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Abstract

Bayesian Optimization (BO) is a powerful tool for tackling optimization problems
involving limited black-box function evaluations. However, it suffers from high
computational complexity and struggles to scale efficiently on high-dimensional
problems when fitting a Gaussian process surrogate model. We address these is-
sues by proposing a fast acquisition function maximization procedure. We lever-
age the fact that Probability Improvement (PI) acquisition function can be seen
as a likelihood function whose score can be estimated through a simple linear re-
gression problem called local score matching. This enables fast gradient-based
optimization of the acquisition function, and a competitive BO procedure which
performs similarly to that of computationally expensive neural networks.

1 Introduction

Black-box optimization [1, 2] seeks to identify the optimum (maximum in this paper) of a function
g(x) whose closed-form expression and gradient information are unknown, with as little computa-
tional resources as possible. Bayesian optimization (BO, [6]) is particularly effective for this task.
It utilizes a probabilistic surrogate, typically a Gaussian Process (GP, [20]), to sequentially select
new evaluation points based on the mean function and quantify uncertainty through the covariance
function. Although BO can achieve relatively good accuracy with only a few function evaluations,
the cost of each new proposal evaluation scales as O(n3) with the number of function evaluations
n, which becomes the dominant factor for overall cost in the optimization process.

To reduce computational expenses, a new paradigm called Bayesian optimization via density ratio
estimation (BORE, [4, 16]) was introduced. BORE reformulates the improvement-based acquisi-
tion function (e.g. probability improvement, PI[10], expected improvement, EI[11]) as a problem of
estimating the density ratio [15, 22] between two distributions of x conditioned on whether the cor-
responding function value y exceeds a certain threshold τ . Song et al. [13] further generalize BORE
to likelihood-free Bayesian optimization (LFBO), where the acquisition function can be constructed
in terms of more complex utility functions through variational representation[12]. This approach
significantly reduces the computational complexity from O(n3) to O(n). However, the acquisition
function itself in both BORE and LFBO still remains demanding to optimize due to:

• The involvement of neural networks typically incurs extra cumbersome numerical opti-
mization.

• Potential overfitting in the density ratio estimate, particularly in high dimensions.
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Motivated by these challenges, we present a new approach that maximizes the acquisition function
by gradient ascent. The key observation is that the PI acquisition function is a likelihood function
whose gradient could be estimated using score matching. Under mild regularity conditions, we
utilize a simple regression model to learn the score without training any neural network. Moreover,
our method maintains the computational complexity at O(n).

2 Backgroud

Consider the global optimization problem for a black-box function f over a compact search space
X ⊂ Rd:

x∗ = argmax
x∈X

f(x), (1)

where the expression and gradient of the objective function f : X → R are unknown. We can
only access f through a set of noisy observations DN = {(xn, yn)}Nn=1, where the evaluations
y = g(f(x); ϵ) are corrupted by noise ϵ.

By assigning a probabilistic surrogate model (typically analytical probabilities e.g. GP [20]) to
the objective function f , the acquisition function α(x;DN , τ) is defined as the expected value of the
utility function u(x, y, τ) under the posterior predictive p(y|x,DN ) of f attained from GP regression
[19]:

α(x; τ) := Ep(y|x,DN )[u(x, y, τ)], (2)
where τ is a hyperparameter that balances exploration and exploitation. BO selects the candidate so-
lutions by maximizing acquisition xt+1 = argmaxxα(x; τ). In GP-based BO [5], most acquisition
functions have closed-form solutions that are easy to optimize [21]. Nevertheless, the complexity
of the GP regression is O(n3) which limits scalability to large datasets, posing significant computa-
tional challenges in high-dimensional settings.

We focus on a particular utility function, the Probability of Improvement function (PI): u(x, y, τ) :=
I(y − τ ≥ 0), where τ is a threshold of the function value. By definition, the acquisition function is

α(x; τ) = Ep(y|x,DN )[I(y − τ ≥ 0)] = p(y ≥ τ |x,DN ).

This acquisition function measures the probability that a new candidate point x yields an observation
y greater than the threshold τ . τ is typically selected as the current maximum observed function
value: τ = maxn yn in our observation DN .

3 Methodology

First, let z denote a binary variable:

z := I(y ≥ τ) =

{
0, y < τ

1, y ≥ τ,
(3)

Then, the PI acquisition function can be rewritten as α(x; τ) = p(z = 1|x). Without any probabilis-
tic surrogate model to the objective function f , we propose to directly maximize the PI acquisition
function by performing gradient ascent :

xk = xk−1 + η∇x log p(z = 1|x)|x=xk−1
. (4)

3.1 Matching the score locally

We model ∇x log p(z = 1|x)|x=xk−1
using a vector-valued function β(z) : {0, 1} → Rd:

β(z) :=

{
β0 ∈ Rd, z = 0

β1 ∈ Rd, z = 1.
(5)

We leverage the score matching techniques [8, 18] to learn the score of the acquisition function
∇x log p(z = 1|x) through a least squares regression:

min
β1

J(β) = Ep(z,x|xk−1)

[
∥∇x log p(z|x)− β(z)∥2

]
, (6)
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Algorithm 1 Maximizing Acquisition Function via Gradient Ascent
Require: Generator y = g(f(x); ϵ), hyperparameters σ, η, threshold τ , input xk=0

steps of gradient ascent K, number of samples M
1: for k = 1, ...,K do ▷ Perform gradient ascent K steps
2: while m ≤M do ▷ Survey local landscape
3: sample x(m) ∼ q(x|xk−1)
4: evaluate y(m) ← g(f(x); ϵ)
5: z(m) ← I[y(m) ≥ τ ]
6: m← m+ 1
7: end while
8: D′

k ← {(x(m), y(m))}Mm=1 ▷ Collect sample
9: β̂1 ←Monte Carlo approximate according to (9) ▷ Local score estimation

10: xk ← xk−1 + ηβ̂1 ▷ Update location
11: end for
12: Output: the final candidate xK , used sample D′

1:K

where xk−1 is from the previous value of x in the gradient ascent algorithm. The joint probability
is factorized as p(z, x|xk−1) = p(z|x)q(x|xk−1)

1, where q(x|xk−1) is a proposal distribution. It
samples candidate x around xk−1.

Since the target score ∇x log p(z = 1|x) in the objective (6) is unknown, we cannot directly min-
imize J(β). The following theorem provides a closed-form solution of (6) and forms the basis of
our algorithm:
Theorem 1. Assuming that the probability p(z|x) and the proposal distribution q(x|xk−1) are dif-
ferentiable. The objective (6) has the optimal solution:

β∗
1 = Ep(x|z=1,xk−1) [∇x log p(z = 1|x)] = −Ep(x|z=1,xk−1) [∇x log q(x|xk−1)] , (7)

where the second equality follows from integration by parts under mild assumptions.

Note that the minimizer β∗
1 in Eq. (7) is a conditional expectation of the desired score∇x log p(z =

1|x)|x=xk−1
, implying that it is a biased estimator. The following result ensures that it is asymptoti-

cally unbiased given an appropriate choice of the proposal distribution.
Corollary 1. Let the proposal distribution q(x|xk−1) be a normal distribution N(x|xk−1, σ

2Id).
Then β∗

1 = Ep(x|z=1,xk−1)

[
σ−2(x− xk−1)

]
and

lim
σ→0

β∗
1 = ∇x log p(z = 1|x)|x=xk−1

. (8)

Corollary 1 shows the solution to the objective (6) is tractable and, when σ goes to zero, provides
an asymptotically unbiased estimate of the desired score. The proofs of Theorem 1 and Corollary 1
can be found in Appendix A.

3.2 Gradient ascent algorithm and finite sample estimator

We summarize our gradient ascent algorithm in Algorithm 1 and defer the full BO algorithm together
with the complexity analysis to Appendix B. We now detail the computation of β̂1 using D′

k, i.e.,
paired function evaluations and their input values. According to Corollary 1, β∗

1 =
∫
p(x|z =

1, xk−1)
[
σ−2(x− xk−1)

]
dx. Once the threshold τ is determined, we can approximate the above

integral using a Monte Carlo estimator:

β̂1 =


∑
[σ−2(x(m),1−xk−1)]∑M

m=1 z(m) ,
∑M

m=1 z
(m) > 0

0,
∑M

m=1 z
(m) = 0

, (9)

where x(m),1 is short for x(m)|z(m) = 1. If z(m) = 0 for all 1 ≤ m ≤ M we simply set β̂1 = 0.
Intuitively, β̂1 can be interpreted as an average of (x− xk−1)/σ

2 using local information that is
{(x(m), z(m))}Mm=1 sampled within a neighborhood of xk−1 with radius determined by σ.

1By our construction, z and xk−1 are conditionally independent given xk−1, so p(z|x, xk−1) = p(z|x).
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Figure 1: Immediate regret for the Rosenbrock function, repeated over 10 different seeds
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Figure 2: Immediate regret for the Rastrigin function, repeated over 10 different seeds

4 Experiments

Since we estimate the gradient of the acquisition function, we can resort to first-order optimizers
such as ADAM [9] and RMSProp [17] to maximize the acquisition function.

Note that Corollary 1 suggests that σ should be small near the end of gradient ascent. However,
since σ controls the local survey region as well, we propose a linear annealing schedule to balance
this trade-off.

σ2
t = σ2

0 ·max

(
0, 1− t− 0.1

T

)
We quantitatively evaluate the performance of our method by benchmarking against some standard
black-box optimization problems, fixing a function evaluation budget of 250. Following LFBO
[13], we report the immediate regret as a metric, which measures the distance of the current best
function evaluation from the optimum function evaluation. The shaded regions represent the mean
plus and minus one standard deviation across 10 different seeds. We compare against the neural-
network based LFBO approach, which despite using a different acquisition function, is a similar
approach to our work that does not require inference of a surrogate model. We also provide the
results using a random-search algorithm as a reference. From these results, we observe that our
local score matching method (SM) is broadly competitive with the LFBO method. It outperforms
LFBO in higher dimensions in the Rosenbrock experiment when the neural network estimation in
LFBO is likely to struggle. In this work, we focus on preliminary investigation of LSM method via
synthetic datasets with mild dimensions. Experiments on high-dimensional, real-world datasets are
important future works.

5 Discussions and Future Works

We propose an optimization scheme that maximizes the PI acquisition function bypassing the GP
regression restriction. Despite the promising performance of our method, there are still some limi-
ations. As the gradient information is myopic, our algorithm may not achieve the global optimum
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of the acquisition function. In addition, our method is restricted to PI acquisition function since our
score matching objective can only be used to estimate the gradient of a likelihood function. Without
a likelihood expression, other acquisition functions cannot be readily estimated through our proce-
dure. An interesting avenue for future work would be to generalize our work to a broader class of
acquisition functions. Finally, our method requires additional evaluations of the blackbox function
for estimating the gradient of the utitlity function at each gradidient iteration.

We also notice that our algorithm is very similar to Covariance Matrix Adaptation - Evolutionary
Strategy (CMA-ES, [7]). Further investigations into the relationship between these two methods
could be a promising direction.
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A Proofs

For ease of notation, here we denote z1 and z0 when z = 1 and z = 0 respectively.

A.1 Proof of Theorem 1

Proof. Note that β(z) is a function that only depends on z. Unrolling Eq. (6) by factorizing the
joint probability in two conditional density:

J(β) = Ep(z,x|xk−1)

[
∥∇x log p(z|x)− β(z)∥2

]
= J1(β1) + J0(β0) (10)

= p(z1|xk−1)

∫
p(x|z1, xk−1)

[
∥∇x log p(z1|x)− β1∥

2
]
dx︸ ︷︷ ︸

J1(β1)

(11)

+ p(z0|xk−1)

∫
p(x|z0, xk−1)

[
∥∇x log p(z0|x)− β0∥

2
]
dx︸ ︷︷ ︸

J0(β0)

(12)

= p(z1|xk−1)
[
∥β1∥

2 − 2 ⟨β1, νz(x)⟩
]
+ C + J0(β0), (13)

where νz1(x) = Ep(x|z1,xk−1) [∇x log p(z1|x)] and:

C = Ep(x|z1,xk−1)

[
∥log p(z1|x)∥2

]
(14)

is a constant. Take partial derivate w.r.t β1 on Eq. (13) and set it to zero, after simplifying one can
recognize the optimal solution:

β∗
1 = νz1(x) = Ep(x|z1,xk−1) [∇x log p(z1|x)] . (15)

Given p(z1|x) and q(x|xk−1) is differentiable and under mild assumption 2 , one has:
β∗
1 = Ep(x|z1,xk−1) [∇x log p(z1|x)] (16)

=

∫
((((((p(z1|x, xk−1)q(x|xk−1)

p(z1|xk−1)
· ∇xp(z1|x)

����p(z1|x)
dx (17)

(∗)
= −

∫
p(z1|x)

p(z1|xk−1)
∇xq(x|xk−1)dx (18)

= −
∫

p(z1|x, xk−1)q(x|xk−1)

p(z1|xk−1)
· ∇xq(x|xk−1)

q(x|xk−1)
dx (19)

= −Ep(x|z1,xk−1) [∇x log q(x|xk−1)] , (20)

2Recall z and xk−1 are conditionally independent given x and this assumption of independence p(z =
1|x) = p(z = 1|x, xk−1) is also used in the proof of Corollary 1.
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in which (∗) uses integration by parts with regularity condition:

lim
|xi|→∞

q(x|xk−1)p(z1|x) = 0, (21)

holds in every dimension xi, i = 1, . . . , d of x.

A.2 Proof of Corollary 1

Proof. Rewrite β∗
1 using Bayesian rule:

β∗
1 = Ep(x|z1,xk−1) [∇x log p(z1|x)] (22)

=

∫
p(z1|x, xk−1)q(x|xk−1)

p(z1|xk−1)
∇x log p(z1|x)dx. (23)

Now we set the proposal distribution q(x|xk−1) = N(x|xk−1, σ
2Id) as Gaussian, whose limit dis-

tribution is is the Dirac delta function centered on xk−1 as σ → 0. Under the same assumption in
Proof of Theorem 1, we now have:

β∗
1 →

p(z1|x)
p(z1|xk−1)

∇x log p(z1|x)

∣∣∣∣∣
x=xk−1

(24)

= ∇x log p(z1|x)|x=xk−1
(25)

when σ → 0.

B The complete BO algorithm

Algorithm 2 Bayesian Optimization via Local Score Matching
Require: Generator y = g(x; ϵ), hyperparameters σ, η, budget T,K,M , observations DN

1: Dt=0 ← DN (or initialize xt=0, simulate yt=0 ← g(xt=0; ϵ), Dt=0 ← {(xt=0, yt=0)} if no
observations at beginning)

2: while 1 ≤ t ≤ T do
3: τ ← maxy in Dt−1 ▷ Set the threshold
4: xk=0 ← xt−1 ▷ initializing xk−1

5: Do Algorithm 1
6: xt ← xK ▷ Cadidate solution
7: yt ← g(xt; ϵ) ▷ Evaluate black-box function
8: Dt ← Dt−1 ∪Kk=1 D′

k ∪ (xt, yt) ▷ Update dataset
9: t← t+ 1

10: end while

Given T,K,M , the total number of evaluations required in our algorithm is n = T × (K×M +1).
The complexity is thus O(TKM) or equivalently O(n).
Theoretically, xt−1 can be initialized to any location x1:N in DN . Experimentally, we set it as the x
of which corresponding evaluation is max y, y ∈ DN by the greedy heuristic.

C Experimental Details

For all algorithms, we initialized the dataset with 4 initial points, which we do not count in our func-
tion evaluations, as is necessary for the LFBO algorithm. This initial dataset is the same across all
algorithms. For the random search algorithm, the optimal point and function evaluation is initialized
from this dataset.

For our local score matching algorithm, the Adam optimizer is used for the maximizing of the
acquisition function. We used a fixed step-size of 5 · 10−1 throughout all experiments.3 We used a

3Inspired by the training of Noise Conditional Score Network (NCSN) [14], when the budget is considerably
large we can set the learning rate η ∝ 1/σ2 to cancel the unstability induced by variance annealing.
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budget of T = 5,K = 5,M = 10, which results in an overall function evaluation budget of 255,
although only the first 250 function evaluations are shown in Figures 1 and 2.

For the random search algorithm, we sampled uniformly with bounds of [−5, 5] across all dimen-
sions, for both experiments. We sampled 10 points, over a total of 25 iterations, for a total of 250
function evaluations in total.

For the LFBO algorithm, we broadly followed the specifications provided by code in the original
paper [13]. We used a two layer Neural Network, with 32 hidden units, which is optimized with the
Adam optimizer with a fixed learning rate of 10−3. The acquisition function was optimized with the
BOTORCH package [3] in Python.
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