
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053
054

Neural Network Optimization with Weight Evolution

Anonymous Authors1

Abstract

In contrast to magnitude pruning, which only
checks the parameter values at the end of train-
ing and removes the insignificant ones, this paper
introduces a new approach that estimates the im-
portance of each parameter in a holistic way. The
proposed method keeps track of the parameter
values from the beginning until the last epoch and
calculates a weighted average across the training,
giving more weight to the parameter values closer
to the completion of training. We have tested
this method on popular deep neural networks
like AlexNet, VGGNet, ResNet and DenseNet
on benchmark datasets like CIFAR10 and Tiny
ImageNet. The results show that our approach
can achieve higher compression with less loss of
accuracy compared to magnitude pruning.

1. Introduction
Over time, Neural networks have evolved from a single
neuron(perceptron (Rosenblatt, 1958)) to Artificial Neu-
ral Networks(multi layer perceptron) (Guo et al., 2018;
Sharma & Singh, 2017), followed by Convolution Neu-
ral Networks(CNN) (Fukushima, 1980; LeCun et al., 1989;
Weng et al., 1993; Salman et al., 2018) and then moving
on to Recurrent Neural Networks (Robinson & Fallside,
1987). In a neural network, the basic component is a neu-
ron (which is called a filter in the case of a convolutional
neural network), and every neuron has weights. As the neu-
ral network increases in depth and density, the number of
neurons (and consequently, the number of weights in the
network) also increases. During the training process, the
weights are assigned values to create a reliable classifier that
can differentiate between data points of different categories.
After training, a standard way of reducing the size of the
network is by pruning weights that have low values, setting
them to 0. (Han et al., 2016). The standard approach for

1Anonymous Institution, Anonymous City, Anonymous Region,
Anonymous Country. Correspondence to: Anonymous Author
<anon.email@domain.com>.

Preliminary work. Under review by the International Conference
on Machine Learning (ICML). Do not distribute.

pruning neural networks involves multiple rounds of prun-
ing followed by retraining to maintain the accuracy of the
model. This technique is highly regarded and has led to
significant reductions in the size of neural networks while
often outperforming un-pruned networks in terms of accu-
racy. Many weight-based pruning algorithms are based on
this method. However, this paper presents a critical analy-
sis of commonly used pruning methods and highlights key
concerns. A revised approach is also proposed for more
effective pruning of neural networks.

2. Research Question
Currently, the commonly accepted pruning method involves
examining the weights in a network after training, producing
a threshold-based mask using the absolute values of the
weights, and preserving those with a higher magnitude. This
paper challenges this approach, instead presenting a more
comprehensive perspective on how parameter magnitudes
change throughout training.

Weight Evolution: This paper proposes that it is not enough
to evaluate the importance of weights based solely on their
values at the end of the training process. The article ques-
tions whether a weight that has a high magnitude initially
could lose its importance over time and vice versa. Instead,
the article suggests that monitoring the trend of weight value
changes throughout training could be a more informative
metric for assessing weight importance. As a result, the
article advocates for a holistic approach for observing the
progress of weight values during training and proposes a
new metric called weight evolution, which is the main focus
of the paper.

Section 3 delves deeper into the process of recording the evo-
lution of weights. It also discusses the method of forward
and fine pruning that constitute the complete pruning oper-
ation. We perform our experiments on the tiny-Imagenet
and CIFAR-10 (Krizhevsky, 2009) datasets. The models
used are AlexNet, DenseNet, ResNet and VGGNet. Details
about the models and data are presented in the section 4.
Finally, section 5 shows the results and comparison with
other standardised pruning algorithms.

055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107
108
109

Submission and Formatting Instructions for ICML 2021

a b

Figure 1. a. The progression of randomly chosen weights across
100 epochs of training.
b. The progression of specific weights across 100 epochs of train-
ing.

a. b.

c. d.

e. f.

Figure 2. Different patterns of magnitude perturbation across train-
ing epochs

3. Proposed Method
The pruning method proposed in this work consists of the
following components.

3.1. Evolution Of Weights

Before training a neural network, the weights are assigned
arbitrary values. As training progresses, these values change
and may increase or decrease at different rates. Figure 1a
shows the changes in weight magnitudes for a set of weights
in a neural network trained with the CIFAR-10 dataset. We
observe that some weights initially increase in magnitude,
then decrease, while others continue to increase throughout
training. In Figure 1b, two weights have a similar magnitude
at the end of training, but their trajectories are different, with
one weight increasing and then decreasing, while the other
weight consistently increases. We can use these trajectories
to compare and prefer one weight over the other.

To further illustrate our findings, we present Figure 2, which
organizes weights into different groups based on their trend
of magnitude. Figure 2a shows the weights that had the
greatest movement in the positive direction, while Figure 2b

shows the weights that moved towards negative values. In-
terestingly, Figure 2d depicts weights that ended up close to
0 despite having larger initial magnitudes. Figure 2e shows
weights that remained almost stationary and had final values
close to their initial values. Figure 2f highlights weights
that had the greatest difference between their initial and
final magnitudes. These results illustrate the importance of
monitoring weight evolution throughout epochs, rather than
solely examining their final values. In the next sub-section,
we explain how an importance vector can be generated to
represent the progression of weights.

3.1.1. WEIGHT IMPORTANCE FROM EVOLUTION

In order to accurately determine the importance of network
parameters during each training epoch, we have developed
a calculation process that involves aggregating the weighted
magnitudes of the parameters. Simply analyzing the final
values of the parameters may not provide an accurate assess-
ment of their significance throughout the training process.
Instead, we assign weights to the magnitudes of the param-
eters at each epoch based on their position in relation to
the final epoch. This weighting approach places greater
importance on parameters closer to the final epoch, while
still incorporating values from previous epochs. After mul-
tiplying parameter magnitudes by their respective weights,
we average the resulting products to generate an importance
score for each parameter. Utilizing this method, we can cre-
ate an importance vector that displays parameter progression
throughout the training process.

For example, we can calculate the weighted importance of
a weight or filter by retaining an array that logs their mag-
nitudes at every epoch during the training process. We can
then use this array to determine the weighted importance
of the weight or filter based on the equation provided, with
the final result reflecting the weight’s importance in relation
to its magnitude and progression across all epochs. Table 1
provides an example of recorded weight magnitudes across
epochs. Using our previously described process, we deter-
mined that the three most important weights are Weight 1
(with an importance score of 14), Weight 2 (with an impor-
tance score of 13), and Weight 3 (with an importance score
of 6.66).

To generalize the calculation process, a vector is created for
each weight or filter (vali = [vali1, vali2, vali3, ...valin]),
where each element of the vector represents the magnitude
of the weight or filter i at each epoch during the n epochs of
training. This vector is then used to calculate the weighted
importance, with the equation provided determining the
importance value considering the last k epochs.

Impi =

∑k
L=0 vali(n−L) ∗ (n− L)∑k

L=0(n− L)
(1)

110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164

Submission and Formatting Instructions for ICML 2021

where the value of L ranges from 0 to k. This means that
0 represents the immediate final epoch of training, while
k represents the kth epoch going backwards from the end
of training. The resulting importance matrix serves as a
primary reference to understand the importance of weights
and guide the pruning process

Table 1. To calculate the importance of parameters across epochs,
we take the weighted average of each parameter by recording its
value at the end of each epoch in columns. We then calculate
the aggregated importance by taking the weighted sum of the
magnitudes of each weight, with the value of the multipliers shown
in the last row indicating how much each magnitude is multiplied.

Weight
Number

Ep
1

Ep
2

Ep
...

Ep
k

Aggregated
Importance

1 8 8 ... 6 14
2 6 3 ... 9 13
3 7 5 ... 1 6.66
4 1 2 ... 3 4.66
Multiplier ∗1 ∗2 ... ∗k

The importance matrix generated in this way is used in the
next step to perform the pruning of the neural network.

3.1.2. OPTIMIZED WEIGHTED AVERAGE CALCULATION

During training, the intermediate weights are not saved. In-
stead, at each epoch, the importance value of the weights is
calculated using weighted average calculation. The general-
ized approach is described as follows

• if epoch == 1:

– copy current weights to imp weights

• else:

– sum = (1 + 2 + ...+ (epoch− 1))

– imp weight = imp weight ∗ sum
– imp weight+ = current weights ∗ epoch
– imp weight = imp weight/(1+2+...+epoch)

3.2. Forward Propagation

3.2.1. MASK CREATION

In this particular step, we opted not to use the final mag-
nitudes of parameters as the measure of their importance.
Instead, the weighted averages of the parameters calculated
in the preceding section serve as the importance metric.
Furthermore, the importance values demonstrate a uniform
distribution with the majority of values lying closer to 0.
Depending on the desired level of compression, we select a
threshold importance value and create a layer-specific mask
tensor. This mask has an identical shape to the parameter

2.3 -0.9 4.1

1.0 0.5 10.0

1.5 -2.5 0.1

...
...

...

...
...

a. Final magnitudes of parameters
at the end of training

2.1 -0.4 3.1

0.7 0.3 9.1

1.2 -2.1 0.05

...
...

...

...
...

b. Aggregated Importance

1 0 1

0 0 1

1 1 0

...
...

...

...
...

c. Mask Matrix

> threshold (1.1)

Multiply with mask

2.3 0 4.1

0 0 10.0

1.5 -2.5 0

...
...

...

...
...

d. Parameter Magnitudes after
Applying mask

After multiplying

With mask

Figure 3. Pruning Of Network using the importance tensor

tensor in the training framework, with 0s for low-importance
corresponding parameters and 1s when the importance value
surpasses the threshold. Please refer to Figure 3 for a visual
representation. The parameter values post-training are de-
picted in Figure 3a, while Figure 3b shows the aggregated
importance tensor throughout training. In our example, we
chose a threshold of 1.1 based on the level of compression
we aimed to achieve. Thus, Figure 3c displays the mask
tensor with 1s for parameters with importance values greater
than the threshold and 0s for those that aren’t. It’s crucial to
highlight that the parameter, importance, and mask tensors
share the same dimensions, simplifying the network pruning
process. By applying the mask on the parameters tensor, we
generate a pruned network, as depicted in Figure 3d.

3.2.2. PRUNING AND RE-TRAINING

The second stage of the forward propagation process in-
volves layer-by-layer application of the pruning mask. We
begin by applying the mask to the parameters of the first
layer and then retrain the network while ensuring that the
first layer is constantly multiplied with the mask whenever
the parameters are updated. Doing so prevents the previ-
ously nullified weights in the first layer from returning to
non-zero values and maintains the level of network com-
pression. Figure 4a showcases a trained neural network,
while Figure 4b displays the pruned first layer and the re-
trained network. However, to preserve compression, the first
layer is combined with the same mask during each batch.
Figure 4c illustrates the inclusion of the mask for layer 2,
thus expanding the scope of pruning. We retrain the net-
work, combining the parameters of layer 1 and 2 with the
mask until all layers are covered, completing the forward
propagation process.

3.3. Fine-Pruning

Fine-pruning, a form of structured pruning, involves nul-
lifying entire filters or neurons. After conducting forward
propagation pruning, we observed that several network com-

165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219

Submission and Formatting Instructions for ICML 2021

a

1-Layer Mask

b

Prune Layer 1

Re train
With Mask

Prune Layer 2

3-Layers Mask

dc

2-Layers Mask

Re train
With Mask

Prune

Layer 3

Re train
With Mask

Figure 4. Pruning Of Network using the importance tensor

Network After Forward Propagation Network With Nullified Components

Fine

Pruning

Figure 5. Fine-Pruning Network. Neurons in black represent net-
work components with all parameters set to 0

ponents already underwent maximum parameter pruning.
To execute fine-pruning, we nullify all parameters indis-
criminately for such filters or neurons. If the threshold for
the number of zero parameters in a given component is ex-
ceeded, we force all parameters in that same component
to be set to zero. Fine-pruning can result in further model
compression with little or no accuracy loss, depending on
the desired accuracy. Figure 5 illustrates the process after
forward propagation pruning, with the network on the left
containing many neurons and most parameters set to zero,
while the effect of fine-pruning is visible on the right, can-
celling entire neurons and pruning connections to the next
layer. The steps are depicted in Figure 6.

4. Experiment
Table 2 shows the different datasets used and the models
that were trained on them. While training the models on
the given datasets, the evolution of each individual weight

Train and Record
Importance of each

parameter

Create Mask from
importance tensor

and threshold values
set layer_num as -1

Is layer_num >= number of
layers?layer_num += -1

Re-train model with
mask till layer

layer_num

Fine-prune networkRe-train model with
maskSave Pruned Model

No

Ye
s

Forward Pruning

Figure 6. Complete Flow of operations consisting of Weight evolu-
tion , Forward Propagation Pruning and Fine-Pruning

was measured. At the end of training, the importance of
the weights was calculated by the method mentioned in
the Table 1. This importance was then used to apply For-
ward propagation followed by fine pruning on the models.
The model was originally trained for 30 epochs and for 10
epochs after each process of pruning. The pruning method
was compared with the magnitude based unstructured prun-
ing method proposed by (Han et al., 2015).

Table 2. Combination Of Dataset and Model used to evaluate the
proposed Algorithm

Model Dataset
AlexNet TinyImageNet

DenseNet CIFAR10
DenseNet TinyImageNet
ResNet18 CIFAR10
VGGNet CIFAR10

5. Results And Comparisons
Figures 7, 8, 9, 10, and 11 show the result of fine pruning
on the respective neural networks and datasets mentioned
in table 2. The horizontal axis represents the compression
level of the network and is calculated by the number of
weights with a zero magnitude, divided by the total num-
ber of weights. The vertical axis represents the classifica-
tion accuracy of the models. The orange line depicting the
fine pruning method shows a higher tolerance towards com-
pression for all cases against the blue line representing the
general unstructured magnitude based pruning (Han et al.,
2015). Our approach is able to maintain higher accuracy
before dropping in accuracy, proving better identification of
important neural network weights.

220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274

Submission and Formatting Instructions for ICML 2021

0.0 0.2 0.4 0.6 0.8

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Pruning AlexNet on TinyImageNet

Unstructured Global Pruning
Fine Pruning
Unpruned

Figure 7. Pruning of AlexNet on the TinyImageNet data. The
horizontal axis represents compression while the vertical axis rep-
resents accuracy. The blue line indicates state-of-art unstructured
global pruning while the orange line indicates Fine Pruning method.
The accuracy of the un-pruned network is depicted in green

0.0 0.2 0.4 0.6 0.8

0.2

0.3

0.4

0.5

0.6

0.7

0.8
Pruning VGGNet on CIFAR10

General Pruning
Fine Pruning
Unpruned

Figure 8. Pruning of VGGNet on the CIFAR10 data. Legends are
same as Figure 7

0.0 0.2 0.4 0.6 0.8

0.30

0.35

0.40

0.45

0.50

0.55

0.60

0.65

0.70
Pruning ResNet on CIFAR10

General Pruning
Fine Pruning
Unpruned

Figure 9. Pruning of ResNet on the CIFAR10 data. Legends are
same as Figure 7

0.2 0.4 0.6 0.8

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9
Pruning DenseNet on TinyImageNet

general pruning
filter_iterator
Unpruned

Figure 10. Pruning of DenseNet on the TinyImageNet data. Leg-
ends are same as Figure 7

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0.2

0.3

0.4

0.5

0.6

0.7

Pruning DenseNet on CIFAR10
General Pruning
Fine Pruning
Unpruned

Figure 11. Pruning of DenseNet on the CIFAR10 data. Legends
are same as Figure 7

References
Fukushima, K. Neocognitron: A self-organizing neural

network model for a mechanism of pattern recognition
unaffected by shift in position. Biological Cybernetics,
36(4):193–202, 1980. ISSN 03401200. doi: 10.1007/
BF00344251.

Guo, Y., Liu, Y., Georgiou, T., and Lew, M. S. A re-
view of semantic segmentation using deep neural net-
works. International Journal of Multimedia Informa-
tion Retrieval, 7(2):87–93, 2018. ISSN 2192662X.
doi: 10.1007/s13735-017-0141-z. URL https://
doi.org/10.1007/s13735-017-0141-z.

Han, S., Pool, J., Tran, J., and Dally, W. Learning both
weights and connections for efficient neural network.
Advances in neural information processing systems, 28,
2015.

Han, S., Mao, H., and Dally, W. J. Deep compression:
Compressing deep neural networks with pruning, trained
quantization and Huffman coding. 4th International Con-
ference on Learning Representations, ICLR 2016 - Con-
ference Track Proceedings, pp. 1–14, 2016.

Krizhevsky, A. Learning Multiple Layers of Features from
Tiny Images. Technical report, University of Toronto,
2009.

LeCun, Y., Boser, B., Denker, J. S., Henderson, D., Howard,
R. E., Hubbard, W., and Jackel, L. D. Backpropagation
applied to digit recognition, 1989. URL https:
//www.ics.uci.edu/\simwelling/
teaching/273ASpring09/lecun-89e.pdf.

Robinson, A. and Fallside, F. The utility driven dynamic
error propagation network. Ieee, 1, 1987.

Rosenblatt, F. The perceptron: A probabilistic model for
information storage and organization in the brain. Psy-
chological Review, 65(6):386–408, 1958.

https://doi.org/10.1007/s13735-017-0141-z
https://doi.org/10.1007/s13735-017-0141-z
https://www.ics.uci.edu/$\sim $welling/teaching/273ASpring09/lecun-89e.pdf
https://www.ics.uci.edu/$\sim $welling/teaching/273ASpring09/lecun-89e.pdf
https://www.ics.uci.edu/$\sim $welling/teaching/273ASpring09/lecun-89e.pdf

275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329

Submission and Formatting Instructions for ICML 2021

Salman, H., Grover, J., and Shankar, T. Hierarchical Re-
inforcement Learning for Sequencing Behaviors. 2733
(March):2709–2733, 2018. doi: 10.1162/NECO. URL
http://arxiv.org/abs/1803.01446.

Sharma, P. and Singh, A. Era of deep neural networks:
A review. 8th International Conference on Computing,
Communications and Networking Technologies, ICCCNT
2017, 2017. doi: 10.1109/ICCCNT.2017.8203938.

Weng, J. J., Ahuja, N., and Huang, T. S. Learning recogni-
tion and segmentation of 3-D objects from 2-D images.
1993 IEEE 4th International Conference on Computer Vi-
sion, pp. 121–127, 1993. doi: 10.1109/iccv.1993.378228.

http://arxiv.org/abs/1803.01446

