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Abstract

Hierarchical Navigable Small World (HNSW)
graph is used for approximate nearest neighbor
(ANN). However, HNSW’s fixed parameters
can degrade performance when user query dis-
tributions misalign with training data. In this
work, we propose a Deep Q-Network (DQN)-
based framework named Adaptive Deep Q-
Network (ADQN) to overcome this prob-
lem. ADQN models HNSW optimization as
a Markov Decision Process, enabling adapta-
tion to discrepancies between user query and
training data distributions without requiring re-
indexing. We evaluated our system on DBpe-
dia, IGB and MS Marco datasets with adjust-
ments of changing user preferences and adap-
tive query embeddings, and results show that
our ADQN method achieves superior accuracy-
latency trade-offs, lower maintenance overhead,
and remains robust under evolving conditions,
which can improve the performance of ANN
through adaptive search.

1 Introduction

Hierarchical Navigable Small World
(HNsW) (Malkov and Yashunin, 2016) graphs are
a cornerstone for efficient Approximate Nearest
Neighbor (ANN) search, offering high recall and
low latency in high-dimensional spaces. Their
effectiveness makes them a suitable choice for
applications like Retrieval-Augmented Generation
(RAG) (Lewis et al., 2021), which critically
relies on fast and accurate retrieval from large
knowledge bases. However, the performance of
HNSW is highly sensitive to its hyperparameters
(e.g., efe, M, ef), which are typically configured
statically. Such fixed parameters can lead to subop-
timal performance when faced with non-alignment
between user query distributions and training
data, or in dynamic environments characterized
by continuous data updates or evolving user
preferences. Static configurations struggle to

maintain an optimal balance across retrieval
accuracy, query latency, and index maintenance
overhead under these changing conditions.

To overcome these limitations, we propose
the Adaptive Deep Q-Network (ADQN), a novel
framework that leverages Deep Q-Networks
(DQNs) (Hasselt, 2010) to dynamically optimize
HNSW index parameters. As illustrated in Figure 1
(conceptualizing ADQN'’s role in a RAG pipeline),
ADQN models the HNSW parameter tuning pro-
cess as a Markov Decision Process (MDP). The
state in this MDP represents the current HNSW
index configuration and recent performance met-
rics, while actions involve incremental adjustments
to the HNSW parameters. By learning a policy
through interactions, ADQN can adaptively respond
to real-time performance feedback and environmen-
tal changes, such as incremental data insertions or
query distribution shifts, without necessarily re-
quiring full and frequent re-indexing. Our ablation
studies (Section 3.5) indicate that a Double DQN
with Prioritized Experience Replay offers the best
performance-efficiency trade-off for this task, out-
performing other Rainbow DQN components and
alternative RL algorithms like PPO (Proximal Pol-
icy Optimization) in terms of reward convergence
and stability for discrete action spaces (see Section
3.4 for comparative analysis).

The core contribution of ADQN is its ability to
learn a policy that balances three competing objec-
tives: maximizing retrieval accuracy (Recall @k),
minimizing query latency, and reducing mainte-
nance overhead. The DQN agent learns to make tar-
geted parameter adjustments, thereby minimizing
disruptions common with periodic full re-indexing
while sustaining high performance in dynamic set-
tings.

We conduct a comprehensive evaluation of
ADQN across three diverse datasets: DBpedia (a
knowledge graph), IGB (a high-dimensional graph
benchmark), and MS MARCO (a standard dense re-
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Figure 1: An example of ADQN in RAG.

trieval passage ranking benchmark). Experiments
span three challenging scenarios: static corpus
tuning (S1), incremental data insertion (S2), and
query distribution drift (S3). Our results (Section 4)
demonstrate that ADQN consistently achieves supe-
rior Pareto-optimal trade-offs in accuracy, latency,
and maintenance cost compared to statically config-
ured HNSW and other optimization baselines like
Optuna-BO and PPO. Notably, on the MS MARCO
benchmark, ADQN effectively optimizes HNSW for
a real-world NLP retrieval task, underscoring its
practical applicability.

2 Related Works

2.1 Approximate Nearest Neighbor Search
and HNSW

The search for efficient ANN methods has evolved
rapidly, with HNSW graphs emerging as a leading
approach. HNSW utilizes a multi-layered graph
structure where each layer represents a subset of
the data, and edges are formed based on prox-
imity. This hierarchical organization allows for
faster search times and high recall rates, outper-
forming previous methods like k-d trees and Lo-
cality Sensitive Hashing (LSH), particularly in
high-dimensional spaces where traditional meth-
ods struggle. (Malkov and Yashunin, 2020)
Optimizing HNSW has been an area of active
research. Speed-ANN (Peng et al., 2022) improves
search efficiency by introducing intra-query paral-
lelism, which accelerates query processing with-
out sacrificing accuracy. Similar optimizations

delving into HNSW inner structures and exploring
parallel computing in GPU are achieved by Zhao
et al. (2020) with SONG. Foster and Kimia (2023)
further explores the computational enhancements
of HNSW in very large datasets. Coleman et al.
(2021) demonstrate the significance of graph re-
ordering for cache-efficient ANN. Probalistic rout-
ing is also introduced by Lu et al. (2024) to identify
graph nodes for exact distance calculation in graph-
based ANNs. However, most existing methods
still rely on manual parameter tuning, which does
not adapt to evolving query distributions or data
updates.

2.2 Reinforcement Learning (RL) for
Hyperparameter Tuning

DON for dynamic hyperparameter optimization
have been explored and created a lot of works.
Zeng et al. (2023) applied DQNs for hyperparam-
eter tuning in Genetic Algorithms, showing that
DQNs outperform traditional optimization methods
like grid search for problems such as the Traveling
Salesman Problem (TSP). Similarly, Dong et al.
(2021) demonstrated how DQN can optimize pa-
rameters for object tracking in real-time, improving
tracking accuracy compared to fixed hyperparame-
ters.

In the context of graph-based search methods,
Oyamada et al. (2020) proposed a meta-learning ap-
proach to automatically recommend suitable graph
configurations for ANN search, reducing the time
spent in parameter tuning. Although effective,
these methods still rely on pre-defined heuristics



and may not be as adaptable or efficient in environ-
ments with changing data distributions. Moreover,
not combined with incremental update of HNSW
indexing, the maintenance time consumed in fre-
quent real-time data updates remained undeveloped
(Oyamada et al., 2023).

2.3 DQN for Adaptive ANN Hyperparameter
Tuning

DQN for HNSW parameter tuning automati-
cally adjusts the graph’s parameters based on ob-
served performance, improving search accuracy
while minimizing maintenance costs. Similar to
Dantas and Pozo (2021), DQN can be used to fine-
tune ANN search methods, learning optimal con-
figurations based on real-time rewards, and out-
performing traditional methods that rely on fixed
parameters or manual adjustments.

The development of HNSW has significantly
improved the efficiency of ANN search methods,
but challenges remain in dynamically adapting to
evolving datasets. DQN offers a promising solu-
tion by enabling continuous optimization of HNSW
parameters, allowing for better performance with
minimal re-indexing. In this research, the integra-
tion of DQNs into ANN systems will represent
a novel direction for scalable and efficient high-
dimensional search in dynamic environments.

2.4 Enhancements to Deep Q-Networks

While the standard DQN provides a powerful learn-
ing framework, its performance can be significantly
improved by several extensions.

The Vanilla DQN serves as our foundation, uti-
lizing a deep neural network to approximate action-
values Q(s, a), with experience replay and a tar-
get network for stability. To address its potential
Q-value overestimation, we consider Double Q-
Learning (Double DQN) (Hasselt, 2010), which
decouples action selection (via the policy network)
from action evaluation (via the target network),
leading to more stable learning.

Sample efficiency is enhanced through Prior-
itized Experience Replay (PER) (Schaul et al.,
2016). PER replays transitions with higher TD-
errors more frequently, allowing the agent to fo-
cus on more informative experiences. The Duel-
ing Network Architecture (Wang et al., 2016) of-
fers another improvement by separately estimating
state values V (s) and action advantages A(s,a).
This can lead to better policy evaluation, espe-
cially in states where actions have minimal dif-

ferential impact. Finally, Multi-step Learning
(e.g., 3-step returns) looks ahead multiple steps
(R,?") = S0 Y + 7" maxy Q(sen, a)),
propagating rewards faster and often reducing vari-
ance compared to 1-step TD learning.

As detailed in Section 3.5, our ADQN implemen-
tation combines Double DQN and PER, finding
this to be the most effective and efficient configu-
ration for the HNSW tuning task. The subsequent
sections present experimental results.

3 Methodology

We formalize the problem of adaptive HNSW in-
dex tuning as an MDP and present a theoretically
grounded DQN approach to solve it. This section
is structured as follows: Section 3.1 introduces a
performance model for HNSW; Section 3.2 formal-
izes the MDP; Section 3.3 describes the learning
algorithm; Section 3.5 presents an ablation over
Rainbow DQN (Hessel et al., 2017) components;
Section 3.4 compares alternative RL methods; Sec-
tion 3.6 defines three benchmark scenarios.

3.1 Analytical Performance Model

Recall. Let 6 = (ef., M,ef) be the HNSW pa-
rameters, where we denote ef. as efconstructions
and ef as e fseqren. During construction, the prob-
ability of connecting two points declines exponen-
tially with distance due to the small-world nature
of HNSW graphs. Given this, we model the ex-
pected radius after ef. construction attempts and
M connections as:

r(efe, M) =1y - exp (_%J\éeﬁ) , (D

where o, is a decay constant and d is the embed-
ding dimensionality. During query time, the chance
of capturing the true nearest neighbor grows with

ef, giving:

A(0) =1-Kaexp (— aC]\;[efc) (1 — exp (—

This expression reflects diminishing returns in
both dimensions:
0%A <
Def?

0?A

Eel <0,

0. 3)

The above gradient decay justifies a discrete and
bounded action space.



Latency. Query latency arises from search candi-
date expansion and memory overhead. We model:

L(0) = K, (cieflog N + capef + cso(M,ef)),

“4)
where ¢y, ¢, c3 are system-specific constants, p is
the distance computation cost, and o (M, ef) mod-
els data structure overhead.

Maintenance Cost. Cost accumulates from in-
dex updates, which constitutes most of the mainte-
nance cost:

(0) ~ k1us M log Ny
! kaNy(efo +log N;)  full rebuild.

(5)
3.2 MDP Specification

State Space S. Each state encodes the current
index and recent performance trends:

St = [9t7ztvzt7 AAy, Aftﬂit], (6)

where A, L are EWMA-smoothed accuracy and
latency over the last w = 3000 queries, A denotes
first differences, and wu; is the count of inserts since
last rebuild.

Action Space A. Nine discrete actions allow con-
trolled parameter updates:

Action  Description

ao Increase ef. by 10
a1 Decrease e f. by 10
a2 Increase M by 2
as Decrease M by 2

a4 Increase ef by 5

as Decrease ef by 5

a6 Restore previous parameters
ar Trigger index rebuild

as Reset to defaults (200, 16, 50)

Table 1: Action Space Definition

Reward Function. The scalar reward balances
accuracy, latency, and maintenance:

Ry = oAy — BLy — (4, (N

with 3 = By/Lo, v = 70/Cp for scale invariance,
and o = 30.

Safety Mechanisms and Parameter Bounds. If
A < T4 0r wp > Ty, action ay is forcibly ex-
ecuted to preserve retrieval quality. All parame-
ters are clamped to ef, € [10,200], M € [4,64],
ef € [10,200]. These ranges are selected based on
empirical Pareto frontiers and verified via sensitiv-
ity analysis in Appendix B.

incremental insert,

3.3 Learning Algorithm

We adopt a Double DQN with Prioritized Expe-
rience Replay (PER). The Q-network is a 2-layer
MLP with 128 hidden units each and ReL.U activa-
tions.

Algorithm 1 Adaptive DQN for ANN Parameter
Tuning

1: Initialize Q-network @, target network

Qu- + Qu

2: Initialize prioritized replay buffer D
3: for each episode do
4: Observe initial state s
5: fort =0to T do
6: Select action a; via e-greedy policy
7: Apply action a;, observe 7¢, s¢41
8: Store (St, ag, T't, St+1) in D
9: Sample batch using PER; compute tar-
gets via Double Q-learning
10: Update @), via gradient descent
11: if tmod target_update == O then
12: Qu- + Qu
13: end if
14: end for
15: end for

3.4 Comparison with Alternative RL Methods

We compare our ADQN framework with PPO, A3C
(Asynchronous Advantage Actor-Critic) (Mnih
etal., 2016), and SAC (Soft Actor Critic) (Haarnoja
et al.,, 2018). PPO is slower to react to non-
stationary shifts, A3C is less stable under sparse
updates, and SAC’s continuous action space is un-
necessary for discrete HNSW tuning. Empirically,
ADQN achieves superior reward/cost efficiency
across all three evaluation scenarios.

Method Reward Std. Dev. CPU Time (s)
ADQN  29.84 0.76 440.3
A3C 26.50 1.50 465.2
PPO 27.15 0.66 450.1
SAC 26.22 1.62 439.9

Table 2: Average reward over final 30 steps and CPU
time (20 runs) on DBpedia (S1 setup). Rewards are
scaled for comparison.

3.5 Rainbow DQN Ablation Study

Our ADQN, using Double DQN + PER (Table 3),
offers the best reward/CPU trade-off. Adding PER



to Double DQN provided the largest performance
jump (reward 27.42 to 29.84).

Variant Reward T CPU Time (s) |
Vanilla DQN 27.45 444.6
+ Double Q 27.42 436.7
+ PER (our choice) 29.84 440.3
+ Dueling 28.25 443.0
+ 3-step Return 28.80 440.7

Table 3: Rainbow DQN component ablation.

3.6 Evaluation Scenarios
S1 Static Corpus. The dataset is fixed. Reward
ignores maintenance (y = 0).

S2 Incremental Insertion. The dataset grows
in 200 equal stages. Reward includes full cost.
Parameters are updated continuously.

S3 Query Shift. Query distributions drift every
2k queries via Gaussian perturbations:

pilt) = max{p;(t — 1) + ¢, 0}

- >ymax{p;(t—1)+¢,0}7 ()
e ~ N(0,p;i(t —1)/10).

Queries sample noisy embeddings: ¢ = v; +

N(0,021).
4 Experiments

We evaluate the proposed ADQN framework across
three real-world ANN datasets and multiple search
scenarios, highlighting its ability to adaptively op-
timize HNSW configurations in both static and dy-
namic environments. We benchmark ADQN against
existing optimization methods and analyze its be-
havior in terms of performance trade-offs, reward
stability, and cost efficiency. All experiments are
repeated over 3 random seeds, and reported results
show mean metrics.

4.1 Datasets and Setup

The evaluation is conducted on three datasets: DB-
pedia (Lehmann et al., 2015) (188,269 entity vec-
tors, 128 dimensions)'; IGB (Khatua et al., 2023)
(Illinois Graph Benchmark, heterogeneous ver-
sion, 80,000 vectors, 1024 dimensions)?; and Ms

"https://downloads.dbpedia.org/repo/dbpedia/generic/
categories/2022.12.01/categories_lang=en_articles.ttl.bz2

“https://github.com/IllinoisGraphBenchmark/IGB-
Datasets

MARCO (Campos et al., 2016) (dense retrieval
benchmark, 150,000 sentence embeddings, 384 di-
mensions)>.

These datasets are evaluated under three scenar-
ios: (i) S1: Static corpus; (ii) S2: Dynamic corpus
with incremental node insertions (100-300 new
vectors per step); (iii) S3: Static corpus with evolv-
ing query distribution (user drift). Ateach RL agent
step, 3,000 user queries are simulated. ADQN in-
teracts with a FAISS-based HNSW index, adjusting
parameters online. Queries return top-10 neighbors,
with accuracy measured by Recall@10.

4.2 Evaluation Metrics and Baselines

We report three key metrics: (1) Recall@10 (A);
(2) Latency (L, average time per query in ms);
Maintenance Cost (C'): Wall-clock time per 3000
queries, covering 100-300 node insertions, online
network updates, GT computation, and parameter
adjustment or rebuild. For breakdown in ADQN,
see Appendix D.

For Ms MARCO dataset, we also introduce
MRR@10 (Mean Reciprocal Rank at 10) and
NDCG @10 (Normalized Discounted Cumulative
Gain at 10), as commonly used in NLP tasks, to
further illustrate the performance.

ADQN is benchmarked against: Default-HNSW
(fixed ef. = 200,M = 16,ef = b50); static
optimizers Grid Oracle (exhaustive search for
best held-out configuration) and Optuna-BO (Ak-
iba et al., 2019) (Bayesian Optimization); PPO
(Raileanu and Fergus, 2021) as an RL alternative;
and IVF-PQ (FAISS’s Inverted File with Product
Quantization) (Noh et al., 2021) as a non-graph
ANN baseline.

During dynamic learning, full recall is costly.
We use a stratified caching scheme for internal GT
(2,000 initial points, 10-20 new points per step;
cache recomputed on rebuild). Table 4 shows this
internal GT sampling maintains <0.01 absolute er-
ror from external recall.

Dataset Mean gap Max gap Std-dev
DBpedia 0.007 0.028 0.008
IGB 0.009 0.025 0.010
MS MARCO 0.006 0.015 0.007

Table 4: Internal vs external Recall@10 absolute
error. Validating the sampling strategy.

3https://msmarco.z22.web.core.windows.net/
msmarcoranking/collection.tar.gz



Method DBpedia (S1) MS MARCO (S2) IGB (S2)
Recall@10 Lat Recall@10 Lat Maint. | Recall@10 Lat Maint.
Default-HNSW 0.936 0.018 0.902 0.075 11.03 0.942 0.197 13.94
Grid Oracle 0.996 0.030 0.973 0.219 224.84 0.988 0.495 18548
Optuna-BO 0.996 0.034 0.960 0.172  49.168 0.987 0474  39.80
PPO 0.909 0.009 0.897 0.076 2.84 0.943 0.218  4.082
IVE-PQ 0.833 0.134 0.244 0.027 4.73 0.211 0.018 6.693
ADQN (Ours) 0.976 0.011 0.911 0.079 4.06 0.947 0.208 3.448

Table 5: Performance Comparison (Part 1): DBpedia (S1), MS MARCO (S2), IGB (S2). Latency (Lat) is in
milliseconds. Maintenance Cost (Mat.) is in seconds per step for S2 datasets.

Method DBpedia (S2) DBpedia (S3) MS MARCO (S3)

Rec@l0 Lat Maint. | Rec@10 Lat Maint. | Rec@10 MRR@10 NDCG@10 Lat Maint.
Default-HNSW 0910  0.014  3.29 0.927 0.013 49.14 0.882 0.986 0.916 0.077 13.96
Grid Oracle 0988  0.030 41.24 0.984  0.031 602.7 0.956 0.999 0.971 0.227 2875
Optuna-BO 0976  0.035 8.96 0.969  0.036 94.42 0.949 0.997 0.962 0.189  52.60
PPO 0.881 0.014 1.81 0.925 0.014 8.80 0.893 0.990 0.924 0.087 10.53
IVF-PQ 0.568 0.048 1.75 0.526  0.031 12.29 0.237 0.669 0.424 0.034  3.77
ADQN (Ours) 0940 0.021 1.90 0.942 0.011 8.06 0.913 0.995 0.940 0.090 5.87

Table 6: Performance Comparison (Part 2): DBpedia (S2), DBpedia (S3), MS MARCO (S3). Latency (Lat) in
milliseconds, Maintenance (Mat.) in seconds per step.
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Figure 3: ADQN adapts quickly to changing user preferences, and maintains stable retrieval quality across datasets.

4.3 Static Corpus (S1)

In this cold-start setting on DBpedia (fixed cor-
pus, Yeost = 0), ADQN optimizes for accuracy-
latency balance. Figure 4 shows ADQN on the
Pareto frontier, outperforming Default-HNSW and
offering better trade-offs than computationally in-
tensive Grid Oracle or Optuna-BO. The reward
surface (Figure 9) supports ADQN'’s effective local
search. IVF-PQ performs poorly. Results are in
Table 5 (DBpedia S1 column).

Pareto Frontier: Static Performance (S1)
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Figure 4: Pareto Frontier (Recall@10 vs Latency) on
DBpedia (S1).

4.4 Incremental Insertion (S2)

In the dynamic S2 scenario (100-300 new vec-
tors/step), ADQN excels in efficiency and maintains
robust performance, as detailed in Tables 5 and 6.
On IGB, ADQN (R@10 0.946, Mat. 3.448s) cuts
maintenance by 91.5-98.1% compared to Optuna-
BO/Grid Oracle, with a minimal <4.5% recall trade-
off. This demonstrates ADQN’s ability to handle
high-dimensional data growth efficiently, achiev-
ing near-peak recall without the prohibitive over-
head of exhaustive re-optimization. On DBpe-

dia (S2), ADQN (R@10 0.940, Mat. 1.90s) re-
duces maintenance by 78.7-95.4% versus Optuna-
BO/Grid Oracle, while also outperforming PPO’s
recall (0.881). For MS MARCO, ADQN (R@10
0.911, Mat. 4.06s) cuts maintenance by 91.7-98.2%
compared to the static optimizers, achieving this ef-
ficiency with competitive recall. This performance
on a standard NLP benchmark underscores its suit-
ability for real-world applications where both re-
trieval quality and operational cost are critical. The
S2 performance graphs (Figure 2) visually con-
firm ADQN'’s stable recall across datasets (Fig-
ures 2a, 2b, 2c) and its significantly lower main-
tenance overhead (Figure 2d) due to intelligent,
safety-triggered rebuilds. This efficiency is vital
for dynamic NLP systems like RAG.

4.5 Query Distribution Shift (S3)

S3 tests adaptation to evolving query patterns
(shifts every 2k-3k queries) on a static corpus. On
DBpedia (S3), ADQN leads with Recall@10 0.942
and lowest latency (0.011ms), at an adaptation cost
of 8.064s (Table 6). This is a 97.7-98.6% cost re-
duction over re-running Optuna-BO/Grid Oracle.
Figure 3a shows ADQN maintaining higher, stabler
recall than Default-HNSW and volatile PPO.

For MS MARCO (S3, simulated drift based
on heatmap), ADQN (R@10 0.913, MRR@10
0.995, NDCG@10 0.940) outperforms Static-
Default (R@10 0.882) by 3.5% in Recall@10 and
PPO (R@100.893) by 2.2%. While other baselines
like Optuna-BO achieved R@10 0.949 with a 10x
maintenance cost and 2x latency, ADQN adaptively
maintains strong performance across shifts.



4.6 Policy Interpretation and Accuracy
Reliability

ADQN’s learned policy, visualized in Figure 5
(showing action frequencies from a representative
S2 run, e.g., on IGB), reveals a preference for fine-
grained adjustments. The agent most frequently
opts for search beam increases (a4, increasing e f)
and moderate e f. adjustments, while utilizing full
index rebuilds (a7) sparingly. This behavior under-
scores ADQN’s cost-aware nature, prioritizing less
disruptive parameter tuning over frequent, expen-
sive re-indexing.

Furthermore, the fidelity of our internal reward
signal, crucial for effective learning, is confirmed
by the consistently small gap (mean absolute error
<0.01 across all datasets) between the internal recall
(used for reward) and the recall on a fixed external
evaluation set, as detailed in Table 4. Figure 6 visu-
ally corroborates this for a representative scenario
(e.g., MS MARCO S2 training), showing the inter-
nal accuracy closely tracking the external metric,
thus validating our online GT sampling strategy for
reliable reward feedback during dynamic updates.

ADQN Learned Policy (Action Histogram)
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Figure 5: ADQN Action Histogram.
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Figure 6: Internal vs External Recall@ 10

4.7 Training Insights and Reward Dynamics

Figure 7 shows consistent improvement and quick
convergence, with the EWMA-smoothed reward
typically increasing from initial values around 19 to

a converged state above 23-24. The observed oscil-
lations in raw reward accurately reflect the agent’s
response to costs incurred during discrete events
like safety-triggered index rebuilds, after which
the EWMA trend demonstrates rapid recovery and
continued learning. This robust learning pattern is
consistent across different experimental setups.

Fig A2: ADQN Training Reward Curve (EWMA Smoothed

26

ADQN Raw Reward
—— ADQN Reward EWMA (span=20)
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175 200

Figure 7: ADQN Training Reward Curve (S2 example)

4.8 Summary of Findings

Across all datasets and scenarios, ADQN achieves
an excellent balance of retrieval accuracy, latency,
and system overhead (Tables 5 and 6). It signifi-
cantly reduces maintenance/adaptation costs by up
to 83.6% compared to static baselines while retain-
ing high recall in dynamic settings. Its adaptability,
particularly on MS MARCO, underscores its value
for NLP applications.

5 Conclusion

This paper presents ADQN, a reinforcement learn-
ing framework for adaptive HNSW indexing in
ANN search. By modeling tuning as an MDP,
ADQN dynamically adjusts ef, ef,, and M using
Double DQN with prioritized replay, optimizing a
reward that balances accuracy, latency, and mainte-
nance cost.

Our theoretical analysis and empirical results
across DBpedia, IGB, and MS MARCO demon-
strate that ADQN achieves Pareto-efficient perfor-
mance, outperforming static and RL-based base-
lines. Key components such as prioritized replay
and safety-triggered rebuilds contribute to both ef-
fectiveness and stability.

ADQN is modular, data-agnostic, and compati-
ble with existing ANN systems, making it a practi-
cal solution for self-optimizing neural search under
dynamic conditions.



Limitations

While ADQN demonstrates strong adaptabil-
ity across dynamic scenarios, several limita-
tions remain. Its scalability to billion-scale
datasets—particularly with respect to training con-
vergence time and the memory footprint of the re-
play buffer and Q-network—requires further empir-
ical validation. Although our S2/S3 setups capture
common data and query shifts, robustness under
more complex or adversarial distributional drifts
(e.g., sudden topic shifts not well modeled by Gaus-
sian noise) remains an open question, warranting
targeted stress-testing. Currently, ADQN tunes only
high-level HNSW parameters; extending its control
to finer-grained architectural features (e.g., layer-
specific settings) or adapting it to other ANN struc-
tures like IVF-ADC is a promising direction for
future work. While our reward function performs
well empirically, generalizing it across diverse
tasks—or leveraging multi-objective RL to explic-
itly discover Pareto-optimal trade-offs—could im-
prove versatility. Though relatively lightweight
compared to frequent re-indexing, the initial RL
training still incurs moderate computational over-
head, which may be nontrivial in time-sensitive
deployments requiring immediate optimal perfor-
mance. Finally, standard RL risks such as reward
misspecification (i.e., misaligned optimization ob-
jectives) and inherited societal biases from pre-
trained embeddings—though partially mitigated by
our design and sensitivity analyses—warrant ongo-
ing scrutiny in broader real-world applications.
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A Appendices

A.1 Hyperparameters and System
Configuration

All experiments were conducted on a system
equipped with an AMD Ryzen 7 5800U CPU
(8 cores, 16 threads) and 16GB RAM. The RL
agents and HNSW interactions were implemented
in Python using PyTorch 2.0.1 (CPU version),
hnswlib for HNSW operations, and faiss for the
IVF-PQ baseline.
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A.2 ADQN Agent Configuration

The core ADQN agent, utilizing Double DQN with
Prioritized Experience Replay (PER), was config-
ured with the hyperparameters detailed in Table 7.
The Q-network is a 2-layer MLP with 128 hid-
den units per layer and ReLLU activations. The
state representation provided to the agent consists
of 8 features: normalized current HNSW parame-
ters (ef., M, efs), and EWMA-smoothed statistics
(mean, variance) of recent internal query latency
and accuracy, plus the last internal accuracy value.
The action space comprises 9 discrete actions as
mentioned in Table 1.

Parameter Value
Replay Buffer Size 10,000
Target Update Frequency 250 steps
PER « 0.6
PER /3 (initial) 0.4
PER S increment 1074
Batch Size 64
Discount Factor ~ 0.99
Learning Rate (Adam) 5x107°
€ (initial) 1.0

€ (minimum) 0.05

€ decay multiplier 0.995
Hidden Layers 2 x 128 (ReLU)
Reward o (Accuracy) 30
Reward 3 (Latency) 10,000
Reward ~ (Maintenance) 0.98
Reward Accuracy Penalty 40

Table 7: Key Hyperparameters for the ADQN Agent.

A.3 Environment and Training Details

For scenarios involving dynamic data (S2), 100-
300 new nodes were inserted per step. The ADQN
agent took an action and performed a learning up-
date every 2 steps. Internal queries for reward
calculation were generated by adding Gaussian
noise (std. dev. typically 0.1 of data std. dev.)
to vectors sampled from the current index. Safety
mechanisms triggered rebuilds if internal accuracy
dropped below 0.85 or after 10 parameter adjust-
ments without a rebuild. Baselines like Default-
HNsSWw used fixed parameters (ef. = 200, M =
16,ef = 50), while Optuna-BO HNSW parame-
ters were determined by optimizing on the initial
static dataset partition.

B Reward Function and Sensitivity

The ADQN agent is guided by a reward function R,
designed to balance retrieval accuracy (A4, e.g., Re-
call@k), query latency (L;), and maintenance/build
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ADQN Performance Sensitivity to Reward Coefficients (Test Set Metrics)
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Figure 8: ADQN Performance Sensitivity to +15% Perturbations in Effective Reward Coefficients

(Wace, Wiats Wmaint)- Plots show final Recall@k (left y-axis, blue) and Latency (right y-axis, red) on test set.

cost (Cy). As mentioned in Section 3.2, a represen-
tative form is:

Ry = aA; — (Bo/Lo)Li — (70/Co)C,  (9)

where Lo and C are normalization factors or tar-
get values for latency and cost, respectively. The
coefficients Wuce, Wigt, Wmaint control the relative
importance of these objectives. For instance, with
Ay € [0,1], L; on the order of 107°s, and C
(build time) on the order of seconds, typical de-
fault weights after normalization are wy.. = 30,
Wiat = 0.1 and Wmaint = 2.0.

To assess robustness, we perturbed reward
weights («, 3,7) by £15% from their default nor-
malization values,individually on the DBpedia task.
The ADQN agent was retrained for each perturba-
tion, and final system performance was evaluated
on a fixed test set. Figure 8 shows the change in fi-
nal reward across five seeds for each configuration.

Config Wa wy wm Rec@10  Lat. (ms)
Default 30 0.1 2.0 0.9551 0.011
we X 0.85  25.5 0.1 2.0 0.9465 0.010
we X 1.15 345 0.1 2.0 0.9621 0.011
w; X 0.85 30 0.085 2.0 0.9546 0.011
w; X 1.15 30 0115 2.0 0.9488 0.009
Wm X 0.85 30 0.1 1.7 0.9467 0.011
W X 1.15 30 0.1 2.3 0.9600 0.012

Table 8: Reward Coefficient Sensitivity (DBpedia).
W, Wy, Wy, denote a, By, o in Equation 9.

The small variance confirms that the learned
policy is not brittle to mis-specification, unlike
grid-tuned policies that depend on exact parameter
weights.

C Reward Surface and Pareto Frontier
Visualization

To illustrate the multi-objective nature of the tuning
process, we visualize the empirical reward surface
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under grid-sampled parameter settings for a fixed
DBpedia subset (S1).

Reward Surface (Static HNSW Params)

25

24

Reward

Reward

23

22

150
ef 200
‘CO”StrUCtio,, (215‘(3 300 10
C.

Figure 9: Reward surface by e f. and M in S2

Figure 9 (heatmap) shows a smooth reward basin
where ef and M trade off latency and accuracy.
This supports the formulation in §3.1, where the
diminishing returns implied by Lemma 1 allow
gradient-like policy learning even over a discrete
action space. In this regime, greedy or low-step
policies perform nearly as well as globally tuned
ones.

D ADQN Maintenance Cost Analysis

In dynamic scenario S2 (incremental insertion), we
analyze the breakdown of ADQN’s operational time
per step, covering index rebuilds, GT computation
(both full and incremental), internal evaluation for
reward, and DQN learning updates.

Figure 10 shows the average distribution on the
IGB dataset. HNSW rebuilds dominate the cost, ac-
counting for 81.4% of the total per-step time when
amortized, making them the primary bottleneck.



In contrast, internal reward evaluation and post-
rebuild GT regeneration together make up 17.1%.
Incremental GT updates and DQN training are neg-
ligible, contributing just 1.4% and 0.2% respec-
tively.

Maintenance Time Breakdown (per step)

0,
10.1"‘2'0/0
HNSW Rebuild: 1265.0 ms (81.4%)

Internal Eval (for Reward): 156.9 ms (10.1%)

GT Regen (Post-Rebuild): 108.2 ms (7.0%)
Incremental GT Update: 21.6 ms (1.4%)

Agent DQN Learn: 2.7 ms (0.2%)
81.4%

Figure 10: Average Distribution of ADQN’s Opera-
tional Time per Step (S2 - IGB). HNSW Rebuild time is
averaged over all steps, including those without rebuilds,
to show its overall impact when amortized.

E Report on Use of Al

In this study, Al assistants were employed in sev-
eral non-core research tasks. The Al models in-
volved are: GPT-40, ol, 03-high, Deepseek-R1,
Gemini-2.5-pro.

Disclaim: All Al-generated content was rigor-
ously verified and modified by human authors.

12



	Introduction
	Related Works
	Approximate Nearest Neighbor Search and HNSW
	Reinforcement Learning (RL) for Hyperparameter Tuning
	DQN for Adaptive ANN Hyperparameter Tuning
	Enhancements to Deep Q-Networks

	Methodology
	Analytical Performance Model
	MDP Specification
	Learning Algorithm
	Comparison with Alternative RL Methods
	Rainbow DQN Ablation Study
	Evaluation Scenarios

	Experiments
	Datasets and Setup
	Evaluation Metrics and Baselines
	Static Corpus (S1)
	Incremental Insertion (S2)
	Query Distribution Shift (S3)
	Policy Interpretation and Accuracy Reliability
	Training Insights and Reward Dynamics
	Summary of Findings

	Conclusion
	Appendices
	Hyperparameters and System Configuration
	ADQN Agent Configuration
	Environment and Training Details

	Reward Function and Sensitivity
	Reward Surface and Pareto Frontier Visualization
	ADQN Maintenance Cost Analysis
	Report on Use of AI

