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Abstract. The Job Shop Scheduling Problem (JSSP) is a well-known NP-hard problem in combinatorial optimiza-
tion, where the objective is to optimize job assignments across machines while minimizing a specific criterion such
as makespan. Traditional mathematical and heuristic approaches struggle with scalability and handling complex
precedence constraints. Recent advances in artificial intelligence, particularly deep reinforcement learning (DRL)
and supervised learning, have shown promise but face challenges such as training instability and reliance on la-
beled data. To overcome these limitations, we propose SchedulExpert, a novel neural architecture based on a
Mixture of Experts (MoE) framework with self-supervised learning. SchedulExpert integrates a Graph Attention
Network (GAT) encoder, an attention-based routing mechanism, and multiple expert modules to enhance flexibility
and efficiency in scheduling decisions. Experimental evaluations on benchmark JSSP instances demonstrate that
SchedulExpert achieves competitive performance against state-of-the-art metaheuristic and neural-based methods,
offering a scalable and effective solution for real-world scheduling challenges.
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1 Introduction

The Job Shop Scheduling Problem (JSSP) is a complex and extensively researched challenge within production op-
timization and scheduling. This problem requires determining how to assign N jobs, each characterized by distinct
processing durations, to a finite set of M machines. The goal is to improve a chosen performance indicator, such
as minimizing the makespan (Cmax), which represents the total time required to complete all jobs, or optimizing the
flow time, defined as the average time each job takes to finish. JSSP has widespread relevance in both manufactur-
ing and service industries, where it influences key outcomes like operational efficiency, effective resource allocation,
and the quality of customer service. It is proved that for JSSP instances having more than 2 machines is NP-hard
[17]. Therefore, deriving precise solutions for JSSP is generally unfeasible [9]. Historically, methods for addressing
the JSSP have been rooted in mathematical programming and heuristic-based strategies [10]. Despite their utility,
these approaches often struggle to scale effectively and face challenges in handling intricate job-machine precedence
constraints, especially in large-scale scenarios.

Metaheuristic approaches have been widely investigated as a promising alternative to exact methods for addressing
the JSSP[25], [11]. Among these, the Priority Dispatching Rule (PDR) is one of the most commonly applied heuris-
tic techniques in practical scheduling systems [39]. While PDRs are popular, designing an effective one is a highly
challenging and time-consuming task, requiring significant domain expertise, especially for complex JSSP instances.

Advanced metaheuristics, such as those presented in [27], are capable of producing high-quality solutions within
short computational times, often measured in minutes. However, these methods are frequently complex to implement,
and their reproducibility can pose significant challenges [4].

The rapid advancements in artificial intelligence (AI) have sparked growing interest in alternative methods to
overcome these limitations. Neural networks have shown great potential in finding near-optimal solutions to the JSSP
[5], [41]. These learning-based methods can be broadly categorized into two paradigms: supervised learning and
reinforcement learning (RL). Deep reinforcement learning (DRL), in particular, has emerged as a promising direction,
with research actively developing novel approaches to tackle JSSP [23], [41]. Despite their promise, RL methods are
often hindered by challenges associated with unstable training dynamics, making the training process complex and
time-intensive [13], [24].

Supervised learning, in contrast to reinforcement learning, avoids many of the instability issues inherent in RL.
However, it depends heavily on labeled data, which poses a significant challenge for combinatorial optimization prob-
lems like the JSSP. As JSSP is an NP-hard problem [9], generating optimal or near-optimal labels using exact solvers
is computationally expensive and often impractical [30]. To address these limitations, semi-supervised learning [28]
has gained attention for its ability to utilize unlabeled data effectively. Moreover, self-supervised learning [12], [31]
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is emerging as a promising approach for neural combinatorial optimization problems, offering an exciting avenue for
advancing research in JSSP and similar domains.

Another promising technique to enhance model performance is the Mixture of Experts (MoE) approach. This
method combines multiple expert models, each specializing in distinct aspects of a problem, to achieve superior overall
performance [21], [7], [36]. In particular, [7] highlights the effectiveness of MoE in scaling model capacity while
incurring minimal computational overhead, making it highly valuable for large-scale machine learning tasks.

Despite these advantages, the application of the Mixture of Experts framework to combinatorial optimization
problems, including JSSP, remains limited [18]. Expanding its use in this domain could unlock significant potential
for solving complex scheduling and optimization challenges.

Building on these observations, we propose a novel neural mixture of experts architecture, referred to as Sched-
ulExpert. SchedulExpert is a novel neural mixture of experts architecture designed to tackle JSSP. The proposed
architecture is constructed to process graph-structured data efficiently. It begins with the GATEncoder, which lever-
ages Graph Attention Networks (GAT) to transform input graph data into meaningful node embeddings, capturing both
local and global structural features. To enhance flexibility and model capacity, a Mixture-of-Experts (MoE) mech-
anism is integrated, comprising multiple expert modules, each specializing in processing distinct patterns within the
embeddings. A crucial component of the architecture is the AttentionRouter, which utilizes an attention mechanism
to dynamically assign weights to the outputs of the expert modules. This ensures that only the most relevant ex-
perts contribute to the final aggregated embedding, facilitating adaptive and efficient processing. Finally, the Decoder
(Multi-Head Attention Decoder) decodes the routed embeddings and produces actionable logits. SchedulExpert em-
ploys a self-supervised training strategy, where the model generates multiple candidate solutions and selects the best
one based on the problem objective as a pseudo-label [12].

We validate the effectiveness of SchedulExpert on the JSSP, a domain with established benchmarks [34] against
numerous baseline methods, both classic algorithms such as metaheuristics and priority dispatching rules but also
neural approaches [[41][26][16][29][40][19]]. As recognized in prior works [35], [32], the study of JSSP is pivotal,
as it provides foundational insights for addressing more complex variants, such as Dynamic JSSP [35] and Flow Shop
Scheduling Problems [32].

The integration of graph attention mechanisms, expert specialization, and self-supervised training makes Sched-
ulExpert a highly adaptable and robust framework for JSSP, offering significant potential for advancing scheduling
and optimization tasks.

2 Related Work

Deep Learning (DL) has transformed the field of artificial intelligence, leading to innovative solutions across var-
ious domains. A notable example is the work by [22], where the authors employed a deep Q-network (DQN) to
solve scheduling problems in semiconductor manufacturing, showcasing the potential of Deep Reinforcement Learn-
ing (DRL) for industrial applications. Building on this line of research, [41] proposed a DRL-based framework that
uses Priority Dispatching Rules (PDRs) for the JSSP. Their method recasts the scheduling task as a Markov Deci-
sion Process (MDP) and leverages a disjunctive graph representation to capture both machine states and operation
dependencies. To process this representation, they introduced a Graph Isomorphism Network (GIN), whose resulting
embeddings feed into a policy network trained with Proximal Policy Optimization (PPO) [33].

Subsequent works have focused on improving the state representation of JSSP to enhance the learning process.
For instance, [38] expanded the feature space and adopted a bidirectional scheduling strategy within an MDP frame-
work, reducing the risk of multiple equivalent optimal actions. They also introduced Invalid Action Masking (IAM)
to remove infeasible choices, effectively narrowing the search space and guiding the policy toward better solutions.
Meanwhile, [14] tackled combinatorial optimization problems (COPs) more generally by modeling them as MDPs
and applying Bisimulation Quotienting (BQ) to exploit problem symmetries. This technique not only reduces compu-
tational overhead but also improves generalization to larger problem instances. Others [1] have even tried using LLMs
end to end for solving JSSP.

Various strategies for sequentially constructing JSSP solutions have been explored. Single-shot (greedy) policies,
guided by neural networks, are used in [41, 38], while neural construction methods sample solutions from network
probability distributions [3]. Monte-Carlo Tree Search (MCTS) [6] and its variants [8] leverage rollouts but require
significant resources. Beam search [15] greedily expands partial solutions, also demanding high computational effort.
Randomized Greedy Sampling [2] explores deviations from heuristics to identify better solutions.
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A growing branch of literature addresses the cost of expert labels by adopting self-supervised training. For exam-
ple, [12] introduced a Pointer Network-based generative model that iteratively refines multiple solutions and selects the
best one as a pseudo-label. This method outperforms many heuristics and DRL approaches on standard JSSP bench-
marks, all without relying on expensive ground-truth solutions. A crucial factor in these self-improvement schemes
is the method used to generate pseudo-labels. Specifically, [31] presented a problem-independent sequence decoding
approach aimed at boosting solution diversity. By sampling without replacement and excluding previously generated
sequences, their method broadens the search space and consistently enhances solution quality. Strong experimental
results on the Traveling Salesman Problem (TSP) and Capacitated Vehicle Routing Problem (CVRP) underscore its
robustness.

Our work draws inspiration from these self-supervised approaches [12, 31] while integrating additional ideas to
handle JSSP more effectively. We propose a Mixture of Experts neural network architecture combined with a sampling-
based pseudo-labeling process, similar to [12]. By unifying insights from these studies, our method aims to achieve
higher performance, scalability, and flexibility in solving complex scheduling tasks.

3 Preliminary

The Job-Shop Scheduling Problem (JSSP) is formally defined as a problem involving a set of jobs J and a set of
machines M . The size of the JSSP problem instance is described as N_J ×N_M , where N_J represents the number
of jobs and N_M the number of machines. For each job Ji ∈ J , it must be processed through ni machines in a
specified order Oi1 → . . . → Oini

, where each Oij (for 1 ≤ j ≤ ni) represents an operation of Ji with a processing
time pij ∈ N. This sequence also includes a precedence constraint. Each machine can process only one job at a time,
and switching jobs mid-operation is not allowed. The objective of solving a JSSP is to determine a schedule, that is, a
start time Sij for each operation Oij , to minimize the makespan Cmax = maxi,j{Cij = Sij + pij} while meeting all
constraints. The complexity of a JSSP instance is given by N_J ×N_M .

Furthermore, a JSSP instance can be represented through a disjunctive graph, a concept well-established in the
literature [41]. Let O = {Oij |∀i, j} ∪ {S, T} represent the set of all operations, including two dummy operations S
and T that denote the starting and ending points with zero processing time. A disjunctive graph G = (O,C,D) is
thus a mixed graph (a graph consisting of both directed edges (arcs) and undirected edges) with O as its vertex set.
Specifically, C comprises of directed arcs (conjunctions) that represent the precedence constraints between operations
within the same job, and D includes undirected arcs (disjunctions) connecting pairs of operations that require the same
machine. Solving a JSSP is equivalent to determining the direction of each disjunctive arc such that the resulting graph
becomes a Directed Acyclic Graph (DAG) [41]. Markov Decision Process Formulation (MDP), state representation,
action space, state transition follow the methods described in [41]. An action at ∈ At is an eligible operation at
decision step t.

4 Mixture of Experts with Attention-Based Routing

In this section, we present a details of the Mixture of Experts (MoE) component SchedulExpert neural architecture.
Unlike standard deep networks where all parameters are activated for every sample, the MoE framework employs spe-
cialized experts, each responsible for handling a subset of the input space. An attention-based router then dynamically
selects (or weights) which expert(s) to engage for a given input, enabling more efficient and specialized computation.

The MoE component consists of:

– Expert Modules: Multiple two-layer MLPs, each trained to specialize in a particular subspace of the data. An
MLP(multilayer perceptron) is a function approximator that maps input vectors to output vectors through a series
of affine transformations followed by nonlinear activation functions, organized in multiple layers.

– Attention Router: A learnable mechanism that calculates a per-input weight vector over the experts, indicating
how much each expert should contribute.
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4.1 Expert Modules

Let {Experti}Mi=1 be the set of M expert modules, each parameterized by a two-layer MLP. For an input feature vector
x ∈ RDin , the i-th expert outputs:
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(1)
i ∈ RH×Din and W

(2)
i ∈ RDout×H are weight matrices, b(1)

i ∈ RH and b
(2)
i ∈ RDout are bias terms, and

σ(·) is a non-linear activation function (e.g., ReLU). We denote the final output of expert i by:

zi = Experti(x) = z
(2)
i ∈ RDout . (3)

Thus, each expert produces a Dout-dimensional representation of the input x.

4.2 Attention-Based Router

The router is designed to compute a distribution over the M experts for each input, indicating how much each expert
will contribute to the final output. Let e ∈ RDembed be an embedding ( from a GAT encoder) that we wish to route
through the experts. The routing proceeds in three stages: (1) Multi-Head Self-Attention, (2) Expert Score Calculation,
and (3) Weighted Aggregation.

Multi-Head Self-Attention The router first produces query, key, and value vectors from e:

Q = WQ e, K = WK e, V = WV e, (4)

where WQ,WK ,WV ∈ RHattn×Dembed are learnable matrices. We treat each of these as having a sequence length of 1
for simplicity (since we have a single embedding vector per sample), but conceptually this can be extended to a set of
embeddings.

The multi-head attention output a is computed by:

a = MHA(Q,K,V), (5)

where MHA(·) denotes multi-head attention:

a =
[
head1 || head2 || . . . || headh

]
WO, (6)

headj = softmax
(QjK

⊤
j√

dj

)
Vj , (7)

with h denoting the number of heads, dj = Hattn/h the dimension of each head, and WO ∈ RHattn×Hattn an output
projection matrix. After attention, we apply normalization (i.e. LayerNorm) to stabilize the training:

anorm = LayerNorm
(
a
)
. (8)

Expert Score Calculation Next, the router generates expert-specific scores from the attention output:

s = WS anorm + bS ∈ RM , (9)

where WS ∈ RM×Hattn and bS ∈ RM are learnable parameters. We then apply a softmax function to obtain a
probability distribution over the M experts:

w = softmax(s) ∈ RM , (10)

where wi is the weight assigned to expert i.
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Weighted Aggregation Each expert i is now given the (same) attentively processed input anorm ∈ RHattn to produce
its own output:

zi = Experti
(
anorm

)
, (11)

where zi ∈ RHattn (assuming Din = Dout = Hattn for simplicity).
Finally, the MoE output is a weighted sum of these expert outputs:

zrouted =

M∑
i=1

wi zi ∈ RHattn . (12)

This zrouted is then the routed embedding, which then can be used by the Decoder.

4.3 Incorporation into the GAT Pipeline

In our GAT-based encoder-decoder framework for JSSP, the MoE module is placed after the final GAT layer. The
encoder takes JSSP instance represented as disjunctive graph with 11 hand-crafted features similar to [12] and produces
embedding representation. We use the fiollowing hand-crafted features:

1. Co(t,j)−1(π<t) minus the completion time of machine µo(t,j), representing job j’s idle time if scheduled at t.
2. Co(t,j)−1(π<t) divided by the makespan of π<t, measuring how close job j is to the makespan.
3. Co(t,j)−1(π<t) minus the average completion time of all jobs, indicating job j’s earliness or lateness.
4-6. The difference between Co(t,j)−1(π<t) and the 1st, 2nd, and 3rd quartiles of job completion times, reflecting

j’s relative completion.
7. The completion time of µo(t,j) divided by the makespan of π<t, showing how close µo(t,j)’s completion is to

the makespan.
8. The completion time of µo(t,j) minus the average completion time of all machines, quantifying its earliness or

lateness.
9-11. The difference between µo(t,j)’s completion and the 1st, 2nd, and 3rd quartiles of machine completion times,

showing its relative completion.
Specifically, we take the output H(2) ∈ RN×Eembed of the second GAT layer, partition each node’s embedding

across M experts, and feed these partitioned embeddings to the corresponding experts. Let

H(2)
n = [p1 ||p2 || . . . ||pM ] ∈ REembed ,

where pi ∈ R
Eembed

M is the portion of the n-th node’s embedding directed to expert i. We then compute expert outputs
and apply the attention router to obtain the final mixture-of-experts representation zrouted for each node. Concretely,

zi = Experti(pi), i = 1, 2, . . . ,M, (13)

zrouted = Router
(
[ z1 || . . . || zM ]

)
. (14)

Then each Experti processes its own chunk pi independently. The aggregated output zrouted is then concatenated
with the original node features Xn to produce the final node embedding used in subsequent component network
Decoder:

hn =
[
Xn || zrouted

]
. (15)

4.4 Decoder Architecture

At each time step t the Decoder generates the probability of selecting each job by leveraging both job embeddings ei
and solution-related features. The Decoder is composed of two main components:

Memory Network. Generates a state sj ∈ Rd for each job j ∈ J from the partial solution π<t.
First, we extract a context vector cj from π<t (as in [12]), which encodes handcrafted features indicating the status

of job j. These vectors are fed into a Multi-Head Attention layer (MHA) followed by a non-linear projection:

sj = ReLU
([

cjW1 + MHAb∈J

(
cbW1

)]
W2

)
, (3)

where W1 and W2 are projection matrices. The MHA module accounts for the entire set of jobs J when generating
sj , following the idea in [12].
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Classifier Network. Outputs the probability pj of selecting job j by combining the embedding eo(t,j) of its ready
operation with the state sj from the memory network. We concatenate eo(t,j) and sj , then apply a feed-forward
network (FNN):

zj = FNN
([

eo(t,j) ∥ sj
])

. (4)

The scalar zj ∈ R is then transformed via softmax to obtain the probability pj :

pj =
ezj∑
b∈J ezb

.

Finally, the decision on which job to select at time t is made by sampling from these probabilities.

4.5 Benefits and Intuition

Parameter Efficiency. Since each input primarily activates only a subset of experts (as determined by w), the network
can scale by adding more experts without increasing the per-example computation linearly. Compared to the method
described in [12], our proposed ScheduleExpert Neural architecture requires fewer parameters while achieving nearly
equivalent performance as seen in table 2. Specifically, with the same hyperparameter configurations (i.e., input_size,
hidden_size, embed_size), the ScheduleExpert encoder contains 158,084 parameters, compared to 166,784 in [12]—a
reduction of nearly 8,700 parameters or 5.22%. Similarly, under the same settings for context size and hidden dimen-
sions, our decoder has 173,057 parameters compared to 210,177 in [12], resulting in a reduction of 37,120 parameters,
or 17.66% less than [12].

Specialization. Each expert can learn to handle different regimes or structures in the JSSP environment (e.g., certain
job-machine patterns), improving generalization.

Dynamic Routing. By leveraging the attention router, the model learns to adaptively choose which experts to trust for
a given embedding, offering flexibility and expressive capacity beyond static parameter sharing.

5 Putting It All Together

When integrated with the encoder and the decoder, the MoE module serves as a critical flexible layer that selectively
refines the learned node embeddings. Formally, for each node n:

1. GAT Layers:
H(1) = GAT1(X,E), H(2) = GAT2

(
[X ||H(1)],E

)
.

2. MoE Module:
zrouted,w = Router

(
H(2)

n

)
, hn = [Xn || zrouted ].

3. MHA Decoder:
logitsn = MHADecoder

(
hn, sn

)
.

Here, sn is any additional context state the decoder might consume (i.e., partial schedules or machine statuses). Then
logitsn are used to make scheduling decisions.

Input
(X,E)

GAT1
H(1)

GAT2
H(2)

Router
Attn-based

Expert 1 Expert 2 Expert n

Aggregator
Weighted Sum

Concat
X∥er

Decoder
MHA

Output
logits

Fig. 1. SchedulExpert architeture pipeline.



SchedulExpert: Graph Attention Meets Mixture-of-Experts for JSSP 7

5.1 Training Details

The entire MoE module is end-to-end trainable via backpropagation, following the training procedure described in
[12]. The training utilizes the cross-entropy loss function. For each training problem instance, S solutions are generated.
The makespan is then calculated for each of the generated solutions, and the solution with the minimum makespan
is selected as the pseudo-label. As training progresses, the quality of the pseudo-labels improves with the increasing
number of training steps. The training was conducted on Nvidia A6000 GPU with 48 GB of RAM. The total training

Fig. 2. Average Gap in percentages during the training and validation

consumed around 35GB of VRAM. To train the model, we used a dataset consisting of 30 000 instances as descussed
in [12]. The dataset consists of randomly generatd instances of the following sizes 10 × 10, 15 × 10, 15 × 15, 20 ×
10, 20 × 15, 20 × 20 with 5000 instances per each sinstance shape. We train the entire architecture, comprising the
GAT encoder, MoE module, and MHA decoder, in an end-to-end manner using mini-batch stochastic gradient descent
with the Adam optimizer. Key hyperparameters include an encoder hidden size and output size of 64, determining
the dimensions of internal GAT layers and the node embeddings, respectively. Similarly, the memory network hidden
size and output size are set to 64, influencing the memory and attention modules in the MHA decoder. The classifier
hidden size and latent dimension are also 64, shaping the decoder’s classification layers and intermediate embeddings.
The MoE router distributes node embeddings across four experts (n_experts = 4). Training is performed with a
learning rate of 0.0002, a batch size of 128, and over 20 epochs unless early stopping criteria are met. We employ a
reducing scheduler (reduce) with a minimum learning rate of 10−6 to adjust the learning rate based on validation
performance. A scaling factor (beta) of 512 is used for specialized losses or regularizers. Gradient clipping and other
stabilization techniques ensure well-behaved optimization for multi-head attention and MoE routing. All modules are
trained simultaneously, with the best model checkpoint selected based on a validation metric after 20 epochs for final
evaluation.

6 Experimental Results

To demonstrate the effectiveness of our proposed SchedulExpert neural network architecture, we conducted ex-
periments on the well-known TA dataset [34] using a sampling size of 512. Sampling, involves using an already
trained neural network to generate multiple solutions and then selecting the best one(having the lowest makespan)
from sampled solutions. The performance on each benchmark was evaluated using the percentage Gap (G), defined
as:
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G = 100×
(
Malg

Mub
− 1

)
,

where Malg represents the makespan generated by the algorithm, and Mub denotes the optimal or best-known
makespan for the instance. Lower G values indicate better performance, as they correspond to solutions with objective
values closer to the optimal or best-known makespan.

In this section, we present the results and other methods that we used a a baseline comparison.

6.1 Priority Dispatching Rules

We begin by introducing the notations used in these rules, summarized as follows:

Zij : the priority index of operation Oij ,

ni : the number of operations for job Ji,

Rei : the release time of job Ji
(
here we assume Rei = 0 for all Ji,

i.e. all jobs are available in the beginning, but in general

the jobs could have different release times
)
,

pij : the processing time of operation Oij .

Based on the above notations, the decision principles for each baseline are given below:

– Shortest Processing Time (SPT):
minZij = pij .

– Most Work Remaining (MWKR):

maxZij =

ni∑
k=1

pik.

– Most Operations Remaining (MOPNR):

maxZij = ni − j + 1.

– Taboo search [26] uses a technique with a specific neighborhood definition that employs concepts of critical paths
and blocks of operations.

The evaluation is divided into two categories: Greedy and With Sampling (s = 128). The results indicate that
SE-Ours consistently outperforms other methods, achieving the best results across multiple shapes.

In the Greedy setting in table 1, SE-Ours achieves the lowest values in most cases, with particularly strong perfor-
mance in configurations like 30×15 (18.5) and 30×20 (20.5). The average performance (14.8) confirms its superiority
over other methods, which exhibit higher values, such as MWKR (19.5) and MOPNR (20.1). With Sampling setting
with s = 128 we incorporated temperature and top_k parameters. Through our evaluation we found out that the
best values for top_k = 0.5 and temperature = 0.5. SE-Ours_512 achieves the best performance across all cases,
further improving results compared to SE-Ours_128 and other baselines. The average performance (8.2) demonstrates
a substantial improvement over alternative methods, such as RASCAL (10.5) and L2D (14.8). The best results are
highlighted in green and with *, confirming that SE-Ours significantly reduces the gap G.

In table 2 we compare our model with different neural methods, including L2S, NeuroLSA, MIP (Mixed Integer
Programming), SN, and SE-SE-Ours_512, across various problem shapes. The results indicate that SE-Ours_512
consistently outperforms all other approaches, achieving the lowest values across all cases.

SE-Ours_512 achieves the best performance for every shape, with significant improvements over the competing
methods. For instance, in the 30×20 case, SE-Ours_512 achieves 12.8, outperforming L2S (17.5) and SN (23.7).
Similarly, for 100×20, SE-Ours_512 records an impressive 2.5, significantly better than L2S (7.9) and MIP (11.0).
In Figure 3 we compare the average time(on the x-axis) vs the average gap(on the y-axis) for 80 instances in Tailard
dataset [34]. For small values of s (e.g., s = 1, s = 4, s = 8), the average gap is high, exceeding 12-15, but
computation time remains low. As s increases, the average gap decreases significantly, reaching values close to 8
when s = 1024, albeit with an increased computational time of over 7 minutes. But still for single average instance



SchedulExpert: Graph Attention Meets Mixture-of-Experts for JSSP 9

from the Tai[34] benchmark, it takes about 5 seconds for s = 1024. Figure 4 illustrates the relationship between
the total parameter count and the average performance gap, comparing SE-Ours and SLJ with sample size s = 512
[12] across various instances of the Taillard benchmark dataset [34]. Notably, despite using 17.66% fewer parameters,
ScheduleExpert achieves a comparable average performance gap to SLJ[12] across different instance sizes.

Fig. 3. Required time per different sample size and how it affect on the average gap (the lower the better). Each point corresponds
to Average time vs Average Gap in percentages on 80 examples on Tai[34] dataset

6.2 Neural Approaches

– L2D[41] models JSSP as an MDP where each step selects an operation, updating a disjunctive graph G(t) and
state st. The reward R(at, st) = H(st) − H(st+1) guides makespan minimization via policy π(at | st). L2D
employs a GIN [37] to encode graph-structured data. Node embeddings update iteratively:

h(k)
v = MLPθk

(
(1 + ϵ(k))h(k−1)

v +
∑

u∈N (v)

h(k−1)
u

)
. (16)

Global embeddings guide action selection via MLP and softmax. Training uses PPO-based [33] actor-critic with
a shared GIN backbone.

– RASCL [19] proposes Reinforced Adaptive Staircase Curriculum Learning (RASCL) strategy to enhance re-
inforcement learning in job-shop scheduling by dynamically adjusting task difficulty and revisiting challenging
instances, leading to improved dispatching policies and reduced optimality gaps.

– In L2S[40] at first JSSP solution is obtained by GNN, using RL agent it iteratively refines the schedules through
a learned improvement heuristic.

– NeuroLSA[16] presents GNN-based controller that dynamically selects acceptance criteria, neighborhood oper-
ators, and perturbation strategies within a local search framework to effectively solve combinatorial optimization
problems.

– ScheduleNet[29] uses RL-based decentralized scheduler that coordinates multiple agents to complete tasks with
minimal makespan, utilizing a type-aware graph attention mechanism to effectively represent and process schedul-
ing problems.

– We also utilized Mixed Integer Programing as a comparison MIP[20] with execution time limit of 1 hour.
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Greedy With sampling s = 128
Shape SPT MWKR MOPNR Taboo L2D RASCL SE-Ours SPT MWKR MOPNR L2D RASCL SE-Ours128 SE-Ours512
15×15 26.1 19.1 20.4 14.4 26.0 14.3* 14.7 13.5 13.5 12.5 17.1 19.1 7.5 6.5*
20×15 32.3 23.3 24.9 18.9 30.0 16.5 14.8* 18.4 17.2 16.4 23.7 16.0 10.0 9.1*
20×20 28.3 21.8 22.9 17.3 31.6 17.3* 18.3 16.7 15.6 14.7 22.6 19.0 10.1 9.3*
30×15 35.0 24.1 22.9 21.1 33.6 18.5 18.5* 23.2 19.0 17.3 24.4 14.0 11.8 11.1*
30×20 33.4 24.8 26.2 20.7 36.3 21.5 20.5* 23.6 19.9 20.4 28.4 16.1 13.9 12.8*
50×15 24.0 16.4 17.6 15.9 22.4 12.2 12.2* 14.1 13.5 13.5 17.1 19.3 7.8 7.0*
50×20 25.6 17.8 16.8 20.3 26.5 13.2* 14.0 17.6 14.6 14.0 20.4 9.9 8.4 7.7*
100×20 14.0 8.3 8.7 13.5 13.6 5.9 5.8* 10.4 7.0 7.1 13.3 4.0 2.6 2.5*
Avg 27.4 19.5 20.1 18.0 27.1 14.9 14.8* 17.2 15.0 14.5 14.8 10.5 9.0 8.2*

Table 1. The average percentage gap (G) comparison of different heuristics and L2D neural methods against our model. In each
row, the best (minimum) value is highligted with color green and *. Sampling, involves generating multiple solutions with a fixed
method or algorithm and then selecting the best one(having the lowest makespan) from sampled solutions.

Shape L2S NeuroLSA MIP SN SE-Ours512
15×15 9.3 7.7 0.1 15.3 6.5*
20×15 11.6 12.2 3.2 19.4 9.1*
20×20 12.4 11.5 2.9 17.2 9.3*
30×15 14.7 14.1 10.7 19.1 11.1*
30×20 17.5 16.4 12.6 23.7 12.8*
50×15 11.0 11.0 12.2 13.9 7.0*
50×20 11.8 11.2 13.5 13.5 7.7*
100×20 7.9 5.9 11.0 6.7 2.5*
Avg 12.2 11.3 8.4 16.1 8.2*

Table 2. The average percentage gap (G) comparison of different neural methods and mixed integer programming(MIP) against
our model. In each row, the best (minimum) value is highligted with color green and *.

7 Conclusion

In this work, we presented SchedulExpert, a neural Mixture of Experts model for efficient JSSP solving. By combin-
ing graph-based representations, attention-driven routing, and self-supervised learning, it achieves strong performance
with fewer parameters and reduced reliance on labeled data. Experiments show competitive results against traditional
and deep learning methods. Future work will extend SchedulExpert to dynamic JSSP and other combinatorial opti-
mization tasks demonstrating its versatility and efficiency.
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