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Abstract

The success of LLMs has sparked interest in various agentic applications. A1

key hypothesis is that LLMs, leveraging common sense and Chain-of-Thought2

(CoT) reasoning, can effectively explore and efficiently solve complex domains.3

However, LLM agents have been found to suffer from sub-optimal exploration and4

the knowing-doing gap, the inability to effectively act on knowledge present in the5

model. In this work, we systematically study why LLMs perform sub-optimally6

in decision-making scenarios. In particular, we closely examine three prevalent7

failure modes: greediness, frequency bias, and the knowing-doing gap. We propose8

mitigation of these shortcomings by fine-tuning via Reinforcement Learning (RL)9

on self-generated CoT rationales. Our experiments across multi-armed bandits,10

contextual bandits, and Tic-tac-toe, demonstrate that RL fine-tuning enhances11

the decision-making abilities of LLMs by increasing exploration and narrowing12

the knowing-doing gap. Finally, we study both classic exploration mechanisms,13

such as ϵ-greedy, and LLM-specific approaches, such as self-correction and self-14

consistency, to enable more effective fine-tuning of LLMs for decision-making.15

1 Introduction16

Large Language Models (LLMs) pre-trained on massive internet-scale datasets have demonstrated17

success across diverse domains, including text generation and language understanding [Radford et al.,18

2019, Brown et al., 2020b, Team et al., 2023b, 2024a, Dubey et al., 2024]. Their broad pre-training19

distribution, enables generalization to a wide range of scenarios including coding assistance [Li et al.,20

2022], education [Team et al., 2024d], and medicine [Saab et al., 2024]. Therefore, their success has21

sparked interest in using LLMs for decision-making problems [Chen et al., 2023, Krishnamurthy22

et al., 2024, Nie et al., 2024] at the core of agentic AI systems [Durante et al., 2024].23

One key hypothesis is that LLMs can generate informed action predictions without extensive en-24

vironment interaction [Lu et al., 2024] due to “world knowledge” present in the model. Moreover,25

Chain-of-Thought (CoT) [Wei et al., 2022] equips models with the ability to reason about the observed26

history and their actions, which facilitates environment interaction. However, these advantages do not27

seem to materialize into strong performance when LLMs are faced with decision-making scenarios.28

Notably, Krishnamurthy et al. [2024] and Nie et al. [2024] found that LLMs do not robustly engage29

in exploration resulting in sub-optimal behavior. Similar shortcomings of LLMs have been observed30

by Paglieri et al. [2024] and Ruoss et al. [2024] on stateful environments commonly used in RL (e.g.,31

grid-worlds, Atari). Both works attribute the shortcomings to the knowing-doing gap, which states32

that models can posses knowledge about a task or can describe the consequences of their behavior33

(i.e., they know what to do), but cannot materialize this knowledge when acting (i.e., incapable of34

doing). Consequently, sub-optimal exploration and the knowing-doing gap are considerable obstacles35

towards more powerful agentic LLMs.36
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Figure 1: Illustration of our Reinforcement Learning Fine Tuning (RLFT) pipeline. We fine-tune
a pre-trained LLM πθ via self-generated Chain-of-Thought (CoT) rationales on environment rewards.

In this work, we aim to understand why LLMs often perform sub-optimally in simple decision-making37

scenarios. In particular, we systematically study three prevalent failure modes in small-to-medium-38

scale LLMs: greediness, frequency bias, and the knowing-doing gap (see Section 4.2). Our analysis39

shows that final performance often remains sub-optimal, because LLMs prematurely commit to40

greedy action selection strategies leading to stagnating action coverage that leave a large part of the41

action space unexplored (up to 55%). Moreover, we observe that small-scale LLMs (2B) tend to copy42

the most frequent actions in the context regardless of their respective reward, which we refer to as43

frequency bias. In contrast, larger LLMs (27B) mostly diminish the frequency bias, yet they remain44

prone to greedy behavior at the cost of exploration. Similarly, we quantify the knowing-doing gap45

and find that LLMs often know how to solve a task (87% correct rationales) but fail at acting on this46

knowledge as they prioritize greedy actions (64% of actions when rationale is correct).47

To overcome these shortcomings, we propose Reinforcement Learning Fine-Tuning (RLFT) on self-48

generated CoT rationales. RL is the pre-dominant learning paradigm in decision-making scenarios49

and has been successful in game-playing [Silver et al., 2016, Vinyals et al., 2019], robotics [Tirumala50

et al., 2025], plasma-control [Degrave et al., 2022], or navigating stratospheric balloons [Bellemare51

et al., 2020]. We study the effects of RLFT on pre-trained Gemma2 models [Team et al., 2024b,c]52

in three sizes (2B, 9B, and 27B) in multi-arm bandit (MAB) and contextual bandit (CB) settings53

proposed by Nie et al. [2024], and the textual Tic-tac-toe environment released by Ruoss et al.54

[2024]. Across environments, we find that RLFT enhances the decision-making abilities of LLMs55

by increasing exploration and narrowing the knowing-doing gap. While RLFT positively affects56

exploration of LLM agents, their exploration strategies remain sub-optimal. Therefore, we empirically57

evaluate both “classic” exploration mechanisms commonly employed in RL, such as ϵ-greedy, and58

LLM-specific approaches, such as self-correction and self-consistency, to enable more effective59

fine-tuning for decision-making scenarios. Finally, in our ablations we investigate the importance of60

CoT reasoning for decision-making, highlight the effectiveness of leveraging expert data, and show61

the benefits of giving the agent more reasoning tokens to solve the decision-making problem.62

In summary, we make the following contributions:63

• We systematically examine three failure modes of small-to-medium scale LLMs in decision-64

making scenarios: greediness, frequency bias, and the knowing-doing gap.65

• We study how RL fine-tuning on self-generated CoT rationales affects these shortcomings,66

highlighting positive effects of RLFT on exploration and decision-making abilities.67

• We evaluate a variety of exploration mechanisms (e.g., ϵ-greedy) and LLM-specific ap-68

proaches (e.g., self-consistency), to enable more effective RLFT for LLMs.69

2 Related Work70

We discuss related works in Appendix A.71
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3 Methodology72

3.1 Background73

Reinforcement Learning. We assume the standard RL formulation via a Markov Decision Process74

(MDP) represented by a tuple of (S,A,P,R), where S and A denote state and action spaces,75

respectively. At every timestep t the agent observes state st ∈ S , predicts action at ∈ A, and receives76

a reward rt given by the reward function R(st, at). P(st+1 | st, at) defines the transition dynamics77

constituting a probability distribution over next states st+1. The goal of RL is to learn a policy78

πθ(at | st) with parameters θ that predicts an action at in state st that maximizes cumulative reward.79

Reinforcement Learning from Human Feedback. RLHF aims to fine-tune pre-trained models80

towards human preferences [Christiano et al., 2017]. Preferences are typically encoded via a reward81

model rϕ with parameters ϕ learned from a human annotated dataset D consisting of query-response82

pairs x and y, respectively. RLHF optimizes a constrained REINFORCE estimator [Williams, 1992]:83

max
θ

Ex∼D,y∼πθ(·|x)
[
(rϕ(x, y)− b)∇θ log πθ(y | x)− βDKL(πθ(· | x) || πref (· | x)

]
(1)

Here πref is a reference policy, which is typically the frozen pre-trained model, and β is as weighting84

term. The baseline b represents a baseline to reduce variance and is commonly instantiated by a value85

function [Schulman et al., 2017, Ouyang et al., 2022] or a Monte-Carlo (MC) estimate of the returns86

[Ahmadian et al., 2024, Ramesh et al., 2024, Shao et al., 2024].87

3.2 Reinforcement Learning Fine-Tuning (RLFT)88

Our RLFT approach relies on fine-tuning on self-generated CoT rationales on rewards obtained from89

environment interaction. During RLFT the model learns to iteratively refine its reasoning process,90

favoring CoT patterns and actions that lead to higher rewards (see Figure 1). Our approach is similar91

to Guo et al. [2025] and Zhai et al. [2025], but specialized for decision-making scenarios.92

Context Representation. The input tokens to our model at step t consists of input instructions93

cint , output instructions coutt , and the most recent interaction history c
τt−C:t

t (see Figure 1). The94

history representation contains the trajectory τt−C:t = (st−C , at−C , rt−C , . . . , st, at, rt) of the C95

most recent states, actions, and rewards. We opt for task-specific instructions for cint rather than a96

generic instruction template, providing the agent with information about the observations, the possible97

actions, and its objective. Consequently, ct is represented by the concatenation of the instruction and98

history tokens ct = [cint ; coutt ; c
τt−C:t

t ].99

Factorization of Action Tokens. At every interaction step t, the agent generates action tokens100

zt = [zCoT
t ; at] containing both the CoT reasoning tokens zCoT

t and the action to be executed in the101

environment at. To extract at from zt, we make use of an extraction function at = g(zt). In practice,102

g consists of regular expressions to match the output pattern given by coutt . If no valid action is found103

a random action is executed. To allow for flexibility in refining the reasoning process, we opt for a104

permissive output template (i.e., ACTION=X), rather than enforcing a structured output template (e.g.,105

<thought> and <action> blocks). We employ a token generation budget of G tokens (G = 256 by106

default), therefore |zt| ≤ G.107

Reward Shaping for Valid Actions. In addition to the environment reward renvt , we employ a reward108

shaping term rvalidt to encourage the model to adhere to the output template, rt = renvt + rvalidt .109

More specifically, we make use of a reward penalty of −5 if g cannot extract a valid action, rvalidt =110

−5 · 1(g(aactt ) /∈ A). To ensure that the reward penalty does not overly bias optimization, we employ111

reward normalization to the environment rewards.112

Fine-tuning objective. We fine-tune using the clipping objective introduced by Schulman et al.113

[2017] with and additional KL constraint to the reference policy πref :114

max
θ

E(c,z)∼D

[
min

(
πθ(z|c)
πθold(z|c)

Aadv, clipϵ

(
πθ(z|c)
πθold(z|c)

)
Aadv

)
− βDKL(πθ(·|c)||πref (·|c))

]
(2)

Here πθold refers to the rollout generating policy, D is the rollout buffer, and ϵ is a hyperparameter. To115

allow for memory efficient fine-tuning in environments with fixed episode lengths (bandits), we make116

use of a Monte Carlo baseline to estimate Aadv. Instead of exploiting multiple rollouts, as used by117
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Ahmadian et al. [2024] and Ramesh et al. [2024], we compute rewards-to-go. For environments with118

variable episode lengths (Tic-tac-toe), we learn a separate state-value head on top of the last layer119

LLM representations and make use of generalized advantage estimation [Schulman et al., 2015].120

We provide additional implementation and training details in Appendix C.121

4 Experiments122

We study the effect of fine-tuning Gemma2 [Team et al., 2024b,c] models in MAB and CB settings123

proposed by Nie et al. [2024], and on a text-based version of Tic-tac-toe released by Paglieri et al.124

[2024]. We describe our environments and baselines in Section 4.1. For our experiments, we compare125

Gemma2 [Team et al., 2024c] models at three model scales: 2B, 9B and 27B. In Section 4.2, we first126

analyze three common failure modes of LLM agents in MAB scenarios: (1) greediness, (2) frequency127

bias, and (3) the knowing-doing gap. Then we investigate the effects of fine-tuning on self-generated128

CoT rationales or expert rationales in MABs and CBs (see Section 4.3), and in Tic-tac-toe (see129

Section 4.5). In Section 4.4, we study the effects of a exploration mechanisms on the fine-tuning130

performance. Finally, in Section 4.5 we empirically examine important components of our approach.131

4.1 Environments & Baselines132

Multi-armed and Contextual Bandits. MABs [Slivkins et al., 2019, Lattimore and Szepesvári,133

2020] are a classic problem setting in RL that isolates the exploration-exploitation trade-134

off. For our MAB experiments, we leverage the text-based bandit scenarios released by Nie135

et al. [2024]. We focus on the continuous and button variants, as illustrated in Figure 2.136

Button Multi-armed Bandit (Gaussian)

You are a bandit algorithm in a room with
5 buttons labeled red, green, blue, yellow,
orange. [...]. Your goal is to maximize the total
reward. [More instructions]

Think step-by-step and output your final
answer in the format ACTION=X where X is
one of the arms listed above. IMPORTANT:
Provide your (SHORT!) thinking process and
your answer ACTION=X

So far you have tried/seen:
Step=0 Action=green Reward=0.3
Step=1 Action=blue Reward=0.1
Step=2 Action=orange Reward=-0.5
Step=3 Action=red Reward=0.5
Step=4 Action=green Reward=0.24
...
What do you predict next?

Figure 2: Illustration of a Gaussian MAB for the
button scenario from [Nie et al., 2024] using our
context representation and instructions.

We report results for MAB with k ∈ {5, 10, 20}137

arms (|A| = k) and payoffs of the arms being138

either Gaussian or Bernoulli distributed. In ad-139

dition, we consider three levels of stochasticity140

(low/medium/high) that determine the standard141

deviation or delta gap in Gaussian or Bernoulli142

bandits, respectively. For all MAB settings, we143

limit the horizon T to 50 interaction steps. We144

compare against two commonly used baselines145

for MABs: Upper-confidence Bound (UCB)146

[Auer, 2002] and a random agent that selects147

actions uniformly at random. UCB is consid-148

ered optimal and represents the upper-bound for149

agent performance, whereas the random base-150

line represents the lower bound. We provide151

more details on our MAB and CB setups in Ap-152

pendices B.1 and B.2, respectively.153

Tic-tac-toe. In addition, we use the text-based154

Tic-tac-toe environment released by Ruoss et al.155

[2024], which exhibits proper state transitions.156

Ruoss et al. [2024] demonstrated that frontier157

models struggle to achieve strong performance158

in this environment and barely beat a random159

opponent. Consequently, it is a good target to in-160

vestigate the efficacy of RLFT. In Appendix B.3,161

we provide addition details on our environment162

and training setup.163

4.2 Why do LLMs perform suboptimally in decision-making?164

Prior works found that LLM agents perform suboptimally and fail to explore sufficiently in interactive165

settings [Paglieri et al., 2024, Ruoss et al., 2024]. Therefore, we first examine why models perform166

suboptimally and identify three prevalent failure modes: (1) greediness, (2) frequency bias, and (3)167

the knowing-doing gap. In this section, we present analyses of Gemma2 models when given input168

4



contexts that elucidate the failure modes. We conduct our analyses on the button instance of our169

MAB experiments at three model scales, and find that the failure modes persist across model scales170

(see Appendix D.1 for continuous instance).171
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Figure 3: Illustration of Greediness. We show action coverage for Gemma2 2B/9B/27B w/ and
w/o CoT for (a) 10 and (b) 20 arms over 50 interaction steps. Agents favor the best performing
action among the set of selected actions, leading to stagnating action coverage, despite benefits of
larger models and CoT. In (c), we plot cumulative regret against action coverage. The agents exhibit
suboptimal regret, because of greedy action selection strategies.

Greediness. The first and most pervasive failure mode is greediness, which is characterized by the172

LLM overly favoring the best performing action among a small set of actions seen so far. To illustrate173

this failure mode, we show the average action coverage achieved by Gemma2 2B/9B/27B with and174

without CoT across 64 MABs with 10 and 20 arms over 50 interaction steps (see Figure 3 a and b).175

We define action coverage Ct at step t as the fraction of available actions that have been selected at176

least once, Ct =
{a∈A:Nt(a)>0}

|A| with Nt(a) representing the number of times action a ∈ A has been177

selected until t. For 10 arms and averaged over 64 parallel environments, we find that Gemma2 2B178

covers 40% of all actions, while 9B/27B cover 65% (i.e., 6.5 actions), leaving a significant part of179

the action space unexplored. Note that without CoT all models explore merely 25% of all actions in180

the 10 arms setting. The suboptimal coverage is caused by the model overly favoring high-reward181

actions (see Figure 12 in Appendix D.1.1). Consequently, the model prematurely commits to a greedy182

strategy leading to a stagnating action coverage beyond 10 steps. Increasing the number of arms183

makes the greediness even more apparent, with the largest models only covering 45% of all actions.184

Due to this, the regret remains high compared to UCB, even though the models improve significantly185

over a random agent (see Figure 3c).186

Frequency Bias. The next prevalent failure mode is frequency bias, which is characterized by187

repeatedly selecting the most frequently occurring action in the context, even when that action gives188

low reward. To understand how the model’s behavior is influenced by the frequency of actions, we189

construct prefix histories using a random policy, vary the number of repetitions of the last action in the190

context history (0 to 100) and record the entropy over all actions (see Figure 4a and c). We provide191

details on the context generation in Appendix D.1.2. To quantify frequency bias, we categorize an192

action as frequent action af = argmaxa∈A NT (a), greedy ag = argmaxa∈{a∈A:NT (a)>0} RT (a),193

or other if they are neither frequent nor greedy. Note that action is optimal with 10% probability.194

Subsequently, we compute the frequent Ff , greedy Fg and other Fo fractions as reported in Figure 4195

(see Appendix 4 for definitions).196

Gemma2 2B heavily suffers from repeated actions, exhibiting a decreasing entropy with increasing197

repetitions (96% Ff , see Figure 4a). In contrast, 27B escapes the frequency bias (14%, see Figure198

4c) and interestingly becomes less certain of its action prediction with increasing repetitions. To199

examine this further, we show the bucketized fractions with 0-10, 45-55 and 90-100 repetitions for200

2B and 27B in Figure 4b. Indeed, for 2B Ff keeps increasing with increasing repetitions. While 27B201

escapes the frequency bias it suffers heavily from greediness. Similar biases have been identified in202

Behavior Cloning (BC) settings and termed copycat bias [Wen et al., 2020, Schmied et al., 2024b].203

This suggests that frequency bias is an artifact of supervised pre-training, and motivates the use of RL204

as a counter-measurement.205
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Figure 4: Illustration of Frequency Bias. We plot the frequency of the repeated action in the context
against the action entropy across all actions for 10 armed MABs. (a) Gemma2 2B heavily suffers
from frequency bias, becoming more certain of the most frequent action, the more often it occurs in
the context. (c) Gemma2 27B overcomes the frequency bias, but instead behaves greedily. In (b) we
show the action strategies for three repetition windows.
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Figure 5: Confusion matrix for the Knowing-
Doing Gap of Gemma2 27B. The agent
“knows” how to solve the task (87% correct
rationales, sum of top row), but fails at "do-
ing" (58% greedy actions among correct ra-
tionales). See Figure 21, for instructions and
an agent response.

Knowing-Doing Gap. The knowing-doing gap has206

been observed by Paglieri et al. [2024] and Ruoss et al.207

[2024]. To illustrate the gap in our setting, we first208

task Gemma2 27B to produce the UCB algorithm, to209

compute the relevant quantities accordingly ("know-210

ing"), and finally to act according to the computed211

quantities ("doing", see Figure 21 for the instructions212

and an agent response). We let Gemma2 27B interact213

with the environment (64 instances) for 50 timesteps214

with G = 2048 per step, and extract the UCB quan-215

tities from the rationales. To quantify "knowing",216

we compare the UCB values computed by the model217

against the real UCB values, and consider the ratio-218

nale zCoT as correct if the arm with the highest UCB219

values match (see Appendix D.1.3 for details). To220

quantify "doing", we categorize the generated actions221

as optimal action if the model selects the action with222

the highest UCB value, as greedy if it selects the ac-223

tion with the highest UCB value among the set of actions tried so far, and as other if the action224

is neither optimal nor greedy. Subsequently, we compute the percentages of greedy/optimal/other225

actions. The agent clearly knows how to solve the task, with 87% of all rationales being correct (see226

Figure 5). However, even for correctly computed rationales, the model often selects the greedy action227

(58%) over the optimal action (21%). This discrepancy highlights the shortcomings of the LLM when228

it comes to "acting" even when "knowing" the algorithm.229

4.3 Effectiveness of RL Fine-Tuning230

Next, we study the effects of RLFT on cumulative regret (w.r.t. optimal policy) and whether it231

alleviates the highlighted failure modes. We fine-tune Gemma2 2B and 9B on self-generated CoT232

rationales for 30K updates with an (accumulated) batch size of 128. To avoid memorization of reward233

distributions, we maintain a pool of 512 MABs and randomly select a subset of 16 MABs per rollout.234

We refer to Appendix C for training details and hyperparameters.235

RLFT lowers regret. In Figure 6, we report the cumulative regrets across model sizes and arms236

for a medium noise σ = 1.0 scenario (see Appendix D.2 for low/high noise). Across environments,237

the LLMs clearly outperform the random baseline and RLFT lowers regret for both 2B and 9B. For238

2B, RLFT narrows the gap to it’s larger counterparts and UCB. Similarly, RLFT lowers regret for239
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Figure 6: Main Comparison on Gaussian MABs button scenario in the medium noise (σ = 1)
setting. We compare cumulative regrets (lower is better) of classic baselines against ICL and RLFT
performances for 5, 10, and 20 arms. See Figure 16 for σ = 0.1 and σ = 3.

Gemma2 9B. Note, that the lower cumulative regret of Gemma2 9/27B compared to UCB after240

50 environment steps in the 20 arms scenario is an artifact of the limited interaction steps, but the241

trends remain clear. We repeat RLFT for CBs, and observe similar performance improvements for242

Gemma2 2B (see Appendix D.3). Consequently, reinforcing self-generated CoT rationales towards243

environment rewards improves performance on simple decision-making scenarios.244

RLFT mitigates greediness. In Figure 14a, we report the action coverage for 2B after RLFT at245

different numbers of gradient steps (10K, 20K, 30K). Indeed, we observe that RLFT results in246

increased action coverage (+12%) after 30K updates. Interestingly, we first observe a decrease (at247

10K) followed by an increase in action coverage (20K, 30K). We observe similar effects for the 20248

arms scenario (see Figure 14b). Via RLFT the agent learns to explore and mitigates greediness.249

RLFT counteracts frequency bias. We find that RLFT counteracts frequency bias (Figure 15).250

In particular, for 0-10 repetitions we observe a strong decrease in the fraction of frequent actions251

(70% → 35%) and increase in "other" actions (8% → 35%). However, Ff remains elevated for high252

repetitions. Consequently, RLFT counteracts frequency bias, but does not fully alleviate it.253

4.4 Effect of Exploration Mechanisms254

For RLFT, we relied solely on the exploration properties for CoT reasoning. However, it is common255

practice to employ additional exploration strategies [Mnih et al., 2015, Schulman et al., 2017, Haarnoja256

et al., 2018]. Therefore, we study the effects of classic exploration mechanisms and LLM-specific257

strategies to encourage exploration (see Appendix C.4). Across model scales, we observe that the258

mechanisms result in varied effects on action coverage (see Figure 18). First, we find that the simple259

try-all strategy, which reduces the need for additional exploration by trying all actions, results in260

the biggest performance improvements. Second, a simple exploration bonus (+1 reward for untried261

actions during RLFT), significantly increases exploration (50% → 70%) and lowers regret towards262

the expert compared to regular RLFT. This highlights the importance of reward shaping for fine-tuning263

LLMs to elucidate a desired behavior.264

4.5 Ablations265

We conduct additional ablations on the effect of RLFT in Tic-tac-toe, the importance of CoT for266

RLFT, leveraging pre-collected datasets via SFT, and the effect of "thinking" tokens in Appendix E.267

5 Conclusion268

We study why LLMs perform sub-optimally in decision-making scenarios and examine three prevalent269

failure modes: greediness, frequency bias, and the knowing-doing gap. We show that RLFT on CoT270

rationales mitigates greediness, counteracts frequency bias, and improves final performance. While271

RLFT improves the exploration, it remains sub-optimal compared to bandit algorithms. Therefore,272

we investigate a variety of mechanisms to improve exploration. Models act near-optimally if provided273

with sufficient information underscoring their shortcomings in exploration. Finally, we highlight the274

importance of reward shaping for RLFT. In Appendix F, we discuss limitations and future work.275
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A Related Work591

Exploration in RL and LLMs. The trade-off between exploration and exploitation is a long-standing592

challenge in the field of RL [Schmidhuber, 1991a,b, Still and Precup, 2012, Oudeyer et al., 2007].593

Widely used RL agents have often relied on random schemes [Mnih et al., 2015], heuristics such594

as state-visitation counts [Ecoffet et al., 2019, Raileanu and Rocktäschel, 2020], intrinsic curiosity595

[Pathak et al., 2017, Burda et al., 2018, Groth et al., 2021], behavior priors [Rao et al., 2021], or596

maximum entropy regularization [Schulman et al., 2017, Haarnoja et al., 2018]. Naturally, a number597

of works looked into leveraging LLMs for improving exploration of RL agents either as a source of598

rewards [Klissarov et al., 2023, Lu et al., 2024] or to orchestrate exploration strategies [Klissarov599

et al., 2024]. Krishnamurthy et al. [2024] investigate the in-context exploration abilities of LLMs600

when acting directly as a policy. Similarly, Nie et al. [2024] study the exploration abilities of LLMs601

when fine-tuned on expert trajectories. In contrast, our work investigates the effects of RLFT on the602

exploration abilities of LLMs and focuses on why models fail.603

In-context Learning for Decision-Making. ICL is a form of Meta-learning, also referred to as604

learning-to-learn [Schmidhuber, 1987]. While meta-learning is targeted via a meta-training phase605

[Santoro et al., 2016, Mishra et al., 2018, Finn et al., 2017, Wang et al., 2016, Duan et al., 2016,606
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Kirsch et al., 2019, Flennerhag et al., 2019, Team et al., 2023a], ICL emerges as a result of the607

pre-training data distribution [Chan et al., 2022, Kirsch et al., 2022]. ICL has been rediscovered608

in LLMs [Brown et al., 2020a] after initial observations by Hochreiter et al. [2001] in LSTMs609

[Hochreiter and Schmidhuber, 1997]. Mirchandani et al. [2023] leverage the ICL abilities of LLMs to610

operate as general pattern machines. A number of works leverage the CoT abilities [Wei et al., 2022]611

of LLMs in simple text-based scenarios [Shinn et al., 2023, Yao et al., 2022]. Similar in-context612

abilities have been observed in decision-making with models trained from scratch, albeit in restricted613

environments [Laskin et al., 2022, Lee et al., 2022, Kirsch et al., 2023, Raparthy et al., 2023, Schmied614

et al., 2024b,a].615

Self-Correction in LLMs. A critical component for LLM agents is the ability to self-correct over616

previously explored attempts. Existing works focus primarily on math benchmarks [Cobbe et al.,617

2021, Hendrycks et al., 2021, Welleck et al., 2022]. Zelikman et al. [2022] leverage hints to iteratively618

generate correct answers and fine-tune on the respective CoT rationales. Kumar et al. [2024] employ619

RLFT over multiple trials to induce self-correction. Similarly, Zelikman et al. [2024] make use of RL620

fine-tuning, but instead generate rationales at every token position. Instead of imitation, Wang et al.621

[2025] rely on critique fine-tuning to induce self-correction. Wulfmeier et al. [2024] make use of622

inverse RL to avoid compounding errors. Other works rely on ICL abilities to learn from previous623

mistakes [Zhang et al., 2024, Monea et al., 2024]. While conceptual corrections are possible, exact624

token-level correction is usually difficult for autoregressive generation [Cundy and Ermon, 2023].625

B Environments & Datasets626

We conduct experiments on three sets of environments: multi-armed bandits, contextual bandits and627

tic-tac-toe. For the SFT experiments reported in Section 4.5, we generate our own expert datasets. In628

this section, we provide additional details on our environments and datasets.629

B.1 Multi-arm Bandits: BanditBench630

MABs [Slivkins et al., 2019, Lattimore and Szepesvári, 2020] are a classic problem setting in RL631

that isolates the exploration-exploitation trade-off. In contrast, commonly used RL environments632

[Bellemare et al., 2013, Tassa et al., 2018] often conflate exploration with other RL-specific aspects,633

such as delayed rewards [Arjona-Medina et al., 2019]. We rely on the MAB scenarios released in634

BanditBench [Nie et al., 2024] and also used by [Krishnamurthy et al., 2024]. MABs come with a635

number of variable dimensions including the scenario type (textual description of the task), the type636

of reward distribution (Gaussian, Bernoulli) and its corresponding noise level (low/medium/high),637

the number of arms (i.e., actions), and the number of interaction steps per episode. Consequently,638

MABs are a good testbed for LLM agents.639

We focus on the continuous and button variants released by Nie et al. [2024]. We report results for640

MAB with k ∈ {5, 10, 20} arms (|A| = k) for three levels of stochasticity (low/medium/high). In641

our experiments, for every arm the corresponding reward is sampled from a Gaussian distribution r ∼642

N (µ, σ) where µ ∼ U(0, 1) and is a fixed scalar σ ∈ {0.1, 1, 3} for the three levels of stochasticity,643

respectively. For all MAB settings, we limit the horizon T to 50 interaction steps. Limiting the644

horizon is necessary to handle the increasing lengths and consequently RAM requirements for fine-645

tuning. While we consider 50 interaction steps sufficient for 5 and 10 arms, it is insufficient for the646

20 arms scenario. However, note that the general trends are well observable for the 20 arms scenario.647

In Figure 7, we show the continuous and button Gaussian MABs with CoT instructions for the agent.648

Similarly, in Figure 8 we show the same instances without CoT instructions.649

B.1.1 Baselines.650

We compare against two commonly used baselines for MABs: Upper-confidence Bound (UCB)651

[Auer, 2002] and a random agent that selects actions uniformly at random (see Appendix C for652

details). UCB is considered optimal and represents the upper-bound for agent performance, whereas653

the random baseline represents the lower bound. We provide implementations details for all baselines654

in Appendix C.655

B.1.2 SFT Datasets.656

In our main experiments, we focused on self-generated CoT rationales and action predictions657

produced by our fine-tuned agents, which do not require a pre-collected dataset. In contrast, for658

our SFT experiments reported in Section 4.5, we generated UCB expert datasets. In particular, we659

construct two dataset instances: a behavior cloning dataset that only contains expert actions and a660

16



Continuous MAB (Gaussian)

You are a bandit algorithm and interact with 5
arms labeled 0,1,2,3,4. Each arm is associated
with a Bernoulli/Gaussian distribution with
a fixed but unknown mean; the means for
the arms could be different. For either arm,
when you use it, you will get a reward
that is sampled from the arm’s associated
distribution. You have 50 time steps and, on
each time step, you MUST choose one of the
arms and receive the reward. Your goal is to
maximize the total reward.

[More Instructions]

Think step-by-step and output your final
answer in the format ACTION=X where X is
one of the arms listed above. IMPORTANT:
Provide your (SHORT!) thinking process and
your answer ACTION=X

So far you have tried/seen:
Step=0 Action=1 Reward=0.3
Step=1 Action=2 Reward=0.1
Step=2 Action=0 Reward=-0.5
Step=3 Action=3 Reward=0.5
Step=4 Action=1 Reward=0.24
...
What do you predict next?

Button MAB (Gaussian)

You are a bandit algorithm in a room with 5
buttons labeled red, green, blue, yellow, orange.
Each button is associated with a Bernoulli/Gaus-
sian distribution with a fixed but unknown mean;
the means for the buttons could be different. For
either button, when you press it, you will get a
reward that is sampled from the button’s associ-
ated distribution. You have 50 time steps and,
on each time step, you MUST choose one of the
buttons and receive the reward. Your goal is to
maximize the total reward over the 50 time steps.

[More Instructions]

Think step-by-step and output your final answer
in the format ACTION=X where X is one of the
arms listed above. IMPORTANT: Provide your
(SHORT!) thinking process and your answer
ACTION=X

So far you have tried/seen:
Step=0 Action=green Reward=0.3
Step=1 Action=blue Reward=0.1
Step=2 Action=orange Reward=-0.5
Step=3 Action=red Reward=0.5
Step=4 Action=green Reward=0.24
...
What do you predict next?

Figure 7: Illustration of continuous and button Gaussian multi-armed bandits scenarios from Bandit-
Bench [Nie et al., 2024] using our context representation and with CoT instructions.

thought cloning (TC) dataset that incorporates expert actions alongside a thought process for coming661

up with the respective action (i.e., w/ CoT). For every arm and stochasticity level combination,662

we construct 32K rollouts from different MABs, which amounts to 1.6M transitions (state, action,663

reward) per dataset.664

To provide the thought process in the TC datasets, we reconstruct the computations of the UCB values665

conducted by the UCB expert in textual format. The thought process ends with a final conclusion666

why a particular action was selected (i.e., highest UCB value or exploratory action). Consequently,667

the action zt at step t contains the thought process zCoT and the action to execute at (see Section668

3.2). We illustrate the actions contained in the dataset for a trajectory at steps 4 and 11 in Figure 9.669

The BC datasets do not contain the thought process. Instead, they only contain the final predictions670

made by the model, for example ACTION=yellow as shown in Figure 9.671

B.2 Contextual Bandits672

MABs do not emit states. In contrast, CBs emit state representations at every interaction step, making673

them contextual. Consequently, CBs are interesting to test abilities of LLMs to make use of the674

given context when predicting the next action. For our CB experiments, we leverage the MovieLens675

environment released by Nie et al. [2024], a semisynthetic bandit task based on the MovieLens676

dataset [Harper and Konstan, 2015]. In this setting, the agent operates as a movie recommendation677

engine given a contextual description of a user (10K users in total) and a list of K possible movies.678

The context representation provides a textual description of the user to recommend the movie to.679

This description includes the user’s gender, age, profession, location, and a numeric description680

of the user’s preferences for each of the possible movies. As for MABs, we report results for681

K ∈ {5, 10, 20}, limit the horizon to 50 interaction steps. In Figure 10, we provide an example for a682

MovieLens CB with 5 actions with our context representation and CoT instructions.683

Baselines. Similar to MABs, we compare against LinUCB [Chu et al., 2011] and an agent selecting684

actions uniformly at random. We provide implementation details on our baselines in Appendix C.685
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Continuous MAB (Gaussian)

You are a bandit algorithm and interact
with 5 arms labeled 0,1,2,3,4. Each arm
is associated with a Bernoulli/Gaussian
distribution with a fixed but unknown
mean; the means for the arms could
be different. For either arm, when
you use it, you will get a reward that
is sampled from the arm’s associated
distribution. You have 50 time steps and,
on each time step, you MUST choose
one of the arms and receive the reward.
Your goal is to maximize the total reward.

[More Instructions]

Output ONLY your final answer in the
format ACTION=X.

So far you have tried/seen:
Step=0 Action=1 Reward=0.3
Step=1 Action=2 Reward=0.1
Step=2 Action=0 Reward=-0.5
Step=3 Action=3 Reward=0.5
Step=4 Action=1 Reward=0.24
...
What do you predict next?

Button MAB (Gaussian)

You are a bandit algorithm in a room with
5 buttons labeled red, green, blue, yellow,
orange. Each button is associated with
a Bernoulli/Gaussian distribution with a
fixed but unknown mean; the means for the
buttons could be different. For either button,
when you press it, you will get a reward
that is sampled from the button’s associated
distribution. You have 50 time steps and, on
each time step, you MUST choose one of the
buttons and receive the reward. Your goal
is to maximize the total reward over the 50
time steps.

[More Instructions]

Output ONLY your final answer in the
format ACTION=X.

So far you have tried/seen:
Step=0 Action=green Reward=0.3
Step=1 Action=blue Reward=0.1
Step=2 Action=orange Reward=-0.5
Step=3 Action=red Reward=0.5
Step=4 Action=green Reward=0.24
...
What do you predict next?

Figure 8: Illustration of continuous and button Gaussian multi-armed bandits scenarios from Bandit-
Bench [Nie et al., 2024] using our context representation without CoT instructions.

B.3 Tic-tac-toe686

Finally, we use the text-based Tic-tac-toe environment released by Ruoss et al. [2024] (see Figure687

11 for an example). Unlike MABs and CBs, Tic-tac-toe is a stateful environment with proper688

state transitions (i.e., action predicted at step t affects the state observed at step t + 1). The agent689

receives scalar rewards of 1, 0, and -1 for winning, drawing, and loosing against its opponent,690

respectively. Episodes last until either of the players wins, draws or looses. To enable easy extraction691

of actions from the generated rationales, we represent the action space as a discrete set of 9 actions,692

corresponding to the grid positions on the 3× 3 grid used in Tic-tac-toe (| A |= 9). However, only at693

the start of an episode, all 9 actions are valid. Subsequently, only a subset is valid, because of taken694

board positions. We (optionally) provide the set of valid actions at a particular step in textual form695

in the context given to the agent. Ruoss et al. [2024] demonstrated that frontier models struggle to696

achieve strong performance in this environment and barely beat a random opponent. Consequently,697

we deem it a good target to investigate the efficacy of RLFT.698

Baselines. Following Ruoss et al. [2024], we compare against a random agent by default. In addition,699

we also compare against (MCTS) [Coulom, 2006], and a noisy variant of MCTS that selects an action700

randomly with 50% chance and according to MCTS otherwise.701

C Experimental & Implementation Details702

C.1 Training & Evaluation703

In our experiments, we fine-tune Gemma2 models in three model sizes (2B/9B/27B). For all exper-704

iments, we use the instruction-tuned versions of Gemma2 and leverage the respective instruction705

pre-and-postfixes. For bandits, we fine-tune all models for a total of 30K updates and evaluate after706

every 10K steps. with an accumulated batch size of 128. Similarly, we fine-tune for 12K updates and707

evaluate every 4K updates on Tic-tac-toe. We report the mean and 95% confidence intervals over708

three seeds, as suggested by Agarwal et al. [2021].709

General. We train all agents with an accumulated batch size of 128. We use a learning rate of710

1e−4, 100 linear warm-up steps followed by a cosine decay to 1e−6. To allow for memory-efficient711
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Multi-armed Bandit at step 4

Let’s think step-by-step. We calculate the counts and means for every action.

[More Thoughts]

Count for action blue = 1, Mean = (-1.91) / 1 = -1.91, UCB = -1.91 + sqrt(1 / 1)) = -0.91
Count for action green = 1, Mean = (1.41) / 1 = 1.41, UCB = 1.41 + sqrt(1 / 1)) = 2.41
Count for action red = 1, Mean = (0.45) / 1 = 0.45, UCB = 0.45 + sqrt(1 / 1)) = 1.45
Count for action yellow = 0, Mean = NaN, UCB = NaN
Count for action orange = 0, Mean = NaN, UCB = NaN

We have not yet selected all actions. Therefore, we select the next one.

ACTION=yellow

Multi-armed Bandit at step 11

Let’s think step-by-step. We calculate the counts and means for every action.

[More Thoughts]

Count for action blue = 1, Mean = (-1.91) / 1 = -1.91, UCB = -1.91 + sqrt(1 / 1)) = -0.91
Count for action green = 4, Mean = (1.41 + 0.17 + 0.67 + -0.1) / 4 = 0.54, UCB = 0.54 + sqrt(1 / 4)) =
1.04
Count for action red = 3, Mean = (0.45 + 0.78 + 2.16) / 3 = 1.13, UCB = 1.13 + sqrt(1 / 3)) = 1.71
Count for action yellow = 1, Mean = (-1.03) / 1 = -1.03, UCB = -1.03 + sqrt(1 / 1)) = -0.03
Count for action orange = 1, Mean = (-1.2) / 1 = -1.2, UCB = -1.2 + sqrt(1 / 1)) = -0.2

We select actions according to the highest UCB value. Therefore, action red is selected.

ACTION=red

Figure 9: Illustration of UCB rationales contained in our SFT expert datasets at two timesteps (4
and 11) in the same trajectory. Both examples show the Thought Cloning dataset instance containing
both the produced CoT rationale along with the predicted action. The Behavior Cloning instances
contain only the final action prediction (in red).

fine-tuning of 2B and 9B models, we train using the AdaFactor optimizer [Shazeer and Stern, 2018].712

We experiment with LoRA [Hu et al., 2022] for fine-tuning the 9B and 27B models but found it713

insufficient for improving the agent’s decision-making abilities in our setting. However, LoRA714

considerably reduces the amount of memory required for RLFT and has been shows to work well715

for supervised fine-tuning of decision-making agents [Schmied et al., 2023]. Therefore, we deem it716

a promising candidate for RLFT in decision-making scenarios. Furthermore, we employ gradient717

clipping of 1.0. We list all hyperparameters in Table 1.718

Context Lengths & Generation Budget. For all model sizes and tasks, we use a context length of719

1792 for the input context. By default, we set the generation budget to 256 tokens, except for the720

knowing-doing gap analyses reported in Section 4.2, which require a larger budget of 2048 tokens.721

Consequently, the effective sequence length for fine-tuning is 2048.722

Hardware Setup. We train all models on a server equipped with 8 × H100 GPUs.723

C.2 RLFT724

For our RLFT experiments on bandits, we employ the context representation, action factorization,725

reward shaping terms, and training objectives described in Section 3.2. To extract the target action at726

from zt, we make use of a stack of regex expressions against the target pattern (i.e., ACTION=X) and727

consider the last match in the generated tokens as at. In addition to being fairly robust, we found that728

this approach allows for more flexibility during the RLFT process and led to better outcomes than729

a more structured approach. Furthermore, across model sizes, we found it essential to introduce a730

reward shaping term to penalize rationales that contain no valid actions. By default, we use a reward731

penalty of -5 for invalid actions. Empirically, we found that this reward shaping term is sufficient for732

the models to produce valid actions early on in the training.733
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MovieLens Contextual Bandit

You are an AI movie recommendation assistant for a streaming
platform powered by a bandit algorithm that offers a wide variety of
films from different studios and genres. There are 5 unique movies
you can recommend, named star_wars_(1977), contact_(1997),
fargo_(1996), return_of_the_jedi_(1983), liar_liar_(1997). When
a user visits the streaming platform, you assess their demographic
description to choose a movie to suggest. You aim to match the user
with movies they are most likely to watch and enjoy.

[More Instructions]

Think step-by-step and output your final answer in the format
ACTION=X where X is one of the arms listed above. IMPORTANT:
Provide your (SHORT!) thinking process and your answer AC-
TION=X

So far you have tried/seen:
...
Step=4 This person is a 28-year-old man, working as a administrator
and live in Santa Clara county, CA. The user has some numerical val-
ues that represent their true implicit preference or taste for all movies:
[-0.04, 0.02, -0.02, -0.0, 0.02]
What do you predict next?

Figure 10: Illustration of contextual MovieLens scenario from BanditBench [Nie et al., 2024]
using our context representation and instructions.

We fine-tune using the clipping objective introduced by Schulman et al. [2017] with an additional734

KL constraint to the reference policy πref . We set β = 0.05 and ϵ = 0.2 for all experiments. We735

make use of the approximated (per-token) KL divergence instead of computing the full KL. While we736

found that computing the full KL slightly improves performance, it slows down training considerably.737

In contrast to Ahmadian et al. [2024] and Ramesh et al. [2024], we do not rely on producing738

multiple rollouts, because it is impractical for the mutli-step nature of decision-making tasks. While739

generating multiple actions at a particular timestep is possible for simulated environments, it requires740

environment resets. Therefore, we rely on standard MC-baselines to estimate Aadv .741

For bandit experiments, we maintain a pool of 512 stochastic MABs. For every rollout, we let the742

agent interact with a subset of 16 bandits for a single episode (50 timesteps). Consequently, every743

rollout contains 800 transitions. Similarly, for Tic-tac-toe, we maintain 16 parallel environments and744

collect 2048 rollout steps. We conduct 1 and 2 update epochs over the rollout buffer for bandits and745

Tic-tac-toe, respectively.746

C.3 SFT747

For our SFT experiments on MABs, we fine-tune on either on the expert action or expert rationales748

produced by UCB. We employ standard SFT training using a cross-entropy objective on the target749

tokens.750

C.4 Exploration Mechanisms751

In Section 18, we compare a variety of classic exploration mechanisms and LLM-specific approaches752

and study their effects on agent performance on Gaussian MABs with 10 arms. Here, we provide a753

description for each mechanism.754

Try-all. The try-all strategy is inspired by UCB, which incorporates an initial phase for trying755

all untried actions. This is because the UCB values for all untried actions are ∞. Therefore, we756
incorporate the same exploration phase when performing ICL and RLFT at the beginning of every757

episode. To enable fine-tuning on exploration actions, we provide an action rationale template to the758

model (e.g., Action X has not been tried yet, let’s explore it. ACTION=X). While simple,759

we find that this try-all strategy is effective for lowering regret across all model sizes (see Figure 18).760

This suggests that the model is able to select appropriate actions if given sufficient information, but761

struggles to explore.762
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Tic-tac-toe

You are an agent playing tic-tac-toe. You observe a board with 9 entries that looks like this:
000
100
002
1 indicates that player 1 has placed a stone in that square. 2 indicates that player 2 has placed a stone in
that square. 0 indicates that no stone has been placed in that square. You play as 1.
There are 9 possible actions: 0, 1, 2, 3, 4, 5, 6, 7, 8. The actions correspond to the following board
locations
012
345
678

[More Instructions]

Think step-by-step and output your final answer in the format ACTION=X where X is one of the arms
listed above. IMPORTANT: Provide your (SHORT!) thinking process and your answer ACTION=X

So far you have tried/seen:
Step=0 State=000000000 Action=0 Reward=0
Step=1 State=102000000 Action=4 Reward=0
Step=2 State=102010002 Action=5 Reward=0
What do you predict next?

Figure 11: Illustration of the text-based Tic-tac-toe environment.

ϵ-greedy. ϵ-greedy is classic exploration mechanism and commonly used in RL algorithms [Mnih763

et al., 2015, Hessel et al., 2018]. For our experiments, we use ϵ = 0.1 both during training and764

evaluation. We explored other values for ϵ but did not observe performance improvements. As for the765

try-all strategy, we provide an action rationale template to enable fine-tuning on exploration actions.766

Context Randomization. Context Randomization is an LLM-specific mechanism designed to767

introduce randomness in the action predictions by modifying the context representation. At every768

interaction step, we construct a mapping from the original action labels to a shuffled list of the same769

action labels. Subsequently, we remap action in the context history according to the constructed770

mapping. Finally, the predicted action is mapped back to the original action label space and executed771

environment. Besides introducing randomness, context randomization acts as a control mechanism to772

ensure that the observed biases do not only stem from biases towards particular action-tokens (e.g.,773

blue occurs more often than magenta in the pre-training dataset).774

Context Summary. Similar to Krishnamurthy et al. [2024] and Nie et al. [2024], we evaluate the775

effects of providing a context summary to the agent. After the context history, we provide the model776

with a summary of that history that contains the number of times every action has been selected so777

far, along with their respective mean rewards.778

Self-Correction. Inspired by Kumar et al. [2024] and Wang et al. [2025], we employ self-correction to779

the model’s predicted actions. First, we let the model generate its is initial rationale and corresponding780

action prediction. Then we append the generated rationale along with a self-correction message781

(similar to Kumar et al. [2024]) to the input context, and repeat the action generation. Finally, we782

extract the action from the final response and execute it in the environment. For RLFT, we only783

fine-tune on the final response, but retain the initial response along with the self-correction message784

in the context.785

Self-Consistency. Instead of generating a single answer, self-consistency [Wang et al., 2022] relies on786

generating multiple responses. Subsequently, self-consistency employs a majority voting mechanism787

to determine the final response. For our experiments in Figure 18, we report results for self-consistency788

with 16 generated responses. Instead of majority voting, we experimented with sampling from the789

respective response distribution or random mechanisms.790

Exploration Bonus. Finally, we evaluate a reward shaping mechanism in the form of an exploration791

bonus. In particular, we give an exploration bonus of +1 if the agents selects an action not yet tried792

within the respective episode. While simple, we find that the exploration bonus effectively narrows793

the gap to the UCB expert. This highlights the importance of reward shaping for fine-tuning LLMs in794

decision-making scenarios.795
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Name Value Description
Training
training_steps 30K or 12K Number of training steps.
eval_freq 10K or 4K Evaluation frequency (in updates).
batch_size 128 Accumulated batch size.
lr_scheduler Linear + cosine Learning rate scheduler
warmup steps 100 Warmup steps.
lr 1e4 to 1e6 Maximum learning rate.
optimizer AdaFactor Optimizer.
Sequence Length & Generation Budget
context_length 1792 Input context length.
num_tokens 256 Generation budget.
RLFT
rollout_steps 800 or 2048 Rollout steps in-between updates.
update_epochs 1 or 2 Update epochs over rollout-buffer.
reward_penalty -5 Reward penalty for invalid actions.
loss PPO clipping objective + KL constraint Objective function.
baseline MC-baseline or state-value head Baseline.
envs 16 Number of parallel envs.
ϵ 0.2 Clipping value.
β 0.05 KL coefficient.
reward_norm True Whether reward normalization is used.
train_temp 1.0 Sampling temp during rollouts.
eval_temp 0.0 Sampling temp during evaluation.
top_p 1.0 Sampling top-p.
Hardware
accelerator 8 × H100 Hardware accelerator.

Table 1: Default hyperparameters used in our experiments.

Button MAB

[Instructions]

S=0 A=blue R=1
S=1 A=blue R=1
S=2 A=blue R=1
S=3 A=green R=0
S=4 A=red R=2
What do you predict
next?
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(b) Example: Probability Mass

Figure 12: Illustration of action probabilities leading to greediness behavior. Models exhibit overly
high action probabilities in the presence of rewards, potentially resulting in repeatedly selecting
sub-optimal actions

D Additional Results796

D.1 Failure Modes797

D.1.1 Greediness798

Greediness is characterized by the LLM overly favoring the best performing action among a small set799

of actions seen so far. We define action coverage Ct at step t as the fraction of available actions that800

have been selected at least once, Ct =
{a∈A:Nt(a)>0}

|A| with Nt(a) representing the number of times801

action a has been selected until t.802

Action probabilities. The suboptimal action coverage reported in Section 4.2 is caused by the model803

overly favoring high-reward actions (i.e., overly high action probabilities). In Figure D.1.1, we provide804

an illustration of the action probabilities for a given input history. Across model sizes, Gemma2805
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exhibits overly high action probabilities in the presence of reward, which results in repeatedly806

selecting a potentially suboptimal action.
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(a) Action Coverage: 10 arms
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(b) Action Coverage: 20 arms

Figure 13: Illustration of greediness for the numbers scenario.

807

Greediness on Continuous MABs. We repeat the analyses conducted in Section 4.2 using numbers808

instead of buttons as the possible actions. Indeed, we find that the same trends hold. Without CoT the809

performance remains low. For Gemma2 27B, we observe an increase in the action coverage to almost810

90% for the 10 arms scenario, and to 60% for the 20 arms scenario.811

Post RLFT. In line with Figure 14a, we present the post RLFT action coverage on the 20 arms812

scenario in Figure 14b. Similar to the effects on the 10 arms scenario, we observe that RLFT improves813

the action coverage by 13%.

(a) Action Coverage: 10 arms (b) Action Coverage: 20 arms

Figure 14: Effect of RLFT on greediness for 2B on 10 and 20 arms (medium noise).

814

D.1.2 Frequency Bias815

Frequency bias is characterized by repeatedly selecting the most frequently occurring actions in816

the context, even when the dominant action gives low reward. To measure frequency bias, we first817

construct a variety of interaction histories (occurred during environment interaction) containing818

between 2 and 10 transitions. This interaction history is collected using a random policy. Given an819

initial interaction history, we repeat the last action in the history, which we also refer to as target820

action, between 0 and 100 times. Finally, we report the entropy all actions, H(θ) = −
∑

a∈A πθ(a |821

τ) log πθ(a | τ) . To achieve this, we conduct a separate forward pass for every possible action822

in the action space and report the respective log probabilities. We repeat the same procedure for823

different interaction histories and target actions (see Figure 4a and c). For the 10 arms scenario, every824

interaction history therefore results in 1000 (10 arms * 100 repetitions of the target action) forward825

passes. We repeat this procedure for the 5 target actions reported in Figure 4 using 5 interaction826

histories per action, accumulating to a total of 25K model forward passes (1000 * 5 * 5) per figure.827

To quantify frequency bias, we categorize the resulting actions as frequent action, greedy, or other if828

they are neither frequent nor greedy. Subsequently, we compute the frequent Ff , greedy Fg and other829
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Fo fractions as reported in Figure 4:830

Ff =
NT (af )

N
; Fg =

NT (ag)

N
; Fo =

∑
a∈A\{af ,ag} NT (a)

N
, with N =

∑
a∈A

NT (a). (3)

Note that there can be an overlap between greedy and frequent actions. In these (rare) cases, the831

greedy action category is dominant, i.e., we categorize the action as greedy even if it would also832

be the frequent action. This implies that the actions classified as frequent in Figure 4, are always833

suboptimal/bad compared to the respective greedy action. Consequently, a high Ff indicates that the834

model prefers the most frequent action even when observing a better action in the context.835

(a) Action Strategies
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Figure 15: Effect of RLFT on frequency bias for 2B (10 arms, medium noise).

Post RLFT. In Section 4.3, we observed that RLFT counteracts frequency bias. In addition to836

frequency buckets reported in Figure 15a, we provide the plot frequency against action entropy post837

RLFT in Figure 15b. Compared to Figure 4a, we observe that after RLFT the models maintains a838

higher action entropy for longer. Only at high repetition frequencies the action entropy decreases839

severely. Consequently, RLFT counteracts frequency bias, but does not completely alleviate it.840

D.1.3 Knowing-Doing Gap841

The knowing-doing gap has been observed by Paglieri et al. [2024] and Ruoss et al. [2024]. It states842

that models possess knowledge about a task or consequences of their behavior (i.e., they know what843

to do), but cannot materialize this knowledge when acting (i.e., they are incapable of doing). We844

illustrate the knowing-doing gap empirically in Figure 5. To this end, we first task Gemma2 27B845

to produce the UCB algorithm and to compute the relevant quantities required to act according to846

UCB (“knowing”). This involves counting how often every action was selected, computing the mean847

rewards for every action, and computing the final UCB values. After producing the quantities, the848

model is tasked to act according to them (i.e., “doing”). In Figure 21, we present and example of the849

respective instructions given to the model along with a response produced by Gemma2 27B.850

To evaluate performance empirically, we let Gemma2 27B interact with the environment (64 parallel851

instances) for 50 timesteps. We extend the token generation budget to 2048 tokens per step, to852

accommodate the additional required computations. Every produced action z contains both the CoT853

rationale zCoT and the final selected action a. We first extract the computed UCB values from the854

produced rationale zCoT . To achieve this, we task Gemma2 27B to enclose the computed values855

by <ucb_values> and </ucb_values> blocks. Then we extract the selected action a and execute it856

in the environment. For this experiment, we use Gemma2 27B, because we found that 2B and 9B857

struggled with computing the relevant UCB quantities and with enclosing them appropriately under858

the desired blocks.859

Quantifying “Knowing”. To quantify “knowing”, we compare the UCB values computed by the860

model and extracted from zCoT against the real UCB values. To this end, we recompute the real UCB861

values for every action at every time-step given the observed history. We consider the rationale as862

correct if the arm with the highest UCB values match. We opt for this choice rather than checking for863

exact equality, because we observed that the model struggles with exact calculations for complex864

operations. This is expected, because the necessary computations involve logarithm and square roots865

of floating point values. While tool use (e.g., calculator) could mitigate this issue, we observed that866

Gemma2 27B gets the quantities approximately right, resulting in valid rationales. Thus, the fraction867

of correct rationales is Fc =
1
N

∑N
i=1 g(z

i
CoT ) given a classifier g.868
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Quantifying “Doing”. To quantify “doing”, we categorize the generated actions as optimal action869

if the model selects the action with the highest UCB value, as greedy if it selects the action with870

the highest UCB value among the set of actions tried so far, and as other if the action is neither871

optimal nor greedy. It is possible that the greedy action is the optimal action. However, in this case872

the action is considered optimal instead of greedy. Subsequently, we compute the percentages of873

greedy/optimal/other actions (e.g., Fg × 100). We find that the model clearly knows how to solve the874

task, with 89% of all rationales being correct (see Figure 5).875

D.2 Multi-armed Bandits876

In Figure 6, we report the cumulative regrets across model sizes and arms for a medium noise877

(σ = 1.0) scenario. In addition, we repeat the same experiment in the low-noise (σ = 0.1) and the878

high-noise σ = 3.0 setting in Figure 16. For both noise levels, we observe similar trends as for the879

medium noise setting. In particular, we observe that LLMs clearly outperform the random baseline880

and RLFT lowers the cumulative regret for Gemma2 2B across all arm scenarios.881
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(a) High Noise (σ = 3)
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(b) Low Noise (σ = 0.1)

Figure 16: Main Comparison on Gaussian MABs button scenario in the (a) high σ = 3 and (a) low
σ = 0.1 noise settings. We compare cumulative regrets (lower is better) of classic baselines against
ICL and RLFT performances for Gemma2 2/9/27B for 5, 10, and 20 arms.

D.3 Contextual Bandits882

We repeat the same fine-tuning experiment for the contextual MovieLens bandits described in Section883

B.2. In Figure 17, we report the cumulative regrets attained by Gemma2B across different model884

sizes and for 5, 10 and 20 arms. Furthermore, we compare against a LinearUCB and a Random885

baseline. Overall, we observe similar performance improvements for RLFT on CBs as on MABs.886

While the ICL performances barely attain the same performance as a Random agent, RLFT fine-tuned887

Gemma2 2B perform similar to UCB.888

D.4 Effect of Exploration Mechanisms889

E Ablations890

Finally, we provide additional details on the ablations conducted in this work.891
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Figure 17: Main Comparison on Gaussian MovieLens CBs for (a) 5, (b) 10, and (c) 20 arms. We
compare classic baselines against ICL and RLFT performances for Gemma2 2/9/27B.
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Figure 18: Effect of exploration mechanisms on action coverage and cumulative regret.

E.1 RLFT in Tic-tac-toe.892

To investigate the efficacy of RLFT in stateful environments, we evaluate on Tic-tac-toe from Ruoss893

et al. [2024], in which frontier models struggle to achieve strong performance (see Appendix C for894

training details). We fine-tune against three opponents: a random agent, Monte Carlo Tree Search895

(MCTS) [Coulom, 2006], and noisy MCTS (50% of actions selected at random). We find that RLFT896

significantly enhances the win-rate of Gemma2 2B against all opponent compared to ICL (see Figure897

19a). Against the random agent, RLFT elevates the average return from 0.15 (i.e., winning 15%898

of games) to 0.75. Notably, the agent even manages to draw against the optimal MCTS baseline899

(−0.95 → 0.0), underscoring the effectiveness of RLFT for decision-making. However, for high900

performance it is essential to provide the legal actions in the context (see Figure 20).901

E.2 Tic-tac-toe: Effect of Legal Actions in State902

By default, we provided the legal actions available at the current turn within the input context903

to the agent. We found this design choice to be essential for effective fine-tuning compared to904

training without legal actions (see Figure 19b). Without legal actions in the context the average905

return drops from 0.75 (w/ legal actions) to 0.45. This suggests that the LLM fails at identifying the906

appropriate actions among the set of all possible actions when not given legal actions at the current907

state. In contrast, when provided with sufficient information (i.e., legal actions), the LLM is able908

to select actions appropriately (similar to Section 4.4). Providing the legal actions in the agent’s909

context alleviates the need to explore/identify invalid actions. Consequently, this shortcoming further910

highlights the need for principled exploration strategies for LLMs in decision-making scenarios.911

E.3 Importance of CoT for RLFT912

CoT reasoning is critical for ICL performance (see Figure 3), but the question remains how CoT913

influences RLFT. Therefore, we run RLFT on Gemma2 2B on the 10 arms Gaussian MAB both w/914
and w/o CoT (see Figure 19b, RLFT). Indeed, without CoT, RLFT barely attains the performance of915

ICL w/ CoT. This highlights the function of CoT as a vital exploration and rationalization mechanism916
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(a) Tic-tac-toe: Opponents (b) MAB: Effect of CoT

Tokens

9B RLFT

(c) MAB: "Thinking" Time

Figure 19: Ablations. (a) Effect of RLFT in Tic-tac-toe from Ruoss et al. [2024]. (b) Effect of CoT
on ICL, RLFT and SFT (expert data) performance on MABs. (c) Effect of increasing the number of
"thinking" tokens to generate during RLFT.

Figure 20: Effect of removing legal actions from the context in Tic-tac-toe.

for decision-making. For our results without CoT reported in Figure 19b, we remove the CoT917

instructions given to our agents. Instead, we instruct the agents to not perform any reasoning steps918

and to only produce the action to execute in the environment a. In addition, we limit the token919

generation budget G to 16 to avoid that the model ignores the instructions and makes use of the920

additional tokens. Furthermore, this considerably speeds up training due faster rollout times and921

shorter context lengths.922

E.4 Expert Behavior Cloning vs. Thought Cloning923

A prevalent approach in sequence models for decision-making is behavior cloning (BC) [Pomerleau,924

1988, Reed et al., 2022, Brohan et al., 2022, 2023], which relies on expert datasets. Consequently,925

we construct two UCB expert dataset comprising 32K rollouts either w/o CoT (behavior cloning) or926

w/ CoT (thought cloning), as described in Appendix B.1. Notably, both SFT variants successfully927

mimic the expert achieving comparable regret to the UCB expert (see Figure 19b, SFT). This result928

underscores the efficacy of training on expert data in decision-making scenarios when available,929

echoing recent findings in reasoning tasks [Muennighoff et al., 2025]. While BC and TC attain similar930

performance levels on the simplistic MABs, we anticipate that TC is advantageous in more complex931

decision-making scenarios as found by Hu and Clune [2023].932

E.5 “Thinking” Time933

We investigate the effect of giving the agent more time to “think” in Figure 19c. To achieve this, we934

vary the maximal number of tokens that the agent can generate per action G ∈ {16, 64, 256, 512}.935

By default, we set G to 256. Indeed, we observe that the performance improves consistently with936

more thinking tokens. Decreasing G to 16 or 64 results in poor performance, because the agent937

is unable to rationalize its decisions within the restricted generation budget. This is similar to the938

performance without CoT, but in contrast, the agent is instructed to produce the reasoning process.939

Over the course of RLFT, the agents learn to produce short rationales zCoT , including the action a940

due to our reward shaping mechanism (see Section 3.2). However, the produced short rationales are941

unhelpful to improving agent performance.942
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In contrast, doubling G from 256 to 512 results in a considerable performance increase to the level943

of Gemma2 9B with RLFT (see Figure 6). We observe an increase in the average sequence length944

over the course of the RLFT process. This suggests that the agent learns to effectively leverage the945

additional “thinking time” and reflects recent observations in mathematical reasoning [Guo et al.,946

2025]. However, the increased performance comes with additional training cost due to the multistep947

nature of decision-making scenarios. In fact, we observed that rollout generation can make up948

the majority of the training time required by the RLFT process. This is because the agent has to949

produce more tokens at every environment interaction step. For example, for our default horizon of950

50 timesteps and a generation budget of 500, the agent produces 25K tokens (at maximum).951

F Limitations & Future Work952

We focused our evaluation on the Gemma2 series and small-to-medium scale models. While we953
expect that our findings transfer to larger models, we deem research into frontier models important.954

Moreover, our MAB experiments were conducted with a limited horizon of 50 environment steps,955

which is sufficient for 5 and 10 arms, but insufficient for 20 arms. For future work, we believe that956
evaluating the exploration abilities of LLM agents is particularly interesting in environments that957

require targeted exploration towards an end-goal. First, this includes other stateful environments from958

Paglieri et al. [2024] and Ruoss et al. [2024], such as Crafter [Hafner, 2021]. Second, we deem a959

systematic investigation into exploration abilities of LLMs in existing agentic benchmarks [Mialon960

et al., 2023, He et al., 2024, Zhou et al., 2023] interesting. In our ablation studies, we found that961

LLMs benefit from additional "thinking" time and believe that allowing for a larger generation budget962

will become increasingly important for agentic scenarios, especially for scenarios with high-stakes963

decisions (e.g., economics or ethics). We deem investigations into such high-stakes scenarios fruitful964

for future work. While increasing "thinking" time improves performance, it comes with excessive965

computational cost at training time due to the rollout generation and the multi-step nature of decision-966

making. Therefore, modern recurrent architectures [De et al., 2024, Beck et al., 2025] that allow for967

faster inference may be promising alternatives for decision-making.968
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Instructions for Gemma2 27B as UCB agent

[Instructions]

Your task is to act according to the Upper-Confidence-Bound (UCB) algorithm. First, write down the
UCB algorithm. Then compute the relevant UCB values for every button (approximate if necessary).
Finally, select your action according to the computed quantities.

[More Instructions]

So far you have tried/seen:
Step=0 Action=blue Reward=1.06
Step=1 Action=blue Reward=1.82
Step=2 Action=green Reward=1.0
Step=3 Action=green Reward=-0.26
Step=4 Action=blue Reward=-0.58
Step=5 Action=blue Reward=-0.34
Step=6 Action=green Reward=1.19
Step=7 Action=green Reward=2.21
Step=8 Action=green Reward=0.07
Step=9 Action=green Reward=1.45
Step=10 Action=green Reward=-0.11
What do you predict next?

Generated response by Gemma2 27B

Here’s how I’d approach this as a UCB bandit algorithm:
UCB Algorithm (Short Version)

• Initialization: For each button, set a count (number of times pressed) to 0 and an estimated
reward average to 0.

• Iteration:

– For each button, calculate the UCB value: UCB = average_reward +
√

2·ln(total_steps)
button_count

– Choose the button with the highest UCB value.
– Update the button’s count and average reward based on the observed reward.

UCB Calculations (Approximate)
Let’s denote the buttons by their colors. Here’s a breakdown after 10 steps:

• blue:
– Count = 4
– Average Reward = (1.06 + 1.82 - 0.58 - 0.34) / 4 = 0.49

– UCB ≈ 0.49 +
√

2·ln(11)
4

≈ 1.17

• green:
– Count = 7
– Average Reward = (1.0 + -0.26 + 1.19 + 2.21 + 0.07 + 1.45 - 0.11) / 7 ≈ 0.92

– UCB ≈ 0.92 +
√

2·ln(11)
7

≈ 1.47

• Other buttons: Count = 0, Average Reward = 0, UCB =
√

2·ln(11)
0

= ∞ (We’ll explore
these later)

Action Selection: The button with the highest UCB value is green.
Therefore, ACTION=green
Explanation: The UCB algorithm balances exploration (trying buttons we haven’t seen much) and
exploitation (choosing buttons that seem to have high rewards).

• Green has a higher average reward than blue, but blue has been explored less.
• The UCB formula takes this into account, giving a higher value to green because its average

reward is more reliable due to more observations.
• The other buttons have infinite UCB values because we haven’t tried them yet, so they are

highly prioritized for exploration. However, green’s current UCB is high enough to warrant
another try.

Figure 21: Illustration of the knowing-doing gap. (a) Instructions for the agent, which is prompted
to act like a UCB algorithm. (b) The response generated by Gemma2 27B with greedy decoding
(temperature=0). The LLM “knows” the UCB algorithm and computes the relevant quantities
approximately correctly, but acts erroneously by selecting the next action greedily.29
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