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Abstract

With the increasing attention to large vision-language models such as CLIP, there1

has been a significant amount of effort dedicated to building efficient prompts.2

Unlike conventional methods of only learning one single prompt, we propose3

to learn multiple comprehensive prompts to describe diverse characteristics of4

categories such as intrinsic attributes or extrinsic contexts. However, directly5

matching each prompt to the same visual feature is problematic, as it pushes the6

prompts to converge to one point. To solve this problem, we propose to apply7

optimal transport to match the vision and text modalities. Specifically, we first8

model images and the categories with visual and textual feature sets. Then, we9

apply a two-stage optimization strategy to learn the prompts. In the inner loop, we10

optimize the optimal transport distance to align visual features and prompts by the11

Sinkhorn algorithm, while in the outer loop, we learn the prompts by this distance12

from the supervised data. Extensive experiments are conducted on the few-shot13

recognition task and the improvement demonstrates the superiority of our method.14

1 Introduction15

In the past few years, large-scale vision-language pre-trained (VLP) models, such as CLIP [39],16

ALIGN [17], and BLIP [23] have achieved remarkable success in open-world visual concept learning.17

These methods have brought new light but also pose a new question: how to efficiently adapt the18

knowledge from pretraining to the downstream tasks since these models are typical of massive sizes19

which are not feasible for normal users to re-train.20
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A bird that lives in 
winter wood

A bird with 
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and black texture

A bird with black 
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Figure 1: The motivation that one category can be complementar-
ily described in different views (An example of “Brambling”).

One of the conventional21

paradigms of utilizing pretrained22

knowledge is “pre-training,23

fine-tuning”, which fixes the24

architecture of the pre-trained25

neural network and tunes its26

parameters using task-specific27

objective functions. Beyond28

fine-tuning the parameters,29

many recent methods [63, 64]30

introduce the concept of prompt31

learning from the field of NLP to the vision domain and achieve striking performance gain for the32

few-shot visual classification. They fix the model parameters and instead learn suitable prompts33

by turning a template sentence into a set of learnable vectors. Then, these prompts are learned by34

minimizing the distance between the visual features and prompt-based language features.35

Despite significant improvements over manual prompts, learning only a sentence is intuitively36

insufficient to represent a class. One class can be described by many intrinsic characteristics and37

Submitted to 36th Conference on Neural Information Processing Systems (NeurIPS 2022). Do not distribute.



even extrinsic context relations. Thus, for one object, we may have multiple prompt candidates38

which focus on different attributes. As shown in Figure 1, we can describe the class “Brambling” in39

different views: such as the color of the wing, the color of the crown and eyes, the shape and color of40

the tail, and even the living environment information. It motivates us to learn multiple prompts to41

comprehensively represent the class and thus facilitate classification.42

The most natural solution is to directly learn multiple prompts by respectively matching each prompt43

with the visual features. However, it is the same as matching the mean of prompt features and the44

visual features. This solution is problematic since all prompts are encouraged to be closer to one single45

point and thus tend to learn the same characteristics. It contradicts our purpose to learn comprehensive46

prompts. To solve this problem, we tested adding some constraints to push away the prompt from47

each other, but found that this solution still fails to learn representative and comprehensive prompts.48

This solution treats the visual representation as one single point, and such a unified view of visual49

features ignores the fact that different prompts may only focus on one or a subset of characteristics.50

To address this problem, in this paper, we propose Prompt Learning with Optimal Transport (PLOT),51

which applies optimal transport (OT) to align the local visual features and multiple textual prompts.52

Optimal transport can calculate the distance between two distributions under the form of multiple53

sampling. In our prompt learning framework, we formulate local visual features and multiple prompts54

as the samplings of two discrete distributions and use OT to encourage fine-grained cross-modal55

matching. Specifically, to obtain the local visual features with different semantic clues, we extract all56

feature maps as the visual representation instead of the single global representation. Fortunately, we57

can easily obtain the visual feature maps from the visual encoder of CLIP by using all outputs of the58

multi-head self-attention layer [42]. Then the problem comes down to how to calculate the distance59

between two feature sets.60

We solve this problem by introducing the optimal transport theory [51] and formulate the feature sets61

as a discrete probability distribution where each feature has an equal probability value. Furthermore,62

to reduce the computational cost and avoid the extra model parameters, we learn the prompts with63

a two-stage optimization strategy. At the first stage in the inner loop, we fix both visual and text64

features and optimize the optimal transport problem by a fast Sinkhorn distances algorithm [6]. Then,65

in the outer loop, we fix all parameters of optimal transport and back-propagate the gradient to learn66

the prompts with different characteristics. Compared with conventional distance (such as Euclidean67

distance of mean features), optimal transport can align different visual features for each local prompt,68

which is more robust to the visual misalignment and tolerates well feature shift [44]. It is because OT69

learns an adaptive transport plan to align features, which achieves fine-grained matching across two70

modalities. We conduct experiments on 11 datasets following the standard setting of CLIP [39] and71

CoOp [63] to evaluate our method. These experiments span the visual classification of generic objects,72

scenes, actions, fine-grained categories, and so on. The significant result improvement demonstrates73

that PLOT can effectively learn representative and comprehensive prompts.74

2 Related Work75

Optimal Transport The Optimal Transport [30] is initially introduced to solve the problem of how76

to reduce the cost when moving several items simultaneously. Recently, OT theory has drawn wide77

attention in the machine learning and computer vision community by comparing distributions readily78

available to them under the form of feature sets [37]. Due to the brilliant property of distribution79

matching, OT has been applied in many theoretic and application tasks including generative models [1,80

45, 60], structural matching [4, 57, 61, 56] (e.g. sequence matching [4] and graph matching [56]),81

and other distribution-based tasks (such as clustering [22], distribution estimation [2], and causal82

discovery [50]). In this paper, we use OT to align the features of vision and language modalities83

which represents the data structure by learning an adaptive transport plan [44].84

Vision-Language Pre-trained Models Vision-Language Pre-trained (VLP) models aim to explore85

the semantic correspondence between the vision and language modalities through large-scale pre-86

training. Recently, VLP models have achieved an exciting performance improvement in the zero-shot87

and few-shot visual recognition [39, 10, 63, 64, 59], which shows the great potential to promote88

open-world visual understanding with the help of language. One key part of learning VLP models is89

the self-supervised learning objective on two modalities. The popular VLP objectives can be divided90

into reconstruction [25, 15, 8, 20], contrastive matching [39, 17, 16], or the combination of both91

two [24, 54, 19]. Besides, recent progress in the field of VLP also benefits a lot from large-scale92
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pair-wised datasets. For example, CLIP [39] applies 400 million image-text pairs for contrastive93

learning, while ALIGN even exploits 1.8 billion data pairs. Beyond recognition, these VLP models94

also show great potential for other downstream applications, such as dense prediction [42, 62], image95

generation [31, 41, 35], and action understanding [53, 48].96

Prompt Learning Prompt learning is introduced from the field of NLP to efficiently adapt the large97

language model to downstream tasks. Different from the conventional “pre-training, fine-tuning”98

paradigm which initializes the pre-trained model and tunes the parameters of the network using99

downstream task-specific objective functions, prompt learning applies textual prompt to reformulate100

the downstream tasks as the original pretrained task [27, 36]. By the prompt, the domain shift between101

pretrained task and downstream application is reduced and thus the pretrained knowledge can be102

easier adapted to downstream tasks. The concept of prompt learning [36, 40, 38] begins from the103

success of GPT [40] series. Early prompt learning methods (such as Petroni et al. [36] and Pörner et104

al. [38]) always manually create templates based on human prior knowledge. Furthermore, some105

mining-based methods [18] and gradient-based methods [46] are proposed to automatically search for106

appropriate templates. Beyond search in the discrete space, some methods [26, 49, 28] remove the107

constraint that the prompts are “words” and instead learn prompts in the continuous embedding space.108

Recently, CoOp [63] and its extended version [64] introduce prompt learning into open-world visual109

understanding to adapt the knowledge from the large-scale visual-language pretrained models and110

achieve great performance improvement on the few-shot visual recognition. Compared with CoOp,111

our PLOT method further improves prompt learning by introducing the optimal transport distance to112

learn multiple local prompts and achieves fine-grained vision-language matching.113

3 Approach114

In this section we will first revisit the baseline method CoOp 3.1, review the preliminaries of115

optimal transport 3.2, and then introduce our proposed PLOT 3.3 to show how we can learn multiple116

comprehensive prompts.117

3.1 A Revisit of CoOp118

CoOp [63] is one of the pioneering methods to learn the prompts for using vision language pretrained119

knowledge (such as CLIP [39]) for downstream open-world visual recognition. Different from CLIP120

which manually designs the prompt templates, CoOp sets a part of context words in the template as121

continuous learnable parameters which can be learned from the few-shot data. Then the classification122

weights can be represented by the distance between the learned prompt and visual feature.123

Specifically, given an image x, a visual feature f = f(x) is obtained by the visual encoder f of124

CLIP. Then, the textual prompt can be formulated as tk = {vec1,vec2, . . . ,vecL, ck}, where ck is125

the word embedding of the class name, {vecl|Ll=1} are learnable vectors with the same dimension as126

the original word embedding and L is the length of context words. With prompt tk as the input, the127

text encoder g outputs the textual feature as gk = g(tk). The final prediction probability is computed128

by the matching score as follows:129

p(y = k|x) = exp(sim(f , gk)/τ)∑K
k′=1 exp(sim(f , gk′)/τ)

, (1)

where sim(·, ·) denotes a metric function such as cosine similarity, and τ stands for the temperature130

of Softmax. Then we can optimize the parameters of {vecl|Ll=1} with the cross-entropy loss between131

the prediction and the labeled target.132

3.2 Optimal Transport133

Optimal transport (OT) distance is a widely used metric for the comparison of distributions. Here, we134

only focus on the discrete situation which is more related to our framework. Assuming we have two135

sets of points (features), the discrete distributions are formulated as:136

U =

M∑
m=1

umδfm
and V =

N∑
n=1

vnδgn
, (2)

where u and v are the discrete probability vectors that sum to 1, and δf is a Dirac delta function137

placed at support point f in the embedding space. Then, the total distance of these two distributions138
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Figure 2: The framework of PLOT. PLOT first describes each category with multiple prompts and
obtains a set of prompt features by text encoder. The image is also encoded as a set of local features.
Then the optimal transport is used as the metric between prompts and visual features.

are written as:139

< T ,C >=

M∑
m=1

N∑
n=1

Tm,nCm,n. (3)

We call C the cost matrix in which each point denotes the cost between fm and gn, such as140

Cm,n = 1− sim(fm, gn). While the T is called the transport plan, which is learned to minimize the141

total distance. The optimization problem of optimal transport is formulated as:142

dOT (u,v|C) = minimize
T

< T ,C >

subject to T1 = u,T T1 = v,T ≥ 0.
(4)

As directly optimizing the above objective is always time-consuming, we apply the Sinkhorn dis-143

tance [6] to use an entropic constraint for fast optimization. The optimization problem with a144

Lagrange multiplier of the entropy constraint is:145

dOT,λ(u,v|C) = minimize
T

< T ,C > −λh(T )

subject to T1 = u,T T1 = v,
(5)

where h(·) is entropy and λ ≥ 0 is a hyper-parameter. Then we can have a fast optimization solution146

with a few iterations as:147

T ∗ = diag(ut)exp(−C/λ)diag(vt), (6)
where t denotes iteration and in each iteration ut = u/((exp(−C/λ)vt−1) and vt =148

v/((exp(−C/λ)Tut), with the initiation v0 = 1.149

3.3 Prompt Learning with Optimal Transport150

In this subsection, we introduce the details of our PLOT, which learns multiple prompts to describe151

different characteristics of the category by minimizing the OT distance.152

Specifically, as shown in Figure 2, given an image x, we first feed it to the visual encoder branch of153

CLIP. Apart from the global visual feature f , we can also obtain a set of local features {fm|Mm=1}.154

The visual encoder has a multi-head attention pooling layer in which the input is the combination of155

the global feature and a set of local features (feature map) and the output is a tensor with the shape156

R(H×W+1)×C , where H and W is the height and width of feature map and C is the feature dimension.157

Therefore, we can obtain M = H ×W local features and a global feature. At the same time, for158

class k, we can initialize N local prompts as {tk,n|Nn=1} with learnable vectors {vecl,n|L,N
l=1,n=1},159

where each is the same as the prompt in CoOp. With both visual and textual encoders, we can obtain160

local visual features F = {fm|Mm=1} ∈ RM×C and prompt features Gk = {gn|Nn=1} ∈ RN×C .161

In the inner loop, we learn the transport plan T with these fixed support sets F ,Gk, by minimizing162

the following OT distance to push Gk to F :163

dOT (k) = dOT (u,v|1− F TGk), (7)

where C = 1−F TGk denotes that we use the cosine distance between F and Gk as the cost matrix.164

Then we can obtain the solution of transport plan T ∗ as Eq (6) and the final OT distance dOT (k).165
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Given the OT distance between Gk and F , we reformulate the prediction probability as:166

pot(y = k|x) = exp((1− dOT (k))/τ)∑K
k′=1 exp((1− dOT (k′))/τ)

. (8)

In the outer loop, we fix the transport plan T ∗ and apply the cross entropy loss to optimize the167

{vecl,n|L,N
l=1,n=1} as:168

LCE = − 1

|X |
∑
x∈X

K∑
k=1

yx,kpot(y = k|x), (9)

where yx is a one-hot label vector. The detail algorithm can be found in the supplementary materials.169

Though the optimization strategy of the optimal transport and prompts is two-stage, the whole170

training flow is end-to-end. It is because that the transport plan is computed using a small number171

of matrix multiplications as one forward module of the neural network. The gradients of these172

matrix multiplications are taped for backpropagation for end-to-end optimization, which makes the173

whole system fully differentiable (including the iterative algorithm) and easy to implement using an174

autograd library like PyTorch. In the experiments, we found that it is natural and relatively easy to175

this optimization strategy.176

3.4 Inference strategy177

In the inference, given one query image and the learned prompts, we first obtain the a visual feature178

set containing M = H ×W vectors and a prompt feature set containing N × C vectors. Then, we179

calculate the distance between the visual feature set and the prompt feature set of each class by OT180

as (6). After obtaining the OT distance for each class, we sort the distance and classify the image.181

4 Experiments182

Extensive experiments are conducted to evaluate our method, including comparison with CoOp,183

ablation studies, parameter analysis extensibility analysis, computing cost analysis and visualization.184

4.1 Datasets185

We followed the experimental settings in the CoOp [63] for the few-shot learning evaluation. The186

experiments are conducted on the 11 visual recognition datasets, including Caltech101 [9], DTD [5],187

EuroSAT [12], FGVCAircraft [29], Flowers102 [32], Food101 [3], ImageNet [7], OxfordPets [33],188

StanfordCars [21], SUN397 [55], and UCF101 [47]. These datasets span visual classification of189

generic objects, scenes, actions, fine-grained categories, and so on, which constitutes a comprehensive190

evaluation of our method. All experiments adopted the few-shot evaluation protocol used in CLIP [39]191

and CoOp [63], where we respectively choose 1, 2, 4, 8, and 16 shots for model training and use the192

original test set for evaluation. Besides, we also evaluated the robustness of our method with domain193

shift. Following CoOp, we used the ImageNet as the source domain and evaluate our method with194

ImageNet-based robustness evaluation datasets including ImageNetV2 [43], ImageNet-Sketch [52],195

ImageNet-A [14], and ImageNet-R [13]. A detailed introduction of each dataset can be found in the196

supplementary materials.197

4.2 Implementation details198

We chose CoOp [63] as our main competitor to evaluate our method. Compared with CoOp which199

only learns a global prompt for one class, our PLOT method learns multiple local prompts and applies200

the OT distance for better fine-grained alignment. Besides, we also reported the performance of201

training a linear classifier with the CLIP [39] features. It is also a widely-used strategy to adapt the202

pretrained knowledge for the downstream task [46]. We reproduced the performance of CoOp and203

the CLIP linear probe with the released official code.204

The original CoOp method has different versions with different class token positions and parameter205

initialization strategies. We applied the default model that fixes the class token positions in the end due206

to the limited performance gap between two different ways of positioning the class token. Besides, we207

used the random parameter initialization strategy but not the class-specific context version. Following208

the widely used setting in [63, 64, 10, 58], we also chose RN50 [11] as the backbone network of the209

visual branch and set the length of learnable context tokens as 16. All the code of our method is based210

on CoOp, which adopted the SGD optimizer with 0.002 initial learning rate, CosineAnnealingLR211
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Figure 3: The few-shot learning results on 11 datasets. We compare our PLOT with CoOp, CoCoOp ,
and the Linear Probe method and observe the consistent and significant performance improvement on
most datasets. (The average accuracy on all datasets is shown on the left top.)

Table 1: Comparison with CoOp on robustness to domain shift.

Method Source Target

ImageNet -V2 -Sketch -A -R

CLIP + CoOp 61.91 54.26 32.47 21.78 54.21
CLIP + PLOT (N=4) 63.01 55.11 33.00 21.86 55.61

schedule, and a warmup trick with 1e-5 learning rate. Besides, we also followed the epoch strategy to212

train more epochs for more shots.213

We apply N = 4 prompts for each category and use M = 7× 7 due to the feature map size. We set214

the hyper-parameters in the Sinkhorn distances algorithm [6] as λ = 0.1 for all the datasets. We set215

the maximum iteration number of the inner loop as 100 and will early stop the iteration when the216

average absolute update value Λ < 0.01. We initialize all values in the vector v and µ as 1/N and217

1/M respectively. All models are conducted on the Pytorch [34] 1.7.1 and trained on 4 NVIDIA218

A100 GPUs. We repeated the experiments three times with different seeds and reported the average.219

4.3 Comparison With CoOp220

In this subsection, we compare our PLOT with the baseline CoOp on the few-shot recognition and221

domain generalization tasks.222

Few-Shot Learning We summarized the experimental results in Figure 3 where the red line denotes223

our PLOT method, the blue one denotes CoOp, the purple line denotes CoCoOp, and the green one224

is the CLIP linear probe. The detailed accuracy can be found in the supplementary materials. We225

observed that both prompt learning methods (PLOT and CoOp) outperform the linear probe method226

by a large margin. Besides, PLOT can further improve the performance of CoOp and CoCoOp on227

most of the datasets. Taking the average accuracy (at the left top) as the example, Plot respectively228

gained 3.03%, 3.45%, 2.13%, 1.38%, 0.61% performance boost over CoOp at 1, 2, 4, 8, 16 shots. We229

found the performance gap will reduce when shots increase. It is not surprising since both CoOp230

and PLOT focus on utilizing the pre-trained knowledge, and the effect of pre-training diminishes231

given more training data. Among all datasets, PLOT achieves a larger improvement over CoOp on232

the FOOD101 and DTD datasets and achieves comparable performance only on the StanfordCars233

datasets. For the FGVCAircraft dataset in which the CoOp only obtains 7.77% accuracy, our PLOT234

can achieve an accuracy of 17.79%, twice as high as that of the CoOp. Note that we don’t use the235

class-specific context, thus the performance on the fine-grained classification datasets is lower, e.g.236
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Table 2: Ablation studies on few-shot recognition. PLOT is our defined model with N = 4, CoOp is
the baseline method, M denotes that we respectively match the global visual feature and multiple
textual prompts, V denotes that we apply a constraint to add the variance of prompts, M indicates
using the visual feature map instead of the global visual feature.

Dataset Settings 1 shot 2 shots 4 shots 8 shots 16 shots

Caltech101

PLOT 89.83± 0.33 90.67± 0.21 90.80± 0.20 91.54± 0.33 92.24± 0.38
CoOp 87.51± 1.02 87.84± 1.10 89.52± 0.80 90.28± 0.42 91.99± 0.31
G 88.13± 0.36 86.98± 1.25 88.45± 0.79 90.16± 0.22 90.72± 0.18
G+V 88.28± 0.43 87.72± 1.25 88.45± 0.30 89.82± 0.20 92.00± 0.13
M 69.78± 1.75 71.57± 1.59 77.18± 2.16 81.77± 0.47 86.21± 0.20
M+V 66.11± 8.29 71.45± 3.98 79.30± 3.96 86.96± 0.78 89.80± 0.17

DTD

PLOT 46.55± 2.62 51.24± 1.95 56.03± 0.43 61.70± 0.35 65.60± 0.82
CoOp 43.62± 1.96 45.35± 0.31 53.94± 1.37 59.69± 0.13 62.51± 0.25
G 45.12± 1.69 48.39± 2.08 54.75± 0.48 60.15± 0.70 63.59± 0.76
G+V 45.90± 2.00 48.50± 0.99 53.96± 0.48 59.69± 1.01 63.51± 0.66
M 13.18± 4.57 12.25± 3.86 13.00± 4.73 20.76± 5.42 26.99± 1.98
M+V 12.61± 5.93 15.11± 1.81 20.35± 1.33 44.13± 2.39 56.85± 0.54

FOOD101

PLOT 77.74± 0.47 77.70± 0.02 77.21± 0.43 75.31± 0.30 77.09± 0.18
CoOp 74.25± 1.52 72.61± 1.33 73.49± 2.03 71.58± 0.79 74.48± 0.15
G 74.63± 0.11 70.15± 0.49 70.41± 0.46 70.72± 0.98 73.68± 0.46
G+V 74.83± 0.31 70.09± 0.85 70.86± 0.22 70.80± 0.68 73.93± 0.35
M 52.02± 4.86 46.12± 1.46 46.86± 1.39 53.43± 0.88 61.28± 0.23
M+V 46.52± 1.15 45.95± 2.66 53.57± 0.83 62.95± 0.37 67.63± 1.11

Table 3: Parameter analysis for the number of prompts

Dataset Settings 1 shot 2 shots 4 shots 8 shots 16 shots

Caltech101

N=1 88.47± 1.15 89.19± 0.39 89.70± 0.38 90.45± 0.24 91.56± 0.14
N=2 88.86± 0.51 89.60± 0.10 90.60± 0.17 91.25± 0.65 91.89± 0.36
N=4 89.83± 0.33 90.67± 0.21 90.80± 0.20 91.54± 0.33 92.24± 0.38
N=8 89.74± 0.30 90.18± 0.46 91.02± 0.18 91.28± 0.28 92.04± 0.29

DTD

N=1 43.91± 0.65 48.21± 2.20 53.69± 1.10 58.90± 0.19 62.85± 0.74
N=2 45.59± 2.46 48.06± 1.92 55.58± 1.71 61.56± 0.17 64.60± 0.92
N=4 46.55± 2.62 51.24± 1.95 56.03± 0.43 61.70± 0.35 65.60± 0.82
N=8 46.89± 1.94 51.87± 2.06 54.45± 0.48 62.20± 0.56 65.25± 0.38

FOOD101

N=1 75.96± 0.48 76.12± 0.59 77.11± 0.41 76.56± 0.69 77.43± 0.80
N=2 77.12± 0.49 76.89± 0.23 76.16± 0.52 75.23± 0.69 76.81± 0.50
N=4 77.74± 0.47 77.70± 0.02 77.21± 0.43 75.31± 0.30 77.09± 0.18
N=8 78.05± 0.15 78.19± 0.07 78.12± 0.17 76.63± 0.22 77.48± 0.12

the performance of both CoOp and PLOT without class-specific context is lower than the linear237

probing on FGVCAircraft. All these performance comparisons can serve as experimental evidence to238

demonstrate that multiple local prompts and optimal transport distance facilitate the prompt learning239

of vision-language models. On StanfordCar, learning multiple prompts didn’t significantly improve240

the performance over a single prompt. It may be because the discriminative characters in this dataset241

coincide with each other, such that one global prompt and one global visual feature can work well.242

Domain generalization The robustness also plays a critical role in model applications since the243

real-world environment may have large domain shifts with the training data. Therefore, we conducted244

a robustness evaluation to investigate the transferability of models learned by PLOT.245

Table 1 summarizes the results of our PLOT method and CoOp on four ImageNet-based robustness246

evaluation datasets. For both methods, we trained the models on ImageNet with 16 shots per class.247

For PLOT, we set the number of prompts as N = 4. We can observe that PLOT outperforms CoOp248

consistently on both source and target domains. These experimental results demonstrate that the249

performance improvement of our learning multiple prompts doesn’t rely on single-domain overfitting.250

4.4 Ablation Studies and More Analysis251

In this subsection, we conducted the ablation studies to investigate the effectiveness of different252

components, in order to answer the following questions.253
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Q: Can we directly learn multiple prompts by respectively matching each prompt with the254

global visual feature? A: No. As shown in Table 2, we report the performance of directly matching255

the global visual feature (notated as “G”) and compare it with the baseline CoOp and our PLOT on256

three datasets including Caltech101, DTD, and FOOD101. We observe that there is no improvement257

over the baseline on some datasets (such as Caltech101 and FOOD101) if we only directly match258

prompts and global features. Though “G” obtained the improvement on the DTD dataset, this259

improvement is still less than that of PLOT. It is because this “G” method is incentivized to learn the260

indistinguishable prompts, which contradicts our purpose to learn multiple comprehensive prompts.261

We further add some constraints to push away the prompt from each other. For example, we add an262

objective function to add the distance between every two prompts as a regularization term, which263

is notated as “V”. However, comparing “G” and “G+V”, we do not find significant and consistent264

improvement when using variance loss.265

Q: Does the improvement mainly come from using all feature maps? A: No. In PLOT, we apply266

all feature maps of the visual encoder branch, where each feature is a local embedding at one spatial267

position. Compared with the global feature, these local features are more informative and contain268

fine-grained clues. However, we demonstrate that the improvement of PLOT does not only rely on269

using all feature maps. On the contrary, directly using the feature map to replace the global feature270

causes a large performance drop. For example, on all three datasets, directly using the feature map271

(“M” or “M+V”) has an around 20% 1 shot accuracy drop over using the global visual feature. It272

is not surprising since the original CLIP model is trained by matching the global visual feature and273

language feature. Without using the OT method, the distance between the feature map and multiple274

textual prompts degenerates to the mean distance of each feature-prompt pair. Besides, when using275

the feature map, adding the variance loss works well, especially for more shots. For example, the276

accuracy on 16 shots DTD is improved by a large margin (from 26.99 to 56.85).277

Q: How many prompts are needed? A: 4 prompts are enough One important hyper-parameter278

in PLOT is the number of prompts. To analyze the effect of the number of prompts, we conducted279

the experiments on three datasets with 1, 2, 4, 8 prompts. The results are summarized in the white280

part of Table 3. We can observe that the performance obviously increases when adding the number281

of prompts from 1 to 4. For example, PLOT (N=4) respectively obtains 1.36%, 2.64%, and 1.68%282

1-shot accuracy improvement over PLOT (N=1) on three datasets. Besides, when we further increase283

the number of prompts, the improvement is not consistent. To balance the improvement and cost,284

we set N = 4 as the default configuration of our PLOT model. In the experiments, we tuned this285

hyper-parameter on the Caltech101 dataset and applied it to other datasets.286

Q: Can PLOT benefit zero-shot learning? A: No. CLIP [39] shows that manually designing the287

prompts can still achieve good performance. We obtain 7 prompts by prompt engineering on the288

ImageNet dataset and can further ensemble them to obtain 60.38% top 1 accuracy. In this section,289

we replace the cosine distance between the global visual feature and prompt ensemble with the290

OT distance between the feature map and all 7 prompts. However, without any learning, the OT291

distance only obtains 58.78% accuracy. It is a limitation of the PLOT to still need few-shot data292

for optimization, which cannot be directly applied in the zero-shot setting. We argue there are two293

reasons why the OT distance does not work without learning: 1) prompt engineering selects prompts294

based on the global feature and cosine distance, instead of OT distance with feature map; 2) all these295

selected prompts are closed to the global feature and lack the complementarity.296

Q: Can PLOT benefit Adapter-based methods? A: Yes. Adapter-based methods [10, 58] is another297

research direction of the efficient adaptation of pre-trained vision-language models. Different from298

the prompt learning that fixes the model parameters and tunes the language prompt, adapter-based299

methods [10, 58] allow for fine-tuning a part of the network or adding an extra model for training.300

Recently, adapter-based methods also achieve good performance on few-shot visual recognition.301

Therefore, we want to explore whether our PLOT method can benefit them, and how.302

We apply the Tip-adapter-F [58] as our baseline method, which learns a Linear(d,Ncls ×Kshots)303

model to describe one image by the similarity with all training samples, where d is the dimension of304

visual feature, Ncls is the number of categories (e.g. 1000 in ImageNet), and Kshots is the number305

of shots. Then, the final similarity consists of the original distance between the visual feature and306

prompt ensembling and the new distance calculated by the learned feature and one-hot vector of307

labels (whose dimension is (Ncls × Kshots, Ncls)). Please find details in Tip-adapter-F [58]. To308

introduce PLOT to this framework, we first used the feature map to replace the global feature and309
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Figure 4: Visualizations. We provide the heatmaps of transport plan T related to each prompt on 4
categories in ImageNet. Different transport plans focus on different attributes of the object.

Table 4: Comparison with Adapter-based method.

Dataset Methods 1 shot 2 shots 4 shots 8 shots 16 shots

ImageNet
Tip-Adapter-F 61.32 61.69 62.52 64.00 65.51
Tip-Adapter-F + OT 61.44 61.98 62.86 64.13 65.76
Tip-Adapter-F + PLOT 62.27 64.31 63.89 65.04 66.17

then learned multiple linear models. As a result, with different local features and different linear310

models, we can obtain a M ×N distance matrix and apply the Sinkhorn algorithm [6] to calculate311

the OT distance. Furthermore, we can apply the learned prompts as co-partner of the ensembling312

prompt to refine the final similarity.313

Table 4 summarizes the few-shot recognition results of the original Tip-Adapter-F method and our314

adapter-based PLOT methods on ImageNet. From this table, We observe that using the OT distance315

can improve the performance of the adapter-based method. Using the learned prompts, we can further316

promote the accuracy of all settings.317

Q: What is the extra computation time cost of PLOT over CoOp baseline? A: Around 10%318

inference speed and 5% training time. Despite the performance improvement, the extra computation319

cost is still a limitation of PLOT. Please see the detailed analysis in the supplementary materials.320

4.5 Visualization321

In this subsection, we provide some visualization examples of the transport plans T related to different322

prompts (N=4). We translate each transport plan into colorful heatmaps and resize them into their323

original size and combine them with the raw image. As shown in Figure 4, we provide the heatmaps324

of 4 categories in ImageNet. We observe that different transport plans highlight different regions of325

the image, which demonstrates that the learned multiple prompts are complementary. For the class326

“Brambling”, the prompts respectively focus on the head, tail, wing, and environment. For “Dog327

Sled”, the prompts are related to dogs, the sled, some ties, and the snow environment.328

5 Conclusion329

In this paper, we present a method, named PLOT, to learn multiple comprehensive prompts to330

describe diverse characteristics of one category. To avoid convergence to one point, we propose to331

apply the optimal transport to achieve the fine-grained alignment between both vision and language332

domains. We apply a two-stage optimization strategy where the inner loop fixes the prompts and333

learns the transport plan to calculate the cross-modality distance, and the outer loop uses this distance334

to optimize the prompt learner. We build our method on the base of CoOp and achieve significant335

improvement on the few-shot recognition task in various datasets, which demonstrates the advantage336

to learn multiple prompts instead of a single one.337
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