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Abstract. In order to achieve efficient 3D medical image segmenta-
tion within resource-constrained environments, we have developed a U-
Net-based framework. By integrating depthwise separable convolutions
and efficient channel attention mechanisms, our framework is capable of
achieving both efficient and accurate segmentation of various abdominal
organs within a CPU-based setting. This framework not only optimizes
computational efficiency but also enhances the precision of segmentation
through sophisticated feature extraction, which is crucial for medical
image analysis. The synergy of these techniques not only boosts the per-
formance of our model but also suggests potential for improvement in a
range of other medical image segmentation tasks. Our method achieves
Dice Similarity Coefficients of 61.1%, 63.4%, and 59.4% on Asia, Europe,
and North America datasets, respectively, with an average inference time
of under 43 seconds per case.
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1 Introduction

In recent years, deep learning technology has made significant breakthroughs
in abdominal multi-organ segmentation. However, in resource-constrained envi-
ronments, such as laptops or edge devices for hospital imaging, the lack of GPU
resources remains a key constraint. With the increasingly prominent role of med-
ical image analysis in disease diagnosis and treatment planning, it is particularly
critical to develop segmentation algorithms that can operate efficiently in diverse
computing environments. Therefore, researchers have begun to focus on the de-
velopment of lightweight models to accommodate these restrictive conditions.

As a technique to reduce the number of parameters and the amount of com-
putation in convolutional neural networks, Depthwise Separable Convolution has
gradually attracted attention in the field of deep learning. François Chollet pro-
posed a new deep convolutional neural network architecture in 2016, called Xcep-
tion [2], which replaces the Inception module with a deep separable convolution,
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thereby maintaining the same number of parameters as Inception V3, achiev-
ing better performance. Google proposed MobileNetV1 [10], a lightweight neural
network focused on mobile devices. MobileNetV1 is to replace the standard con-
volutional layer in VGG with the depthwise separable convolution to build a
lightweight network, which significantly reduces the number of parameters and
computation without significantly decreasing accuracy. The main contributions
of this work are summarized as follows:

– Based on U-Net [20], depthwise separable convolution is used to greatly
reduce the calculation amount and the number of parameters of the model,
to improve the prediction speed and keep the accuracy of the model as much
as possible.

– The Efficient Channel Attention (ECA) [7] in the encoder can improve the
feature expression ability and enhance the model’s attention to important
features. At the same time, it is low computational cost and easy to inte-
grate, which can effectively improve the performance of the model without
significantly increasing the number of parameters.

2 Method

2.1 Preprocessing

Regarding the preprocessing phase, we carried out four key procedures, de-
tailed as follows:

– Threshold truncation:After an in-depth analysis of many CT images, we
selected the [-160, 300] interval as the optimal threshold, in which the visual
contrast between different organs and tissues is the most prominent. Using
this observation, we applied a threshold truncation technique to enhance the
visualization quality of the organs in the images.

– Cropping strategy:In the process of model training, the labeled image slices
were selected for processing, and these slices were cropped to eliminate ir-
relevant data.

– Resampling method for anisotropic data:To reduce GPU memory usage, we
optimized the size of the image slices when loading the data. After multi-
ple rounds of validation, we resampled the 2D slice size from 512×512 to
192×192. This adjustment effectively reduced the memory footprint without
negatively affecting the segmentation performance of the model.

– Intensity normalization method

2.2 Proposed Method

This study proposes an improved network framework based on the U-Net
architecture, with a focus on multi-faceted optimization of the encoder compo-
nent. In terms of network architecture, this research innovatively adopts depth-
wise separable convolution, an efficient convolutional operation, by decoupling
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traditional convolution into two independent computational steps: depthwise
convolution and pointwise convolution, achieving significant improvements in
computational efficiency. This design not only preserves the spatial feature ex-
traction capability of traditional convolution but also substantially reduces the
model’s parameter count. Subsequently, pointwise convolution utilizes 1×1 ker-
nels to achieve linear transformation and feature recombination along the channel
dimension, enabling flexible adjustment of channel numbers while maintaining
computational complexity. Experimental results demonstrate that this decom-
position strategy can significantly reduce the computational cost of standard
convolution while preserving model performance, providing feasibility for de-
ployment in resource-constrained environments.

In terms of attention mechanisms, this study introduces an innovative chan-
nel attention module Efficient Channel Attention (ECA). This module achieves
a balance between performance and efficiency through two key designs: First,
it employs global average pooling to compress the channel dimension of feature
maps, capturing channel-wise statistics with a global receptive field. Second,
it innovatively uses 1D convolution to model local dependencies between chan-
nels, with an adaptive kernel size determination mechanism based on the channel
count C, ensuring optimal interaction coverage for feature maps of varying scales.
Compared to traditional channel attention mechanisms, the ECA module offers
three notable advantages: (1) it avoids unnecessary dimensionality reduction,
preserving complete channel information; (2) it reduces computational complex-
ity through a local cross-channel interaction strategy; and (3) its adaptive kernel
design ensures effective fusion of features at different network depths.Figure 1
shows the Network architecture of our method.

Fig. 1. Network architecture
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In the encoder part of U-Net, the traditional convolution layer is replaced
by depthwise separable convolution, and an efficient channel attention mech-
anism is added, which can improve the model’s performance without signifi-
cantly increasing the computational burden. Traditional BatchNorm is replaced
by GroupNorm to reduce the model’s dependence on batch size and enhance gen-
eralization across different batch sizes. Reducing the number of channels in the
model to 16 decreases the computational load while maintaining network per-
formance, improving operational efficiency, and making the model more suitable
for deployment in environments with limited computing resources. These im-
provements collectively enhance the performance and efficiency of the network,
making it more suitable for medical image segmentation tasks while maintaining
the model’s lightweight and fast response capabilities.

Loss function: we use the summation between Dice loss and Cross-Entropy
loss because compound loss functions have been proven to be robust in various
medical image segmentation tasks [13].

2.3 Post-processing

The use of a 3x3x3 closed operation in the post-processing stage of multi-
organ segmentation can smooth organ boundaries, fill small holes, and connect
adjacent organs, thereby improving the accuracy and robustness of segmentation.
This operation helps reduce noise and artifacts, optimizing the segmentation
results.

3 Experiments

3.1 Dataset and evaluation measures

The dataset is curated from more than 40 medical centers under the license
permission, including TCIA [3], LiTS [1], MSD [21], KiTS [8,9], autoPET [6,5],
AMOS [12], AbdomenCT-1K [19], TotalSegmentator [22], and past FLARE chal-
lenges [16,17,18]. The training set includes 2050 abdomen CT scans where 50 CT
scans with complete labels and 2000 CT scans without labels. The validation and
testing sets include 250 and 300 CT scans, respectively. The annotation process
used ITK-SNAP [24], nnU-Net [11], MedSAM [14], and Slicer Plugins [4,15].

The evaluation metrics encompass two accuracy measures—Dice Similarity
Coefficient (DSC) and Normalized Surface Dice (NSD)—alongside one efficiency
measures—runtime. These metrics collectively contribute to the ranking com-
putation. During inference, GPU is not available where the algorithm can only
rely on CPU.

3.2 Implementation details

Environment settings The development environments and requirements are
presented in Table 1.
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Table 1. Development environments and requirements.

System Windows 10
CPU Intel(R) Core(TM) i5-12400F CPU@2.50GHz
RAM 4×4GB; 3200MT/s
Programming language Python 3.8
Deep learning framework torch 1.7.1, torchvision 0.8.2
Specific dependencies collections, pandas, scipy

Training protocols We used the dataset of 50 labeled cases provided by the
organizers, along with 2000 pseudo-labels, which were generated by the aladdin5
team based on the training of these 50 labeled cases. During model training,
we utilized the Adam optimizer with an initial learning rate of 0.001 and em-
ployed the CosineAnnealingLR strategy to gradually reduce the learning rate.
The training protocols are presented in Table 2.

Table 2. Training protocols.

Network initialization
Batch size 8
Patch size 3×192×192
Total epochs 100
Optimizer AdamW
Initial learning rate (lr) 0.001
Lr decay schedule CosineAnnealingLR
Training time 300 hours
Loss function CrossEntropyLoss
Number of model parameters 0.405M1

Number of flops 1.29G2

CO2eq 1 Kg3

4 Results and discussion

4.1 Quantitative results on validation set

The performance metrics on our validation set are showcased in Table 3. We
can see the average organs DSC score, organs NSD score are 0.6615, 0.6581.
When we employ the original U-Net, the average organs DSC score, organs NSD
score are 0.7563, 0.7635.
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Table 3. Quantitative evaluation results.

Target Public Validation Online Validation
DSC(%) NSD(%) DSC(%) NSD(%)

Liver 94.70 ± 5.52 88.27 ± 9.18 95.33 90.22
Right Kidney 77.94 ± 24.03 68.64 ± 23.71 82.78 75.00
Spleen 87.99 ± 19.76 81.92 ± 20.75 90.75 86.18
Pancreas 63.41 ± 15.08 68.89 ± 15.51 65.32 73.09
Aorta 91.22 ± 11.44 91.28± 13.91 93.71 94.49
Inferior vena cava 76.29 ± 18.28 68.97± 19.66 78.88 72.87
Right adrenal gland 2.00 ± 14.00 2.00 ± 14.00 1.00 1.00
Left adrenal gland 4.00 ± 19.60 4.00 ± 19.60 1.00 1.00
Gallbladder 56.99 ± 35.49 51.58 ±35.14 67.53 63.70
Esophagus 70.68 ± 19.57 77.71± 22.23 69.45 79.14
Stomach 75.93 ± 21.08 70.67± 21.13 79.90 74.92
Duodenum 49.60 ± 17.14 67.24 ± 19.61 50.54 69.73
Left kidney 77.26 ± 25.23 65.83 ± 25.61 83.78 74.15
Average 63.69 ± 35.04 62.08± 34.21 66.15 65.81

Table 4. Quantitative evaluation of segmentation efficiency in terms of the running
time(Proposed). Evaluation CPU: Intel Xeon(R) W-2133 CPU @ 3.60GHz × 12.

Case ID Image Size Running Time (s)
0059 (512, 512, 55) 23.10
0005 (512, 512, 124) 44.83
0159 (512, 512, 152) 53.95
0176 (512, 512, 218) 75.70
0112 (512, 512, 299) 102.11
0135 (512, 512, 316) 108.43
0150 (512, 512, 457) 151.94
0134 (512, 512, 597) 210.54

Table 5. Quantitative evaluation of segmentation efficiency in terms of the running
time(Baseline U-Net). Evaluation CPU: Intel Xeon(R) W-2133 CPU @ 3.60GHz × 12.

Case ID Image Size Running Time (s)
0059 (512, 512, 55) 51.36
0005 (512, 512, 124) 112.98
0159 (512, 512, 152) 138.17
0176 (512, 512, 218) 202.17
0112 (512, 512, 299) 269.03
0135 (512, 512, 316) 284.78
0150 (512, 512, 457) 411.40
0134 (512, 512, 597) 561.44
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4.2 Qualitative results on validation set

Figure 2 presents the segmentation outcomes achieved by our method, clearly
demonstrating its superior performance in segmenting larger organs compared
to smaller ones. Additionally, over-segmentation phenomena have also occurred.

Fig. 2. Two examples with good segmentation results and two examples with bad
segmentation results in the validation set.

4.3 Segmentation efficiency results on validation set

The segmentation efficiency results of the validation set(some cases) are
shown in Table 4. The segmentation time for multiple organs ranges from a
minimum of 23.10 s to a maximum of 210.54 s. The average running time is
73.62 s per case in inference phase(200 cases). However, the average time re-
quired for segmentation per case using the original U-Net network is 562 seconds.
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The segmentation efficiency results of the ablation study are shown in Table 5.
It strongly demonstrates the effectiveness of incorporating depthwise separable
convolutions into the network.

4.4 Results on final testing set

As shown in Table 6 and Table 7, our model demonstrates balanced and stable
performance across datasets from Asia, Europe, and North America, validating
its robust cross-regional generalization capabilities. Despite potential differences
in anatomical structures or data distributions across regions, the model exhibits
minimal performance variations in core metrics (DSC, NSD) and inference effi-
ciency, highlighting its adaptability to diverse scenarios. Europe achieves slightly
higher mean DSC (63.4%) and NSD (63.0%), reflecting its strong robustness in
handling complex cases. Meanwhile, Asia and North America, though marginally
lower in absolute values, maintain concentrated data distributions (e.g., Asia’s
DSC standard deviation of ±8.8 and North America’s inference time fluctua-
tion of ±9.9 seconds), indicating reliable output consistency under varying data
sources. Additionally, North America’s average inference speed of 34.9 seconds
and Asia’s stability at 35.1 seconds provide flexible technical support for diverse
clinical applications, such as real-time diagnostics and multi-center collaborative
analysis. Overall, the model exhibits neither extreme deviations nor performance
degradation due to anatomical variations during cross-regional testing, demon-
strating exceptional robustness and universality in multi-center data scenarios,
thereby laying a solid foundation for clinical generalization.

Table 6. Quantitative evaluation of test results.

Target DSC(%) NSD(%)
Mean Median Mean Median

Asian 61.1 ± 8.8 62.9(55.2,69.0) 61.6 ± 10.0 63.6(55.9,69.6)
European 63.4 ± 9.9 66.3(58.3,71.2) 63.0 ± 11.4 65.9(56.6,71.6)
North America 59.4 ± 7.5 60.3(54.9,64.7) 57.5 ± 8.5 58.9(52.4,63.7)

Table 7. Quantitative evaluation of test results.

Target Time(s)
Mean Median

Asian 35.1 ± 12.7 33.4(25.3,39.1)
European 42.7 ± 12.9 40.6(33.1,50.7)
North America 34.9± 9.9 32.4(29.3,37.7)
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4.5 Limitation and future work

In terms of segmentation efficiency, our proposed approach demonstrates a
marked enhancement compared to the conventional U-Net. Nevertheless, the seg-
mentation outcomes reveal that our model struggles with the precise delineation
of smaller anatomical structures, notably the right and left adrenal glands. Mov-
ing forward, we are committed to prioritizing the enhancement of segmentation
accuracy for these minute organs.

5 Conclusion

In our current study, we have opted for depthwise separable convolutions
to replace the standard convolutional layers, aiming to streamline the compu-
tational process. This modification is particularly effective for the precision de-
mands of medical image segmentation. Following this, we have integrated ECA
into our encoder to refine feature extraction by emphasizing the most salient
channels. The strategic application of these techniques not only enhances our
model’s performance but also suggests their potential utility in a broader spec-
trum of medical image segmentation applications. By refining our approach in
this manner, we hope to contribute to the advancement of medical imaging tech-
nologies and inspire further research in this critical field.
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