, generalizing it across diverse490

tasks—or leveraging multi-objective RL to explic-491

itly discover Pareto-optimal trade-offs—could im-492

prove versatility. Though relatively lightweight493

compared to frequent re-indexing, the initial RL494

training still incurs moderate computational over-495

head, which may be nontrivial in time-sensitive496

deployments requiring immediate optimal perfor-497

mance. Finally, standard RL risks such as reward498

misspecification (i.e., misaligned optimization ob-499

jectives) and inherited societal biases from pre-500

trained embeddings—though partially mitigated by501

our design and sensitivity analyses—warrant ongo-502

ing scrutiny in broader real-world applications.503

References504

Takuya Akiba, Shotaro Sano, Toshihiko Yanase, Takeru505
Ohta, and Masanori Koyama. 2019. Optuna: A next-506
generation hyperparameter optimization framework.507
Preprint, arXiv:1907.10902.508

Daniel Fernando Campos, Tri Nguyen, Mir Rosenberg,509
Xia Song, Jianfeng Gao, Saurabh Tiwary, Rangan510
Majumder, Li Deng, and Bhaskar Mitra. 2016. Ms511
marco: A human generated machine reading compre-512
hension dataset. ArXiv, abs/1611.09268.513

Benjamin Coleman, Santiago Segarra, Anshumali Shri-514
vastava, and Alexandros Smola. 2021. Graph reorder-515
ing for cache-efficient near neighbor search. ArXiv,516
abs/2104.03221.517

Augusto Dantas and Aurora Pozo. 2021. Online selec-518
tion of heuristic operators with deep q-network: A519
study on the hyflex framework. In Intelligent Sys-520
tems, pages 280–294, Cham. Springer International521
Publishing.522

Xingping Dong, Jianbing Shen, Wenguan Wang, Ling 523
Shao, Haibin Ling, and Fatih Porikli. 2021. Dynami- 524
cal hyperparameter optimization via deep reinforce- 525
ment learning in tracking. IEEE Transactions on Pat- 526
tern Analysis and Machine Intelligence, 43(5):1515– 527
1529. 528

Cole Foster and Benjamin B. Kimia. 2023. Computa- 529
tional enhancements of hnsw targeted to very large 530
datasets. In Similarity Search and Applications. 531

Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and 532
Sergey Levine. 2018. Soft actor-critic: Off-policy 533
maximum entropy deep reinforcement learning with 534
a stochastic actor. Preprint, arXiv:1801.01290. 535

Hado Hasselt. 2010. Double q-learning. In Advances in 536
Neural Information Processing Systems, volume 23. 537
Curran Associates, Inc. 538

Matteo Hessel, Joseph Modayil, Hado van Hasselt, Tom 539
Schaul, Georg Ostrovski, Will Dabney, Dan Horgan, 540
Bilal Piot, Mohammad Azar, and David Silver. 2017. 541
Rainbow: Combining improvements in deep rein- 542
forcement learning. Preprint, arXiv:1710.02298. 543

Arpandeep Khatua, Vikram Sharma Mailthody, 544
Bhagyashree Taleka, Tengfei Ma, Xiang Song, and 545
Wen-mei Hwu. 2023. Igb: Addressing the gaps in 546
labeling, features, heterogeneity, and size of public 547
graph datasets for deep learning research. In Pro- 548
ceedings of the 29th ACM SIGKDD Conference on 549
Knowledge Discovery and Data Mining, KDD ’23, 550
page 4284–4295, New York, NY, USA. Association 551
for Computing Machinery. 552

Jens Lehmann, Robert Isele, Max Jakob, Anja Jentzsch, 553
Dimitris Kontokostas, Pablo N. Mendes, Sebastian 554
Hellmann, Mohamed Morsey, Patrick van Kleef, 555
S. Auer, and Christian Bizer. 2015. Dbpedia - a 556
large-scale, multilingual knowledge base extracted 557
from wikipedia. Semantic Web, 6:167–195. 558

Patrick Lewis, Ethan Perez, Aleksandra Piktus, Fabio 559
Petroni, Vladimir Karpukhin, Naman Goyal, Hein- 560
rich Küttler, Mike Lewis, Wen tau Yih, Tim Rock- 561
täschel, Sebastian Riedel, and Douwe Kiela. 2021. 562
Retrieval-augmented generation for knowledge- 563
intensive nlp tasks. Preprint, arXiv:2005.11401. 564

Kejing Lu, Chuan Xiao, and Y. Ishikawa. 2024. Proba- 565
bilistic routing for graph-based approximate nearest 566
neighbor search. ArXiv, abs/2402.11354. 567

Yu Malkov and Dmitry Yashunin. 2016. Efficient and 568
robust approximate nearest neighbor search using 569
hierarchical navigable small world graphs. IEEE 570
Transactions on Pattern Analysis and Machine Intel- 571
ligence, PP. 572

Yu A. Malkov and D. A. Yashunin. 2020. Efficient 573
and robust approximate nearest neighbor search us- 574
ing hierarchical navigable small world graphs. IEEE 575
Transactions on Pattern Analysis and Machine Intel- 576
ligence, 42(4):824–836. 577

9

https://arxiv.org/abs/1907.10902
https://arxiv.org/abs/1907.10902
https://arxiv.org/abs/1907.10902
https://api.semanticscholar.org/CorpusID:1289517
https://api.semanticscholar.org/CorpusID:1289517
https://api.semanticscholar.org/CorpusID:1289517
https://api.semanticscholar.org/CorpusID:1289517
https://api.semanticscholar.org/CorpusID:1289517
https://api.semanticscholar.org/CorpusID:233168646
https://api.semanticscholar.org/CorpusID:233168646
https://api.semanticscholar.org/CorpusID:233168646
https://doi.org/10.1109/TPAMI.2019.2956703
https://doi.org/10.1109/TPAMI.2019.2956703
https://doi.org/10.1109/TPAMI.2019.2956703
https://doi.org/10.1109/TPAMI.2019.2956703
https://doi.org/10.1109/TPAMI.2019.2956703
https://api.semanticscholar.org/CorpusID:265051713
https://api.semanticscholar.org/CorpusID:265051713
https://api.semanticscholar.org/CorpusID:265051713
https://api.semanticscholar.org/CorpusID:265051713
https://api.semanticscholar.org/CorpusID:265051713
https://arxiv.org/abs/1801.01290
https://arxiv.org/abs/1801.01290
https://arxiv.org/abs/1801.01290
https://arxiv.org/abs/1801.01290
https://arxiv.org/abs/1801.01290
https://proceedings.neurips.cc/paper_files/paper/2010/file/091d584fced301b442654dd8c23b3fc9-Paper.pdf
https://arxiv.org/abs/1710.02298
https://arxiv.org/abs/1710.02298
https://arxiv.org/abs/1710.02298
https://doi.org/10.1145/3580305.3599843
https://doi.org/10.1145/3580305.3599843
https://doi.org/10.1145/3580305.3599843
https://doi.org/10.1145/3580305.3599843
https://doi.org/10.1145/3580305.3599843
https://api.semanticscholar.org/CorpusID:1181640
https://api.semanticscholar.org/CorpusID:1181640
https://api.semanticscholar.org/CorpusID:1181640
https://api.semanticscholar.org/CorpusID:1181640
https://api.semanticscholar.org/CorpusID:1181640
https://arxiv.org/abs/2005.11401
https://arxiv.org/abs/2005.11401
https://arxiv.org/abs/2005.11401
https://api.semanticscholar.org/CorpusID:267750194
https://api.semanticscholar.org/CorpusID:267750194
https://api.semanticscholar.org/CorpusID:267750194
https://api.semanticscholar.org/CorpusID:267750194
https://api.semanticscholar.org/CorpusID:267750194
https://doi.org/10.1109/TPAMI.2018.2889473
https://doi.org/10.1109/TPAMI.2018.2889473
https://doi.org/10.1109/TPAMI.2018.2889473
https://doi.org/10.1109/TPAMI.2018.2889473
https://doi.org/10.1109/TPAMI.2018.2889473
https://doi.org/10.1109/TPAMI.2018.2889473
https://doi.org/10.1109/TPAMI.2018.2889473
https://doi.org/10.1109/TPAMI.2018.2889473
https://doi.org/10.1109/TPAMI.2018.2889473
https://doi.org/10.1109/TPAMI.2018.2889473


Volodymyr Mnih, Adrià Puigdomènech Badia, Mehdi578
Mirza, Alex Graves, Timothy P. Lillicrap, Tim Harley,579
David Silver, and Koray Kavukcuoglu. 2016. Asyn-580
chronous methods for deep reinforcement learning.581
Preprint, arXiv:1602.01783.582

Haechan Noh, Taeho Kim, and Jae-Pil Heo. 2021. Prod-583
uct quantizer aware inverted index for scalable near-584
est neighbor search. In 2021 IEEE/CVF Interna-585
tional Conference on Computer Vision (ICCV), pages586
12190–12198.587

Rafael S. Oyamada, Larissa C. Shimomura, Sylvio Bar-588
bon, and Daniel S. Kaster. 2023. A meta-learning589
configuration framework for graph-based similarity590
search indexes. Information Systems, 112:102123.591

Rafael Seidi Oyamada, Larissa C. Shimomura,592
Sylvio Barbon Junior, and Daniel S. Kaster. 2020.593
Towards proximity graph auto-configuration: An594
approach based on meta-learning. In Advances in595
Databases and Information Systems, pages 93–107,596
Cham. Springer International Publishing.597

Zhen Peng, Minjia Zhang, Kai Li, Ruoming Jin, and598
Bin Ren. 2022. Speed-ann: Low-latency and high-599
accuracy nearest neighbor search via intra-query par-600
allelism. ArXiv, abs/2201.13007.601

Roberta Raileanu and Rob Fergus. 2021. Decoupling602
value and policy for generalization in reinforcement603
learning. Preprint, arXiv:2102.10330.604

Tom Schaul, John Quan, Ioannis Antonoglou, and David605
Silver. 2016. Prioritized experience replay. Preprint,606
arXiv:1511.05952.607

Ziyu Wang, Tom Schaul, Matteo Hessel, Hado van Has-608
selt, Marc Lanctot, and Nando de Freitas. 2016. Du-609
eling network architectures for deep reinforcement610
learning. Preprint, arXiv:1511.06581.611

Detian Zeng, Tianwei Yan, Zengri Zeng, Hao Liu, and612
Peiyuan Guan. 2023. A hyperparameter adaptive613
genetic algorithm based on dqn. Journal of Circuits,614
Systems and Computers, 32(04):2350062.615

Weijie Zhao, Shulong Tan, and Ping Li. 2020. Song:616
Approximate nearest neighbor search on gpu. 2020617
IEEE 36th International Conference on Data Engi-618
neering (ICDE), pages 1033–1044.619

A Appendices620

A.1 Hyperparameters and System621

Configuration622

All experiments were conducted on a system623

equipped with an AMD Ryzen 7 5800U CPU624

(8 cores, 16 threads) and 16GB RAM. The RL625

agents and HNSW interactions were implemented626

in Python using PyTorch 2.0.1 (CPU version),627

hnswlib for HNSW operations, and faiss for the628

IVF-PQ baseline.629

A.2 ADQN Agent Configuration 630

The core ADQN agent, utilizing Double DQN with 631

Prioritized Experience Replay (PER), was config- 632

ured with the hyperparameters detailed in Table 7. 633

The Q-network is a 2-layer MLP with 128 hid- 634

den units per layer and ReLU activations. The 635

state representation provided to the agent consists 636

of 8 features: normalized current HNSW parame- 637

ters (efc,M, efs), and EWMA-smoothed statistics 638

(mean, variance) of recent internal query latency 639

and accuracy, plus the last internal accuracy value. 640

The action space comprises 9 discrete actions as 641

mentioned in Table 1. 642

Parameter Value

Replay Buffer Size 10,000
Target Update Frequency 250 steps
PER α 0.6
PER β (initial) 0.4
PER β increment 10−4

Batch Size 64
Discount Factor γ 0.99
Learning Rate (Adam) 5× 10−5

ϵ (initial) 1.0
ϵ (minimum) 0.05
ϵ decay multiplier 0.995
Hidden Layers 2× 128 (ReLU)
Reward α (Accuracy) 30
Reward β (Latency) 10,000
Reward γ (Maintenance) 0.98
Reward Accuracy Penalty 40

Table 7: Key Hyperparameters for the ADQN Agent.

A.3 Environment and Training Details 643

For scenarios involving dynamic data (S2), 100- 644

300 new nodes were inserted per step. The ADQN 645

agent took an action and performed a learning up- 646

date every 2 steps. Internal queries for reward 647

calculation were generated by adding Gaussian 648

noise (std. dev. typically 0.1 of data std. dev.) 649

to vectors sampled from the current index. Safety 650

mechanisms triggered rebuilds if internal accuracy 651

dropped below 0.85 or after 10 parameter adjust- 652

ments without a rebuild. Baselines like Default- 653

HNSW used fixed parameters (efc = 200,M = 654

16, ef = 50), while Optuna-BO HNSW parame- 655

ters were determined by optimizing on the initial 656

static dataset partition. 657

B Reward Function and Sensitivity 658

The ADQN agent is guided by a reward function Rt 659

designed to balance retrieval accuracy (At, e.g., Re- 660

call@k), query latency (Lt), and maintenance/build 661
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ADQN Performance Sensitivity to Reward Coefficients (Test Set Metrics)

Figure 8: ADQN Performance Sensitivity to ±15% Perturbations in Effective Reward Coefficients
(wacc, wlat, wmaint). Plots show final Recall@k (left y-axis, blue) and Latency (right y-axis, red) on test set.

cost (Ct). As mentioned in Section 3.2, a represen-662

tative form is:663

Rt = αAt − (β0/L0)Lt − (γ0/C0)Ct, (9)664

where L0 and C0 are normalization factors or tar-665

get values for latency and cost, respectively. The666

coefficients wacc, wlat, wmaint control the relative667

importance of these objectives. For instance, with668

At ∈ [0, 1], Lt on the order of 10−5s, and Ct669

(build time) on the order of seconds, typical de-670

fault weights after normalization are wacc = 30,671

wlat = 0.1 and wmaint = 2.0.672

To assess robustness, we perturbed reward673

weights (α, β, γ) by ±15% from their default nor-674

malization values,individually on the DBpedia task.675

The ADQN agent was retrained for each perturba-676

tion, and final system performance was evaluated677

on a fixed test set. Figure 8 shows the change in fi-678

nal reward across five seeds for each configuration.679

Config wa wl wm Rec@10 Lat. (ms)

Default 30 0.1 2.0 0.9551 0.011
wa × 0.85 25.5 0.1 2.0 0.9465 0.010
wa × 1.15 34.5 0.1 2.0 0.9621 0.011
wl × 0.85 30 0.085 2.0 0.9546 0.011
wl × 1.15 30 0.115 2.0 0.9488 0.009
wm × 0.85 30 0.1 1.7 0.9467 0.011
wm × 1.15 30 0.1 2.3 0.9600 0.012

Table 8: Reward Coefficient Sensitivity (DBpedia).
wa, wl, wm denote α, β0, γ0 in Equation 9.

The small variance confirms that the learned680

policy is not brittle to mis-specification, unlike681

grid-tuned policies that depend on exact parameter682

weights.683

C Reward Surface and Pareto Frontier684

Visualization685

To illustrate the multi-objective nature of the tuning686

process, we visualize the empirical reward surface687

under grid-sampled parameter settings for a fixed 688

DBpedia subset (S1). 689
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Figure 9: Reward surface by efc and M in S2

Figure 9 (heatmap) shows a smooth reward basin 690

where ef and M trade off latency and accuracy. 691

This supports the formulation in §3.1, where the 692

diminishing returns implied by Lemma 1 allow 693

gradient-like policy learning even over a discrete 694

action space. In this regime, greedy or low-step 695

policies perform nearly as well as globally tuned 696

ones. 697

D ADQN Maintenance Cost Analysis 698

In dynamic scenario S2 (incremental insertion), we 699

analyze the breakdown of ADQN’s operational time 700

per step, covering index rebuilds, GT computation 701

(both full and incremental), internal evaluation for 702

reward, and DQN learning updates. 703

Figure 10 shows the average distribution on the 704

IGB dataset. HNSW rebuilds dominate the cost, ac- 705

counting for 81.4% of the total per-step time when 706

amortized, making them the primary bottleneck. 707
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In contrast, internal reward evaluation and post-708

rebuild GT regeneration together make up 17.1%.709

Incremental GT updates and DQN training are neg-710

ligible, contributing just 1.4% and 0.2% respec-711

tively.712

81.4%

7.0%10.1%

Maintenance Time Breakdown (per step)

HNSW Rebuild: 1265.0 ms (81.4%)
Internal Eval (for Reward): 156.9 ms (10.1%)
GT Regen (Post-Rebuild): 108.2 ms (7.0%)
Incremental GT Update: 21.6 ms (1.4%)
Agent DQN Learn: 2.7 ms (0.2%)

Figure 10: Average Distribution of ADQN’s Opera-
tional Time per Step (S2 - IGB). HNSW Rebuild time is
averaged over all steps, including those without rebuilds,
to show its overall impact when amortized.

E Report on Use of AI713

In this study, AI assistants were employed in sev-714

eral non-core research tasks. The AI models in-715

volved are: GPT-4o, o1, o3-high, Deepseek-R1,716

Gemini-2.5-pro.717

Disclaim: All AI-generated content was rigor-718

ously verified and modified by human authors.719
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