
Code Graph Model (CGM):
A Graph-Integrated Large Language Model for
Repository-Level Software Engineering Tasks

Hongyuan Tao1∗ Ying Zhang12∗ Zhenhao Tang1∗ Hongen Peng1 Xukun Zhu13 Bingchang Liu1

Yingguang Yang1 Ziyin Zhang14 Zhaogui Xu1 Haipeng Zhang2 Linchao Zhu3 Rui Wang4

Hang Yu1† Jianguo Li1† Peng Di1†

1Ant Group, 2ShanghaiTech University, 3Zhejiang University, 4Shanghai Jiaotong University

{hyu.hugo,lijg.zero,dipeng.dp}@antgroup.com

Abstract

Recent advances in Large Language Models (LLMs) have shown promise in
function-level code generation, yet repository-level software engineering tasks re-
main challenging. Current solutions predominantly rely on proprietary LLM agents,
which introduce unpredictability and limit accessibility, raising concerns about data
privacy and model customization. This paper investigates whether open-source
LLMs can effectively address repository-level tasks without requiring agent-based
approaches. We demonstrate this is possible by enabling LLMs to comprehend
functions and files within codebases through their semantic information and struc-
tural dependencies. To this end, we introduce Code Graph Models (CGMs), which
integrate repository code graph structures into the LLM’s attention mechanism
and map node attributes to the LLM’s input space using a specialized adapter.
When combined with an agentless graph RAG framework, our approach achieves a
43.00% resolution rate on the SWE-bench Lite benchmark using the open-source
Qwen2.5-72B model. This performance ranks first among open weight models,
second among methods with open-source systems, and eighth overall, surpassing
the previous best open-source model-based method by 12.33%.3.

1 Introduction
The dream of automating software engineering (SE) has long captivated both the SE and artifi-
cial intelligence (AI) communities [1, 2, 3]. Recent advancements in Large Language Models
(LLMs) have shown promising results, particularly in code generation at the function level, with
models achieving resolution rates above 90% on benchmarks such as HumanEval [4]. Unfortu-
nately, real-world SE tasks extend far beyond isolated functions or self-contained code files. This
is exemplified by repository-level issue resolution [5, 6], which encompasses not only software
maintenance—addressing bugs and technical debt—but also software evolution, which involves
introducing new features and enhancements [7].

∗Equal contribution.
†Corresponding authors.
3The code is available at https://github.com/codefuse-ai/CodeFuse-CGM

39th Conference on Neural Information Processing Systems (NeurIPS 2025).

https://github.com/codefuse-ai/CodeFuse-CGM

The complexity of repository-level coding tasks has led researchers and practitioners to assume that
sophisticated strategies are necessary for their completion [8]. Indeed, current leading approaches
typically utilize LLM agents powered by proprietary models like GPT-4/4o [9] and Claude 3.5
Sonnet [10]. These agents are designed to leverage tools, execute commands, observe environmental
feedback, and plan subsequent actions [11]. Nevertheless, these methods suffer from two problems.
First, the agent-driven mechanism introduces unpredictability in decision-making [2]. As the
reasoning processes become intricate in tackling complex problems, the accumulation of errors can
hinder the generation of optimal solutions [12]. Second, the reliance on closed-source models
creates substantial barriers for the broader SE community [13, 14], including limited accessibility,
inability to enhance or customize models for specific tasks, and serious security concerns regarding
the privacy of sensitive code repositories when interacting with external API services.

The above two challenges lead to a bold question: Can open-source LLMs be employed in an
agentless manner to complete repository-level coding tasks? At first glance, this seems improbable.
Closed-source agent-based approaches can resolve up to 55% of issues on the popular SWE-bench
Lite benchmark4 for issue fixing, whereas existing methods using open-source models have only
achieved a maximum resolution rate of 30.67% as of May 2025 [15].

Despite these initial reservations, we posit that the answer is “Yes”, and the key lies in empowering
the open-source LLMs to fully comprehend code repositories, not just the information within
individual functions and files, but also the dependencies across functions and files. To move
forward to this goal, we propose Code Graph Models (CGMs), to jointly model the semantic and
structural information of code repositories. Specifically, we first construct a code graph for each
repository, which characterizes the hierarchical and reference dependencies between code entities.
We then develop a method to integrate this graph into the LLM through two key mechanisms. (i)
Semantic Integration: Node attributes (containing code or comments) are first encoded by a
pretrained text encoder and then mapped to the LLM’s input space via an adapter, enabling the
model to understand the semantic information of all nodes. (ii) Structural Integration: The graph
structure is incorporated into the LLM through the attention mask, allowing direct message passing
only between neighboring nodes in each layer of the LLM, similar to spatial Graph Neural Networks
(GNNs) [16]. The entire system—comprising the text encoder, adapter, and LLM decoder—is then
fine-tuned using Low Rank Adaptation (LoRA) [17]. The resulting CGM can tackle repository-level
coding tasks by using both the code graph and user instructions (text format). To further augment the
abilities of the CGM, we develop a specially designed Graph Retrieval-Augmented Generation (RAG)
framework, consisting of four modules: Rewriter, Retriever, Reranker, and Reader (i.e., CGM). The
first three modules focus the CGM on the subgraph that is most pertinent to the user’s query or issue.

Our approach has demonstrated remarkable results on the SWE-bench Lite benchmark, reaching
a 43.00% resolution rate using the open-source Qwen2.5-72B model and our agentless RAG
framework. As of May 2025, this performance ranks first among methods utilizing open-source
models, second among methods with open-source code implementations (the underlying model
may still be closed-source), and eighth overall. Notably, our approach surpasses the previous best
method based on open-source models (Moatless+DeepSeek-V3 [15]) by 12.33%, despite that method
employing DeepSeek-V3, which shows stronger performance than Qwen2.5-72B.

The main contributions of this work are as follows:
• We propose CGMs, a novel architecture that seamlessly integrates repository code graphs with

open-source LLMs through semantic and structural integration.
• We develop an agentless Graph RAG framework that enhances the CGM’s performance by focusing

on the most relevant subgraphs for user queries.
• Our CGM, armed with the Graph RAG, achieves a 43.00% resolution rate on SWE-bench Lite,

surpassing most agent-based approaches. We also demonstrate its effectiveness on other repository-
level tasks such as code completion.

2 Related Work
Large Language Models for Code Recent advancements in LLMs have shown remarkable success
in generating code at self-contained function or file levels [3]. This includes powerful closed-
source models like GPT-4/4o [9], Gemini-2.0 [18], and Claude 3.5 Sonnet [10], as well as open-
source alternatives such as Llama 3.1 [19], Qwen 2.5 [20], and DeepSeek-V3 [21]. Additionally,

4https://www.swebench.com/

2

https://www.swebench.com/

code-specialized open-source models have also emerged, including CodeFuse [22, 23, 24], Code
Llama [25], StarCoder [26, 27], DeepSeek-Coder [14, 28], and Qwen-Coder [29]. However, these
models struggle with repository-level coding tasks that better reflect practical software development
scenarios. Even the most capable closed-source models achieve only modest success rates on the
SWE-bench Lite benchmark [5] for real-world issue fixing, while open-source models lag further
behind with a maximum resolution rate of 26% [30]. Although closed-source models show superior
performance, their limited accessibility and data privacy concerns hinder widespread adoption in the
SE community. Furthermore, their proprietary nature prevents fine-tuning on task-specific data to
improve performance, if even such data is available.

For open-source LLMs to better handle repository-level tasks, they must develop a comprehensive
understanding of both semantic and structural information within codebases. DeepSeek-Coder [14]
has attempted to address this challenge by pre-training models on topologically sorted repository
codes. However, this approach faces two major limitations: real-world repositories often contain
more code than can fit within the model’s maximum context length; and the conversion of repository
structure into text format tends to obscure explicit dependencies that exist in the codebase.

To overcome these challenges, we propose representing repositories as text-rich graphs and aligning
them with LLMs via self-supervised continual pre-training. This approach preserves code repository
structure while enabling more effective processing and understanding of complex dependencies.

Graphs in Code Language Models The integration of graph structures into code language models
can be classified into three main approaches [31]: (1) attention mask modification, (2) graph-to-text
conversion, and (3) positional encoding augmentation. In the first approach, models like GraphCode-
BERT [32] and StructCoder [33] modify attention masks to capture relationships between code tokens
in Abstract Syntax Trees (ASTs) and Data Flow Graphs (DFGs). The second approach, demonstrated
by TreeBERT [34] and UniXcoder [35], transforms ASTs or node paths into textual sequences that
can be processed by language models. The third approach, exemplified by TPTrans [36], leverages
relative positional encodings to represent structural relationships within ASTs.

While these approaches have shown promise, they primarily focus on Transformer encoders and
small-scale language models (such as BERT or CodeT5) and are limited to file- or function-level
tasks. In contrast, our work enhances decoder-only LLMs to handle repository-level tasks. We
construct text-rich code graphs for entire codebases, moving beyond simple ASTs or DFGs. Inspired
by GraphCodeBERT and StructCoder, we incorporate graph structures through attention masks in
LLMs. However, due to the text-rich nature of the graphs, each node’s text or semantic information is
processed by a pretrained text encoder and then projected onto the LLM’s input space via an adapter.

Agent-drive Methods for Software Engineering LLM-based agents like Devin [37] have shown
the potential to solve real-world SE problems through their reasoning [38, 39] and interactive
capabilities [40, 41, 42, 11]. Along this direction, researchers have worked to enhance LLM agents
through various approaches, including specialized agent-computer interfaces (ACI) [43, 44, 8, 45],
fine-grained search [46, 12, 11], and expanded action spaces [47].

However, these agent-based approaches face several drawbacks. First, they typically delegate decision-
making to the agents, allowing them to determine both the timing and nature of actions. While
agents base their decisions on previous actions and environmental feedback, the expansive action
space and complex feedback mechanisms can lead to repetitive behaviors or accumulating errors,
ultimately resulting in suboptimal solutions [12]. Second, resolving a single issue often requires
30-40 interaction turns, making the process time-consuming and complicating the identification of
specific turns that resulted in unsatisfactory outcomes [2]. Third, the inherent unpredictability of
agent behavior and reliance on closed-source models creates obstacles for leveraging data to improve
performance, despite the abundance of such data in practice, such as issue-patch pairs for issue
fixing [5]. While SWE-Gym [48] attempts to address trainability, it may introduce bias by only
training with the trajectories that lead the SWE agent to correct answers. As a remedy, we propose
the CGM, built on open-source LLMs and enhanced through an agentless Graph RAG framework.

Agentless Methods for Software Engineering Agentless models offer a more controlled approach
to simulating real-world SE processes by following well-defined, fixed steps rather than relying
on LLM agents to make autonomous decisions or use complex tools. They help avoid the issues
of unpredictability and lengthy interaction chains. These methods typically operate in two main
stages: localization and editing [49]. The localization stage identifies relevant code snippets within
a repository, while the editing stage generates or modifies code based on these identified sections.

3

REPO

PKG

FILE

CLASS

FUNC

contains

imports

calls

extends

T-FILEREPO

PKG

FILE

REPO

PKG

PKG FUNC
contains

contains

contains

contains

calls

calls

extends
imports

calls

calls

calls

calls

calls

T-FILE

FILE

FILE

FUNC

FUNC
FUNC

CLASS

FUNC

FUNC

FUNCFILE

CLASS

T-FILE

CLASS

Figure 1: An example of our repository-level code graph. “PKG”, “FUNC”, and “T-FILE” represent
“PACKAGE”, “FUNCTION”, and “TEXTFILE”, respectively. Solid and dashed lines indicate
hierarchical (contains) and reference dependencies (calls/imports/extends), respectively.

This framework is particularly effective for repository-level code completion tasks, especially when
combined with RAG [50, 51]. For more complex tasks like issue fixing, enhanced approaches with
additional steps exist [2, 1]. For instance, Agentless [2] implements a comprehensive ten-step pipeline,
dedicating four steps to improving localization accuracy. This method has achieved a promising
resolution rate of 40.67% on SWE-bench Lite, comparable to state-of-the-art (SOTA) agent-based
methods, though it relies on the closed-source model Claude-3.5 Sonnet.

Recent research has also focused on enhancing code understanding by incorporating structural
information through graph-enhanced repository modeling [52, 53, 49]. However, even when graph
structures are used during retrieval, existing methods typically flatten the retrieved code snippets
into linear text sequences for downstream model prompting. This flattening process fails to preserve
the inherent heterogeneity between graph and text modalities. As a remedy, we propose the CGM
that explicitly aligns these two distinct modalities, enabling better preservation and utilization of
structural information throughout the entire process.

3 Code Graph Construction
Before delving into the CGM, it is crucial to understand the repository-level code graph that CGM
utilizes and the process of its construction. The primary aim of this code graph is to offer a structured
representation of the structural and semantic information inherent in complex codebases.

We represent each repository as a directed graph G = (V,E), where V is the set of distinct entities in
the codebase and E is the set of edges between these entities. To be specific, the code graph includes
up to seven types of nodes and five types of edges (details are provided in Appendix B). The node types
vary in granularity, ranging from the repository level (REPO) to fine-grained attributes. The edge
types comprise both hierarchical (i.e., contains) and reference dependencies (calls/imports/extends).

As shown in Figure 1, the hierarchical dependencies (i.e., the solid edges) span the code graph. In
other words, all nodes are interconnected by edges reflecting hierarchical dependencies, establishing
a top-down tree structure. This structure mirrors the organization of code entities as dictated by
file systems and programming language syntax rules. Building this tree graph begins with AST
parsing [52]. During this phase, code entities and their hierarchical dependencies are identified in
a recursive manner: the root node (i.e., REPO) is added to the graph first, followed by its children
(i.e., PKG and T-FILE), until all nodes without descendants (i.e., FUNC) are processed. With each
recursion, directed edges are added from parents to children.

On the other hand, reference dependencies (i.e., the dashed edges) capture interactions between
different entities, such as class inheritance, function calls, and module imports. Unlike hierarchical
edges, which maintain a vertical hierarchy, reference edges create horizontal connections that may
introduce cycles, such as those caused by recursive calls. These edges are typically not part of an AST.
To derive them, we conduct a lightweight semantic analysis to resolve symbols, such as references or
calls to classes and attributes. Once a target symbol is identified, an edge is added from the source
node to the target node in the code graph.

Concerning node attributes, we retain the original content and line range of each node. This approach
enables explicit graph traversal and retrieval and facilitates training models with enhanced semantic
understanding capabilities. During post-processing, we remove the text contained in the child nodes
from the parent nodes within the tree graph derived from the hierarchical dependencies. The resulting
code graph is a text-rich graph [54] in which each node encapsulates a corresponding code snippet.

4

Extractor Inferer

Code Entity & Keywords

D

Graph-aware

Attention MaskAdjacency Matrix

Answer

Given the contexts: [node token]

{query}

The following files may need to be

modified: {selected_files}

LoRA

Text Token

Node Token

Node Embed

Trainable

Frozen

E Text Encoder

A

D LLM-Decoder

Texts

Adapter

AELoRA

(a) Rewriter

ISSUE: Modeling‘s `separability_matrix`

does not compute separability correctly for

nested CompoundModels Consider the

following model: ```python

from astropy.modeling import models ...

5.0

Selection Scoring

Code Entity: astropy/modeling/separable.py

 astropy/modeling/models.py ...

Keywords: separability_matrix

 nested_models ...

① Code Graph

Inferer Nodes

Extractor Nodes

Selected Subgraph
(b) Retriever

(c) Reranker

(d) Reader / Code Graph Model (CGM)

Subgraph

Subgraph

Text of
Selected Files

Extractor Nodes

Inferer Text

1: File name containing ‘separable.py’.

2: Functions or methods handling...

File1.py File2.py FileN.py

Stage 1:

File Name Rank

Stage 2:

File Skeletion Rank Prompt for the “xxx” task

AELoRA

AELoRA

N
o
d

e
s

E
d

g
e
s Structural Integration

Semantic Integration

D

Figure 2: Architecture of CGM and its Graph RAG extension: Given an issue, (a) Rewriter extracts
code entities and keywords from the issue (Extractor), and modifies the original issue into more
detailed queries (Inferer). Based on this, (b) Retriever locates relevant nodes from the corresponding
code graph; then expands these nodes to a connected subgraph by including neighboring and upstream
nodes. (c) Reranker ranks retrieved results in two stages: File Name Rank and File Skeleton Rank,
selecting the most relevant files for modification. Finally, (d) Reader (CGM) takes the retrieved graph
and selected files as input. Each node’s code content is encoded by an Encoder E , producing a node
token via the Adapter A. Node tokens are then concatenated with text tokens in the prompt before
entering the LLM decoder D, where the adjacency matrix replaces its original attention mask.

4 Code Graph Models (CGMs)
In this section, we elaborate on the architecture of the Code Graph Model (CGM), the training strategy
we adopted, and how we enhance the CGM via the Graph RAG framework.

4.1 Model Architecture
The architecture of the CGM is illustrated in Figure 2(d). CGM takes the code graph as inputs,
enhancing the LLM’s comprehension of both semantic and structural information within the graph.
Below, we detail how CGM integrates both aspects into the LLM.

Semantic Integration: The code graphs are text-rich, with semantic information only residing in the
textual contents of the nodes. As shown in Figure 2(d), we integrate the node information into the
LLM decoder D by transforming node text into node tokens through an encoder E and an adapter A.

Specifically for the encoder, we utilize the pretrained encoder from CodeT5+ [55], chosen for its
proven effectiveness in processing both source code and text (comments and documentation). For
nodes containing lengthy text, we segment the content into chunks of 512 tokens each. These chunks
are processed independently by the encoder. To maintain graph consistency, we duplicate the source
node for each chunk, preserving identical connections to other nodes. The chunks within a node
are fully connected, and their sequential order is maintained through position embeddings in the
LLM decoder D. We fine-tune the encoder using Low-Rank Adaptation (LoRA) [17] to optimize its
performance for downstream tasks.

The adapter A serves as a bridge between the encoder and LLM, projecting encoder outputs into
the LLM’s input embedding space. Following successful practices in Vision Language Models
(VLMs) [56, 57], we implement the adapter as a two-layer MLP with GELU activation [58]. The
adapter is trained from scratch with random initialization.

Unlike VLMs, which bridge different modalities, CGM’s encoder E and decoder D are of the same
modality, simplifying the alignment process. Furthermore, we compress each 512-token chunk (shown
as gray tokens in Figure 2(d)) into a single node token (black tokens in Figure 2(d)) for the LLM
decoder. This compression effectively extends the LLM’s context length by a factor of 512, enabling
the processing of extensive code repository contexts. Similar techniques, referred to as soft prompt
compression, have been shown to enhance long-context modeling in recent studies [59, 60, 61].

Structural Integration: Besides node information, another challenge is integrating the graph struc-
ture into the LLM decoder D. While LLMs excel at processing sequential data, they are not inherently
designed to capture graph structures [54]. Traditional approaches have attempted to incorporate
repository-level structural information by simply linearizing code snippets into sequences [14, 49],
but this transformation often fails to preserve the explicit relationships between code entities.

5

To better maintain structural relationships, we introduce a graph-aware attention mask to replace
the causal attention mask solely between node tokens in the LLM. This mask is derived from the code
graph’s adjacency matrix, taking into account the node duplication process described earlier. We then
fine-tune the LLM with LoRA to adapt it to both the new attention mechanism and the node tokens
from the adapter A. This approach ensures that attention occurs only between neighboring nodes in
the code graph, mimicking the message passing mechanism frequently used in spatial GNNs [62, 63].

4.2 Training Strategies
Given the pretrained encoder E and decoder D, the training of the CGM consists of two main phases:

Subgraph Reconstruction Pre-training: This phase focuses on training the CGM to effectively
capture both the semantic and structural aspects of code graphs. To achieve this, we introduce a novel
pre-training task that requires the model to reconstruct code content from its corresponding code
graph, a process we refer to as Graph-to-Code.

In this task, the inputs are subgraphs randomly sampled from large-scale code graphs, with a limited
number of nodes. This constraint ensures that the corresponding output code remains below 8,000
tokens, allowing for computational efficiency and manageable context sizes during training. To
enhance the meaningfulness of the output code, we employ a hierarchical approach that preserves
the inherent dependencies within the code graphs as they are translated into text. Concretely, for
higher-level nodes (e.g., REPO and PACKAGE), we position them at the beginning of the output
sequence or their respective files to maintain hierarchical consistency. We then utilize the approach
from DeepSeek-Coder [14] to perform topological sorting on all file nodes, thereby establishing a
structured order for the code content. Lastly, intra-file nodes (e.g., CLASS and FUNCTION) are
sorted by line numbers and concatenated within their respective files, culminating in a coherent text
sequence that accurately represents the sampled subgraph.

Noisy Fine-tuning: This phase fine-tunes CGM on real-world issue-patch pairs [5], adapting it to
practical software debugging and code editing tasks. As displayed in Figure 2(d), the model learns to
generate code patches based on two inputs: (i) a subgraph and (ii) a text prompt that indicates the
“oracle” files—files that require modification according to the ground-truth patch. The subgraph is
constructed by combining the oracle files, their downstream nodes, and one-hop neighbors from the
repository-level code graph. To improve model robustness, we intentionally introduce noise into the
prompts: 10% include an irrelevant file that doesn’t require modification, while another 10% omit at
least one oracle file. This controlled noise exposure helps the model better generalize to real-world
scenarios where inputs may be incomplete or contain irrelevant information.

4.3 The Graph RAG Framework
This section presents our Graph RAG framework, a streamlined extension of CGM designed for
automated resolution of real-world repository tasks. The framework consists of four core modules:
Rewriter, Retriever, Reranker, and Reader (the proposed CGM). This compact architecture stands in
contrast to the SOTA agentless method, which requires ten distinct steps [2].

As illustrated in Figure 2, the framework operates sequentially. First, Rewriter enhances the original
issue description to help Retriever identify relevant nodes in the code graph. Retriever then constructs
a connected subgraph using both lexical and semantic search techniques. This subgraph serves as
input for both Reranker and Reader. Reranker analyzes the subgraph to identify the Top K files
likely to be modified. Finally, Reader (CGM) generates the code patch using both the subgraph
from Retriever and the selected files from Reranker. Rewriter and Reranker are implemented by
prompting the open-source Qwen2.5-72B-instruct [20], while the semantic search in Retriever utilizes
the open-source CGE-Large model [64]. In Appendix D, we provide a case study on how CGM
solve a specific issue from scratch. Meanwhile, we report the computational costs of our framework,
including the cost of code graph construction, in Appendix C.4

Rewriter comprises two subcomponents: Extractor and Inferer, as illustrated in Figure 2(a). Ex-
tractor identifies key code elements from the user query, including file names, function names, and
relevant keywords. Inferer then enriches the query’s semantics by providing more detailed functional
descriptions. The specific prompts for both components are detailed in Appendix G.

Retriever generates a connected subgraph from the code graph for subsequent modules. As shown in
Figure 2(b), Extractor nodes (blue nodes) are first identified through string matching with the code
elements and keywords extracted earlier. Next, Inferer nodes are located (red nodes) through semantic
search, comparing the Inferer’s output with each node’s textual information. These anchor nodes are

6

Table 1: Performance comparison of open source system on SWE-bench Lite and Verified. CS-3.5
denotes Claude-3.5-Sonnet-20241022, DS-V3 represents DeepSeek-V3, Q2.5C-32B means Qwen2.5-
Coder-32B and Q2.5-72B stands for Qwen2.5-72B-Instruct. The icons and denote open and
closed-source models, respectively.

(a): SWE-bench Lite
Method LLM Agent % R Rank All

DARS Agent CS-3.5 Yes 47.00 1 6
CGM-SWE-PY Q2.5-72B No 43.00 2 8
Lingxi NA Yes 42.67 3 10
CodeAct-v2.1 CS-3.5 Yes 41.67 4 11
PatchKitty-0.9 CS-3.5 Yes 41.33 5 12
Composio SK CS-3.5 Yes 41.00 6 14
Agentless-v1.5 CS-3.5 No 40.67 7 32
Moatless CS-3.5 Yes 39.00 8 19
Patched.Codes CS-3.5 Yes 37.00 9 20
CGM-Multi Q2.5-72B No 36.67 10 23
AppMap CS-3.5 Yes 36.00 11 24
Agentless Lite o3-mini No 32.33 13 31
Agentless-v1.5 GPT-4o No 32.00 14 32
Moatless DS-V3 Yes 30.67 16 35
SWE-Fixer Q2.5-72B Yes 24.67 26 51
Lingma SWE-GPT Q2.5-72B No 22.00 28 57

(b): SWE-bench Verified
Method LLM Agent % R Rank All

OpenHands NA Yes 65.80 1 1
PatchPilot-v1.1 NA NA 64.60 2 5
SWE-Agent CS-3.7 Yes 62.40 3 10
Agentless-v1.5 CS-3.5 No 50.80 4 25
CGM-SWE-PY Q2.5-72B No 50.40 5 26
Composio SK NA Yes 48.60 6 31
Agentless Lite o3-mini No 42.40 8 39
Composio SK CS-3.5 Yes 40.60 10 47
SWE-Agent Q2.5C-32B No 40.20 11 48
Agentless-v1.5 GPT-4o No 38.80 12 50
SWE-Fixer Q2.5-72B Yes 32.80 14 54
Lingma SWE-GPT Q2.5-72B No 30.20 15 58
Lingma Agent Q2.5-72B Yes 28.80 16 60
Lingma SWE-GPT Q2.5-72B No 25.40 18 64
SWE-Agent GPT-4o Yes 23.20 16 67
SWE-Agent GPT-4 Yes 22.40 17 68

then expanded to include their one-hop neighbors, capturing local programming dependencies [65].
To ensure connectivity and incorporate upstream information, these expanded nodes are connected to
the Root node (REPO in Figure 1). Finally, each FILE node in the subgraph is expanded to include
all its internal nodes, aligning with Reranker’s file-level output. The result is a repository-enhanced
context subgraph representing the user query, asdenoted by the shaded nodes in Figure 2(b).

Reranker further refines the subgraph generated by Retriever, selecting only the Top K files deemed
most likely to be revised. This refinement is necessary because Retriever’s output includes files that
may only be referenced and not modified. Reranker operates in two steps: first, it selects K = 10
files based on the original user query and file names; next, it narrows this selection down to K = 5
files by individually scoring each one according to how relevant its file skeleton [2] is to the user
query. The specific prompt for Reranker can be found in the Appendix G.

Reader receives two inputs: the subgraph from Retriever as node tokens (black tokens) and the
selected files with their full contents as text tokens (gray tokens), as depicted in Figure 2(d). These
inputs are combined using the prompt template in the white box on the left of the figure. The graph
and text tokens complement each other by providing global and local information related to the user
query. Using this comprehensive information, Reader (i.e., the CGM) generates the final response.

5 Experiments
In this section, we assess the performance of the CGM on two primary tasks: repository-level issue
resolution and code completion, for both Python and Java programming languages. We also conduct
a series of ablation studies to validate the effectiveness of the model design and training strategies.

5.1 Repository-Level Issue Fixing
This section evaluates the proposed CGM against other SOTA methods in resolving real-world
software issues. We use three benchmark datasets: SWE-bench Lite, containing 300 issues from 11
Python repositories, SWE-bench Verified, containing 500 issues from 12 Python repositories, and
SWE-bench-java Verified, comprising 91 issues from 6 Java repositories. All benchmarks utilize
developer-written unit tests to verify the correctness of model-generated patches, ensuring rigorous
evaluation. Performance is measured using the resolution rate (% R), defined as the percentage of
successfully resolved issue instances. We present results for two variants of our model: CGM-Multi,
trained for both issue resolution and code completion tasks across Python and Java repositories, and
CGM-SWE-PY, specifically optimized for Python issue resolution. Detailed information regarding
the datasets and implementations can be found in Appendix C.5.

As shown in Table 1(a), our CGM-SWE-PY model achieves a 43% resolution rate on SWE-bench Lite,
placing it first among methods utilizing open-source models, second among those that implement
open-source methods but use closed-source models, and eighth overall. Notably: (i) When compared
to other methods based on open-source models, CGM-SWE-PY outperforms Moatless+DeepSeek-

7

Table 2: Performance evaluation on SWE-bench-java Verified. DS-V2 denotes DeepSeek-Chat-V2,
DSC-V2 represents DeepSeek-Coder-v2, GPT-4o refers to GPT-4o-2024-05-13, DB-128K stands
for Doubao-Pro-128k, and GPT-4o-MINI indicates GPT-4o-MINI-2024-07-18. The icons and
denote open-source and closed-source methods or models, respectively.

METHOD LLM AGENT % R RANK

CGM-MULTI Q2.5-72B NO 14.29 1
SWE-AGENT DS-V2 YES 9.89 2
SWE-AGENT DSC-V2 YES 7.69 3
SWE-AGENT GPT-4O YES 6.59 4
SWE-AGENT DB-128K YES 1.10 5
SWE-AGENT GPT-4O-MINI YES 1.10 6

Table 3: Performance comparison on CrossCodeEval and ComplexCodeEval benchmarks. DeepSeek-
236B represents DeepSeek-V2.5-236B, Mixtral-123B denotes Mistral-Large-Instruct-2411, and
Qwen2.5-72B refers to Qwen2.5-72B-Instruct. Baseline models are evaluated using FIM (Fill-in-
Middle) and one-hop expansion.

CROSSCODEEVAL COMPLEXCODEEVAL
METHOD JAVA PYTHON JAVA PYTHON

EM ES EM ES EM ES EM ES

MIXTRAL-123B 47.17 82.23 53.92 82.42 37.00 64.81 31.00 62.48
DEEPSEEK-236B 44.74 83.81 58.54 85.03 36.00 63.08 32.00 60.60
QWEN2.5-72B 37.31 78.78 58.50 81.56 26.00 54.14 28.00 57.12
CGM-MULTI-72B 50.21 80.76 61.20 84.30 47.00 78.86 43.00 72.60

V3 by 12.33% [15], despite DeepSeek-V3’s generally superior performance in various coding
benchmarks compared to our LLM decoder Qwen2.5-72B [21]. Furthermore, it exceeds Lingma
SWE-GPT by 21%, even though the latter employs carefully curated COT (chain-of-thought) data to
boost Qwen2.5-72B’s effectiveness in issue resolution. (ii) In relation to other agentless frameworks,
CGM-SWE-PY slightly surpasses Agentless+Claude-3.5-Sonnet by 2.33% and significantly
outperforms Agentless+GPT-4o by 11.00%. This achievement is particularly noteworthy given that
Agentless leverages a complex ten-step pipeline with more powerful closed-source models, while
CGM-SWE-PY operates on a simpler four-step Graph RAG framework. We attribute this success
to CGM’s enhanced capacity to interpret both semantic and structural information within
repositories. (iii) While the top methods on SWE-bench Lite are entirely closed-source regarding
both models and implementations, CGM-SWE-PY’s results are within 10% of these systems. This
indicates that CGM-SWE-PY has the potential to compete with leading agent-based methodologies.
Compared to other open-sourced model-based methods, CGM significantly narrows the gap
between open-source models and closed-source methods in issue-fixing scenarios. (iv) Our
multi-task model, CGM-Multi, achieves a resolution rate of 36.67% on SWE-bench Lite, ranking
23rd overall. The relatively lower performance compared to CGM-SWE-PY can be attributed to its
broader focus, which encompasses both issue fixing and code completion tasks across Python and
Java repositories. (v) We further apply CGM-SWE-PY to a larger Python benchmark—SWE-bench
Verified in Table 1(b), where CGM-SWE-PY ranks first again among open weight models, and fifth
among methods with open-source system.

In the SWE-bench-java evaluation for Java repositories as shown in Table 2, CGM-Multi records a
resolution rate of 14.29%, significantly outclassing SWE-Agent build upon both closed-source and
open-source models. These findings further substantiate the effectiveness of our proposed GCM and
the specially designed Graph RAG framework.

5.2 Repository-Level Code Completion
In this section, we evaluate the CGM’s performance on code completion tasks at the repository level
for both Python and Java programming languages. Our evaluation uses two benchmarks: CrossCodeE-
val and ComplexCodeEval. Concretely, CrossCodeEval focuses on cross-file code completion, while
ComplexCodeEval encompasses more intricate tasks, including API recommendations and test case
generation. Performance is measured using two metrics: Edit Match (EM) and Edit Similarity (ES),
evaluating how similar the generated code is to the ground-truth code. Detailed information regarding
the datasets, metrics, and the implementation of baseline models can be found in Appendix C.6.

8

Table 4: Comparison of CGM with RAG variants on CrossCodeEval. Results are reported for Java
and Python across multiple base models. Evaluation metrics include EM and ES.

CODELLAMA-7B DEEPSEEK-CODER-7B
METHOD JAVA PYTHON JAVA PYTHON

EM ES EM ES EM ES EM ES

NORAG 20.60 54.50 13.70 44.10 24.20 59.30 19.40 52.50
BM25 23.42 66.13 21.76 69.09 22.49 66.78 23.30 70.84
REPOFUSE / / 24.80 71.05 / / 27.92 73.09
RLCODER 26.23 67.61 26.60 72.27 26.09 67.31 30.28 74.42
R2C2 35.60 58.50 23.60 42.90 41.60 64.60 32.70 54.00
CGM-MULTI 36.42 75.28 31.03 73.90 41.65 74.76 33.88 71.19

STARCODER-7B QWEN2.5-CODER-7B
METHOD JAVA PYTHON JAVA PYTHON

EM ES EM ES EM ES EM ES

NORAG 21.60 55.90 17.00 49.50 37.31 78.78 33.63 73.19
BM25 22.16 67.80 22.33 69.60 49.37 82.63 43.15 78.66
REPOFUSE / / 24.20 70.82 / / / /
RLCODER 24.73 69.08 25.82 72.11 / / / /
R2C2 38.10 63.60 30.90 51.90 / / / /
CGM-MULTI 37.44 73.77 31.00 71.66 51.61 84.62 46.23 82.16

Table 5: Impact of each RAG (Retrieval-Augmented Generation) component on the performance
of CGM for issue fixing. Results are reported as the resolve rate (% R) on SWE-bench Lite,
demonstrating the contribution of rewriter, retriever, and reranker modules.

SETTING % R

- W/O REWRITER 34.67
- W/O RETRIEVER 31.67
- W/O RERANKER 18.33
- W/O R3 9.67
- W/O CGM READER (FLATGRAPH) 5.33

Table 3 presents the results for CGM-Multi, which uses Qwen2.5-72B-instruct as its LLM decoder.
We compare it with similarly sized large language models, including Mistral-Large-Instruct-123B,
DeepSeek-V2.5-236B, and the standalone Qwen2.5-72B-instruct. For all models, context retrieval
for code completion is performed by identifying one-hop neighbors of the target file (that requires
completion) in the code graph. While CGM-Multi processes the entire subgraph as input, baseline
models only receive the textual content from the nodes. Results show that CGM-Multi performs on
par with or exceeds other models on CrossCodeEval. More importantly, it greatly outperforms
the baseline models on ComplexCodeEval, demonstrating its superior capability in handling
complex tasks through comprehensive subgraph analysis.

Next, we evaluate CGM against other RAG methods for CrossCodeEval. The comparison includes
several established systems: BM25, the default retrieval method in CrossCodeEval [66]; RLcoder [67],
which employs reinforcement learning for retrieval optimization; RepoFuse [68], which integrates
code graphs during retrieval but converts retrieved code snippets into linear text sequences; and
R2C2 [69], which combines retrieved code snippets with Tree-sitter-generated abstract context as
the input to the LLM. In our CGM implementation, we still construct input subgraphs by combining
target files with their one-hop neighbors. We evaluate these methods using various base models for
generation, including CodeLlama-7B, StarCoder-7B, DeepSeek-Coder-7B, and Qwen2.5-Coder-7B.
This diverse set of comparison methods enables a comprehensive evaluation of CGM’s effectiveness
in long-context retrieval and understanding. As shown in Table 4, CGM typically outperforms
other RAG methods, regardless of the base model used, suggesting that graph-based context
retrieval is more effective for code completion tasks. Moreover, CGM’s superiority over RepoFuse,
which also uses code graphs for retrieval, can be attributed to CGM’s explicit integration of structural
information within the subgraph, whereas RepoFuse flattens node context into text sequences,
obscuring the explicit dependencies among code entities.

5.3 Ablation Studies
In this section, we present key findings from our ablation studies, with detailed analysis available in
Appendix C.7. Our investigation reveals four crucial insights: (i) Graph RAG: Our assessment of

9

Table 6: Impact of training strategies on CGM’s performance. Results are reported for CrossCodeEval
(Java and Python) in terms of EM and ES. Here, E denotes the encoder, A denotes the adapter, D
denotes the LLM, and “combined” refers to the full CGM setup (w/ mask, w/ Recon, A + LoRA w/
E + D).

SETTING CROSSCODEEVAL
JAVA PYTHON

EM ES EM ES

MODULE
- FREEZE 17.91 58.28 11.78 51.60
- A 41.70 77.25 34.90 74.54
- LORA W/ D 46.84 82.06 38.76 76.02
- A + LORA W/ D 49.51 83.21 43.15 79.84

- W/O MASK 48.71 83.40 42.21 80.46
- W/O RECON 42.78 80.29 39.77 75.87
- COMBINED 51.61 84.62 46.23 82.16

Table 7: Performance of CGM with different LLM backbones. Results are reported as the resolve
rate (% R) on SWE-Bench Lite, demonstrating the model’s ability to generalize across various sizes
and architectures.

BACKBONE SWE-BENCH LITE (% R)

CGM
- QWEN2.5-72B-INSTRUCT 43.00
- LLAMA3.1-70B-INSTRUCT 25.33
- QWEN2.5-CODER-32B-INSTRUCT 28.67
- QWEN2.5-CODER-7B-INSTRUCT 4.00

Table 8: Analysis of the test-time scaling (TTS) performance using the Pass@K metric. Results are
reported as the resolve rate (% R) on both SWE-Bench Lite and SWE-Bench Verified, demonstrating
the benefits of leveraging additional test-time computation.

PASS@K SWE-BENCH LITE (% R) SWE-BENCH VERIFIED (% R)

K=1 43.00 50.40
K=2 44.33 51.40
K=3 46.67 53.20

the Graph RAG modules in Table 5 shows that the presence of Rewriter, Retriever, and Reranker is
essential for achieving optimal performance on the SWE-bench Lite benchmark. Notably, Reranker
plays a pivotal role as it dictates which files should be modified. (ii) Semantic Integration: Joint
fine-tuning of all three components in Table 6—encoder E , the adapter A, and the decoder D—yields
superior performance compared to keeping any component fixed. (iii) Structural Integration:
The integration of graph structural information through attention masking is essential for optimal
performance. (iv) Training Strategies: The subgraph reconstruction task, as described in Section 4.2,
significantly contributes to improving the CGM’s overall performance. (v) Backbone Generalization:
Moreover in Table 7, CGM can also be generalized on backbones with different sizes, demonstrating
its potential for resource-constrained scenarios. (vi) Test-Time Scaling: As detailed in Table 8, the
test-time scaling strategy implemented via Pass@K sampling significantly improves the performance
of CGM on both SWE-Bench benchmarks.

6 Conclusion
In this paper, we present CGM, a novel graph-enhanced LLM architecture designed for comprehen-
sive repository-level code understanding. By seamlessly integrating both semantic and structural
information from codebases through a specialized encoder-adapter framework and graph-aware atten-
tion mechanisms, CGM demonstrates that sophisticated agent-based approaches and closed-source
models are not necessarily required for complex SE tasks. When combined with our custom-designed
Graph RAG framework, CGM achieves a remarkable 43.00% resolution rate in real-world issue-fixing
scenarios on SWE-bench Lite, using only open-source models. Our work establishes a new direction
for developing powerful, transparent, and accessible tools for automated SE.

10

7 Acknowledgement

The work was supported by Ant Group. Prof. Haipeng Zhang was supported by Science and
Technology Commission of Shanghai Municipality (25ZR1401256).

References
[1] Yingwei Ma, Rongyu Cao, Yongchang Cao, Yue Zhang, Jue Chen, Yibo Liu, Yuchen Liu,

Binhua Li, Fei Huang, and Yongbin Li. Lingma swe-gpt: An open development-process-centric
language model for automated software improvement. arXiv preprint arXiv:2411.00622, 2024.

[2] Chunqiu Steven Xia, Yinlin Deng, Soren Dunn, and Lingming Zhang. Agentless: Demystifying
llm-based software engineering agents. arXiv preprint arXiv:2407.01489, 2024.

[3] Ziyin Zhang, Chaoyu Chen, Bingchang Liu, Cong Liao, Zi Gong, Hang Yu, Jianguo Li, and
Rui Wang. Unifying the perspectives of nlp and software engineering: A survey on language
models for code. arXiv preprint arXiv:2311.07989, 2023.

[4] Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde De Oliveira Pinto, Jared
Kaplan, Harri Edwards, Yuri Burda, Nicholas Joseph, Greg Brockman, et al. Evaluating large
language models trained on code. arXiv preprint arXiv:2107.03374, 2021.

[5] Carlos E Jimenez, John Yang, Alexander Wettig, Shunyu Yao, Kexin Pei, Ofir Press, and
Karthik R Narasimhan. SWE-bench: Can language models resolve real-world github issues? In
The Twelfth International Conference on Learning Representations, 2024.

[6] Daoguang Zan, Zhirong Huang, Ailun Yu, Shaoxin Lin, Yifan Shi, Wei Liu, Dong Chen,
Zongshuai Qi, Hao Yu, Lei Yu, et al. Swe-bench-java: A github issue resolving benchmark for
java. arXiv preprint arXiv:2408.14354, 2024.

[7] Yizhou Liu, Pengfei Gao, Xinchen Wang, Jie Liu, Yexuan Shi, Zhao Zhang, and Chao Peng.
Marscode agent: Ai-native automated bug fixing. arXiv preprint arXiv:2409.00899, 2024.

[8] John Yang, Carlos E Jimenez, Alexander Wettig, Kilian Lieret, Shunyu Yao, Karthik
Narasimhan, and Ofir Press. Swe-agent: Agent-computer interfaces enable automated software
engineering. arXiv preprint arXiv:2405.15793, 2024.

[9] OpenAI. Hello gpt-4o. https://openai.com/index/hello-gpt-4o/, 2024.

[10] Anthropic. Claude 3.5 sonnet. https://www.anthropic.com/news/claude-3-5-sonnet,
2024.

[11] Yingwei Ma, Qingping Yang, Rongyu Cao, Binhua Li, Fei Huang, and Yongbin Li. How to
understand whole software repository? arXiv preprint arXiv:2406.01422, 2024.

[12] Antonis Antoniades, Albert Örwall, Kexun Zhang, Yuxi Xie, Anirudh Goyal, and William Wang.
Swe-search: Enhancing software agents with monte carlo tree search and iterative refinement.
arXiv preprint arXiv:2410.20285, 2024.

[13] Jiya Manchanda, Laura Boettcher, Matheus Westphalen, and Jasser Jasser. The open source
advantage in large language models (llms). arXiv preprint arXiv:2412.12004, 2024.

[14] Qihao Zhu, Daya Guo, Zhihong Shao, Dejian Yang, Peiyi Wang, Runxin Xu, Y Wu, Yukun
Li, Huazuo Gao, Shirong Ma, et al. Deepseek-coder-v2: Breaking the barrier of closed-source
models in code intelligence. arXiv preprint arXiv:2406.11931, 2024.

[15] Aor. Aoatless-tools. https://github.com/aorwall/moatless-tools, 2024.

[16] Ines Chami, Sami Abu-El-Haija, Bryan Perozzi, Christopher Ré, and Kevin Murphy. Machine
learning on graphs: A model and comprehensive taxonomy. Journal of Machine Learning
Research, 23(89):1–64, 2022.

11

https://openai.com/index/hello-gpt-4o/
https://www.anthropic.com/news/claude-3-5-sonnet
https://github.com/aorwall/moatless-tools

[17] Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang,
Lu Wang, and Weizhu Chen. Lora: Low-rank adaptation of large language models. arXiv
preprint arXiv:2106.09685, 2021.

[18] Sundar Pichai, Demis Hassabis, and Koray Kavukcuoglu. Introducing gemini 2.0: our new
ai model for the agentic era. https://blog.google/technology/google-deepmind/
google-gemini-ai-update-december-2024/, 2024.

[19] Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-Dahle,
Aiesha Letman, Akhil Mathur, Alan Schelten, Amy Yang, Angela Fan, et al. The llama 3 herd
of models. arXiv preprint arXiv:2407.21783, 2024.

[20] An Yang, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu, Chengyuan
Li, Dayiheng Liu, Fei Huang, Haoran Wei, et al. Qwen2. 5 technical report. arXiv preprint
arXiv:2412.15115, 2024.

[21] Aixin Liu, Bei Feng, Bing Xue, Bingxuan Wang, Bochao Wu, Chengda Lu, Chenggang Zhao,
Chengqi Deng, Chenyu Zhang, Chong Ruan, et al. Deepseek-v3 technical report. arXiv preprint
arXiv:2412.19437, 2024.

[22] Peng Di, Jianguo Li, Hang Yu, Wei Jiang, Wenting Cai, Yang Cao, Chaoyu Chen, Dajun
Chen, Hongwei Chen, Liang Chen, et al. Codefuse-13b: A pretrained multi-lingual code large
language model. In Proceedings of the 46th International Conference on Software Engineering:
Software Engineering in Practice, pages 418–429, 2024.

[23] Bingchang Liu, Chaoyu Chen, Zi Gong, Cong Liao, Huan Wang, Zhichao Lei, Ming Liang,
Dajun Chen, Min Shen, Hailian Zhou, et al. Mftcoder: Boosting code llms with multitask
fine-tuning. In Proceedings of the 30th ACM SIGKDD Conference on Knowledge Discovery
and Data Mining, pages 5430–5441, 2024.

[24] Zi Gong, Hang Yu, Cong Liao, Bingchang Liu, Chaoyu Chen, and Jianguo Li. Coba: Conver-
gence balancer for multitask finetuning of large language models. In Proceedings of the 2024
Conference on Empirical Methods in Natural Language Processing, pages 8063–8077, 2024.

[25] Baptiste Roziere, Jonas Gehring, Fabian Gloeckle, Sten Sootla, Itai Gat, Xiaoqing Ellen Tan,
Yossi Adi, Jingyu Liu, Romain Sauvestre, Tal Remez, et al. Code llama: Open foundation
models for code. arXiv preprint arXiv:2308.12950, 2023.

[26] Raymond Li, Loubna Ben Allal, Yangtian Zi, Niklas Muennighoff, Denis Kocetkov, Chenghao
Mou, Marc Marone, Christopher Akiki, Jia Li, Jenny Chim, et al. Starcoder: may the source be
with you! arXiv preprint arXiv:2305.06161, 2023.

[27] Anton Lozhkov, Raymond Li, Loubna Ben Allal, Federico Cassano, Joel Lamy-Poirier, Noua-
mane Tazi, Ao Tang, Dmytro Pykhtar, Jiawei Liu, Yuxiang Wei, et al. Starcoder 2 and the stack
v2: The next generation. arXiv preprint arXiv:2402.19173, 2024.

[28] Daya Guo, Qihao Zhu, Dejian Yang, Zhenda Xie, Kai Dong, Wentao Zhang, Guanting Chen,
Xiao Bi, Yu Wu, YK Li, et al. Deepseek-coder: When the large language model meets
programming–the rise of code intelligence. arXiv preprint arXiv:2401.14196, 2024.

[29] Binyuan Hui, Jian Yang, Zeyu Cui, Jiaxi Yang, Dayiheng Liu, Lei Zhang, Tianyu Liu, Jia-
jun Zhang, Bowen Yu, Keming Lu, et al. Qwen2. 5-coder technical report. arXiv preprint
arXiv:2409.12186, 2024.

[30] Chengxing Xie, Bowen Li, Chang Gao, He Du, Wai Lam, Difan Zou, and Kai Chen. Swe-fixer:
Training open-source llms for effective and efficient github issue resolution. arXiv preprint
arXiv:2501.05040, 2025.

[31] Ziyin Zhang, Hang Yu, Shijie Li, Peng Di, Jianguo Li, and Rui Wang. Galla: Graph aligned large
language models for improved source code understanding. arXiv preprint arXiv:2409.04183,
2024.

12

https://blog.google/technology/google-deepmind/google-gemini-ai-update-december-2024/
https://blog.google/technology/google-deepmind/google-gemini-ai-update-december-2024/

[32] Daya Guo, Shuo Ren, Shuai Lu, Zhangyin Feng, Duyu Tang, Shujie Liu, Long Zhou, Nan Duan,
Alexey Svyatkovskiy, Shengyu Fu, et al. Graphcodebert: Pre-training code representations with
data flow. arXiv preprint arXiv:2009.08366, 2020.

[33] Sindhu Tipirneni, Ming Zhu, and Chandan K Reddy. Structcoder: Structure-aware transformer
for code generation. ACM Transactions on Knowledge Discovery from Data, 18(3):1–20, 2024.

[34] Xue Jiang, Zhuoran Zheng, Chen Lyu, Liang Li, and Lei Lyu. Treebert: A tree-based pre-trained
model for programming language. In Uncertainty in Artificial Intelligence, pages 54–63. PMLR,
2021.

[35] Daya Guo, Shuai Lu, Nan Duan, Yanlin Wang, Ming Zhou, and Jian Yin. Unixcoder: Unified
cross-modal pre-training for code representation. arXiv preprint arXiv:2203.03850, 2022.

[36] Han Peng, Ge Li, Wenhan Wang, Yunfei Zhao, and Zhi Jin. Integrating tree path in transformer
for code representation. Advances in Neural Information Processing Systems, 34:9343–9354,
2021.

[37] Cognition. Introducing devin. https://www.cognition.ai/introducing-devin, 2023.

[38] Qinyu Luo, Yining Ye, Shihao Liang, Zhong Zhang, Yujia Qin, Yaxi Lu, Yesai Wu, Xin Cong,
Yankai Lin, Yingli Zhang, et al. Repoagent: An llm-powered open-source framework for
repository-level code documentation generation. arXiv preprint arXiv:2402.16667, 2024.

[39] Xingyao Wang, Yangyi Chen, Lifan Yuan, Yizhe Zhang, Yunzhu Li, Hao Peng, and Heng Ji.
Executable code actions elicit better llm agents. arXiv preprint arXiv:2402.01030, 2024.

[40] Sirui Hong, Xiawu Zheng, Jonathan Chen, Yuheng Cheng, Jinlin Wang, Ceyao Zhang, Zili
Wang, Steven Ka Shing Yau, Zijuan Lin, Liyang Zhou, et al. Metagpt: Meta programming for
multi-agent collaborative framework. arXiv preprint arXiv:2308.00352, 2023.

[41] Jiaolong Kong, Mingfei Cheng, Xiaofei Xie, Shangqing Liu, Xiaoning Du, and Qi Guo.
Contrastrepair: Enhancing conversation-based automated program repair via contrastive test
case pairs. arXiv preprint arXiv:2403.01971, 2024.

[42] Yifan Xie, Zhouyang Jia, Shanshan Li, Ying Wang, Jun Ma, Xiaoling Li, Haoran Liu, Ying
Fu, and Xiangke Liao. How to pet a two-headed snake? solving cross-repository compatibility
issues with hera. In Proceedings of the 39th IEEE/ACM International Conference on Automated
Software Engineering, pages 694–705, 2024.

[43] Zhipeng Xue, Zhipeng Gao, Xing Hu, and Shanping Li. Acwrecommender: A tool for validating
actionable warnings with weak supervision. In 2023 38th IEEE/ACM International Conference
on Automated Software Engineering (ASE), pages 1876–1880. IEEE, 2023.

[44] Cheryl Lee, Chunqiu Steven Xia, Longji Yang, Jen-tse Huang, Zhouruixin Zhu, Lingming
Zhang, and Michael R Lyu. A unified debugging approach via llm-based multi-agent synergy.
arXiv preprint arXiv:2404.17153, 2024.

[45] Kechi Zhang, Jia Li, Ge Li, Xianjie Shi, and Zhi Jin. Codeagent: Enhancing code generation
with tool-integrated agent systems for real-world repo-level coding challenges. arXiv preprint
arXiv:2401.07339, 2024.

[46] Yuntong Zhang, Haifeng Ruan, Zhiyu Fan, and Abhik Roychoudhury. Autocoderover: Au-
tonomous program improvement. In Proceedings of the 33rd ACM SIGSOFT International
Symposium on Software Testing and Analysis, pages 1592–1604, 2024.

[47] Xingyao Wang, Boxuan Li, Yufan Song, Frank F Xu, Xiangru Tang, Mingchen Zhuge, Jiayi
Pan, Yueqi Song, Bowen Li, Jaskirat Singh, et al. Opendevin: An open platform for ai software
developers as generalist agents. arXiv preprint arXiv:2407.16741, 2024.

[48] Jiayi Pan, Xingyao Wang, Graham Neubig, Navdeep Jaitly, Heng Ji, Alane Suhr, and Yizhe
Zhang. Training software engineering agents and verifiers with swe-gym. arXiv preprint
arXiv:2412.21139, 2024.

13

https://www.cognition.ai/introducing-devin

[49] Siru Ouyang, Wenhao Yu, Kaixin Ma, Zilin Xiao, Zhihan Zhang, Mengzhao Jia, Jiawei Han,
Hongming Zhang, and Dong Yu. Repograph: Enhancing ai software engineering with repository-
level code graph. arXiv preprint arXiv:2410.14684, 2024.

[50] Disha Shrivastava, Hugo Larochelle, and Daniel Tarlow. Repository-level prompt generation
for large language models of code. In International Conference on Machine Learning, pages
31693–31715. PMLR, 2023.

[51] Fengji Zhang, Bei Chen, Yue Zhang, Jacky Keung, Jin Liu, Daoguang Zan, Yi Mao, Jian-Guang
Lou, and Weizhu Chen. Repocoder: Repository-level code completion through iterative retrieval
and generation. arXiv preprint arXiv:2303.12570, 2023.

[52] Yangruibo Ding, Zijian Wang, Wasi Uddin Ahmad, Murali Krishna Ramanathan, Ramesh
Nallapati, Parminder Bhatia, Dan Roth, and Bing Xiang. Cocomic: Code completion by jointly
modeling in-file and cross-file context. arXiv preprint arXiv:2212.10007, 2022.

[53] Wei Liu, Ailun Yu, Daoguang Zan, Bo Shen, Wei Zhang, Haiyan Zhao, Zhi Jin, and Qianxiang
Wang. Graphcoder: Enhancing repository-level code completion via code context graph-based
retrieval and language model. arXiv preprint arXiv:2406.07003, 2024.

[54] Bowen Jin, Gang Liu, Chi Han, Meng Jiang, Heng Ji, and Jiawei Han. Large language models
on graphs: A comprehensive survey. IEEE Transactions on Knowledge and Data Engineering,
2024.

[55] Yue Wang, Hung Le, Akhilesh Deepak Gotmare, Nghi DQ Bui, Junnan Li, and Steven CH
Hoi. Codet5+: Open code large language models for code understanding and generation. arXiv
preprint arXiv:2305.07922, 2023.

[56] Haotian Liu, Chunyuan Li, Qingyang Wu, and Yong Jae Lee. Visual instruction tuning. Advances
in neural information processing systems, 36, 2024.

[57] Peng Wang, Shuai Bai, Sinan Tan, Shijie Wang, Zhihao Fan, Jinze Bai, Keqin Chen, Xuejing
Liu, Jialin Wang, Wenbin Ge, et al. Qwen2-vl: Enhancing vision-language model’s perception
of the world at any resolution. arXiv preprint arXiv:2409.12191, 2024.

[58] Dan Hendrycks and Kevin Gimpel. Gaussian error linear units (gelus). arXiv preprint
arXiv:1606.08415, 2016.

[59] Zihan Liao, Jun Wang, Hang Yu, Lingxiao Wei, Jianguo Li, and Wei Zhang. E2llm: Encoder
elongated large language models for long-context understanding and reasoning. arXiv preprint
arXiv:2409.06679, 2024.

[60] Sijun Tan, Xiuyu Li, Shishir Patil, Ziyang Wu, Tianjun Zhang, Kurt Keutzer, Joseph E Gonzalez,
and Raluca Ada Popa. Lloco: Learning long contexts offline. arXiv preprint arXiv:2404.07979,
2024.

[61] Zhenyu Li, Yike Zhang, Tengyu Pan, Yutao Sun, Zhichao Duan, Junjie Fang, Rong Han, Zixuan
Wang, and Jianyong Wang. Focusllm: Scaling llm’s context by parallel decoding. CoRR, 2024.

[62] Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Liò, and Yoshua
Bengio. Graph attention networks. In International Conference on Learning Representations,
2018.

[63] Ahsan Shehzad, Feng Xia, Shagufta Abid, Ciyuan Peng, Shuo Yu, Dongyu Zhang, and Karin
Verspoor. Graph transformers: A survey. arXiv preprint arXiv:2407.09777, 2024.

[64] CodeFuse. Codefuse-cge. https://github.com/codefuse-ai/CodeFuse-CGE, 2024.

[65] Zhiyuan Pan, Xing Hu, Xin Xia, and Xiaohu Yang. Enhancing repository-level code generation
with integrated contextual information. arXiv preprint arXiv:2406.03283, 2024.

[66] Yangruibo Ding, Zijian Wang, Wasi Ahmad, Hantian Ding, Ming Tan, Nihal Jain, Murali Kr-
ishna Ramanathan, Ramesh Nallapati, Parminder Bhatia, Dan Roth, et al. Crosscodeeval:
A diverse and multilingual benchmark for cross-file code completion. Advances in Neural
Information Processing Systems, 36, 2024.

14

https://github.com/codefuse-ai/CodeFuse-CGE

[67] Yanlin Wang, Yanli Wang, Daya Guo, Jiachi Chen, Ruikai Zhang, Yuchi Ma, and Zibin
Zheng. Rlcoder: Reinforcement learning for repository-level code completion. arXiv preprint
arXiv:2407.19487, 2024.

[68] Ming Liang, Xiaoheng Xie, Gehao Zhang, Xunjin Zheng, Peng Di, Hongwei Chen, Chengpeng
Wang, Gang Fan, et al. Repofuse: Repository-level code completion with fused dual context.
arXiv preprint arXiv:2402.14323, 2024.

[69] Ken Deng, Jiaheng Liu, He Zhu, Congnan Liu, Jingxin Li, Jiakai Wang, Peng Zhao, Chenchen
Zhang, Yanan Wu, Xueqiao Yin, et al. R2c2-coder: Enhancing and benchmarking real-world
repository-level code completion abilities of code large language models. arXiv preprint
arXiv:2406.01359, 2024.

[70] Wenhua Li, Quang Loc Le, Yahui Song, and Wei-Ngan Chin. Incorrectness proofs for object-
oriented programs via subclass reflection. In Asian Symposium on Programming Languages
and Systems, pages 269–289. Springer, 2023.

[71] Jason Sawin and Atanas Rountev. Assumption hierarchy for a cha call graph construction
algorithm. In 2011 IEEE 11th International Working Conference on Source Code Analysis and
Manipulation, pages 35–44. IEEE, 2011.

[72] Benjamin Lefaudeux, Francisco Massa, Diana Liskovich, Wenhan Xiong, Vittorio Caggiano,
Sean Naren, Min Xu, Jieru Hu, Marta Tintore, Susan Zhang, Patrick Labatut, Daniel Haziza,
Luca Wehrstedt, Jeremy Reizenstein, and Grigory Sizov. xformers: A modular and hack-
able transformer modelling library. https://github.com/facebookresearch/xformers,
2022.

[73] OpenAI. Introducing swe-bench verified. https://openai.com/index/
introducing-swe-bench-verified/, 2024.

[74] Jia Feng, Jiachen Liu, Cuiyun Gao, Chun Yong Chong, Chaozheng Wang, Shan Gao, and
Xin Xia. Complexcodeeval: A benchmark for evaluating large code models on more complex
code. In Proceedings of the 39th IEEE/ACM International Conference on Automated Software
Engineering, pages 1895–1906, 2024.

[75] A model fluent in 80+ programming languages. https://mistral.ai/news/codestral/,
2024.

[76] Stephen Robertson, Hugo Zaragoza, et al. The probabilistic relevance framework: Bm25 and
beyond. Foundations and Trends® in Information Retrieval, 3(4):333–389, 2009.

15

https://github.com/facebookresearch/xformers
https://openai.com/index/introducing-swe-bench-verified/
https://openai.com/index/introducing-swe-bench-verified/
https://mistral.ai/news/codestral/

NeurIPS Paper Checklist
1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: All statements in the abstract and introduction are aligned with the main
contribution of the paper: to provide a method innovatively integrating both semantic and
structural information from code repositories into LLMs, enabling effective repository-level
coding tasks without relying on agents or closed-source models.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We included a section about the limitations of the work in Appendix E.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

16

Answer: [NA]

Justification: This paper does not include theoretical results.

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We upload the codes and instructions to the cover the results.

Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

17

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: For anonymity reasons, we provide an anonymous link that contains code with
instructions, including a README file and detailed code.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: All the training and model details are specified in Appendix C.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [No]

Justification: Due to the resource limitation, we do not report error bars. Please note that in
Section 5, we spent numerous resources training open-sourced LLMs on different backbones
under different scenarios, which makes it prohibitively to run each experiments for multiple
times.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

18

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: We report the cost analysis in Appendix C.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: We followed the NeurIPS Code of Ethics.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [No]

Justification: This work based on a publicly-available Github code repositories. This work
is not related to any private or personal data, and there’s no explicit negative social impacts.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.

19

https://neurips.cc/public/EthicsGuidelines

• If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [No]

Justification: We do not foresee any high risk for misuse of this work.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: Yes, we credited them in appropriate way.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.

20

• If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]

Justification: The paper does not release new assets.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: The paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: The paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

21

paperswithcode.com/datasets

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: Our core method does not involve LLMs as any important, original, or non-
standard components.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.

22

https://neurips.cc/Conferences/2025/LLM

A Case in Issue Fix Scenario

ISSUE: The last checkpoint is being automatically restored when a checkpoint exists. This is an issue
for me when the model has previously been trained with different settings or I want to train a network
from scratch...

Trainer

TrainerCallbackConfigMixin
TrainerDDPMixin

TrainerDPMixin

TrainerEvaluationLoopMixin

fit()

--- a/pytorch_lightning/trainer/callback_config.py
+++ b/pytorch_lightning/trainer/callback_config.py
@@ -12,6 +12,9 @@ class TrainerCallbackConfigMixin(ABC):
 # the proper values/initialisation should be done in child class
 default_save_path: str
 logger: Union[LightningLoggerBase, bool]
+ weights_save_path: str
+ ckpt_path: str
+ checkpoint_callback: ModelCheckpoint ...

tpu_train()

ddp_train()

callback_config.py

trainer.py

evaluation_loop.py

Class

Function

distrib_data_parallel.py

distrib_parts.py contains
extends
calls

Figure 3: Illustration of a real-world issue from pytorch-lightning codebase, where a user wants to
disable automatic checkpoint loading. Given the original issue, the corresponding diff-formatted
patch (bottom left) shows all the code modifications in a linear fashion. Compared to code sequences,
the relationships between them can be more clear if we represent the code as a graph (bottom right),
where containment (solid lines), inheritance (dashed lines), and function calls (dotted lines) explicitly
demonstrate the connections between different code snippets.

B Details of Code Graph

B.1 Node and Edge Types in Code Graph

This section provides the node and edge types defined in our code graph. Table 9 and Table 10 detail
the categories of nodes and edges, respectively. For now, code graph supports two objected-oriented
programming language (Python and Java).

Table 9: Node Types in Code Graph.
Node Type Description
REPO Virtual node, represents the root of the repository
PACKAGE Virtual node, acts as a representation of a directory in the file system
FILE Files ending with “.py”
TEXTFILE Files that do not end with “.py”, such as Markdown (.md) files and text (.txt) files
CLASS In object-oriented programming, a class is a blueprint for creating objects
FUNCTION Refers to the function within classes or standalone function
ATTRIBUTE Includes global variables, member variables, and local variables

Table 10: Edge Types in Code Graph.
Edge Type Description
contains Indicating a hierarchical relationship in which one entity contains another entity
calls This type of edge captures the dynamic invocation relationship
extends Representing an inheritance relationship, where one class extends another class
imports Represent dependencies where one file imports another class/function
implements This edge is exclusively applicable to Java, denoting the relation where a class

implements an interface

B.2 Handling of Complex Dependiences

During the construction of code graph, we explicitly address both dynamic calls and multiple
inheritance in the following way.

23

Dynamic Calls: We employ a conservative resolution approach following the over-approximation
principle [70]. When encountering base class method calls (e.g., Base.method()), we include all
possible overriding implementations from subclasses in the calls set. This ensures we don’t miss any
potential execution paths.

Multiple Inheritance: We utilize the Class Hierarchy Analysis (CHA) algorithm [71] to properly
handle inheritance relationships, including cases where classes inherit from multiple parent classes.

B.3 Search on Code Graph

Graph search can be easily implemented in code graph. The first step usually begins with finding
the source node. This can be achieved by many ways, such as indexing, keyword and embedding
matching. Starting from the source node, different strategies can be applied, such as one-hop
neighborhood, depth-first search (DFS), breadth-first search (BFS), random walk, etc. It is up to the
application scenarios to decide which search algorithm is the best. The result of graph search could
be a sub-graph of the whole repository-level graph, containing the most relevant context for specific
problems.

C Implementation Details

C.1 Details of Training CGM

This section details how we train CGM-Multi (multi-language version), CGM-SWE-PY (tailored for
Python issue fixing), and CGM 7B series (based on different 7B base models).

C.1.1 Training Data

As mentioned in section 4, we construct training data for different training phase of CGM respectively.
Meanwhile, to enhance the model’s ability in code completion, we also construct code completion
samples for fine-tuning of code completion task. To explore the performance of CGM across different
programming languages, our data includes both Python and Java. When constructing the training
data, we filter out the repositories involved in the test sets for testing to avoid data leakage.

Data for Subgraph Reconstruction Pre-training: We obtain 500k Python and 360k Java subgraphs
(with the maximum length of 8k tokens) from a total of 20k high-star Github repositories.

Data for Issue Fixing: We collect 200k issue-patch pairs (100k per language), from GitHub pull-
requests. Among the 100k Python pairs, 14k are sourced from the SWEBench training set [8].

Data for Code Completion: The code completion samples are self-constructed from the above
repositories, 250k per language.

C.1.2 CGM-Multi

We initialize CGM-Multi with Qwen2.5-72B-Instruct [20] as the base LLM. Then pre-train it using
subgraph reconstruction data and fine-tuning data (issue-fixing and code completion) in both two
languages (Python and Java). To ensure balance between different languages, we use 360k subgraph
reconstruction data for both languages. Training uses 4-bit QLoRA on 64 A100s (batch=32, lr=1e4,
and epoch=2). The encoder combines CodeT5+ [55] with LoRA (rank=64, and alpha=32), and the
adapter uses a two-layer MLP with GELU activation. The first layer of the adapter maps the CodeT5+
output dimension of 256 to 8192, and the second layer maintains the dimension of 8192, which aligns
with the LLM’s hidden dimension. We adopt Xformers [72] for efficient attention computation.

C.1.3 CGM-SWE-PY

CGM-SWE-PY, as a model specifically designed for SWE-bench Lite, is pre-trained using python
subgraph reconstruction data (the entire 500k) and fine-tuned on specific python issue-fixing data
(the 14k sourced from SWEBench training set). Besides, all details of training and parameters are set
the same as CGM-Multi.

24

Table 11: Recall performance of each Graph RAG module on SWE-bench Lite and SWE-bench-java
Verified. The table shows the recall percentage for Retriever, Reranker Stage 1, and Reranker Stage 2
components.

MODULE SWE-BENCH LITE SWE-BENCH-JAVA VERIFIED
% RECALL % RECALL

RETRIEVER 94 87
RERANKER STAGE 1 89 74
RERANKER STAGE 2 87 60

C.1.4 CGM 7B Series

We train several small-scale CGMs based on the existing 7B base models to compare with small-
scale models on code completion benchmarks. Specifically, we trained CGMs in seperate language
based on CodeLlama-7B, StarCoder-7B, DeepSeek-Coder-7B, and Qwen2.5-Coder-7B-Instruct,
respectively. For each model in each language, we use training data in the target language during
both pre-training and fine-tuning stages. For example, we train CodeLlama-7B with 500k Python
subgraph reconstruction data and 250k Python code completion samples, and then evaluate it on the
Python test set of crosscodeeval.

Except for modifying the parameters in LoRA (set rank=32, and alpha=16), other training/parameter
settings are consistent with CGM-Multi.

C.2 Recall Results for the Graph RAG Framework

We provide the recall of each component of our Graph RAG framework (in the file level), as shown
in Table 11. The recall of each component on SWE-bench-java Verified are lower than those on
SWE-bench Lite. One possible reason may be that the issues in SWE-bench Lite usually requires
modifying one file, while the issues on the SWE-bench-java Verified sometimes need to modify
multiple files.

C.3 Hyperparameters for Inference

We use the same parameter settings for inference with LLMs (CGMs and Qwen2.5-72B-Instruct
in the Graph RAG framework), setting topk = 20, topp = 0.8, temperature = 0.7, and repetition
penalty = 1.1.

C.4 Cost Analysis

In this section, we present a cost analysis of the overall process, including the time required for code
graph construction and computational expenses.

C.4.1 Code Graph Construction

The construction of a repository-level code graph usually takes 3 minutes or more depending on the
complexity of the code repository (such as the implementations of different classes and the calling
relationships between codes). Since code graph construction can be performed offline, it does not
impact real-time inference workflows. Additionally, optimizations such as incremental updates and
parallel processing can further reduce latency for large-scale repositories.

C.4.2 Cost of Each Module

We analyze the runtime and resource requirements of each key module in our system, focusing on
LLM inference overhead, memory consumption, and latency scaling.

Rewriter:

• Requires two sequential LLM calls (Qwen2.5-72B-Instruct).

Retriever:

25

• Anchor node matching and subgraph generation take 3–7 seconds per issue.
• Lightweight CPU operation.

Reranker:

• Requires two sequential LLM calls (Qwen2.5-72B-Instruct).
• Latency additive to Rewriter (2× single-call time).

Reader (CGM):

• Table 12 reports the memory consumption and inference latency.
• Latency increases by 0.5–0.7s per 1k tokens (1k→8k: 3.9s→8.6s).

Table 12: Inference Time and Memory Cost of CGM (Qwen2.5-72B).
Input Tokens Time (s) Memory (GB)

1,000 3.934 68.79
2,000 4.408 68.98
3,000 5.055 69.43
4,000 5.808 70.26
5,000 6.432 70.77
6,000 7.163 70.98
7,000 7.838 71.44
8,000 8.553 72.02

C.5 Experimental Setup of Issue Fixing

C.5.1 Implementation Details of CGM

To adapt CGM in the issue-fix scenario, we extend CGM to a GraphRAG framework (as described
in section 4). In this scenario, the inputs of CGM are the corresponding subgraph and prompt
generated by R3 (Rewriter, Retriever, Reranker). In the experiment, we compare two pre-trained
CGMs, CGM-Multi and CGM-SWE-PY (see Appendix C.1 for training details), as Reader in our
Graph RAG framework.

C.5.2 Datasets

The following three benchmarks, which focus on repository-level issue fixing, are all evaluated using
the Docker executable environment.

• SWE-bench Lite [5]: SWE-bench Lite contains 300 self-contained repository-level issues
from 11 repositories, designed to test the model’s understanding of repository-level code
changes and its ability to generate correct patches primarily focused on Python. It provides
a realistic software engineering environment, including execution contexts, to evaluate the
model’s ability to resolve real-world issues.

• SWE-bench Verified [73]: SWE-bench Verified contains 500 self-contained repository-
level issues from 12 repositories. This dataset contains samples that have been verified to be
non-problematic by human annotators.

• SWE-bench-java Verified [6]: This dataset include 91 Java issues from 6 repositories, en-
abling cross-language evaluation. Like SWE-bench Lite, it provides execution environments
to validate the correctness of generated patches.

C.5.3 Evaluation Metrics

Resolve Rate (% R): The metrics used in the above benchmarks is Resolve Rate, which evaluates the
correctness of generated patches for the issue-fix task. A patch is considered resolved if it correctly
addresses the issue and is a superset of the ground-truth edits.

26

C.6 Experimental Setup of Code Completion

C.6.1 Implementation Details of CGM

As a simpler scenario than issue fixing, the files that need to be modified are given in the code
completion tasks. Therefore, we obtain the input subgraph of CGM through a heuristic method, rather
than the Graph RAG framework. To be specific, we take the given incomplete file as the center node,
obtaining its one-hop ego graph from the repository-level code graph. Note that nodes that need to
be completed are not considered in this process. The resulting subgraph (graph modalities), and the
incomplete files (text modalities), form the inputs to the CGM.

In this experiment, we use two size of CGMs for evaluation. Training details for the large-scale
CGM-Multi (72B) and small-scale CGM 7B series can be found in the Appendix C.1.

C.6.2 Datasets

• CrossCodeEval [66] is an emerging benchmark for cross-file code completion, which
is constructed from a wide range of real-world repositories from GitHub in four popular
programming languages: Python, Java, TypeScript, and C#. In our experiments, we evaluate
the model’s code completion ability on only two languages, Java and Python. As shown in
Table 13, we provide the dataset statistics of the CrossCodeEval benchmark for Java and
Python.

• ComplexCodeEval [74] is a new benchmark for evaluating the performance of large code
models in complex development scenarios. It includes 3,897 Java samples from 1,055 Java
code repositories and 7,184 Python samples from 2,107 Python code repositories. Following
the original setup of this benchmark, we randomly selected 100 samples each in Python and
Java for the evaluation. Table 14 and Table 15 show the information of the selected samples.
When evaluating the code completion capability, unlike the original setup which requires
the model to complete the second half of the function, we ask the model to complete the
middle line of the function given the contextual information.

Table 13: The statistics of the CrossCodeEval for Java and Python.
Feature Java Python

Repositories 239 471
Files 745 1368
Examples 2139 2665

C.6.3 Evaluation Matrics

When evaluating a prediction code y in comparison to the reference ground truth y∗, the above
benchmarks utilize the following two metrics: the exact match accuracy (EM) and the Levenshtein
edit similarity (ES).

• EM: The exact match accuracy (EM) is determined by an indicator function. This function
takes a value of 1 when the prediction y is exactly equal to the reference y∗, and 0 otherwise.

• ES: The Levenshtein edit similarity (ES) is calculated using the formula

ES = 1− Lev(y, y∗)
max(∥y∥, ∥y∗∥)

. (1)

Here, ∥ · ∥ is used to compute the length of a string, and Lev() is employed to calculate the
Levenshtein distance between the two strings y and y∗.

C.6.4 Baselines: Base Model

Given the subgraph same to CGM (see Appendix C.6.1), we textualize the graph into text sequnce and
input into the following baselines based on the prompt templates provided by each benchmark [66, 74].
Since these base models have limitations on context length, we perform truncation on text inputs
larger than 8k.

27

Mistral-Large-2 [75] is a model developed by Mistral AI with 123 billion parameters. It stands out
with a remarkable 128k tokens context length, proficiently handling dozens of languages and over 80
programming languages, excelling in code generation, mathematics, and reasoning. To be specific,
we chose Mistral-Large-Instruct-2411 as the latest version of Mistral-Large to compare with CGM.

DeepSeek-V2.5 [14] is a strong Mixture-of-Experts (MoE) language model characterized by econom-
ical training and efficient inference. It comprises 236B total parameters, of which 21B are activated
for each token.

Qwen2.5 [20] is a decoder-only LM series whose size varies from 0.5B to 72B trained on 18 trillion
tokens. Its context length support up to 128K tokens and can generate up to 8K tokens.

Qwen2.5-Coder [29] is a series of code-specific language models developed by Alibaba. Derived
from Qwen2.5, it comes in six sizes, is trained on a vast 5.5-trillion-token corpus, and excels in
various code-related tasks, outperforming many models of the same or larger size. Since it uses a
specific format and tokens for training on the fill-in-middle code completion task, we followed this
prompt setting during the evaluation to obtain its true performance.

For the inference of the baseline model, we all deployed the above models using the VLLM framework
with the model‘s default settings. All models inference on 4 A100s with 80G VRAM, except for
DeepSeek-V2.5, which requires 8 A100s.

C.6.5 Baselines: RAG Method

BM25 [76] is a classic information-retrieval algorithm based on the probabilistic model. Its core idea
is to rank documents based on the relevance between query and documents. It serves as a traditional
retrieval method that does not regard the structural information naturally existing in the coding task,
and only performs similarity matching based on word frequency and text length. It was used in the
original CrossCodeEval dataset to search for cross-file information based on the code snippets. In our
experiments, we directly use the BM25 results provided by CrossCodeEval.

R2C2-Coder [69] is a method that aims to enhance and benchmark the real-world repository-level
code completion abilities of code Large Language Models. In particular, R2C2-Enhance reduces
cross-file information to skeleton5 text by syntactically analyzing the content of code files. The
cross-file context is retrieved using BM25 after forming a candidate retrieval pool together with the
context obtained from semantic-based retrieval. It takes into account structural information of the
code but does not establish graph relations across code files.

RepoFuse [68] is a solution for the Context-Latency Conundrum in repository-level code completion.
It constructs Code Knowledge Graph by analyzing the code graph dependencies in the repository
and uses the repository-level graphs for retrieval. It integrates the Rationale Context obtained by
analyzing the repository code structure and the Analogy Context based on the retrieval of similar
code blocks, and filtering the context by scoring function.

RLCoder [67] is a reinforcement-learning-based framework for repository-level code completion,
which can effectively improve code completion performance and has good generalization ability.
During training, the RLRetriever is trained with a reward mechanism based on weighted perplexity to
learn retrieval, while a stop-signal mechanism is introduced to filter candidate codes. In inference,
the trained RLRetriever retrieves useful candidate codes from the code repository and inputs them
together with the incomplete code into the generator to complete code generation.

C.7 Details of Ablation Study

In this section, we first conduct an ablation study on our Graph RAG framework to verify the
effectiveness of each component by SWE-bench Lite (Table 5). Then, we conduct the other ablation
study on CGM itself to evaluate the effectiveness of model design by CrossCodeEval dataset (Table 6).

5The file skeleton is a hierarchical structure of the contents of a code file, containing class and function
declarations, without specific definitions and comments.

28

C.7.1 Variants of Graph RAG Framework

The Graph RAG framework, comprising Rewriter, Retriever, Reranker, and Reader, extends CGM to
real-world issue fixing. In Table 5, we verify the effectiveness of each component in our Graph RAG
framework by removing them. Here, we use CGM-SWE-PY (see Appendix C.1 for training details)
as Reader.

• w/o Rewriter: We directly perform semantic search based on the original issue descriptions,
obtain the anchor nodes from the code graph, and provide them to Retriever. Removing
Rewriter results in an 8.33% performance drop, which proves its effectiveness in enhancing
the original issue descriptions.

• w/o Retriever: Since there is no Retriever to provide filtered files and subgraphs, we
input all the files in the original codebase into Reranker’s Stage 1 for selection, and at the
same time append the key information output by Rewriter into Reranker’s prompts. Based
on the files output by Reranker, we build a subgraph using these files and their one-hop
neighbors, as the graph modality input of CGM. The exclusion of Retriever results in an
11.33% performance degradation, a more severe drop than removing Rewriter, highlighting
its importance in providing issue-related subgraph.

• w/o Reranker: We use the top 5 files that are most similar to the query in embedding space
(during semantic search) from the FILE node obtained by Retriever and provide them to
Reader as the files to be modified. Removing Reranker results in the largest performance
drop (decreased by -24.67%), emphasizing its importance in improving the precision of
retrieval results and providing the right, relevant files to Reader.

• w/o R3: To evaluate the effectiveness of the RAG module, we create a baseline which
removes the first three modules (Rewriter, Retriever, and Reranker) and feed the entire
(truncated when the length exceeds the context length of the base model) repository graph as
input to Reader during fine-tuning. Removing the RAG module leads to a poor performance
(decreased by 33.33%), possibly due to excessive noise from the unfiltered repository graph
and information loss from context-window truncation.

• w/o CGM Reader (FlatGraph): To verify the effectiveness of CGM Reader in jointly
modeling semantics and structure, we create a naive graph-based baseline which flattens
code snippets based on topological structure [28], representing an alternative Reader with
structure-enhanced fine-tuning. The naive graph-based Reader only achieves 5.33% on
SWE-bench Lite, far behind the proposed CGM (decreased by 37.67%).

C.7.2 Variants of CGM

In Table 6, we compare CGM with its variants in the following three aspects. The CGM we use here
is trained on Qwen2.5-Coder-7B Instruct (see Appendix C.1 for training details).

• Semantic Integration: To verify the design of CGM in understanding semantic information,
we compare it with four types of variants: (1) freeze all parameters (include Encoder,
Adapter, and LLM Decoder) (2) training the Adapter A (3) training the LLM Decoder D
(4) training both the Adapter A and LLM Decoder D. Table 6 demonstrates that training
the adapter A alone leads to significant improvements in the EM performance: a 22.26%
increase for Java and a 21.43% increase for Python when comparing CGM-A with GGM-
Freeze. Additionally, further training the LLM decoder D in conjunction with the adapter
A esults in further enhancements, yielding a 5.33% improvement for Java and a 4.80%
improvement for Python. Finally, when the encoder E , the adapter A, and the decoder D
are all trained together, we observe an additional increase of 5.71% for Java and 6.12% for
Python. This data illustrates that fine-tuning the encoder E , the adapter A, and the decoder
D is essential to effectively align the graph and code modalities.

• Structural Integration: To verify the design of CGM in integrating structural information,
we remove the graph-aware attention mask during training, and use the original causal mask
(denoted as “w/o MASK”). As shown in Table 6, substituting the graph-aware attention mask
in the CGM with a standard causal mask results in a drop of 8.61% in EM performance for
Java and 5.56% for Python. This demonstrates the necessity of incorporating the structural
information from the code graph into the CGM to maintain optimal performance.

29

• Training Strategy: We remove the subgraph reconstruction pre-training task to verify the
effectiveness of this task, denoted as “w/o RECON”. Subgraph reconstruction pre-training
plays a crucial role, contributing 7.65% to the overall EM improvements.

C.8 Generalization of CGM on Different Backbones

To evaluate CGM with different backbones, we trained CGM using Llama3.1-70B-Instruct, Qwen2.5-
Coder-32B-Instruct, and Qwen2.5-Coder-7B-Instruct, in addition to Qwen2.5-72B. The results are
summarized in Table 7.

We find that the performance of CGM positively correlates with the LLM decoder’s inherent cod-
ing and instruction-following abilities. For example, Llama3.1-70B-Instruct CGM’s performance
decreased 17.67% compared to Qwen2.5-72B, possibly due to weaker inherent coding abilities (see
Table 2 in [20]). Still, it surpassed Lingma-SWEGPT [1] built on Llama3.1-70B-Instruct by 18.33%,
demonstrating CGM’s power in improving open-source LLMs.

C.9 Test-Time Scaling Analysis

To further investigate the impact of inference-time computation, we analyze the performance of
CGM under the test-time scaling (TTS) strategy, using the standard Pass@K metric. This approach
generates K independent solutions for each issue and considers the issue resolved if at least one of
the solutions passes the unit tests.

The results are summarized in Table 8. We observe that increasing the number of attempts (K)
leads to a consistent and substantial improvement in the resolve rate (% R) across both benchmarks.
Specifically, by increasing K from 1 (no scaling) to 3, the performance on SWE-Bench Lite rises
from 43.00% to 46.67%, an improvement of 3.67%. Similarly, on the more challenging SWE-
Bench Verified subset, the resolve rate increases from 50.40% to 53.20%, a gain of 2.80%. This
analysis demonstrates that allocating additional compute during inference through parallel sampling
significantly enhances the model’s ability to generate and select a correct solution for complex
software engineering tasks, confirming the benefits of leveraging this robust decoding strategy.

30

Table 14: The Repositories and funcitons selected from ComplexCodeEval-Python.

Repository Function
IntelLabs/coach validate_output_action_space

scikit-learn-contrib/category_encoders transform
boto/boto3 document_collections

flink-extended/ai-flow get_conn
indico/indico _process
aleju/imgaug _generate_intersection_points

lucyparsons/OpenOversight send_email
williamfzc/stagesepx load_frames

dj-stripe/dj-stripe _resync_instances
biosustain/potion parse_request
MLBazaar/BTB _fit

mljar/mljar-supervised from_json
archesproject/arches save

uber/causalml causalsens
digiteinfotech/kairon request

DeepLabCut/DeepLabCut interpolate
WeblateOrg/weblate check_component

oxan/djangorestframework-dataclasses to_internal_value
etsy/boundary-layer load

grafana/oncall authenticate
trypromptly/LLMStack process

weihuayi/fealpy grad
django-cas-ng/django-cas-ng get

lociii/jukebox index
LAMDA-NJU/Deep-Forest fit_transform

jazzband/django-simple-history history_form_view
fabfuel/ecs-deploy assume_role

waterdipai/datachecks log
pfnet/pfrl select_action

bhch/django-jsonform render
allenai/OLMo sample_nodes

AI4Finance-Foundation/ElegantRL init_before_training
someengineering/fixinventory parse_args

ssube/onnx-web run
IntelAI/nauta create_tensorboard

scikit-learn/scikit-learn fit
awslabs/aws-embedded-metrics-python probe

amundsen-io/amundsen init
DataCanvasIO/DeepTables fit

diyan/pywinrm build_session
adamchainz/django-perf-rec set_and_save

ihmeuw-msca/CurveFit fit
google-research/weatherbench2 compute

langroid/langroid load
jina-ai/jcloud _get_post_params

tfeldmann/organize from_string
georgia-tech-db/evadb exec

sibson/redbeat is_due
bread-and-pepper/django-userena process_request

betodealmeida/shillelagh supports
kakaoenterprise/JORLDY sample

openstack/neutron get_total_reservations_map
mobiusml/hqq quantize

django-json-api/django-rest-framework-json-api get_paginated_response
nasaharvest/presto add_masked_tokens

locuslab/mpc.pytorch grad_input

31

Lightning-Universe/lightning-flash transform
openxrlab/xrlocalization knn_ratio_match

bentoml/BentoML from_yaml_file
bayesiains/nflows inverse

open-mmlab/mmcv _resize
threat9/routersploit run

hscspring/hcgf train
martenlienen/torchode from_k

arthurmensch/modl split
pyg-team/pytorch-frame forward
DjangoGirls/djangogirls save
DataCanvasIO/Hypernets create

randovania/randovania format
materialsproject/fireworks run_task

LinkedInAttic/naarad generate
gift-surg/NiftyMIC read_similarities

Project-MONAI/MONAILabel entropy_3d_volume
griffithlab/pVACtools execute
Giskard-AI/giskard run

Zero6992/chatGPT-discord-bot get_cookie_list
intelligent-machine-learning/dlrover _save

florimondmanca/djangorestframework-api-key save_model
GhostManager/Ghostwriter clean

allwefantasy/auto-coder merge_code
caktus/django-treenav save

simpeg/simpeg eval_deriv
arcee-ai/mergekit _make_schedule

alex-petrenko/sample-factory _save
RoboSats/robosats submit_payout_address

pallets/quart _create_request_from_scope
michael-lazar/rtv get_mimetype

aurelio-labs/semantic-router from_file
drivendataorg/deon read
element-hq/synapse generate_config_section

aquasecurity/kube-hunter is_aws_pod_v2
CarterBain/AlephNull simulate
metauto-ai/GPTSwarm optimize_swarm

ml6team/fondant write_dataframe
pytorchbearer/torchbearer save_checkpoint
intelowlproject/IntelOwl _subquery_weight_org

chainer/chainerrl initialize
petuum/adaptdl optimize

regel/loudml forecast
ansible/ansible construct_mapping

Table 15: The Repositories and funcitons selected from ComplexCodeEval-Java.

Repo Function
apache/tajo findScalarFunctions

spring-projects/spring-batch afterPropertiesSet
tencentmusic/supersonic addAliasToSql

tmobile/pacbot listAssets
microcks/microcks createGenericResourceService

jtalks-org/jcommune showNewQuestionPage
spring-projects/spring-data-redis executeWithStickyConnection

apache/james-project from
apache/hop getXml

32

apache/incubator-dolphinscheduler expandListParameter
apache/archiva commit

Alfresco/alfresco-repository check
52North/SOS init

kubernetes-client/java index
xwiki/xwiki-platform getFileItems

ctripcorp/x-pipe analyze
digital-preservation/droid getAvailableSignatureFiles
IridiumIdentity/iridium generate

sofastack/sofa-acts parseGenTableDatas
ProgrammeVitam/vitam switchIndex

revelc/formatter-maven-plugin init
Hack23/cia unmarshallXml

immutables/immutables oneLiner
pentaho/pentaho-platform startup
ORCID/ORCID-Source getWorkInfo

88250/latke resolve
mybatis/guice get

GoogleCloudDataproc/spark-bigquery-connector hashCode
gbif/ipt add

jhy/jsoup submit
neo4j/neo4j nodeApplyChanges

PaladinCloud/CE getAssetLists
alibaba/SREWorks execute

jenkinsci/plugin-installation-manager-tool installedPlugins
apache/syncope getAdminRealmsFilter
apache/hadoop checkAllVolumes

Qihoo360/Quicksql distinctList
openlookeng/hetu-core updateRows
zanata/zanata-platform getLocales

AutoMQ/automq persistentVersionedKeyValueStore
OctoPerf/kraken list
metamx/druid run

kiegroup/optaweb-vehicle-routing startSolver
oceanbase/odc bind

lennartkoopmann/nzyme recordFrame
Stratio/Decision childEvent

alibaba/velocity-spring-boot-project getMatchOutcome
Aiven-Open/klaw getConsumerGroupDetails

apache/doris-manager createTable
apache/shardingsphere-elasticjob init

apache/rya distinct
ixrjog/opscloud4 queryMyWorkRole
google/nomulus validateDomainName

koraktor/steam-condenser-java rconExec
wikimedia/wikidata-query-rdf load

techa03/goodsKill getSeckillList
runelite/runelite onChatMessage

jenkinsci/blueocean-plugin validateAccessTokenScopes
MyCATApache/Mycat-Server formatProperties

jenkinsci/gitea-plugin getFileLink
gentics/mesh getUid

twilio/twilio-java fromHttpRequest
ppdaicorp/das checkSql

insideapp-oss/sonar-flutter define
dschulten/hydra-java linkTo

alibaba/fastjson2 of
opencast/opencast multiTrimConcat

33

spring-projects/spring-data-jpa removeSubqueries
jline/jline3 open

star-whale/starwhale list
javaparser/javaparser solveSymbolInType
datavane/datasophon syncUserToHosts

sakaiproject/sakai upgradeRoleString
alswl/yugong queryAndSaveToQueue

zanata/zanata-server parseGlossaryFile
aliyun/aliyun-log-java-producer tryAppend

google/mug forDoubles
apache/druid wrap

ExpediaGroup/styx equals
apache/kylin encrypt

dCache/dcache map
Asqatasun/Asqatasun findByAuditAndUrl

mybatis/mybatis-3 register
apache/poi setArrayFormula

mitreid-connect/OpenID-Connect-Java-Spring-Server parse
dianping/puma copyFromLocal

alturkovic/distributed-lock refresh
twitter/hraven getAppId

OpenOLAT/OpenOLAT isSetOfFlashcardExisting
apache/rocketmq addTransactionSubscription
RIPE-NCC/whois parse

odpi/egeria buildGlossaryTermContext
ShifuML/shifu exec

ozimov/spring-boot-email-tools mergeTemplateIntoString
NationalSecurityAgency/datawave from

spring-projects/spring-data-cassandra addProperty
opennetworkinglab/onos parse
Graylog2/graylog2-server authenticate

openmrs/openmrs-core handle
webx/citrus getFastConstructor

34

D CGM for Issue Fixing: A Case Study

In this section, we take a real issue from the django/django repository as an example to show how
CGM solves a specific problem. Figure 4 provides the original issue description and the intermediate
outputs produced at each stage of our Graph RAG framework, and Figure 5 gives the generated
patches along with the gold patch. To evaluate the effectiveness of graph modality in assisting solving
practical issues, we also compare the patches generated by CGM with and without code graph (as
shown in Figure 5). For the latter, the input of CGM is only the context files provided by Reranker,
and does not include the subgraph generated by Retriever.

Issue:
Use Admin Inline verbose_name as default for Inline verbose_name_plural Description Django

allows specification of a verbose_name and a verbose_name_plural for Inline classes in admin

views. However, verbose_name_plural for an Inline is not currently based on a specified

verbose_name. Instead, it continues to be based on the model name, or an a verbose_name specified

in the model's Meta class. This was confusing to me initially (I didn't understand why I had to

specify both name forms for an Inline if I wanted to overrule the default name), and seems

inconsistent with the approach for a model's Meta class (which does automatically base the plural

form on a specified verbose_name). I propose that verbose_name_plural for an Inline class should

by default be based on the verbose_name for an Inline if that is specified. I have written a patch to

implement this, including tests. Would be happy to submit that.

Rewriter:
"rewriter_inferer_output": ["File names containing 'admin' AND classes related
to 'Inline' to locate the definition of Inline classes.", "Functions or methods
handling the setting of 'verbose_name' and 'verbose_name_plural' within 'admin'
directory to find where these attributes are processed.", "Code snippets where
'InlineModelAdmin' is defined or used to identify the base class for admin
inlines.", "File name containing 'options.py' AND functions related to
'get_verbose_name_plural' to find where the pluralization logic is currently
implemented.", "Functions or methods handling the initialization of Inline
classes within 'admin' directory to find where default values are set."],
"rewriter_extractor_output_entity": ["django/contrib/admin/options.py"],
"rewriter_extractor_output_keyword": ["verbose_name", "verbose_name_plural",
"Inline"]

Retriever:
Key Results django.util.text

{
 "nodeType": "File",
 "id": 52874,
 "fileName": "text.py",
 "filePath": "django/utils",
 "text": "import html.entities\nimport tags and … "
}

{
 "nodeType": "File",
 "id": 53224,
 "fileName": "__init__.py",
 "filePath": "django/utils/translation",
 "text": "\"\"\"\nInternationalization support … "
}

Reranker:

"FineRanker": {
 "django/contrib/admin/options.py": {
 "system_prompt": "You are an experienced software developer ...",
 "user_prompt": "\n<repository>\ndjango/django\n</repository>...",
 "response": "[start_of_analysis]\nThe issue describes a ..."
},

Figure 4: The given issue and the intermediate outputs produced by Rewriter, Retriever, and Reranker,
respectively.

35

CGM with Code Graph CGM w/o Code Graph

Gold Patch

Figure 5: Patches generated by CGM (with or without code graph), along with the gold patch. Green
boxes represent successful patches and the red box represents unsuccessful one.

E Error Analysis

In issue-fixing task, errors can be classified into two types: execution errors, where the generated
code cannot be successfully executed, and unresolved cases, where the code is executable but does
not fix the issue.

Notably, the vast majority (≈ 80%) of CGM’s failures are unresolved cases, not execution errors.
This highlights that our architecture’s high fidelity in generating syntactically correct and executable
code, even when the semantic logic for the fix is not perfect.

Then we manually inspect around 20% (33/171) of the failure cases (6 from execution errors and 27
from unresolved ones) to profile the failure patterns and identify potential development directions.

The main reasons for execution errors are: (1) being misled by complicated issue descriptions
(60%) and (2) occasional mistakes in syntactic generation (40%). For example, in the instance
django__django-12113, model directly copies a diff snippet from the lengthy input issue as output.
Breaking down complicated issues into clearer instructions for CGM Reader might alleviate this. As
for the second reason, we observe occasional missing functionality, such as a missing return clause
in instance sympy__sympy-13043. The appearance of such errors, while infrequent, is a known
characteristic of code large language models.

As a more major error, the unresolved ones are mainly caused by: (1) limited reasoning ability for
complex issues (55%), (2) knowledge gap (26%), and (3) cascading errors from the RAG module
(19%).

We demonstrate the first reason by instance scikit-learn__scikit-learn-11040. Here, CGM
does locate and fix the user-reported vulnerable class, NearestNeighbors. However, the architec-
turally superior solution, provided by the golden patch, was to fix its parent class, NeighborsBase,
from which NearestNeighbors inherits. This distinction is not trivial. In fact, in the code graph,
there exist an edge connecting NearestNeighbors with NeighborsBase. However, the LLM de-
coder in CGM fails to leverage the edge to modify NeighborsBase instead of NearestNeighbors.

36

For reason (2), knowledge gap is exemplified by LLM’s unawareness of the current internal imple-
mentation of third-party packages: in the instance scikit-learn__scikit-learn-10949, model
attempts an unsupported operation on a NumPy array, which could be mitigated by including such
details directly into the Code Graph.

Finally, the errors caused by RAG means the files needed to be modified have not been retrieved
by previous module (Retriever or Reranker), thus leading to the failure of CGM. In other words,
improving the Recall of the GraphRAG module can further improve the final performance of CGM.

F Limitations

We have limited this work to Python and Java—two popular object-oriented languages—so the current
code graph schema is untested on other paradigms. Although these languages cover a large part of
real-world issue-fixing scenarios, extending our framework to other paradigms (e.g., multi-paradigm
languages like Rust, or functional languages such as Haskell) will require re-examining how code
graphs are built to capture paradigm-specific structures.

G Prompt Template Example

This section shows the prompt templates used by Rewriter (Figure 6 and Figure 7) and Reranker
(Figure 8 and Figure 9) in our Graph RAG framework.

37

Prompts:
<issue>
{ISSUE TEXT}
</issue>
This is an issue related to repository '{REPO NAME}’.

Instructions:
1. Analysis:
- Analyze the provided issue description. Identify the relevant File, Class, or Function involved.
- Determine the specific problem or error encountered and note any clues that may assist in locating the relevant or problematic area.
2. Extraction:
- After the analysis, extract ALL the mentioned code entities (File, Class, or Function), especially Files.
- Then extract three potential and meaningful keywords, responding in the following format:

[start_of_analysis]
<detailed_analysis>
[end_of_analysis]

[start_of_related_code_entities]
<entity_name_with_path>
[end_of_related_code_entities]

[start_of_related_keywords]
<keywords>
[end_of_related_keywords]

Notes:
- Pay attention to the information in the error logs (if exists).
- The buggy code exists solely in the project described in the issue (e.g., django, sklearn). Buggy location is usually not in the tests files or
external packages.
- Your extracted entities should be CONCISE, ACCURATE and INFORMATIVE.
- Provide the relative path for code entities if specified (e.g., package/foo.py). Relative path is relative to the repository itself, do not
include suffix like '/home/username/', '/etc/service/' or '/tree/master'.
- Do not include any additional information such as line numbers or explanations in your extraction result.

Preferred extraction Examples of Code Entities:
- repo/cart.py
- Class User()
- def getData()

Preferred extraction Examples of Keywords:
- train_loop
- hooks
- docker

Unpreferred extraction Examples of keywords:
- something wrong
- input validation
- TypeError

Figure 6: Prompt for Extractor in Rewriter.

38

Prompts:
<issue>
{ISSUE TEXT}
</issue>
This is an issue related to repository '{REPO NAME}'.
Task:
Based on the issue description provided, identify the characteristics of code entities (files, functions, class) that might
need to be modified.
For each characteristic, generate a search query that could help locate relevant code entities in a codebase.
Instructions:
First, analyze the issue description and identify keywords, features, and functionalities that are likely relevant to the
modification of code entities.
Then, create queries that capture these characteristics, focusing on:
- File names that may implement relevant functionalities.
- Functions or methods that are related to the features described in the issue.
- Any patterns or structures that might be relevant to the functionalities mentioned.
For example:
- File related to the initialization of a neural network.
- Function related to the training process.
- Code used to configure the service.
Please answer in the following format:

[start_of_analysis]
<detailed_analysis>
[end_of_analysis]

[start_of_related_queries]
query 1:
query 2:
...
[end_of_related_queries]

Notes:
- Your queries should be DETAILED, ACCURATE and INFORMATIVE.
- Your queries should be a complete sentences and do not include additional explanation.
- The number of queries is up to five, so be focus on the important characteristics.
- Your queries should focus on the repository code itself, rather than other information like commit history.
- Pay attention to the information in the error logs (if exists).

Preferred Query Examples:
- Look for references to "tqdm" or "progress_bar" within the training loop files to find where progress bars are currently
updated.
- Code snippets where 'gethostbyname' function from 'socket' module is called.
- File name containing 'mysql.py' AND functions related to 'MySQLStatementSamples' initialization.
- Functions or methods handling hostname resolution or encoding within 'datadog_checks' directory.
- Find all occurrences of "early_stopping" within files that also mention "Trainer" to identify where early stopping logic
is implemented and potentially needs adjustment for non-default 'val_check_interval'.

Figure 7: Prompt for Inferer in Rewriter.

39

Prompts:
You are an experienced software developer who specializes in extracting the most relevant files for solving issues from many reference files.

Task:
Based on the information received about the issue from a repository, find the most likely few files from among those that may be able to
resolve the issue.

Instructions:
1. Analysis:
- Analyze the provided issue description and files, and pay attention to the relevance of the provided files with the given issue, especially
those might be modified during fixing the issue.
- Determine the specific problem or error mentioned in the issue and note any clues that could help your judgment.
2. Extraction:
- Based on your analysis, choose the Top **10** relevant files which might be used in fixing the issue.
- You should choose files from the provided files, and should not modify their name in any way.

Respond in the following format:
[start_of_analysis]
<detailed_analysis>
[end_of_analysis]

[start_of_relevant_files]
1. <file_with_its_path>
2. <file_with_its_path>
3. ...
[end_of_relevant_files]

Notes:
- You can refer to to the information in the error logs (if exists).
- The relevant file usually exists in the project described in the issue (e.g., django, sklearn). File need modification is usually not in the tests
files or external packages.
- The file you choose should be contained in the provided files.
- Provide the file path with files. Do not include redundant suffix like '/home/username/', '/etc/service/' or '/tree/master'.
- Do not include any additional information such as line numbers or explanations in your extraction result.
- Files for initialization and configuration might be modified during changing the code.

Preferred extraction Examples of Related Files:
1. src/utils/file_handler.py
2. core/services/service_manager.py
3. ...

<repository>
{REPO NAME}
</repository>

<issue>
{ISSUE TEXT}
</issue>

<reference_python_file_list>
{REFERENCE PYTHON FILES}
</reference_python_file_list>

<other_reference_file_list>
{OTHER REFERENCE FILES}
</other_reference_file_list>

Figure 8: Prompt for Reranker in Stage 1.

40

Prompts:
You are an experienced software developer who specializes in assessing the relevance of the file for solving the issue in software
repositories.

Task:
For a file provided, evaluate the likelihood that modifying this file would resolve the given issue, and assign a score based on specific
criteria.

Instructions:
1. Analysis:
- Analyze the provided issue description and the content of the single relevant file, pay attention to any keywords, error messages, or
specific functionalities mentioned that relate to the file.
- Determine how closely the contents and functionality of the file are tied to the problem or error described in the issue.
- Consider the role of the file in the overall project structure (e.g., configuration files, core logic files versus test files, or utility scripts).
2. Scoring:
- Based on your analysis, assign a score from 1 to 5 that represents the relevance of modifying the given file in order to solve the issue.

Score Specifications:
1. **Score 1**: The file is almost certainly unrelated to the issue, with no apparent connection to the functionality or error described in
the issue.
2. **Score 2**: The file may be tangentially related, but modifying it is unlikely to resolve the issue directly; possible in rare edge cases.
3. **Score 3**: The file has some relevance to the issue; it might interact with the affected functionality indirectly and tweaking it could
be part of a broader fix.
4. **Score 4**: The file is likely related to the issue; it includes code that interacts directly with the functionality in question and could
plausibly contain bugs that lead to the issue.
5. **Score 5**: The file is very likely the root cause or heavily involved in the issue and modifying it should directly address the error or
problem mentioned.

Respond in the following format:
[start_of_analysis]
<detailed_analysis>
[end_of_analysis]

[start_of_score]
Score <number>
[end_of_score]

Notes:
- The content of the file shows only the structure of this file, including the names of the classes and functions defined in this file.
- You can refer to to the information in the error logs (if exists).

<repository>
{REPO NAME}
</repository>

<issue>
{ISSUE TEXT}
</issue>

<file_name>
{FILE NAME}
</file_name>

<file_content>
{FILE CONTENT}
</file_content>

Figure 9: Prompt for Reranker in Stage 2.

41

	Introduction
	Related Work
	Code Graph Construction
	Code Graph Models (CGMs)
	Model Architecture
	Training Strategies
	The Graph RAG Framework

	Experiments
	Repository-Level Issue Fixing
	Repository-Level Code Completion
	Ablation Studies

	Conclusion
	Acknowledgement
	Case in Issue Fix Scenario
	Details of Code Graph
	Node and Edge Types in Code Graph
	Handling of Complex Dependiences
	Search on Code Graph

	Implementation Details
	Details of Training CGM
	Training Data
	CGM-Multi
	CGM-SWE-PY
	CGM 7B Series

	Recall Results for the Graph RAG Framework
	Hyperparameters for Inference
	Cost Analysis
	Code Graph Construction
	Cost of Each Module

	Experimental Setup of Issue Fixing
	Implementation Details of CGM
	Datasets
	Evaluation Metrics

	Experimental Setup of Code Completion
	Implementation Details of CGM
	Datasets
	Evaluation Matrics
	Baselines: Base Model
	Baselines: RAG Method

	Details of Ablation Study
	Variants of Graph RAG Framework
	Variants of CGM

	Generalization of CGM on Different Backbones
	Test-Time Scaling Analysis

	CGM for Issue Fixing: A Case Study
	Error Analysis
	Limitations
	Prompt Template Example

