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Abstract
Large language models (LLMs) have greatly improved the quality of synthetic text data. We aim to
extend these advances to tabular data with Tabby, a simple but powerful post-training modification to
the standard Transformer language model architecture, enabling its use for tabular dataset synthesis.
Tabby represents differences across columns using Gated Mixture-of-Experts, with column-specific sets
of parameters. Empirically, Tabby results in data quality near or equal to that of real data. Pairing
Tabby with Plain, our novel tabular training technique, we observe up to a 7% improvement in quality
(measured by MLE) over previous methods. Additionally, our approach is more flexible than prior
strategies and extends beyond tables, to more general structured data. In a structured JSON setting,
Tabby outperforms all other methods by 2-3 points and is the only approach with MLE equal to the upper
bound of non-synthetic data.

1 Introduction
Modern life is built on tabular data: airplane black boxes, website analytics and hospital patient records
are just a few examples of this versatile modality. Despite widespread use of tables and repeated calls for
improved table modeling approaches (Fang et al., 2024; Davila et al., 2024), the tabular modality has received
less attention in recent deep learning research than images or text (van Breugel & van der Schaar, 2024).

Progress towards realistic tabular data synthesis encounters several key challenges. First, table columns often
exhibit complex interdependencies. Second, many tabular datasets mix multiple datatypes. A single table
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Figure 1: Tabby Multi-Head modifications (right) com-
pared to an original, Non-Tabby LLM on left.

might contain free-text fields, numerical features,
and even nested JSON or dictionary columns. Third,
although the order of tokens within one column is
important, the order of columns with respect to each
other is usually not meaningful and is a potential
source of spurious correlations during training. How
best to design model architectures and training tech-
niques that address these issues is an open question.

There have been notable efforts to adapt several
model architectures to tabular data, recently focusing
on generative adversarial networks (GANs) (Xu et al.,
2019), LLMs (Borisov et al., 2022) and diffusion
models (Kotelnikov et al., 2022). However, because
these architectures were each designed with images
or text in mind, significant preprocessing must be
made to tabular datasets in order to allow their use.

For these reasons, works including van Breugel &
van der Schaar (2024) have called for the develop-
ment of pretrained Large Tabular Models (LTMs)
to fill a similar role to text and image foundation
models, such as GPT (Achiam et al., 2023) or Stable
Diffusion (Blattmann et al., 2023). Unfortunately,
the creation of an LTM requires (1) large, diverse
tabular pretraining sets which have not yet been cu-
rated, (2) a specialized tabular model architecture which has yet to be designed, and (3) substantial compute
resources for pretraining. These challenges are even more pronounced in the development of foundation
models for structured non-tabular modalities, such as JSON and geospatial data.

This work takes an initial step towards LTMs with Tabby, a post-training modification to the standard
transformer LLM architecture to enable tabular and other structured data synthesis. After
training on text data—but before finetuning on structured data—Tabby replaces select LLM blocks with
deterministic Mixture-of-Experts (MoE) layers (Shazeer et al., 2017), allowing each tabular column, JSON
attribute or other structured feature to be modeled by a dedicated set of parameters in the LLM. The greater
expressivity afforded by this change results in higher-fidelity synthetic data. Fine-tuning with our novel
Plain technique results in still higher performance. We show that even small Tabby models are capable of
outstripping large non-Tabby LMs with parameter counts orders of magnitude greater.

To our knowledge, Tabby is the first architecture modification to make LLMs better-suited to table generation.
Using a pretrained LLM as a starting point allows Tabby to take advantage of its text pretraining, avoiding
the logistical challenges of training a LTM fully from scratch. We find that, according to standard metrics,
Tabby produces synthetic data near- or at-parity with real data on 5 out of 8 table datasets.
Additionally, Tabby is not limited to tables and can be easily extended to other structured data. We validate
this by synthesizing nested JSON data at-parity with real data as well. Our contributions are:

• We introduce Tabby, 1 a simple architecture modification that allows transformer-based LLMs to synthesize
more realistic tabular and structured non-tabular data.

• We demonstrate that Tabby produces higher-quality synthetic data for 4 out of 6 popular tabular datasets,
is compatible with more tabular data than prior high-quality synthesis methods, and can be extended
beyond tables to a broader class of structured data modalities.

• We introduce our novel tabular LLM training method, Plain. Named after its surprising simplicity
compared to prior table training approaches for LLMs, Plain increases data quality in all 8 datasets when
used together with or independently of Tabby, compared to the prior SOTA LLM approach.
1Codebase: https://github.com/soCromp/tabby
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2 Tabby Architecture & Plain Train Method
We now formally introduce our two novel contributions for LLM table synthesis: Tabby is an architecture
modification that may be applied to any transformer-based language model (LM) (Vaswani, 2017), and Plain
is a training technique for training any (Tabby or non-Tabby) LM on tabular data. Tabby and Plain are
especially powerful together: Tabby increases model expressivity in a way that is specially-suited to tabular
data, while Plain allows the model to more effectively fit to the key features of a tabular dataset during
training, yielding more realistic data synthesis.

In Section 2.1, we describe Tabby for tabular or other structured data. In Section 2.2 , we outline the
process for training an LM on tabular data using our Plain training technique. Then, in Section 2.3, we
provide additional insight into how Tabby models are trained (using Plain, or pre-existing LLM table training
techniques such as GReaT (Borisov et al., 2022)) by comparing the training process’s forward pass and loss
calculation for a Tabby model with a non-Tabby model.

2.1 Architecture of Tabby Models
The intuition behind the Tabby modification is simple: we want to allow the model to learn individual
columns as distinct–but interdependent–tasks. The right side of Figure 1 depicts our best-performing Tabby
model for tabular data, where Tabby modifies only the language modeling head.

To provide a general definition of a Tabby model, consider a tabular dataset with V columns. Let the order
of blocks within an arbitrary transformer-based LM be represented as [L1, L2, . . . , LH ]. We apply the MoE
technique by replacing an LM block La with a vector Λa = [La,1, La,2, . . . , La,V ] of V blocks. Thus, a Tabby
model with one MoE block Λa is represented

[L1, L2, . . . , La−1, [La,1, La,2, . . . , La,V ], La+1, . . . , LH ].

The dataset’s i-th column is modeled by La,i within Λa. In this way, Tabby’s MOE layers use a deterministic,
schema-based routing function where the chosen expert is determined by the current column index. The
gating function can be expressed mathematically as yi =

∑V
j=1 1{i = j}fj(xi), where xi denotes a position

within the i-th column, and fj is the j-th expert.

This technique may be applied to any set of layers within the model. While we focus on the language modeling
(LM) head 2 in Figure 1 and Section 3 evaluations, we also conduct experiments applying Tabby to the
transformer multi-layer perceptrons and attention blocks in Appendix E. We refer to Tabby models with
MoE LM Heads as Tabby Multi-Head (MH) models.

2.2 The Plain Technique for Fine-Tuning LLMs on Tabular Data
Suppose our trainset contains N rows and column names denoted by v1, v2, . . . , vV , such that vj

i represents
the value of the j-th row in the i-th column. To provide the LM with its expected text modality input,
we convert the j-th row as follows, where <EOS> is the end-of-sequence token and <EOC> is a specialized
end-of-column token which we introduce to divide the text between columns:

“<BOS> v1 is vj
1 <EOC> v2 is vj

2 <EOC> · · · vV is vj
V <EOS>"

Converting the tabular dataset in this fashion allows an LM to fine-tune on the dataset in a normal sequence-
to-sequence style. Because Plain encodes data the same way as prior LLM table training techniques, GReaT
and Tabula (Borisov et al., 2022; Zhao et al., 2023), Plain does not require more FLOPs than prior methods.

During inference, the prompt for each row is the beginning-of-sequence token <BOS>. During generation, the
LM will output text in a similar format to the training data, which can then be parsed into tabular data
as desired. We note that the simplicity of Plain is particularly impressive given its favorable performance
compared to prior LLM table training methods, as we show in Section 3.

2.3 Tabby Training
Now that we have introduced Tabby and the Plain training method, we are able to provide further insight
into aspects of the training process unique to Tabby. Suppose that we construct a Tabby model from a base

2“LM head” refers here to the language model output layer, distinct from attention heads in the MLP blocks.
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LM by replacing one of its blocks La with an MoE set Λa. At the beginning of fine-tuning the Tabby model,
weights for each block in Λa are initialized to equal the weights of La. These column experts then diverge
from each other over the course of fine-tuning.

The Tabby training process requires only slight modifications compared to other LMs for tabular data.
Instead of representing each training row as one string, we convert each row into a list of V strings:

[“v1 is vj
1 <EOC>", “v2 is vj

2 <EOC>", · · · , “vV is vj
V <EOS>"]

Internally, the Tabby model begins by training on column 1 with prompt <BOS>, attending to tokens 0
through k − 1 when predicting the k-th token. After computing the loss on column 1, this column’s tokens
are appended to the prompt used to train column 2. Backpropagation is performed at the end of a batch of
rows. The prompt when training on column i is

“<BOS>v1 is vj
1 <EOC> v2 is vj

2 <EOC> · · · vi−1 is vj
i−1 <EOS>"

Because we calculate losses for each column separately, we are able to monitor the performance of each
column individually during training. This favorable side-effect is demonstrated in Section 3.4.

2.4 Extensions
We address two additional aspects of Tabby and Plain: (1) generalizations that go beyond tabular data and
(2) optimizations for datasets with large numbers of columns.

Synthesis for general structured modalities: The flexibility in Tabby MoE layer design enables
extensions to a variety of structured datatypes, such as hierarchical data. For example, we create a model for
nested JSON data by applying Tabby recursively in Figure 5. The JSON structure is preserved inherently in
the model, so that Plain’s method of representing data features does not need to be modified to indicate
nested features. As we show in Section 3.4, the combination of Plain and Tabby is the only synthesis approach
to reach equal performance to real, non-synthetic data.

High-dimensional data: Because Tabby MoEs contain one block per dataset column, model parameter
count is proportionate to the number of data features. In practice, however, techniques such as parameter
sharing (Ravanbakhsh et al., 2017) can drastically reduce the number of parameters to represent a Tabby
model. Additionally, Tabby may be implemented so that only one block in the MOE layer is in memory at a
time, a potential strategy to achieve memory requirements identical to a non-Tabby model.

3 Experimental Results
Our evaluations seek to assess the following claims:

Claim 1: Plain-trained Tabby models generate higher-quality tabular data than prior approaches.
Claim 2: The Tabby architecture modification allows smaller LLMs to achieve similar or better synthetic
data fidelity than LLMs with higher parameter counts.
Claim 3: Tabby architecture modifications may also be applied to other structured data beyond tabular
data, resulting in higher-quality synthetic data for these modalities as well.
Claim 4: Tabby’s loss formulation allows for convenient tracking of per-column performance at training
time, leading to better understanding of model behavior.
Claim 5: Tabby’s language modeling capabilities enable it to capture the underlying semantic structure
of column values unseen during pretraining, allowing it to generate novel yet realistic values beyond the
pretraining distribution.

After providing key evaluation setup details in Section 3.0, we compare Tabby to a broad array of prior
works on diverse tabular datasets in Section 3.1 to evaluate Claim 1. As Tabby may be applied to any
transformer-based LM, we explore Claim 2 for LMs of varying sizes in Section 3.2. To demonstrate Claim
3, we apply Tabby to a nested (JSON) dataset in Section 3.3. In Section 3.4, we investigate how Tabby
adapts to individual columns within a dataset during finetuning as a demonstration of Claim 4. Lastly, we
demonstrate Claim 5 in Appendix E.5
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Table 1: Summary statistics of datasets. The first three columns list the number of rows in each data split,
while the next two columns display the number of categorical versus numerical features, respectively. The
rightmost column details whether the dataset is considered a classification (C) or regression (R) task in
downstream evaluations.

N Train N Validation N Test # Cat. # Num. Task

Diabetes (Kahn, 1994) 576 57 135 0 8 C
Travel (Tejashvi, 2023) 715 71 168 4 2 C

Adult (Becker & Kohavi, 1996) 36631 3663 8548 8 6 C
Magic (Bock, 2004) 17117 1711 1902 0 10 C

Shoppers (Sakar & Kastro, 2018) 11097 1109 1233 7 10 C
Abalone (Nash et al., 1994) 3132 313 732 1 7 R

Rainfall (Zaman, 2018) 12566 1256 2933 2 1 R
House (Pace & Barry, 1997) 15480 1548 3612 0 8 R

3.0 Setup
We detail here our experiments’ essential information, including baselines, evaluation datasets and metrics.
Additional details are located in Appendix D.

Baselines and Comparisons: We evaluate a variety of recent tabular synthesis techniques.

LLM Approaches: Prior LLM table synthesis approaches are limited to the development of training techniques.
We compare Tabby and Non-Tabby LLMs trained under three different paradigms:

1. Our lightweight and simple Plain training paradigm, detailed in Section 2.2.

2. GReaT (Borisov et al., 2022), which encodes tabular data similarly to Plain, but permutes the
orders in which columns are presented in training and imposes some conditional restrictions at sample
time. For more details, see Section 4.

3. GReaT combined with TapTap (Zhang et al., 2023) and Tabula (Zhao et al., 2023). We abbreviate
this combination as GTT. TapTap pretrains the LLM on tabular data, while Tabula encodes each
categorical column into an ordinal format by replacing each unique column value with an integer.

To align with the prior works (Borisov et al., 2022; Zhang et al., 2023; Zhao et al., 2023), LLM methods use
Distilled-GPT2 (DGPT2) (Radford et al., 2019) as a base model unless otherwise stated.

Non-LLM Approaches: To represent non-LLM tabular synthesis techniques, we include CTGAN+ (Zhao
et al., 2022), CTGAN (Xu et al., 2019) and TVAE (Xu et al., 2019), the leading GAN and VAE approaches,
as well as diffusion models TabSyn (Zhang et al., 2024), TabDiff (Shi et al., 2025), Tab-DDPM (Kotelnikov
et al., 2022) and Forest Diffusion (Jolicoeur-Martineau et al., 2024). Although diffusion models are a SOTA
approach to achieving high MLE scores, they do so under strong assumptions and are incompatible with
many tabular datasets—see Figure 4 and Section 4.

Additional details on how models are trained and sampled are available in Appendix D.

Datasets: We evaluate Tabby on eight common tabular datasets, which are summarized in Table 1. The
majority of these datasets are standard for the evaluation of tabular synthesis techniques, allowing for easy
comparison with prior approaches. For more information on these datasets, see Appendix B.

Metrics: We focus on machine learning efficacy (MLE) (Dankar et al., 2022), the standard
metric for quantitative evaluation of synthetic tabular data. In brief, MLE compares the performance
of downstream classifiers that were trained using either real or synthetic data.

Our MLE results in the following sections are interpreted as follows: the downstream classifier that is trained
using non-synthetic, real data is considered the upper bound and any MLE score higher than this “Non-
Synthetic” classifier’s score is considered the best. If no score surpasses the “Non-Synthetic”
score, then any highest score is considered the best. Figure 2 summarizes the MLE calculation
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Figure 2: Process for calculating our primary metric, Machine Learning Efficacy (MLE). We train a generative
model, which produces a synthetic dataset. Two downstream classifiers are trained: one on the generative
model’s training data and the other on the synthetic data. Each downstream model is evaluated on real
test data. MLE is the difference in downstream models’ test-time performance. Higher scores indicate
better-quality synthetic data.

process. In Appendix E, we provide a formal definition of MLE, as well as several more metrics including
Shape, Trend (Shi et al., 2025), Distance to Closest Record (DCR) and Membership Inference Attack (Yao
et al., 2025) performance. These metrics additionally compare the synthetics’ abilities to preserve trainset
distributions without memorizing the trainset.

Aggregation of results: Our evaluation involves a comparison between 14 synthesis methods (including
Tabby) across 8 datasets. So, while we do report final scores on each task individually, we would also like to
understand which method performs the best across all of the tasks in our evaluation.

To do so, we aggregate MLE scores using performance profile curves (Dolan & Moré, 2002), a robust way to
visually compare scores across noisy evaluations in a large number of environments. Performance profiles
improve over simpler aggregation techniques, such as averaging scores or computing the average rank of
methods across tasks. Specifically, performance profiles are useful when scores for different tasks might be on
different scales (which can be an issue with averaging scores), and can take into account methods that are
extremely close to the best-performing method on a task without dropping them a full rank (which can be
problematic when averaging ranks).

To summarize these curves, we also calculate the area under the performance profile (AUP) scores (Roberts
et al., 2022), which serve as a final ranking of methods. In short, the performance of a synthesis method
across all eight datasets may be represented as just one performance profile curve. Methods with better
performance will have higher curves and, therefore, higher AUP scores. As such, the method with highest
AUP score is considered the best overall method. Details on performance profiles are in Appendix D.

3.1 Tabby versus Baseline Synthesis Methods
We begin by validating our first claim.
Claim 1: Plain-trained Tabby models generate higher-quality tabular data than prior approaches.

Setup: Table 2 lists MLE for each dataset. For classification datasets (Diabetes, Travel, Adult), the reported
metric is the accuracy of the downstream random forest classifier, while for regression datasets (Abalone,
Rainfall, House), we report the coefficient of determination R2 of the downstream random forest regressor.

The “Non-Synthetic” row corresponds to the performance achieved by training the downstream classifier or
regressor on real instead of synthetic data. We consider this row to be a performance ceiling for synthetic
approaches. Any model and training technique that achieves MLE equal to or better than “Non-Synthetic” is
considered to be a top-performing approach and is presented in bold.

Results: We find that Plain-trained Tabby models achieve the highest MLE in 5/8 datasets.
Further, Tabby reaches upper-bound performance on Diabetes, Travel, Adult, Magic and Shoppers, indicating
that Tabby synthetic data is a capable stand-in for real data in similar scenarios for these datasets.

We also find that Plain is the best-performing technique for training tabular LLMs in almost all
cases: for all eight datasets, the highest-scoring LLM is trained using Plain. Plain-trained Tabby MH models
demonstrate the highest MLE among all LLM architectures and training styles.
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Table 2: Machine Learning Efficacy (MLE, ↑). The “Non-Synthetic” row is upper-bound
performance given by real, non-synthetic data . Top results (or any higher than upper-bound) are bolded.

The number of datasets that a model achieves top performance on are counted in the “# Best” column. An
asterisk indicates that at least one of three runs did not produce valid samples. Tabby models are presented
in italic. The best-performing Tabby model, Plain Tabby MH DGPT2 is presented in purple and achieves
best performance on 5/8 datasets. Terminology glossary in Appendix A.

Diabetes Travel Adult Magic Shoppers Abalone Rainfall House Best

Non-Synthetic 0.73 0.87 0.85 0.82 0.88 0.45 0.54 0.61
CTGAN 0.39 ± 0.00 0.43 ± 0.33 0.76 ± 0.00 0.58 ± 0.07 0.85 ± 0.00 0.01 ± 0.01 0.00 ± 0.00 0.00 ± 0.00 0

CTGAN+ 0.62 ± 0.00 0.81 ± 0.00 0.76 ± 0.00 0.64 ± 0.00 0.85 ± 0.00 0.24 ± 0.03 0.22 ± 0.15 0.55 ± 0.00 0
TVAE 0.62 ± 0.00 0.81 ± 0.00 0.81 ± 0.01 0.71 ± 0.04 0.85 ± 0.00 0.07 ± 0.03 0.00 ± 0.00 0.05 ± 0.09 0
CLLM 0.74 ± 0.02 0.83 ± 0.03 0.80 ± 0.02 0.17 ± 0.00 0.89 ± 0.01 0.00 ± 0.00 0.00 ± 0.00 N/A* 2

TabSyn 0.65 ± 0.01 0.74 ± 0.13 0.80 ± 0.04 0.81 ± 0.03 0.88 ± 0.01 0.13 ± 0.23 0.45 ± 0.00 0.60 ± 0.01 1
TabDiff 0.75 ± 0.02 0.86 ± 0.02 0.83 ± 0.01 0.82 ± 0.03 0.89 ± 0.01 0.41 ± 0.01 0.43 ± 0.02 0.61 ± 0.00 4

Forest Diffusion 0.76 ± 0.00 0.86 ± 0.01 0.81 ± 0.00 0.64 ± 0.00 0.85 ± 0.00 0.35 ± 0.00 0.45 ± 0.02 0.56 ± 0.01 1
Tab-DDPM 0.75 ± 0.02 0.87 ± 0.01 0.84 ± 0.00 0.81 ± 0.00 0.86 ± 0.00 0.41 ± 0.01 0.54 ± 0.01 0.43 ± 0.01 3

Plain Base 0.75 ± 0.02 0.86 ± 0.01 0.85 ± 0.00 0.80 ± 0.03 0.89 ± 0.01 0.44 ± 0.01 0.52 ± 0.03 0.55 ± 0.08 4
Plain Tabby MH 0.74 ± 0.00 0.88 ± 0.01 0.85 ± 0.00 0.82 ± 0.02 0.89 ± 0.01 0.43 ± 0.01 0.49 ± 0.00 0.60 ± 0.00 5

GReaT Base 0.62 ± 0.01 0.85 ± 0.02 0.83 ± 0.01 0.80 ± 0.01 0.87 ± 0.00 0.41 ± 0.01 N/A* 0.56 ± 0.01 0
GReaT Tabby MH 0.64 ± 0.01 0.86 ± 0.01 0.83 ± 0.00 0.81 ± 0.01 0.89 ± 0.01 0.40 ± 0.01 0.00 ± 0.00* 0.56 ± 0.01 1

GTT Base DGPT2 0.72 ± 0.06 0.87 ± 0.02 0.83 ± 0.01 0.79 ± 0.01 0.87 ± 0.00 0.40 ± 0.01 0.05 ± 0.01 0.55 ± 0.02 1
GTT Tabby MH 0.62 ± 0.00 0.85 ± 0.01 0.76 ± 0.07 0.81 ± 0.02 0.88 ± 0.00 0.37 ± 0.02 0.26 ± 0.37 0.55 ± 0.00 1

For the Rainfall dataset, pre-existing LLM tabular training techinques introduce undesirable effects. Entries
marked by an asterisk (*) for this dataset indicate that at least one of three runs were unsuccessful in
synthesizing any valid samples. Particularly, the Non-Tabby GReaT model is unable to produce valid samples
in any of the runs. Meanwhile, each Plain-trained model is successfully sampled and outperforms all GReaT
or GTT-trained models in all three runs, indicating that Plain-trained Tabby models are capable
of modeling complexities within the Rainfall dataset that pre-existing LLM-based tabular
synthesis works are unable to capture.

Performance Profile Analysis: The performance profile curves in Figure 3 support our findings. In
particular, Plain-trained Tabby MH achieves the highest AUP score. This indicates that Plain-trained
Tabby MH performs the best among all methods when comparing across all datasets.

Further, we see that the top two synthesis approaches are the two Plain-trained models, which surpass the
prior SOTA method of TabDiff. Given that these models rely on fewer assumptions than diffusion
approaches, and are simpler to train than the GTT or GReaT LLMs, we find that both Tabby
MH and Plain training are powerful advancements for the task of tabular data synthesis.

Comparing Multivariate Modeling Capabilities: We further compare the multivariate modeling
capabilities of Tab-DDPM, Plain-trained Tabby MH and the prior top-performing LLM-based approach of
GReaT-trained Non-Tabby with TapTap and Tabula in Figure 4. We plot the House dataset’s target column
(Median House Value) as a function of its most predictive feature in the dataset (Median Income), for (left to
right) real data, Plain Tabby MH, non-Tabby GTT and Tab-DDPM.

Tab-DDPM’s plot (left) differs the most from the real data (right) because the Tab-DDPM model only
supports integer-valued regression targets. Accordingly, both LLM-based approaches more accurately capture
the target column’s distribution than Tab-DDPM.

Meanwhile, GReaT sampling (center left) constrains that the target column distribution in the training
dataset is replicated in synthetic data, by prompting the model with target values selected randomly based
on their frequency in the training data. Accordingly, GReaT models will not generate target values outside
those in the training data, which can be undesirable for datasets with few rows or limited target column
coverage. In contrast, Plain training (center right) allows the model to generate previously unseen target
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Figure 3: Performance profile curves and AUP scores across computed using the MLE scores on our evaluation
tasks. The top performing method is Tabby MH DGPT2 with Plain training.
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Figure 4: The House dataset’s target Median House Value column as a function of its most-predictive feature,
Median Income. Left to right: synthetic data from Tab-DDPM, the prior best LLM-based method and Plain
Tabby MH, followed by the original data distribution. Tabby demonstrates a similar distribution to the real
data and to GTT, but without GTT’s assumptions (listed in Section 3.1).

values. The improved modeling capacity of Tabby over the Non-Tabby model allows Plain’s sampling approach
to effectively capture the overall target column distribution.

3.2 Investigating the Choice of Base Model
We now turn to our second claim.
Claim 2: The Tabby architecture modification allows smaller LLMs to achieve similar or better synthetic
data fidelity than LLMs with higher parameter counts.

Comparisons: We compare synthesis quality across LLMs of varying sizes. We consider 7 LLMs, listed
in Table 3, evaluating Non-Tabby and MH versions of each. Each model is Plain-trained under conditions
provided in Section 3.0, then sampled 500 times. Results are averaged across two runs. Llama models use
LoRA (Hu et al., 2021) on all linear transformer layers, with the LM head fully fine-tuned.

Results: Table 3 and Figure 7 display results for the Travel dataset, with results for Diabetes and House
(plus additional metrics and results for GReaT training) in Appendix E.3.

We find that Tabby improves MLE or maintains upper-bound MLE for 6/7 models, without
necessarily increasing the cost of inference (Section 2.4). Although higher-parameter models are generally
correlated with greater generative abilities, Figure 7 demonstrates that this is not always the case: Interestingly,
we find that the Llama models (1.2B and 8B parameters each), have lower average MLE than smaller models.
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Table 3: MLE for Base and MH versions of 7 LLMs with varying parameter counts, for the Travel dataset.
Results higher than Non-Synthetic are presented in bold. Tabby improves or maintains upper-bound MLE for
6/7 models. The parameter count of a Tabby MH model for a V -column dataset equals the parameter count
of the base model without its head, plus V times the parameter count of the base model’s head. Results for
Diabetes and House (and additional metrics) in Appendix E.3.

MLE (↑) Params

Non-Synthetic (Upper Bound) 0.87

Base Pythia 14M 0.86 ± 0.01 14M
Tabby MH Pythia 14M 0.82 ± 0.02 53M

Base Distilled-GPT2 0.88 ± 0.00 82M
Tabby MH Distilled-GPT2 0.89 ± 0.02 310M

Base GPT2 0.89 ± 0.01 120M
Tabby MH GPT2 0.87 ± 0.01 360M

Base Pythia 160M 0.87 ± 0.01 160M
Tabby MH Pythia 160M 0.86 ± 0.00 390M

Base Pythia 410M 0.86 ± 0.02 410M
Tabby MH Pythia 410M 0.88 ± 0.03 710M

Base Llama 3.2 1B 0.82 ± 0.01 1.2B
Tabby MH Llama 3.2 1B 0.84 ± 0.02 2.8B

Base Llama 3.1 8B 0.84 ± 0.01 8.0B
Tabby MH Llama 3.1 8B 0.86 ± 0.03 11B

Tabby offers favorable performance improvements relative to the scaling curve and allows even small
models to better outperform large, resource-intensive models.

3.3 Extending Tabby Beyond Tabular Data to General Structured Modalities

While tabular data is frequently overlooked in contemporary machine learning research, related structured
modalities such as nested data receive even less attention. While GReaT, TapTap, Tabula, CTGAN and
TVAE are focused solely on tabular data and do not clearly extend beyond tables, we demonstrate that
Tabby can be generalized to address our third claim.
Claim 3: Tabby architecture modifications may also be applied to other structured data beyond tabular
data, resulting in higher-quality synthetic data for these modalities as well.

Comparisons: We plain-train non-Tabby and Tabby MH models on a JSON dataset of patients being
evaluated for Glaucoma (Manoj, 2024). Each datapoint has 10 features, organized in 3 groups: a group
of 7 columns representing qualitative aspects of the optic nerve, a group of 2 columns corresponding to
measurements between the optic nerve and eye, and a standalone feature for the diagnosis (examples in
Box D). The binary classification target is inside the first group and assesses whether the optic nerve is
thinning. As with tabular datasets in Section 3.1 and 3.2, we train downstream classifiers to predict the
target variable and then present the resulting MLE.

We also consider the discrimination metric: Given equal numbers of real and synthetic samples, we measure
the accuracy of a discrimination classifier that is trained to distinguish real versus synthetic datapoints.
Because 50% accuracy would indicate that the classifier is fully unable to distinguish real from synthetic, we
report the accuracy’s distance from 50% in Table 4 so that lower scores indicate higher-quality synthesis.

Results: Table 4 demonstrates that Tabby MH improves MLE to parity with real data. Tabby MH’s lower
discrimination score signifies this model’s samples are more realistic than non-Tabby samples.
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Table 4: MLE and Discrimination scores for Plain-trained Base and MH models on a dataset of JSON records.
Each record contains diagnostic information of a glaucoma sufferer or a healthy patient.

MLE (↑) Discrim. (↓)

Non-Synthetic (Upper Bound) 0.97
CTGAN 0.52 0.46

Forest Diffusion 0.95 0.31
Tab-DDPM 0.94 0.45

Base DGPT2 0.93 0.06
Tabby MH DGPT2 0.97 0.01

3.4 Tracking the Adaptation to Individual Columns

We address our fourth claim by examining Tabby’s progress while fine-tuning on tabular data.
Claim 4: Tabby’s loss formulation allows for convenient tracking of per-column performance at training
time, leading to better understanding of model behavior.

Setup: For three runs, we train a Tabby MH model on a subset of the House dataset containing 5160 rows
and six columns. We log the individual columns’ losses on the evaluation dataset every 2500 steps while
training for 10 epochs, then average across the runs.

Results: Individual column losses are shown in Figure 8. This information can be vital to understanding
model behavior and training progress, as elaborated in Section E.4.

3.5 Discussion

We find that Tabby models synthesize high-quality data in a variety of settings. In particular, Plain-trained
Tabby MH consistently outperforms all prior LLM-based approaches and is comparable to or
better than diffusion-based approaches in most settings, despite Tabby enjoying greater flexibility under fewer
assumptions than those made for diffusion models. The Tabby architecture modification allows LLMs to
better model both univariate column distributions and multivariate relationships across columns.

Unusually, we find that the baseline Plain training technique with Distilled-GPT2 performs quite well on
several standard evaluation datasets. The high performance of the Plain training technique compared
to prior LLM works on tabular synthesis, which are more complex, is surprising. Notably, GPT-2
and related models can even outperform much larger models such as Llama on these benchmarks. A plausible
explanation is that tabular generative ability may depend on the proportion of parameters allocated to the
LM head relative to the rest of the model—about 33% in GPT-2 versus roughly 7% in Llama-8B—suggesting
that heavier output heads may better capture the structured dependencies characteristic of tabular data.

As of this writing, the Adult, House and Diabetes datasets have become quite prevalent for tabular synthesis
evaluation. We hope that future research will build off of our evaluation setup by continuing to include more
diverse and challenging tabular datasets, along with extensions to other structured modalities.

Limitations: We highlight two additional priorities for future work:

• Privacy preservation is important for trainsets that contain sensitive data, such as patient medical
information. While Tabby’s privacy preservation is similar to prior works (Appendix E), a method with
strong formal privacy guarantees is an important next step for privacy-critical applications.

• Computationally-constrained environments or tasks with particularly large datasets may require deep
learning approaches that are specifically designed with efficiency in mind. The Plain training method and
insights from Section 3.2 may be useful towards this priority, but we leave further experimentation and
the efficient implementations detailed in Section 2.4 to future work.
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4 Related Work
Tabular data has played a central role in machine learning since the field’s early days. In particular, decision
trees and relatives (Song & Lu, 2015) are well-adapted to table classification or regression. Table synthesis is
a growing area, though frequently overlooked in favor of image and text synthesis.

Classical synthesis: Classic machine learning models, such as random forest models or Bayesian networks,
may be used to synthesize tables (Reiter, 2005; Zhang et al., 2017), but are limited in the data types and
distributions that may be represented.

Generative Adversarial Networks (GANs): Many tabular synthesis methods rely on GANs (Goodfellow
et al., 2014; Xu et al., 2019), but have encountered several limitations. In particular, distributions of
ordinal columns are frequently imbalanced, leading GANs to undesirable phenomena such as mode collapse.
Continuous columns may possess multiple modes and complex distributions, which GANs also struggle to
capture (Xu et al., 2019).

Diffusion Models: Forest Diffusion (Jolicoeur-Martineau et al., 2024) and Tab-DDPM (Kotelnikov et al.,
2022) are state-of-the-art table synthesis approaches based on the diffusion model. Both show top performance
on many standard tabular metrics and are reliable for certain applications. Unfortunately, this performance
is achieved by strong assumptions on the nature of the data space–for instance, numeric target variables
may only assume integer values (see Figure 4) and diffusion models are unable to model non-categorical
string columns such as addresses or telephone numbers. The ability to reach table synthesis performance
comparable to that of diffusion models, but with fewer assumptions, is as an area of active research.

LLMs: A small, but growing, body of work has applied LLMs’ flexible modeling abilities to tables. GReaT
(Borisov et al., 2022) is a method to convert tabular data into a sentence format compatible with LLMs,
then “shuffling” the order in which columns occur for each row to improve the modeling of inter-column
dependencies. TapTap (Zhang et al., 2023) pretrains LMs on a variety of tabular data before fine-tuning on a
downstream table synthesis task, while Tabula (Zhao et al., 2023) explores methods of preprocessing the
training data to decrease sequence length. Other LLM-based works have adapted these advances to relational
tables (Solatorio & Dupriez, 2023), or used the emergent abilities of very large models such as GPT-4 to
generate synthetic data using In-Context Learning in place of fine-tuning (Seedat et al., 2024). Many of
these works can be used in concert with Tabby, as demonstrated in Section 3, and they offer the additional
advantage over other architectures of enabling pretrained tabular models to adapt effectively to new datasets.

MoE Architectures: The key innovation of Tabby is the application of Gated Mixture of Expert (MoE)
layers (Shazeer et al., 2017; Masoudnia & Ebrahimpour, 2014) for LLM table synthesis. MoE layers have
enjoyed utility in multitask (Ma et al., 2018; Gupta et al., 2022) and multimodal learning (Zhao et al., 2024;
Park et al., 2018), by creating sets of model parameters dedicated to a specific task.

5 Conclusion
Tabby is an MOE-based architecture modification that allows LLMs to generate realistic tabular data. Tabby
reaches MLE parity with real data in 5/8 datasets. We hope this promising performance spurs future work
on architecture modifications that allow LLMs to represent structured data.

Broader Impact Statement
Tabby is an improvement in the realism of synthetic tabular data, with extensions to non-tabular structured
data. As such, Tabby (and its downstream applications) will have positive impacts on tasks that require
synthetic structured data, such as low-data downstream tasks or privacy-critical tasks. However, Tabby may
also be useful for negative downstream applications, such as the falsification of data—a drawback common to
many advancements in the realism of generative modeling.
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A Terminology Glossary
For convenience, in addition to definitions within the main text, we list and define the most frequently-used
terms and abbreviations in our paper here:

• DGPT2: Distilled-GPT2 (Radford et al., 2019).
• Distance to Closest Record (DCR): Metric for synthetic data quality and privacy, defined in

Appendix D.
• Discrimination: Metric for synthetic data quality, defined in Appendix D.
• GReaT (Borisov et al., 2022): The landmark work on fine-tuning pre-existing LLMs to synthesize tabular

data by encoding datapoints as text. Similar to Plain training, but includes train-time complications such
as shuffling the order in which columns are encoded and sample-time complications such as the inability
to generate label values that do not occur in the training dataset. Discussed in-detail in Section 4.

• GReaT+Tabula (GT): The combination of GReaT training plus Tabula (Zhao et al., 2023) data
encoding; see Section 4.

• GReaT+TapTap+Tabula (GTT): The combination of GReaT training plus Tabula encoding and
TapTap (Zhang et al., 2023) pre-training on tabular data (which is performed after the LLM is pre-trained
on text data).

• Low Rank Adapters (LoRA): Parameter-efficient training method from (Hu et al., 2021).
• Mixture-of-Experts (MoE): Architecture technique which replaces one block with a set of specialized

blocks; see Section 4.
• Multi-Head (MH): The best-performing variant of Tabby, which replaces the LLM’s language model

output layer with an MoE layer.
• Machine Learning Efficacy (MLE): Our primary evaluation metric, introduced in Section 3.0 and

discussed in-detail in Appendix D.
• Multi-MMLP (MMLP): Tabby modification that applies MoE to the transformer blocks’ MLPs.
• Multi-MLP and LM Head (MMLP+MH): Tabby modification that applies MoEs to both the

transformer blocks’ MLPs and to the language model output layers.
• Non-Synthetic (Upper Bound): Used for the MLE metric, this score represents the performance of a

downstream classifier trained on real, instead of synthetic, data. See Appendix D for details.
• Non-Tabby (NT): An LLM without the Tabby modification, also referred to as a Base LLM.
• Plain: Our simple but high-performing technique for training LLMs on tabular data; introduced in

Section 2.
• Tab-DDPM (TDDPM): A state-of-the-art tabular synthesis technique based on the diffusion model

architecture, which relies on several important assumptions; see Section 4.

B Additional dataset information
We select a variety of tabular datasets for our evaluations, with two goals in mind. First, the inclusion of the
most standard tabular datasets—Diabetes, Adult and House—allows for easy comparison with prior works.
Second, we include classification and regression datasets from a variety of domains, such as Earth science
(Rainfall), business (Travel) and medicine (Diabetes). This diversity allows us to demonstrate that Tabby
models achieve high performance across a variety of real-world data types and distributions. Refer to Table 5
for download links to each dataset.

Diabetes (Kahn, 1994) contains medical information on female hospital patients, including age, number of
pregnancies and skin thickness. Downstream models learn to predict whether a given patient suffers from
diabetes. Apart from the label, all dataset columns are numerical, with some columns taking only integer
values, while others are floats.
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Table 5: Download links for each dataset.

Dataset Link

Diabetes https://www.openml.org/search?type=data&sort=runs&id=37&status=active
Travel https://www.kaggle.com/datasets/tejashvi14/tour-travels-customer-churn-prediction/data
Adult https://archive.ics.uci.edu/dataset/2/adult
Magic https://archive.ics.uci.edu/dataset/159/magic+gamma+telescope

Shoppers https://archive.ics.uci.edu/dataset/468/online+shoppers+purchasing+intention+dataset
Rainfall https://www.openml.org/search?type=data&status=active&id=41539&sort=runs
Abalone https://www.openml.org/search?type=data&sort=runs&id=183&status=active

House https://scikit-learn.org/stable/modules/generated/sklearn.datasets.fetch_california_housing.html
Glaucoma https://huggingface.co/datasets/AswanthCManoj/glaucoma_diagnosis_json_analysis

Travel (Tejashvi, 2023) was collected by a travel agency wishing to predict customer churn. With the binary
variable churn as the target, features include whether the traveler booked a hotel, frequent flyer status and
traveler age. While most features are categorical, there are two numerical columns: traveler age and the
number of times that the customer has used the travel agency in the past.

Adult (Becker & Kohavi, 1996) is a dataset commonly used to benchmark tabular classification algorithms.
Each row contains basic information on one American adult, such as their age, years of education and marital
status. For each adult, the downstream task is to predict whether their annual income is above or below
$50, 000. The features are a mix of categorical and numerical columns, with each numerical column taking
only integer values.

The Magic (Bock, 2004) dataset consists of Monte Carlo–simulated observations from the Cherenkov gamma
telescope, designed to differentiate high-energy gamma-ray events from background hadronic showers. Each
row represents a single event characterized by 10 continuous features derived from Cherenkov image parameters,
such as length, width, and asymmetry. The target variable is binary, indicating whether the event originated
from a gamma signal or a hadronic background, making the dataset suitable for evaluating classification
performance on physics-based data.

The Shoppers (Sakar & Kastro, 2018) dataset contains session-level data from an e-commerce website over a
one-year period. Each record describes a single visit using 18 behavioral and contextual features, including
page visit counts and durations, bounce and exit rates, visitor type, month, and weekend indicator. The
target variable is binary, indicating whether the session resulted in a purchase, making the dataset suitable
for evaluating classification methods on imbalanced user-behavior data.

Our first regression dataset is Abalone (Nash et al., 1994), which records the basic measurements of abalones,
such weight and height. The target variable is the abalone’s age.

The Rainfall (Zaman, 2018) dataset, while challenging to many LLM-based synthesis methods, contains only
four columns which record historical weather data in Bangladesh. Its target variable is the amount of rainfall
recorded, and the features are the year, month and weather station location.

House (Pace & Barry, 1997) is a standard regression dataset. Each row represents a block of houses in
California during the 1990 census. The dataset records the number of households residing in the block, the
block’s median building age, average number of bedrooms, and other basic information. The dataset’s target
column is the block’s median house value, which is numerical and allows us to assess Tabby’s synthetic data
in a regression task.

Glaucoma (Manoj, 2024) dataset consists of JSON records describing ophthalmic patients under consideration
for a glaucoma diagnosis. Each record contains various qualitative and quantitative information about the
eye, as demonstrated by the examples in Box D.

C Tabby for Nested Data
Figure 5 provides a visualization of the Tabby architecture used in Section E.4 to generate nested JSON data.
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Figure 5: An overview of the Tabby MH modifications for the nested Glaucoma dataset.

D Details on Experimental Setup
Calculation of results: The reported result for each model and training setup is the average across three
training runs, where not otherwise stated. For each of the three trained models, we sample 10, 000 datapoints,
compute evaluation metrics separately for the three resulting synthetic datasets, then calculate the average
metric value across all runs. For LLM approaches, each model is trained for up to 50 epochs, using early
stopping when the validation loss (assessed every 5000 steps) fails to improve twice in a row. We perform
grid search to select the learning rate with lowest validation loss for each model and training setup, with
selected learning rates reported in Appendix E.6. For non-LLM works, we follow the procedures detailed in
each of these works.

More detailed definition of Machine Learning Efficacy (MLE): Given a synthetic dataset produced
by a generative model, we begin to calculate MLE by training one downstream classifier using the synthetic
dataset. Then, we evaluate the performance of this downstream classifier on a real test set, drawn from the
same distribution as the generative model’s train set. We compare this classifier’s performance to a second
classifier, which is trained on the same training data as the generative model. If the synthetically-trained
classifier performs worse than the classifier trained on real data, then (intuitively) the synthetic data is of lower
quality than the real data: for instance, the distributions of features in the real data are not well-reflected in
the synthetic data.

Put another way: given a real dataset, we form disjoint training and test sets, denoted R and D respectively.
A generative model is trained on R, then generates synthetic dataset S.

To calculate MLE, a downstream classifier or regressor KR is trained using R to predict a predetermined label
column, using all other columns as features. An additional classifier or regressor KS is similarly trained on S.
Then, the performance of KS and KR on the real test dataset D is evaluated: a high-fidelity synthetic dataset
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S will allow KS to exhibit similar performance to KR despite never encountering real datapoints before
test-time. We report both KR and KS in our results, considering MLE to be the difference in performance
between KR and KS .

We use a random forest classifier or regressor as our downstream model K. For classification datasets, we
compare the accuracy of KR and KS , while for regression datasets, we compare the coefficient of determination
R2. We define the coefficient of determination R2 as max(1 − r

t , 0), where r and u are the residual sum of
squares and total sum of squares, respectively. This formulation means that if a model performs worse than
random guessing, its R2 value will be represented as 0. For both the accuracy and R2 coefficient metrics, a
higher score indicates higher-quality data.

Information on Performance Profiles: For a given method m ∈ M , its performance profile curve is
defined as

ρm(τ) := 1
|T |

∣∣∣∣{t ∈ T : st,m

minm′∈M {st,m′}
≤ τ

}∣∣∣∣
for a set of tasks T and scores st,m : t ∈ T , where lower values indicate better performance on each task. In
order to satisfy the requirement that lower scores are better for the MLE metric, we set st,m = 1 − MLEt,m.
Then for each method, we obtain a final score by taking the area under the curve ρm(τ) to obtain the AUP
score as

AUPm =
∫ τ∗

0
ρm(τ)d log(τ).

with τ∗ being the smallest τ such that ρm(τ) = 1 for all methods m ∈ M , and where a higher AUP score
indicates better performance.

Discrimination: Discrimination (Qian et al., 2023) quantifies the degree to which the generative model
introduces spurious correlations or other patterns that differentiate synthetic from real data. Given the real
training dataset R and a synthetic dataset S, we sample the same number of rows from each. Next, we train
a random forest classifier C to discriminate between real and synthetic examples. Highest-quality synthetic
data will result in 50% discrimination accuracy, indicating that C is unable to distinguish between R and S.
For this reason, our reported discrimination scores are calculated as the absolute difference between 50% and
the accuracy of discriminator C. Accordingly, lower discrimination scores represent better performance.

Distance to Closest Record: (DCR) Distance to Closest Record (DCR) (Lautrup et al., 2024) quantifies
the distance between each synthetic datapoint and its most-similar example in the training set R. In addition
to synthesis quality, this metric is an indication of the degree to which the model memorizes samples during
training. Specifically, for each synthetic example s ∈ S, we compute its distance to every training point r ∈ R
(using L0 distance for categorical columns and L1 distance for numerical columns) and take the smallest
of these distances. The overall DCR is then reported as the average of these minimum distances across all
synthetic examples in SS. Lower DCR is associated with high-quality synthesis, but a DCR score of 0 implies
that most synthetic examples are merely copies of training dataset points memorized during training. As
such, we consider the best DCR to be the lowest nonzero score.
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Box D: Representative examples from Glaucoma (Manoj, 2024)

[
{

" d i a g n o s i s " : " glaucoma " ,
" d i s c_ in fo " : {

" d i s c _ s i z e " : " l a r g e " ,
" cup_disc_rat io " : 0 . 8

} ,
" r im_info " : {

" r im_pal lor " : true ,
" r im_color " : " pa l e " ,
" bayonet ing " : true ,
" sharp_edge " : true ,
" laminar_dot_sign " : true ,
" notching " : true ,
" rim_thinning " : t rue

}
} ,
{

" d i a g n o s i s " : " normal " ,
" d i s c_ in fo " : {

" d i s c _ s i z e " : " normal " ,
" cup_disc_rat io " : 0 . 4

} ,
" r im_info " : {

" r im_pal lor " : f a l s e ,
" r im_color " : " pink " ,
" bayonet ing " : f a l s e ,
" sharp_edge " : f a l s e ,
" laminar_dot_sign " : f a l s e ,
" notching " : f a l s e ,
" r im_thinning " : f a l s e

}
} ,
{

" d i a g n o s i s " : " normal " ,
" d i s c_ in fo " : {

" d i s c _ s i z e " : " normal " ,
" cup_disc_rat io " : 0 . 4

} ,
" r im_info " : {

" r im_pal lor " : f a l s e ,
" r im_color " : " pink " ,
" bayonet ing " : f a l s e ,
" sharp_edge " : f a l s e ,
" laminar_dot_sign " : f a l s e ,
" notching " : f a l s e ,
" r im_thinning " : f a l s e

}
}

]
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E Further Experimental Results
E.1 Additional Metrics for Main Results Tables
For the experiment presented in Section 3.1, we include five additional metrics:

1. Discrimination (Table 6) works similarly to a GAN’s discriminator (Goodfellow et al., 2014): the
downstream discriminator model receives equal numbers of real and of synthetic datapoints, then
learns to distinguish between them. The more difficulty that the discriminator model encounters in
distinguishing between real and synthetic, the more we can say that the real dataset’s patterns are
preserved within the synthetic examples.

2. Distance to Closest Record (DCR, Table 7) measures how far the average synthetic datapoint
lies from its nearest non-synthetic datapoint. If DCR equals zero, it indicates that the model has
memorized its trainset, while a very large DCR indicates that the model is not preserving the
trainset’s patterns very well: small, non-zero, DCR scores are ideal.

3. Shape (Shi et al., 2025) (Table 8) measures, for each individual column, how well the synthetic
column matches the real column’s distribution. We follow the SDMetrics library’s implementation,
which uses the Kolmogorov-Smirnov statistic for categorical and the complement of Total Variation
Distance for numerical columns, then averages the distances across all columns to report a final
summary number.

4. Trend (Shi et al., 2025) (Table 9)—which is often used in conjunction with Shape—measures
relationships between columns, by quantifying the degree to which these relationships in the real
data are preserved by the synthetic data. We again use the SDMetrics library’s implementation,
which measures Pearson correlation for relationships between numerical columns and complement of
Total Variation Distance for relationships between categorical columns or one categorical and one
numerical column (which is first binned to discretize the values).

5. Wasserstein Distance (Table 10) computes the distance between the real and synthetic datasets’
numeric columns. This metric allows us to capture the similarity of relationships among all numeric
columns, as opposed to the pairwise interactions measured by the Trend metric.

6. Membership Inference Attacks (Yao et al., 2025) (MIA, Table 11) assess the likelihood of a
synthesis method to leak the contents of its training data. We use the implementation from German
(2025), which evaluates the performance of 50 different attack strategies on each synthesis method.
We focus on the Abalone dataset and aggregate results by providing the maximum AUROC, mean
AUROC and maximum accuracy across the 50 attacks for Tabby and other SOTA methods. For
each metric, a lower number indicates a lower rate of trainset leakage and a better degree of privacy.

7. Runtime (Table 12) is provided for Tabby and other SOTA methods. We report the time in minutes
to train for one epoch and to produce 100 samples with one NVIDIA RTX A6000. Each method is
run using the out-of-the-box implementation available online.

These metrics largely corroborate our findings in Section 3.1. In particular, Plain Tabby MH’s low DCR and
discrimination scores indicate that this model’s synthetic data closely resembles that of real data. Additionally,
the DCR scores are small but nonzero, which indicates that the model is generating novel datapoints rather
than simply repeating datapoints memorized during training.

Additionally, we provide results for the HARMONIC method (Wang et al., 2024) in Table 13.
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Table 6: Discrimination metric (↓), defined in Appendix D, for approaches compared in Section 3.1. Tabby
produces data with better MLE without worsening the synthetic data’s discrimination score, performing
competitively with Tab-DDPM.

Diabetes Travel Adult Magic Shoppers Abalone Rainfall House
CTGAN 0.42 ± 0.00 0.27 ± 0.01 0.48 ± 0.00 0.34 ± 0.03 0.50 ± 0.00 0.46 ± 0.00 0.18 ± 0.05 0.32 ± 0.06

CTGAN+ 0.34 ± 0.01 0.01 ± 0.52 0.52 ± 0.02 0.22 ± 0.07 0.50 ± 0.00 0.02 ± 0.47 0.47 ± 0.02 0.02 ± 0.00
TVAE 0.45 ± 0.02 0.50 ± 0.00 0.46 ± 0.01 0.33 ± 0.03 0.50 ± 0.00 0.45 ± 0.02 0.41 ± 0.01 0.39 ± 0.03
CLLM 0.28 ± 0.03 0.03 ± 0.39 0.39 ± 0.02 0.30 ± 0.00 0.03 ± 0.00 0.02 ± 0.37 0.37 ± 0.02 N/A*

TabSyn 0.10 ± 0.00 0.00 ± 0.44 0.44 ± 0.01 0.33 ± 0.00 0.50 ± 0.00 0.01 ± 0.41 0.41 ± 0.00 0.00 ± 0.00
TabDiff 0.33 ± 0.19 0.19 ± 0.47 0.47 ± 0.15 0.01 ± 0.01 0.03 ± 0.01 0.15 ± 0.43 0.43 ± 0.12 0.12 ± 0.00

Forest Diffusion 0.27 ± 0.00 0.28 ± 0.00 0.50 ± 0.00 0.01 ± 0.01 0.04 ± 0.01 0.24 ± 0.00 0.09 ± 0.00 0.16 ± 0.00
Tab-DDPM 0.11 ± 0.00 0.05 ± 0.03 0.01 ± 0.01 0.01 ± 0.01 0.50 ± 0.00 0.03 ± 0.01 0.01 ± 0.02 0.33 ± 0.04
Plain Base 0.04 ± 0.01 0.03 ± 0.02 0.09 ± 0.01 0.13 ± 0.00 0.05 ± 0.01 0.06 ± 0.01 0.03 ± 0.01 0.07 ± 0.06

Plain Tabby MH 0.06 ± 0.02 0.02 ± 0.01 0.10 ± 0.01 0.12 ± 0.01 0.06 ± 0.01 0.06 ± 0.00 0.08 ± 0.00 0.03 ± 0.01
GReaT Base 0.28 ± 0.01 0.06 ± 0.01 0.20 ± 0.01 0.22 ± 0.00 0.20 ± 0.01 0.08 ± 0.02 N/A* 0.16 ± 0.01

GReaT Tabby MH 0.29 ± 0.02 0.08 ± 0.03 0.20 ± 0.01 0.18 ± 0.01 0.17 ± 0.00 0.11 ± 0.03 0.45 ± 0.09* 0.19 ± 0.01
GTT Base 0.27 ± 0.02 0.07 ± 0.01 0.20 ± 0.02 0.21 ± 0.00 0.20 ± 0.01 0.05 ± 0.01 0.39 ± 0.11 0.18 ± 0.03

GTT Tabby MH 0.28 ± 0.02 0.07 ± 0.02 0.13 ± 0.05 0.18 ± 0.01 0.18 ± 0.00 0.16 ± 0.01 0.31 ± 0.21 0.20 ± 0.01

Table 7: Distance to Closest Record (DCR, ↓>0), defined in Appendix D, for approaches compared in
Section 3.1. Tabby MH exhibits low, nonzero scores, indicating that its synthetic examples closely resemble
real data without simply copying the training data points.

Diabetes Travel Adult Magic Shoppers Abalone Rainfall House
CTGAN 0.82 ± 0.00 0.59 ± 0.03 1.70 ± 0.09 0.75 ± 0.07 1.52 ± 0.10 0.76 ± 0.02 0.03 ± 0.01 0.13 ± 0.02

CTGAN+ 0.52 ± 0.03 0.52 ± 0.04 3.24 ± 0.66 0.35 ± 0.13 1.8 ± 0.30 0.26 ± 0 0.03 ± 0.01 0.07 ± 0.00
TVAE 0.27 ± 0.01 0.10 ± 0.06 0.16 ± 0.03 0.21 ± 0.00 0.05 ± 0.00 0.41 ± 0.01 0.03 ± 0.00 0.07 ± 0.00
CLLM 0.4 ± 0.01 0.39 ± 0.05 1.84 ± 0.68 0.32 ± 0.01 0.00 ± 0.00 0.14 ± 0.01 0.04 ± 0.02 N/A*

TabSyn 0.47 ± 0.14 0.4 ± 0.3 1.29 ± 0.77 0.28 ± 0.00 1.79 ± 0.03 0.38 ± 0.26 0.01 ± 0.00 0.06 ± 0.00
TabDiff 0.43 ± 0.03 0.07 ± 0.01 0.38 ± 0.03 0.25 ± 0.01 0.62 ± 0.01 0.11 ± 0 0.01 ± 0.00 0.06 ± 0.00

Forest Diffusion 0.29 ± 0.00 0.06 ± 0.00 0.35 ± 0.02 0.24 ± 0.00 0.66 ± 0.03 0.09 ± 0.01 0.01 ± 0.00 0.06 ± 0.00
Tab-DDPM 0.63 ± 0.04 0.00 ± 0.00 0.31 ± 0.03 0.19 ± 0.01 3.9 ± 0.34 0.12 ± 0.01 0.01 ± 0.00 0.08 ± 0.00
Plain Base 0.01 ± 0.00 0.01 ± 0.00 0.33 ± 0.15 0.08 ± 0.00 0.04 ± 0.01 0.01 ± 0.00 0.00 ± 0.00 0.03 ± 0.01

Plain Tabby MH 0.02 ± 0.00 0.01 ± 0.00 0.25 ± 0.03 0.10 ± 0.03 0.08 ± 0.03 0.01 ± 0.01 0.01 ± 0.00 0.04 ± 0.00
GReaT Base 0.33 ± 0.00 0.02 ± 0.01 0.12 ± 0.03 0.18 ± 0.00 0.40 ± 0.17 0.10 ± 0.00 N/A* 0.06 ± 0.00

GReaT Tabby MH 0.36 ± 0.00 0.01 ± 0.00 0.17 ± 0.08 0.19 ± 0.00 0.36 ± 0.01 0.10 ± 0.01 0.01* 0.06 ± 0.00
GTT Base 0.31 ± 0.01 0.02 ± 0.00 0.14 ± 0.01 0.18 ± 0.01 0.32 ± 0.01 0.10 ± 0.00 0.02 ± 0.00 0.06 ± 0.00

GTT Tabby MH 0.37 ± 0.01 0.02 ± 0.00 0.16 ± 0.07 0.19 ± 0.00 0.39 ± 0.03 0.10 ± 0.00 0.00 ± 0.01 0.05 ± 0.00

Table 8: Shape (Shi et al., 2025) (↑), for diffusion and LLM approaches compared in Section 3.1. Tabby
Plain is a best-performing method on 3 datasets–similar to the performance of diffusion-based techniques,
but without the same limiting assumptions on the nature of the dataset.

Diabetes Travel Adult Magic Shoppers Abalone Rainfall House
TabSyn 0.79 ± 0.14 0.82 ± 0.13 0.81 ± 0.15 0.99 ± 0.00 0.98 ± 0.00 0.84 ± 0.12 0.98 ± 0.00 0.99 ± 0.00
TabDiff 0.96 ± 0.00 0.97 ± 0.00 0.99 ± 0.00 0.99 ± 0.00 0.98 ± 0.00 0.98 ± 0.00 0.98 ± 0.00 0.99 ± 0.00

Forest Diffusion 0.91 ± 0.00 0.95 ± 0.00 0.89 ± 0.00 0.92 ± 0.00 0.68 ± 0.00 0.96 ± 0.02 0.95 ± 0.00 0.94 ± 0.00
Tab-DDPM 0.89 ± 0.00 0.99 ± 0.00 0.99 ± 0.00 0.99 ± 0.00 0.63 ± 0.03 0.99 ± 0.00 0.98 ± 0.00 0.95 ± 0.00
Plain Base 0.96 ± 0.02 0.99 ± 0.00 0.95 ± 0.00 0.85 ± 0.00 0.97 ± 0.00 0.94 ± 0.00 0.96 ± 0.01 0.95 ± 0.03

Plain Tabby MH 0.98 ± 0.00 0.99 ± 0.00 0.95 ± 0.01 0.85 ± 0.00 0.98 ± 0.00 0.93 ± 0.02 0.93 ± 0.00 0.97 ± 0.00
GReaT Base 0.81 ± 0.01 0.94 ± 0.00 0.89 ± 0.01 0.85 ± 0.00 0.85 ± 0.00 0.95 ± 0.01 N/A∗ 0.92 ± 0.00

GReaT Tabby MH 0.85 ± 0.00 0.93 ± 0.01 0.90 ± 0.01 0.87 ± 0.01 0.88 ± 0.00 0.91 ± 0.03 0.23 ± 0.40∗ 0.89 ± 0.00
GTT Base 0.80 ± 0.00 0.93 ± 0.00 0.89 ± 0.02 0.85 ± 0.00 0.85 ± 0.00 0.95 ± 0.00 0.50 ± 0.43∗ 0.91 ± 0.02

GTT Tabby MH 0.83 ± 0.01 0.94 ± 0.00 0.81 ± 0.09 0.86 ± 0.00 0.88 ± 0.00 0.89 ± 0.00 0.47 ± 0.45 0.89 ± 0.00
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Table 9: Trend (Shi et al., 2025) (↑), for diffusion and LLM approaches compared in Section 3.1. Tabby Plain
is a best-performing method on 3 datasets, which is similar to other SOTA approaches.

Diabetes Travel Adult Magic Shopping Abalone Rainfall House
TabSyn 0.84 ± 0.12 0.68 ± 0.22 0.61 ± 0.33 0.99 ± 0.00 0.98 ± 0.00 0.69 ± 0.25 0.95 ± 0.00 0.99 ± 0.00
TabDiff 0.97 ± 0.00 0.92 ± 0.01 0.97 ± 0.01 0.99 ± 0.00 0.98 ± 0.00 0.97 ± 0.00 0.94 ± 0.00 0.99 ± 0.00

Forest Diffusion 0.87 ± 0.00 0.68 ± 0.00 0.60 ± 0.00 0.85 ± 0.00 0.38 ± 0.00 0.88 ± 0.01 0.58 ± 0.00 0.99 ± 0.00
Tab-DDPM 0.88 ± 0.00 0.97 ± 0.00 0.97 ± 0.00 0.97 ± 0.01 0.58 ± 0.03 0.95 ± 0.00 0.95 ± 0.00 0.99 ± 0.00
Plain Base 0.95 ± 0.04 0.73 ± 0.06 0.88 ± 0.04 0.68 ± 0.15 0.96 ± 0.01 0.91 ± 0.05 0.89 ± 0.01 0.96 ± 0.02

Plain Tabby MH 0.97 ± 0.00 0.98 ± 0.00 0.88 ± 0.02 0.86 ± 0.04 0.96 ± 0.00 0.94 ± 0.01 0.87 ± 0.00 0.99 ± 0.00
GReaT Base 0.86 ± 0.01 0.84 ± 0.10 0.77 ± 0.02 0.91 ± 0.01 0.87 ± 0.01 0.92 ± 0.00 N/A* 0.95 ± 0.01

GReaT Tabby MH 0.85 ± 0.02 0.89 ± 0.01 0.77 ± 0.06 0.90 ± 0.03 0.90 ± 0.00 0.92 ± 0.01 0.47 ± 0.06∗ 0.95 ± 0.01
GTT Base 0.88 ± 0.01 0.84 ± 0.10 0.79 ± 0.03 0.91 ± 0.01 0.88 ± 0.01 0.93 ± 0.00 0.52 ± 0.17∗ 0.95 ± 0.02

GTT Tabby MH 0.86 ± 0.01 0.85 ± 0.10 0.56 ± 0.22 0.88 ± 0.01 0.91 ± 0.00 0.91 ± 0.01 0.48 ± 0.33 0.96 ± 0.01

Table 10: Wasserstein distance (↓), for diffusion and LLM approaches compared in Section 3.1. Plain Tabby
is the best-performing method on Diabetes, House and Shopping.

Diabetes Travel Adult Magic Shopping Abalone Rainfall House
TabSyn 75.27±47.46 1.44±1.07 4.1E4±3.2E4 37.21±0.55 278.13±65.57 1.69±1.84 25.05±8.58 132.33±51.19
TabDiff 26.83±2.01 0.36±0.04 1.1E4±4.6E3 38.80±1.93 240.57±74.74 0.41±0.02 19.71±13.29 115.99±45.71

Forest Diffusion 19.08±0.48 0.35±0.07 9.9E3±3.6E3 38.20±0.72 274.67±64.94 0.43±0.10 28.69±5.6 110.40±20.50
Tab-DDPM 80.54±8.09 0.30±0.03 8.3E3±1.9E3 36.45±1.00 3.1E4±1.7E3 0.37±0.02 18.47±6.88 104.47±31.47
Plain Base 20.83±11.04 0.23±0.05 1.3E4±7.6E3 52.71±2.33 252.94±115.00 0.61±0.17 22.56±6.06 116.17±68.63

Plain Tabby MH 14.75±1.32 0.29±0.05 1.2E4±2.9E3 56.64±1.63 180.40±87.97 0.52±0.22 32.95±5.77 91.48±9.08
GReaT Base 82.75±3.86 0.50±0.12 2.6E4±8.5E3 57.88±2.78 688.17±59.05 0.33±0.08 N/A* 387.83±28.45

GReaT Tabby MH 82.69±2.09 0.46±0.04 3.2E4±1.7E4 55.80±4.16 644.95±86.52 0.34±0.07 7E6±6E6∗ 304.11±63.08
GTT Base 81.34±3.90 0.48±0.03 2.2E4±5.9E3 54.87±0.61 733.93±95.75 0.30±0.06 3E6±6E6∗ 309.51±78.00

GTT Tabby MH 78.70±1.73 0.37±0.01 4.9E4±1.8E4 52.89±6.76 562.43±69.22 0.45±0.07 3E6±6E6 375.05±20.07

Table 11: Membership Inference Attack (MIA) performance, for SOTA approaches compared in Section 3.1.
Scores are aggregated across 50 attack techniques by reporting maximum AUROC (↓), mean AUROC (↓)
and maximum accuracy (↓). We find that Tabby performs similarly to most other methods.

TabDiff CTGAN+ Plain
Base

Plain
Tabby

GTT
Base CLLM HARMONIC

Max AUROC (↓) 53.40 100.00 55.50 55.40 54.00 56.00 58.10
Mean AUROC (↓) 51.03 52.66 52.43 52.45 51.64 53.42 51.45

Max Acc. (↓) 52.60 100.00 54.20 54.20 52.90 54.80 62.50

Table 12: Runtime on the Abalone dataset, for SOTA approaches compared in Section 3.1. “Training” reports
the minutes to train one epoch, while “Synthesis” reports the minutes to produce 10 samples.

Plain
Tabby

GReaT
Base

GTT
Base HARMONIC CTGAN CGAN+ CLLM TabDiff TabSyn

Training 2:05 2:01 2:03 24:25 0:01 0:01 N/A 0:02 0:02
Synthesis 0:10 0:10 0:11 7:30 0:01 0:01 0:04 0:00 0:00

Table 13: Performance of the HARMONIC synthesis method (Wang et al., 2024) by various metrics.

Diabetes Travel Adult Abalone Rainfall House

MLE 0.64 0.83 0.76 0.32 0.54 0.61
Discrimination 0.00 0.00 0.00 0.00 0.00 0.00

DCR 0.39 0.03 0.59 0.12 0.03 0.08
Shape 0.71 0.95 0.80 0.85 0.53 0.68
Trend 0.85 0.74 0.63 0.91 0.44 0.97

Wasserstein 49.81 0.99 61194.57 0.84 113.87 559.72
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Figure 6: An overview of the Tabby MH modifications that can occur inside the LLM transformer blocks.
Left to right: an original, non-Tabby LLM, a Tabby LLM with MoE MLP block, a Tabby LLM with MoE
attention block, and a Tabby LLM with both MoE MLP and attention blocks. Tabby is very flexible, so as
to accommodate a wide variety of tabular datasets.

E.2 Applying Tabby to Transformer MLPs or Attention Blocks
We examine in-detail the performance of Tabby models with MoE applied to the transformer MLPs or
attention blocks. We use the following terminology to refer to these architectures, visualized in Figure 6:

• Multi-MLP when each transformer’s MLP block is replaced with an MoE layer,

• Multi-MLP and Multi-Head (MMLP+MH) when each transformer’s MLP block is replaced
with an MoE layer and the LM head is replaced with an MoE layer,

• Multi-Attention (MA) when each transformer’s attention block is replaced with an MoE layer.

We focus on Tabby MH in Sections 3.1-3.4 because it demonstrates top performance in most settings. We
display results for the MMLP and MMLP+MH architectures across six datasets for MLE, discrimination and
DCR in Tables 14, 15 and 16, respectively. All three metrics are displayed for the MA architecture on two
datasets in Table 17.

E.3 Additional Metrics for Experiment Applying Tabby MH to Models of Varying Sizes
The results in Section 3.2 compare the MLE scores of Plain-trained models of varying sizes on the Travel dataset.
Table 18 incorporates the results for the Diabetes and House datasets as well. Similarly, Table 19 presents
results for models trained using GReaT and Tabula (TapTap is not included here, because TapTap-pretrained
checkpoints are available only for Distill-GPT2 and GPT2).
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Table 14: Machine Learning Efficacy (MLE, ↑), defined in Section 3.0, for Base non-Tabby GPT2 models, as
well as Tabby models with MoE layers applied to the transformer MLPs, language modeling head, or both
(notated as MMLP, MH, and MMLP+MH respectively) on select datasets.

Diabetes Travel Adult Abalone Rainfall House
Non-Synthetic 0.73 0.87 0.85 0.45 0.54 0.61

Plain Non-Tabby 0.75 ± 0.02 0.86 ± 0.01 0.85 ± 0.00 0.44 ± 0.01 0.52 ± 0.03 0.55 ± 0.08
Plain Tabby MMLP 0.75 ± 0.03 0.83 ± 0.02 0.77 ± 0.01 0.32 ± 0.03 0.35 ± 0.04 0.00 ± 0.00

Plain Tabby MH 0.74 ± 0.00 0.88 ± 0.01 0.85 ± 0.00 0.43 ± 0.01 0.49 ± 0.00 0.60 ± 0.00
Plain Tabby MMLP+MH 0.68 ± 0.02 0.83 ± 0.01 0.76 ± 0.01 0.33 ± 0.03 0.36 ± 0.19 0.02 ± 0.03

GReaT Non-Tabby 0.62 ± 0.01 0.85 ± 0.02 0.83 ± 0.01 0.41 ± 0.01 N/A* 0.56 ± 0.01
GReaT Tabby MMLP 0.74 ± 0.01 0.85 ± 0.03 0.84 ± 0.01 0.38 ± 0.01 0.24 ± 0.25 0.56 ± 0.02

GReaT Tabby MH 0.64 ± 0.01 0.86 ± 0.01 0.83 ± 0.00 0.40 ± 0.01 0.00 ± 0.00* 0.56 ± 0.01
GReaT Tabby MMLP+MH 0.69 ± 0.04 0.83 ± 0.02 0.83 ± 0.01 0.38 ± 0.03 0.17 ± 0.30 0.57 ± 0.01

GTT Non-Tabby 0.72 ± 0.06 0.87 ± 0.02 0.83 ± 0.01 0.40 ± 0.01 0.05 ± 0.01 0.55 ± 0.02
GTT Tabby MMLP 0.69 ± 0.04 0.87 ± 0.01 0.84 ± 0.00 0.36 ± 0.01 0.03 ± 0.00* 0.56 ± 0.01

GTT Tabby MH 0.62 ± 0.00 0.85 ± 0.01 0.76 ± 0.07 0.37 ± 0.02 0.26 ± 0.37 0.55 ± 0.00
GTT Tabby MMLP+MH 0.70 ± 0.04 0.85 ± 0.02 0.84 ± 0.00 0.38 ± 0.02 0.09 ± 0.13 0.57 ± 0.00

Table 15: Discrimination metric (↓), defined in Appendix D, for Base non-Tabby GPT2 models, as well as
Tabby models with MoE layers applied to the transformer MLPs, language modeling head, or both (notated
as MMLP, MH, and MMLP+MH respectively) on select datasets.

Diabetes Travel Adult Abalone Rainfall House
Plain Non-Tabby 0.04 ± 0.01 0.03 ± 0.02 0.09 ± 0.01 0.06 ± 0.01 0.03 ± 0.01 0.07 ± 0.06

Plain Tabby MMLP 0.22 ± 0.03 0.02 ± 0.02 0.22 ± 0.06 0.19 ± 0.04 0.12 ± 0.00 0.19 ± 0.06
Plain Tabby MH 0.06 ± 0.02 0.02 ± 0.01 0.10 ± 0.01 0.06 ± 0.00 0.08 ± 0.00 0.03 ± 0.01

Plain Tabby MMLP+MH 0.19 ± 0.02 0.03 ± 0.02 0.25 ± 0.11 0.22 ± 0.03 0.12 ± 0.01 0.23 ± 0.03
GReaT Non-Tabby 0.28 ± 0.01 0.06 ± 0.01 0.20 ± 0.01 0.08 ± 0.02 N/A* 0.16 ± 0.01

GReaT Tabby MMLP 0.23 ± 0.01 0.10 ± 0.02 0.19 ± 0.00 0.08 ± 0.01 0.27 ± 0.17 0.16 ± 0.01
GReaT Tabby MH 0.29 ± 0.02 0.08 ± 0.03 0.20 ± 0.01 0.11 ± 0.03 0.45 ± 0.09* 0.19 ± 0.01

GReaT Tabby MMLP+MH 0.24 ± 0.01 0.09 ± 0.01 0.21 ± 0.01 0.07 ± 0.00 0.24 ± 0.17 0.16 ± 0.00
GTT Non-Tabby 0.27 ± 0.02 0.07 ± 0.01 0.20 ± 0.02 0.05 ± 0.01 0.39 ± 0.11 0.18 ± 0.03

GTT Tabby MMLP 0.28 ± 0.01 0.09 ± 0.01 0.18 ± 0.01 0.14 ± 0.02 0.46 ± 0.07* 0.18 ± 0.01
GTT Tabby MH 0.28 ± 0.02 0.07 ± 0.02 0.13 ± 0.05 0.16 ± 0.01 0.31 ± 0.21 0.20 ± 0.01

GTT Tabby MMLP+MH 0.24 ± 0.01 0.08 ± 0.01 0.18 ± 0.00 0.14 ± 0.02 0.24 ± 0.24 0.16 ± 0.01

Table 16: Distance to Closest Record (DCR, ↓>0), defined in Appendix D, for Base non-Tabby GPT2 models,
as well as Tabby models with MoE layers applied to the transformer MLPs, language modeling head, or both
(notated as MMLP, MH, and MMLP+MH respectively) on select datasets.

Diabetes Travel Adult Abalone Rainfall House
Plain Non-Tabby0.01 ± 0.000.01 ± 0.00 0.33 ± 0.15 0.01 ± 0.00 0.00 ± 0.00 0.03 ± 0.01

Plain Tabby MMLP 0.35 ± 0.03 0.08 ± 0.00 0.55 ± 0.09 0.21 ± 0.02 0.03 ± 0.00 1.7e12 ± 2.7e12
Plain Tabby MH 0.02 ± 0.00 0.01 ± 0.00 0.25 ± 0.03 0.01 ± 0.010.01 ± 0.00 0.04 ± 0.00

Plain Tabby MMLP+MH 0.34 ± 0.02 0.07 ± 0.00 0.39 ± 0.15 0.20 ± 0.03 0.03 ± 0.01 2.3e12 ± 4.1e12
GReaT Non-Tabby 0.33 ± 0.00 0.02 ± 0.01 0.12 ± 0.03 0.10 ± 0.00 N/A* 0.06 ± 0.00

GReaT Tabby MMLP 0.34 ± 0.01 0.02 ± 0.00 0.12 ± 0.01 0.10 ± 0.00 0.00 ± 0.01 0.06 ± 0.00
GReaT Tabby MH 0.36 ± 0.00 0.01 ± 0.00 0.17 ± 0.08 0.10 ± 0.01 0.01* 0.06 ± 0.00

GReaT Tabby MMLP+MH 0.33 ± 0.02 0.02 ± 0.00 0.11 ± 0.01 0.10 ± 0.00 0.01 ± 0.00 0.06 ± 0.00
GTT Non-Tabby 0.31 ± 0.01 0.02 ± 0.00 0.14 ± 0.01 0.10 ± 0.00 0.02 ± 0.00 0.06 ± 0.00

GTT Tabby MMLP 0.31 ± 0.02 0.02 ± 0.00 0.14 ± 0.03 0.10 ± 0.00 0.01* 0.06 ± 0.00
GTT Tabby MH 0.37 ± 0.01 0.02 ± 0.00 0.16 ± 0.07 0.10 ± 0.00 0.00 ± 0.01 0.05 ± 0.00

GTT Tabby MMLP+MH 0.31 ± 0.00 0.02 ± 0.00 0.11 ± 0.02 0.11 ± 0.00 0.01 ± 0.01 0.06 ± 0.00
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Table 17: All evaluation metrics, for non-Tabby models and Tabby models with MoE applied to the transformer
attention blocks (abbreviated as Tabby MA) on select datasets. Base LLM is DGPT2.

MLE (↑) Discrimination (↓) DCR (↓>0)
Diabetes House Diabetes House Diabetes House

Non-Synthetic (Upper Bound) 0.73 0.61
Plain Non-Tabby 0.75 0.55 0.04 0.07 0.01 0.03
Plain Tabby MA 0.62 0.08 0.23 0.28 0.41 0.08
GTT Non-Tabby 0.72 0.55 0.27 0.18 0.31 0.06
GTT Tabby MA 0.62 0.56 0.31 0.17 0.36 0.06

Table 18: Results using Plain training for all three datasets of the experiment in Section 3.2, which compares
non-Tabby and Tabby MH models across base LLMs of varying sizes.

Travel Diabetes House
MLE (↑) Params MLE (↑) Params MLE (↑) Params

Non-Synthetic (Upper Bound) 0.87 0.73 0.61
Base Pythia 14m 0.86 ± 0.01 14M 0.76 ± 0.02 14M 0.52 ± 0.07 14M

Tabby MH Pythia 14m 0.82 ± 0.02 53M 0.77 ± 0.00 66M 0.54 ± 0.01 66M
Base Distilled-GPT2 0.88 ± 0.00 82M 0.73 ± 0.02 82M 0.53 ± 0.10 82M

Tabby MH Distilled-GPT2 0.89 ± 0.02 310M 0.73 ± 0.01 390M 0.61 ± 0.01 390M
Base GPT2 0.89 ± 0.01 120M 0.76 ± 0.01 120M 0.60 ± 0.00 120M

Tabby MH GPT2 0.87 ± 0.01 360M 0.73 ± 0.03 430M 0.53 ± 0.11 430M
Base Pythia 160M 0.87 ± 0.01 160M 0.75 ± 0.04 160M 0.52 ± 0.11 160M

Tabby MH Pythia 160M 0.86 ± 0.00 390M 0.73 ± 0.02 470M 0.54 ± 0.02 470M
Base Pythia 410M 0.86 ± 0.02 410M 0.74 ± 0.03 410M 0.28 ± 0.40 410M

Tabby MH Pythia 410M 0.88 ± 0.03 710M 0.72 ± 0.05 820M 0.54 ± 0.02 820M
Base Llama 3.2 1B 0.82 ± 0.01 1.2B 0.73 ± 0.01 1.2B 0.29 ± 0.01 1.2B

Tabby MH Llama 3.2 1B 0.84 ± 0.02 2.8B 0.68 ± 0.09 3.3B 0.18 ± 0.26 3.3B
Base Llama 3.1 8B 0.84 ± 0.01 8.0B 0.75 ± 0.01 8.0B 0.35 ± 0.01 8.0B

Tabby MH Llama 3.1 8B 0.86 ± 0.03 11B 0.72 ± 0.01 12B 0.30 ± 0.01 12B

Table 19: Results using GReaT and Tabula training for all three datasets of the experiment in Section 3.2,
which compares non-Tabby and Tabby MH models across base LLMs of varying sizes.

Travel Diabetes House
MLE (↑) Params MLE (↑) Params MLE (↑) Params

Non-Synthetic (Upper Bound) 0.87 0.73 0.61
Base Pythia 14m 0.81 ± 0.00 14M 0.60 ± 0.04 14M 0.46 ± 0.06 14M

Tabby MH Pythia 14m 0.81 ± 0.00 53M 0.67 ± 0.01 66M 0.51 ± 0.03 66M
Base Distilled-GPT2 0.86 ± 0.00 82M 0.62 ± 0.00 82M 0.57 ± 0.00 82M

Tabby MH Distilled-GPT2 0.84 ± 0.00 310M 0.70 ± 0.06 390M 0.56 ± 0.01 390M
Base GPT2 0.85 ± 0.02 120M 0.64 ± 0.02 120M 0.55 ± 0.00 120M

Tabby MH GPT2 0.87 ± 0.03 360M 0.74 ± 0.03 430M 0.58 ± 0.01 430M
Base Pythia 160M 0.81 ± 0.01 160M 0.70 ± 0.01 160M 0.00 ± 0.00 160M

Tabby MH Pythia 160M 0.82 ± 0.02 390M 0.73 ± 0.03 470M 0.54 ± 0.02 470M
Base Pythia 410M 0.85 ± 0.01 410M 0.73 ± 0.03 410M 0.53 ± 0.02 410M

Tabby MH Pythia 410M 0.83 ± 0.01 710M 0.74 ± 0.04 820M 0.58 ± 0.01 820M
Base Llama 3.2 1B 0.82 ± 0.01 1.2B 0.70 ± 0.08 1.2B 0.53 ± 0.01 1.2B

Tabby MH Llama 3.2 1B 0.78 ± 0.03 2.8B 0.71 ± 0.03 3.3B 0.43 ± 0.08 3.3B
Base Llama 3.1 8B 0.78 ± 0.04 8.0B 0.67 ± 0.01 8.0B 0.53 ± 0.01 8.0B

Tabby MH Llama 3.1 8B 0.83 ± 0.03 11B 0.73 ± 0.02 12B 0.45 ± 0.00 12B
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Figure 7: Machine Learning Efficacy (MLE) as a function of parameter count for 7 base LLMs, using
Non-Tabby or Tabby MH architectures. Non-Tabby points displayed in blue; MH points in purple. Red line
represents Non-Synthetic, upper-bound performance.

Figure 8: Per-column validation loss across 10 epochs of training Tabby MH Distilled-GPT2 on a subset of
House, with average validation loss (black line). While the Occupancy column initially displays the highest
loss, Median Income improves little throughout training and becomes the highest-loss column by step 32000.

E.4 Analysis from Tracking the Adaptation to Individual Columns

Individual column losses are shown in Figure 8. We observe that Occupancy is the largest contributor to
the model’s loss until step 32000. While Median Income’s loss is initially the second-lowest, it improves
little throughout the training process and exhibits the highest loss of all columns at the end of training.
Additionally, convergence occurs across most columns around step 40000.
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Table 20: Five example rows of the synthetic training data used to investigate Claim 5 in Section E.5.

Code ID
upi_400727_2001 427.424.604-d
sku_305434_2021 60.272.433-i
sku_871297_2012 727.884.985-G
upi_712558_2003 160.401.237-E
sku_911473_2008 856.31.239-c

These insights are useful in cases where the model struggles to learn some columns more than others. Such
information may indicate a need for better preprocessing for a difficult column, or gathering more datapoints
to demonstrate the column’s distribution. Additionally, the ability to track each column’s loss individually
and to determine that the losses are roughly balanced across columns, rather than very low in some columns
and very high in others, may improve trust in the model—we can understand that there is a low, aleatoric
error in each column as opposed to a sizeable epistemic error in a few columns.
E.5 Investigating Tabby’s Generalization to Unseen and High-Cardinality Categorical Features
We now seek to demonstrate our fifth claim.
Claim 5: Tabby’s language modeling capabilities enable it to capture the underlying semantic structure
of column values unseen during pretraining, allowing it to generate novel yet realistic values beyond the
pretraining distribution.

Setup: We train a Llama 3-8B Tabby MH model for one epoch (LR = 1e − 4) on a 5000-row synthetic
dataset, designed to imitate a common business scenario such as a product database. The dataset includes
two columns: “Code” contains a 6-digit random number, prepended by “upi_” or “sku_” and followed by
a year [2000,2026). “ID” contains three numbers, where the first number is [1,999] and other numbers are
[0,999], followed by a hyphen and a single lowercase or uppercase letter. We ensure that each trainset Code
and each ID are unique. Some examples are in Table 20.

Results: We find that the model produces examples of the same structure as the training data. In particular,
out of 1000 generated samples:

• 1000/1000 rows meet all of the rules for the Code column value,

• 999/1000 rows meet all of the rules for the ID column value (one row omitted the final hyphen and
letter),

• Only one Code value in the trainset reappears in the synthetic set,

• Only one synthetic Code value is reused across the synthetic set,

• All synthetic IDs are unique and

• No trainset IDs appear in the synthetic set.

Discussion: Tabby’s generalization capabilities are particularly valuable in real-world settings where datasets
include non-categorical string features such as names, product IDs, addresses, or telephone numbers. While
these capabilities extend Tabby’s applicability across diverse data domains, the model’s behavior in such
cases depends on the implementation details of its underlying language model and tokenizer.

For example, when out-of-vocabulary (OOV) tokens appear, their handling is determined by the specific
tokenizer used. In the Distilled-GPT2 backbone employed in our main experiments, the tokenizer applies a
byte-level variant of Byte Pair Encoding (BPE) (Radford et al., 2019), following the subword tokenization
approach of Sennrich et al. (2016). This ensures that every possible UTF-8 string can be represented without
resorting to dedicated OOV tokens. Instead, previously unseen strings are decomposed into byte-level
subtokens, which the model can interpret and adapt to based on surrounding context. By contrast, other
tokenizers may rely on explicit OOV symbols or restricted vocabularies, potentially affecting Tabby’s ability
to generalize to novel strings and impacting overall performance in such settings.
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Table 21: Learning rates for LLM results presented in Section 3.1.

Diabetes Travel Adult Magic Shoppers Abalone Rainfall House
Plain Non-Tabby 1e − 4 1e − 4 1e − 4 1e − 4 1e − 4 1e − 4 1e − 4 1e − 4

Plain Tabby MMLP 1e − 4 1e − 4 1e − 4 1e − 4 1e − 4 1e − 4 1e − 4 1e − 4
Plain Tabby MH 1e − 4 1e − 4 1e − 4 1e − 4 1e − 4 1e − 4 1e − 4 1e − 4

Plain Tabby MMLP+MH 1e − 4 1e − 4 1e − 4 1e − 4 1e − 4 1e − 4 1e − 4 1e − 4
GReaT Non-Tabby 1e − 4 1e − 4 1e − 4 1e − 4 1e − 4 1e − 4 1e − 4 1e − 4

GReaT Tabby MMLP 1e − 4 1e − 4 1e − 4 1e − 4 1e − 4 1e − 4 1e − 4 1e − 4
GReaT Tabby MH 1e − 6 1e − 4 1e − 4 1e − 4 1e − 4 1e − 4 1e − 4 1e − 4

GReaT Tabby MMLP+MH 1e − 4 1e − 4 1e − 4 1e − 4 1e − 4 1e − 4 1e − 4 1e − 4
GTT Non-Tabby 1e − 4 1e − 4 1e − 4 1e − 4 1e − 4 1e − 4 1e − 4 1e − 4

GTT Tabby MMLP 1e − 4 1e − 4 1e − 4 1e − 4 1e − 4 1e − 4 1e − 4 1e − 4
GTT Tabby MH 1e − 6 1e − 4 1e − 4 1e − 4 1e − 4 1e − 4 1e − 4 1e − 4

GTT Tabby MMLP+MH 1e − 4 1e − 4 1e − 4 1e − 4 1e − 4 1e − 4 1e − 4 1e − 4

Table 22: Learning rates for Plain-trained LLMs of varying sizes in Section 3.2.

Plain Training
Travel Diabetes House

Base Pythia 14M 1e − 4 1e − 4 1e − 4
Tabby MH Pythia 14M 1e − 6 1e − 4 1e − 4

Base Distilled-GPT2 1e − 4 1e − 4 1e − 4
Tabby MH Distilled-GPT2 1e − 4 1e − 4 1e − 4

Base GPT2 1e − 4 1e − 4 1e − 4
Tabby MH GPT2 1e − 4 1e − 4 1e − 4

Base Pythia 160M 1e − 4 1e − 4 1e − 6
Tabby MH Pythia 160M 1e − 4 1e − 4 1e − 4

Base Pythia 410M 1e − 6 1e − 4 1e − 6
Tabby MH Pythia 410M 1e − 6 1e − 6 1e − 4

Base Llama 3.2 1B 1e − 6 1e − 4 1e − 6
Tabby MH Llama 3.2 1B 1e − 6 1e − 4 1e − 6

Base Llama 3.1 8B 1e − 6 1e − 6 1e − 6
Tabby MH Llama 3.1 8B 1e − 6 1e − 6 1e − 6

E.6 Hyperparameters for All Experiments
We list the learning rates chosen for Section 3.1 in Table 21, Section 3.2 in Table 22 and Section 24 in Table 24.
We select the learning rate that yields lowest training loss from the set {1e − 3, 1e − 4, 1e − 6, 1e − 8}. For
non-LLM methods in our experiments, we use the hyperparameters recommended by their respective papers.
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Table 23: Learning rates for GReaT (plus TapTap)-trained LLMs of varying sizes in Section 3.2.

GReaT + TapTap Training
Travel Diabetes House

Base Pythia 14M 1e − 4 1e − 6 1e − 4
Tabby MH Pythia 14M 1e − 6 1e − 6 1e − 4

Base Distilled-GPT2 1e − 4 1e − 4 1e − 4
Tabby MH Distilled-GPT2 1e − 4 1e − 4 1e − 4

Base GPT2 1e − 4 1e − 4 1e − 4
Tabby MH GPT2 1e − 4 1e − 4 1e − 4

Base Pythia 160M 1e − 4 1e − 6 1e − 4
Tabby MH Pythia 160M 1e − 6 1e − 6 1e − 6

Base Pythia 410M 1e − 6 1e − 6 1e − 6
Tabby MH Pythia 410M 1e − 4 1e − 6 1e − 6

Base Llama 3.2 1B 1e − 4 1e − 4 1e − 6
Tabby MH Llama 3.2 1B 1e − 4 1e − 4 1e − 4

Base Llama 3.1 8B 1e − 4 1e − 4 1e − 6
Tabby MH Llama 3.1 8B 1e − 4 1e − 4 1e − 6

Table 24: Learning rates for JSON Glaucoma (Manoj, 2024) experiment presented in Section 3.4.

Glaucoma
Base DGPT2 1e − 4

Tabby MH DGPT2 1e − 4
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