
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

MUJOCO MANIPULUS:
A ROBOT LEARNING BENCHMARK
FOR GENERALIZABLE TOOL MANIPULATION

Anonymous authors
Paper under double-blind review

ABSTRACT

We propose MuJoCo Manipulus, a novel open-source benchmark powered by
the MuJoCo physics simulation engine, designed to accelerate advances in robot
learning for tool manipulation. Our benchmark includes a diverse set of tasks for
tool manipulation —a domain where the field currently lacks a unified benchmark.
Different research groups rely on custom-designed tasks or closed-source setups,
limiting cross-comparability and hindering significant progress in this field. To
that end, our benchmark provides 16 challenging tool manipulation tasks, includ-
ing variants of Pouring, Scooping, Scraping, Stacking, Gathering, Hammering,
Mini-Golf, and Ping-Pong. The benchmark supports both state-based and vision-
based observation spaces, is fully integrated with the Gymnasium API, and seam-
lessly connects with widely used Deep Reinforcement Learning libraries, ensuring
easy adoption by the community. We conduct extensive reinforcement learning
experiments on our benchmark, and our results demonstrate that there is substan-
tial progress to be made for training tool manipulation policies. Our codebase and
additional videos of the learned policies can be found on our anonymous project
website: mujoco-manipulus.github.io.

1 INTRODUCTION

Robot learning has recently experienced a rapid transformation, driven by developments in both
hardware and algorithms. A fundamental problem in robotics is tool manipulation, where a robot
uses an external device to assist itself in accomplishing a manipulation objective. Common tasks
(and their tools) include assistive feeding using forks and other utensils (Sundaresan et al., 2023;
Jenamani et al., 2024), cutting items (Heiden et al., 2021; Xu et al., 2023b), hammering using ham-
mers (Fang et al., 2018), and scooping using spoons and ladles (Seita et al., 2022; Grannen et al.,
2022; Qi et al., 2024). By not limiting a robot to its native gripper hardware, tool manipulation can
greatly extend the tasks that robots can perform. More broadly, understanding how to effectively use
external tools is often considered a sign of greater intelligence (Baber, 2003; Washburn, 1960). To
operate a tool, the robot must reason about the function of the tool, its limitations, and its potential
effects on surrounding objects. Furthermore, tools are highly diverse and vary along many axes,
including (but not limited to) size, shape, and deformability. Therefore, tool manipulation presents
an elusive set of open problems despite tremendous progress in robot learning.

While there has been considerable progress in robot tool manipulation, a core challenge in the field
boils down to the lack of a unified tool manipulation benchmark—existing works conduct exper-
iments using different setups and tasks, making it harder to compare algorithms and to measure
progress in the field. To our knowledge, such a benchmark does not exist for fair comparison of
methods for tool manipulation. While existing manipulation benchmarks such as ManiSkill2 (Gu
et al., 2023) and Robosuite (Zhu et al., 2020) contain tasks that involve some tool usage (such as
using a scooper to scoop granular media), they are not specialized to tool manipulation and not
ideal testbeds for studying the generalization to different tools. In closely-related work,(Holladay
et al. (2019)) provides printable tool models and experimental data, supporting robot grasping with
certain tools. However, it focuses on open-loop manipulation with parallel-jaw grippers, making
it less effective to reflect algorithm performance in the real world. In contrast, this work provides

1

mujoco-manipulus.github.io

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

Figure 1: MuJoCo Manipulus includes a diverse set of 16 tool manipulation tasks. We have
8 task categories including Gathering, Mini-Golf, Hammering, Ping-Pong, Pouring,
Scooping, Scraping, and Stacking. Each task provides a unique tool to the user, with a total
of 14 tools in our Benchmark, and is integrated with the Gymnasium API (Towers et al., 2024) for
benchmarking reinforcement learning algorithms.

a scalable simulation benchmark that focuses on tool manipulation under different scenarios. Our
goal is to enable closed-loop policy learning for tool manipulation via reinforcement learning.

Towards this goal, we propose the MuJoCo Manipulus benchmark, built with the MuJoCo physics
simulation engine (Todorov et al., 2012). Our benchmark provides an elegant and flexible pipeline
for designing simulation environments in MuJoCo, and learning control policies in these environ-
ments with the Gymnasium API (Towers et al. (2024)). MuJoCo Manipulus is centered on tool
manipulation, where the agent controls a free-floating tool. This design allows future research to
begin with simpler setups (free-floating tools) before progressing to more complex variations where
tool manipulation must integrate with a robot arm. As part of our benchmark, we rigorously evalu-
ate 3 well-established model-free reinforcement learning algorithms. Our findings show that while
these algorithms perform reasonably well on some tasks, they face challenges on certain classes of
tasks. These limitations highlight opportunities for future research in robot tool manipulation.

In summary, the contributions of our paper include:

• A novel open-source tool manipulation benchmark, MuJoCo Manipulus, powered by the MuJoCo
physics simulation engine, with the following key features:.

– We provide 16 tool manipulation tasks to the community, with 14 tools, to accelerate research
advances in tool manipulation.

– Our benchmark supports state, RGB, and state+RGB observation spaces, allowing for bench-
marking of various reinforcement learning and representation learning methods.

– Elegant and accessible implementations of MuJoCo-Gymnasium tasks, which can be easily
extended to more complex settings, and empower the research community to build additional
tasks with our framework.

• Experimental results of 3 well-established model-free reinforcement learning algorithms on our
benchmark, showcasing their promise but also limitations, thus motivating questions for future
work.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

2 RELATED WORK

Table 1: Comparison of Simulation Benchmarks: We compare our Simulated Tool Manipulation
Benchmark to several popular Simulation Benchmarks. For a complete list of Tool Skills for each
benchmark, please see our Appendix.

Benchmark # of Tasks Dense Rewards # of Tool Skills Simulation Engine

Meta-World (Yu et al. (2019)) 50 ✓ 5 MuJoCo
RoboSuite (Zhu et al. (2020)) 9 ✓ 3 MuJoCo
Fleet-Tools (Hoque et al. (2022)) 4 × 4 Drake
ManiSkill2 (Gu et al. (2023)) 19 ✓ 6 SAPIEN
RLBench (James et al. (2020)) 100 × 7 CoppeliaSim

MuJoCo Manipulus (Ours) 16 ✓ 8 MuJoCo

2.1 ROBOT TOOL MANIPULATION

Robot tool manipulation is a decades-old research area (Asada & Asari, 1988) which has seen a re-
cent explosion of interest. Research in the area can be broadly characterized as works that focus on
general methods for tool manipulation, versus those that study a specific type of tool manipulation.
Among the former category are works that have explored methods for manipulating tools, such as
by learning from keypoint (Qin et al., 2020; Turpin et al., 2021) or flow (Seita et al., 2022) repre-
sentations, using differentiable trajectory optimization (Lin et al., 2022; Qi et al., 2022) or learning
dynamics models either through vision (Xie et al., 2019) or contact (Van der Merwe et al., 2022).
Researchers have also explored learning to design tools (Liu et al., 2023; Dong et al., 2024) and
their morphology (Li et al., 2023). Recently, there has been work on robots that learn to manipulate
diverse tools using techniques such as task and motion planning techniques (Wang et al., 2019),
trajectory generation (Qi et al., 2024), or large language models (Xu et al., 2023a; Ren et al., 2022).

The second category of works specialize to specific types of tool manipulation tasks, such as scoop-
ing (Schenck et al., 2017; Grannen et al., 2022), pouring (Narasimhan et al., 2020; Schenck & Fox,
2017), cutting (Heiden et al., 2021; Xu et al., 2023b), and tools for cooking (Shi et al., 2023). In
contrast to these works, which either propose largely tool- or task-specific methods, or which craft a
few tasks to test (due to lack of a pre-existing benchmark), our focus is on developing a simulation
benchmark for tool manipulation that tests a variety of tasks. We focus on rigid object tool manip-
ulation, since there are a wide number of these tasks that can be designed with MuJoCo and solved
with RL. Closer to our paper includes prior work such as (Rajeswaran et al., 2018), which uses
free-floating dexterous hands to manipulate the objects, but instead focuses on object reorientation
instead of tool manipulation. In addition, (Wang et al., 2024) open-source four tool manipulation
tasks powered by Drake simulation (Tedrake & the Drake Development Team, 2019), but their focus
is on developing algorithms for learning from fleets of robots instead of benchmark development to
support future research in tool manipulation and reinforcement learning. In contrast, we present
a wider-scale tool manipulation benchmark with substantially more tasks, tool skills, and dense
rewards for all task categories.

2.2 BENCHMARKS IN ROBOT LEARNING AND MANIPULATION

Benchmarks have played a critical role in the advancement of robot learning research by facilitat-
ing comparisons among policy-learning methods, and providing insights for future research areas.
Benchmarks can include algorithm implementations or a set of tasks (or both). Examples of high-
quality reinforcement learning algorithm implementations include CleanRL (Huang et al., 2022) and
Stable Baselines3 (Raffin et al., 2021). Our benchmark is complementary to these algorithms, since
we can use reinforcement learning methods to potentially solve each of our tasks.

For manipulation, the community has developed a number of simulation benchmarks. Prominent
examples for general manipulation include ManiSkill2 (Gu et al., 2023), RoboSuite (Zhu et al.,
2020), and RLBench (James et al., 2020). Other benchmarks focus on meta-learning (Yu et al., 2019)
or language-conditioned learning (Mees et al., 2022). Researchers have also created benchmarks

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

Figure 2: MuJoCo Manipulus provides a general-purpose framework for building Deep Reinforce-
ment Learning tasks on top of the MuJoCo Physics Engine. Above, we demonstrate the simplicity
of our pipeline, enabling users to collect diverse tool meshes, design their tasks, train deep reinforce-
ment learning policies (e.g., using CleanRL (Huang et al., 2022)), and evaluate them.

specializing in domains as diverse as tabletop rearrangement (Zeng et al., 2020), deformable object
manipulation (Lin et al., 2020; Seita et al., 2021), fetching (Han et al., 2024), fleet learning (Hoque
et al., 2022), navigation and manipulation in homes (Nasiriany et al., 2024; Szot et al., 2021; Li
et al., 2022), and surgical robotics (Richter et al., 2019; Schmidgall et al., 2024; Yu et al., 2024).
Recent benchmarks for higher-DOF manipulation include those focusing on piano playing (Zakka
et al., 2023) and training humanoids (Sferrazza et al., 2024). BiGym (Chernyadev et al., 2024)
and SMPLOlympics (Luo et al., 2024b) also provide simulated humanoid tasks, some of which
have tool manipulation (e.g., flipping a sandwich with a spatula). Finally, other benchmarks study
complementary areas such as real-world furniture assembly (Heo et al., 2023) and generalizable
manipulation (Luo et al., 2024a). While these benchmarks have been crucial to the robot learning
community, none specialize in tool manipulation, and not all of them provide dense rewards for
reinforcement learning. Our MuJoCo Manipulus benchmark thus fills a critical need in the robot
learning community. In addition, our work is up-to-date with the latest software advances introduced
in MuJoCo 3.0+ (Todorov et al., 2012), and follows the newer Gymnasium interface (Towers et al.,
2024) instead of the OpenAI gym interface (Brockman et al., 2016).

3 THE BENCHMARK: MUJOCO MANIPULUS

We formally introduce our benchmark, MuJoCo Manipulus. In Section 3.1, we first outline some
general principles we follow for the benchmark, plus different features we support. Then, we discuss
our tool manipulation tasks in Section 3.2.

3.1 OVERVIEW OF SIMULATION FRAMEWORK

We support several important features in MuJoCo Manipulus which makes it a desirable long-term
benchmark for the robot learning community. Our benchmark provides users with a flexible pipeline
for building end-to-end reinforcement learning tasks (i.e., environments) on top of the MuJoCo
physics simulation engine. We decouple our pipeline into four steps which streamline the develop-
ment process for RL environments (see Figure 2).

Collecting Tool Meshes: The first step is to collect tool meshes from diverse data sources. Our
tools are either hand-designed in MuJoCo with built-in shape primitives, or are hand-selected from

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

the TACO Dataset (Liu et al. (2024)) or MuJoCo’s open-source models (Todorov et al. (2012)). In
total, our benchmark contains 14 tools, with in-category object variants for 4 of our task categories.

Designing our Tasks: In the first stage of task design, we generate collision meshes for tools from
the TACO Dataset by performing a convex decomposition of each object with CoACD (Wei et al.
(2022)). For tools that are hand-designed in MuJoCo with built-in shape primitives, or are from
MuJoCo’s open-source models, this step is not necessary.

The second stage involves creating a task XML file with MuJoCo that contains task-relevant objects.
We define each object, including our tools, in object XML files. Subsequently, we perform relative
imports of the object XML files into our task XML files to construct the simulation scene for a given
task.

In the third stage, we import our task XML files into Python with PyMJCF, and create Gymnasium
(Towers et al. (2024)) environments to encapsulate each task as a Markov Decision Process (MDP).
The Gymnasium API provides the framework for the MDP, while MuJoCo provides a Python API
for interacting with simulation models and their data. Prior works (Zhu et al. (2020) Yu et al.
(2019)) have introduced modular APIs that unify the two interfaces of Gymnasium and MuJoCo.
Our work introduces elegant single-file implementations of MuJoCo-Gymnasium tasks, a highly
beneficial feature for RL practitioners who can benefit from having access to open-source end-to-
end simulation tasks.

Tied into the third stage, our fourth stage involves careful design of task observation spaces, action
spaces, environment resets, and dense rewards. A key distinction for tool manipulation tasks is the
need for constrained action spaces. Prior works (Seita et al. (2022); Xu et al. (2023b)) have applied
constraints to tools so they are compliant, safe, and able to complete their given tasks. In our work,
each of our tasks has a constrained action space that is less than 6 DoF, despite MuJoCo supporting
6 DoF control of free-floating objects. Our environment observation spaces include object positions
and velocities, as well as tool marker positions and goal positions. Similar to prior simulation
benchmark (Gu et al. (2023), Yu et al. (2019), ”markers” are free-floating colored spheres in the
environment that denote keypoints for a given task. These keypoints are especially useful for dense
reward design, and with the use of tool marker positions and goal positions, we were able to write
reward functions that generalized across in-category tool variants for each task. For environment
resets, we randomize positions of the tools and their goals.

Training and Evaluating RL Policies: Our benchmark supports state, RGB, and state+RGB ob-
servations for training RL policies. While state-based observations are generally only practical in
simulation, they can be useful for simulation-to-real transfer. Such example use cases include asym-
metric actor-critic algorithms where the critic is trained with state information (Pinto et al., 2018),
and teacher-student distillation algorithms where a “teacher” trains in simulation on state informa-
tion and a “student” learns to imitate the teacher using only vision-based information (e.g., (Chen
et al., 2019; Yuan et al., 2024)).

We apply three well-established model-free reinforcement learning algorithms in our benchmark:
CrossQ (Bhatt et al. (2024)), Soft Actor-Critic (SAC) (Haarnoja et al. (2018)), and Proximal Pol-
icy Optimization (PPO) (Schulman et al. (2017)). Our SAC and PPO implementations are directly
sourced from CleanRL (Huang et al. (2022)), a library of reliable single-file RL algorithm imple-
mentations. Our CrossQ implementation is re-implemented from Stable-Baselines3 (Raffin et al.
(2021)) in the style of CleanRL, and we found that the performance of CrossQ was consistent with
the metrics reported in their paper. Policy training results are logged to Weights and Biases (Biewald
(2020)), a popular MLOps tool for logging machine learning experiment results. When a policy is
finished training on any of our tasks, we save the final model to Weights and Biases, which can be
downloaded from their servers and evaluated locally.

3.2 TASKS

For our initial release of MuJoCo Manipulus, we provide 16 tool manipulation tasks and 14 tools.
The tools we provide can be broken down into 3 general categories: Kitchen Tools, Home Tools, and
Sports Tools. Our “Kitchen Tools” category includes models for Bowl, Mug, Knife, Pan, Pot, Plate,
Spatula, Ladle, and Cup objects. Our “Home Tools” category includes models for a Brush, Hammer,
and Scooper. Our “Sports Tools” category includes models for a Ping-Pong Paddle and Golf Club.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

The tools are either hand-designed by us, taken directly from MuJoCo’s open-source object models,
or hand-picked from the recent open-source TACO dataset (Liu et al., 2024), which provides tool
object meshes and tool interaction data to facilitate understanding bimanual human-tool interactions
from video.

In the following, we discuss the tasks in MuJoCo Manipulus. See Figure 1 for visualizations of
our 16 tasks. The tasks involve different action spaces, some of which involve rotations. All tool
rotations are centered at the “centroid” of the tool’s 3D structure, which is equivalently its MoCap
body location.

Figure 3: Success and Failure Modes for Pouring.

Pouring Tasks. In these tasks, the agent controls a tool that starts with 16 particles in it. The agent
must use this tool and pour the particles so that they land inside a bin. The action space is 4D, where
we allow for changes in the (x, y, z) position and about one axis θy of the tool. The state observation
has dimension S ∈ R11, with the values consisting of the 3D position of the tool, 1D orientation of
the tool, 3D translational velocity of the tool, 1D rotational velocity of the tool, and 3D position of
the lifting target marker. A success is when all 16 of the particles land inside of the bin. We support
the following variants of pouring:

(1) PourCup, using a hand-designed Cup with 16 particles to be poured.
(2) PourMug, using the Mug model from MuJoCo’s open-source object models, with 16 particles
to be poured.
(3) PourPan, using the Pan model from TACO, with 16 particles to be poured.
(4) PourPot, using the Pot model from TACO, with 16 particles to be poured.
(5) PourBowl, using a Bowl model from TACO, with 16 particles to be poured.
(6) PourPlate, using a Plate model from TACO. This task has 3 cube particles instead of 16
spherical particles since the plate is flatter compared to the other tools.

Figure 4: Success and Failure Modes for Stacking.

Stacking Tasks. In these tasks, the agent must learn to place either a bowl or a plate on top of
a static bowl or plate, respectively. The agent’s action space is 3D where we allow for changes in
the (x, y, z) position of the tool. The state observation has dimension S ∈ R15, with the values
consisting of the 3D position of the tool, 3D position of the tool marker, 2D velocity of the tool, 1D
rotation of the tool, 3D position of the target object, and 3D position of the target object marker. A
success is when the plate or bowl which our agent controls has overlap between its “marker” and the

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

static bowl’s “target object marker.” Incidentally, we consider bowls and plates as tools since they
enable carrying of food and other items, similar to tools like those used in our Pouring tasks.

(7) StackBowls, using a Bowl model from TACO.
(8) StackPlates, using a Plate model from TACO.

Figure 5: Success and Failure Modes for Scooping.

Scooping Tasks. In these tasks, the agent controls a scooper-style tool and needs to scoop up
a single spherical particle or cube particle from a bin receptacle. The agent’s action space is 3D
where we allow for changes in the (x, y, z) position of the tool. The state observation has dimension
S ∈ R15, with the values consisting of the 3D position of the tool, 3D velocity of the tool, 3D
position of the tool marker, 3D position of the particle, and 3D position of the lift target marker.
A success is when the scooper-style tool has both scooped up the particle and lifted it towards a
“target object marker” above the bin receptacle. Our Scooping tasks can be considered as “inverse”
versions of our Pouring tasks, and for this reason these tools share similar action spaces.

(9) ScoopParticles, using a Ladle model from TACO.
(10) ScoopCubes, using a scooper hand-designed with MuJoCo’s built-in shape primitives. The
tool is similar to the one used in the scooping task from Liu et al. (2023).

Figure 6: Success and Failure Modes for Scraping.

Scraping Tasks. In these tasks, we use a kitchen tool to scrape a thin rigid object into a bin
receptacle. The agent’s action space is 2D where we allow for changes in the (x, y) position of the
tool. The state observation has dimension S ∈ R17, with the values consisting of the 3D position
of the tool, 2D velocity of the tool, 3D position of the MoCap object moving the tool, 3D position
of the tool marker, 3D position of the thin rigid object, and 3D position of the bin target marker. A
success is when the thin rigid object is scraped and lands inside the bin receptacle.

(11) ScrapeKnife, using a Knife model from TACO.
(12) ScrapeSpatula, using a Spatula model from TACO.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

Figure 7: Success and Failure Modes for Ping-Pong and Mini-Golf.

Sports Tasks. We include two sports tasks that require tool usage in our benchmark.

(13) Ping-Pong uses a hand-designed ping-pong paddle with a handle as the tool. The objective
is for the agent to to track a ping-pong ball in mid-air and hit it towards the opposite end of the
table. The agent’s action space is 2D where we allow for changes in the (x, z) position of the tool.
The state observation has dimension S ∈ R21, with the values consisting of the 3D position of the
paddle tool marker, 6D velocity of the paddle, 3D position of the ball, 6D velocity of the ball, and
3D position of the target marker. A success is when the ball hits the opposite end of the table within
ϵ < 0.1 distance of the marker.
(14) Mini-Golf uses a hand-designed golf club as the tool. The objective is for the agent to hit a
golf ball into a hole. The agent’s action space is 2D where we allow for changes in the (x,) position
and about one axis θy of the tool. The state observation has dimension S ∈ R28, with the values
consisting of the golf club’s 3D position, 4D orientation, 6D velocity, the golf club’s green marker,
the ball’s 3D position and 6D velocity, and the target hole’s 3D position. A success is when the ball
lands inside the hole.

Figure 8: Success and Failure Modes for Hammering and Gathering.

Miscellaneous Tasks. These remaining tool manipulation tasks do not fall under a clear category.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

(15) HammerNail uses a hand-designed hammer as the tool. The objective is for the agent to push
a nail into a box. The agent’s action space is 2D where we allow for changes in the (x, z) position
of the tool. The state observation has dimension S ∈ R14, with the values consisting of the 3D
position of the hammer, 2D velocity of the hammer, 3D position of the hammer marker, 3D position
of the initial nail target marker, and 3D position of the final nail target marker. The nail has 1 degree
of freedom to enable forward and backward movement into the box. A success is when the nail has
been fully pushed into the box.
(16) GatherCube uses a hand-designed brush with a handle as the tool. The objective is for the
agent to gather three multi-colored cubes and push them inside of a receptacle bin with an open
front. The agent’s action space is 2D where we allow for changes in the (x, y) position of the tool.
The state observation has dimension S ∈ R17, with the values consisting of the 3D position of the
brush, 2D velocity of the brush, 3D positions of each of the 3 cube particles, and the 3D position of
the target marker inside the bin. A success is when all three cubes are gathered and inside the bin
receptacle.

4 LEARNING ROBOT TOOL MANIPULATION

4.1 REINFORCEMENT LEARNING EXPERIMENTS

To learn the proposed tool manipulation tasks in MuJoCo Manipulus, we train reinforcement learn-
ing policies using CrossQ (Bhatt et al. (2024)), SAC (Haarnoja et al. (2018)), and PPO (Schulman
et al. (2017)), which are 3 well-established model-free reinforcement learning algorithms used by
the robot learning community. We measure the performance of each method with state inputs, re-
sulting in three distinct results that show the upper-bound performance of model-free RL methods
on our benchmark. We train task-specific policies, and leave multi-task learning to future work.
Each reinforcement learning run lasts for either 100,000 or 300,000 training steps. In the case of
Stacking and Scooping tasks, we train for 300,000 steps since we empirically found that these
tasks are more difficult to learn than our other tasks. While we provide users with sparse and dense
rewards, we benchmark using the dense reward functions to enable better guidance for reinforce-
ment learning baselines. We run 5 seeds per task, and provide the averaged success rate curves with
95% CI shading for each task. See Figure 9 for success rate results on our tasks.

4.2 REINFORCEMENT LEARNING RESULTS

Overall, we find reasonable success rates for all our tasks. The easiest tasks to learn in our bench-
mark are HammerNail, Pour Plate, Scrape Spatula, Scrape Knife, and Gather
Cubes, which have simpler action spaces and objects for the tools to interact with. The best-
performing baseline method is CrossQ, which is a more sample-efficient version of Soft Actor-Critic.
In general, CrossQ and SAC were our best-performing baselines because they are off-policy meth-
ods, and off-policy methods are known to be more sample-efficient than on-policy methods like
PPO. However, there were unique instances where SAC and PPO performed better than CrossQ.
SAC performed best in the Mini Golf task, and PPO performed best in the Ping Pong task.
A possible reason for this is because we found CrossQ overfits to high-reward states it encounters
early in training, whereas PPO and SAC do not overfit to early training experiences, even if they
yield high rewards.

Our benchmark’s harder tasks include Scoop Particle, Scoop Cube, Stack Plates,
Stack Bowls, and Ping Pong. For most of our tasks, we used a frame skip value of 12, but
had to reduce our frame skip value to 5 for Ping Pong to allow the paddle enough time to reach the
ball and hit it. Stacking tasks are subject to the plate and bowl not perfectly aligning with the static
plate or bowl, which is considered a failure case. Scooping tasks are difficult in 100K training steps,
but we found that additional training time allows CrossQ to learn good policies in both settings. We
provide qualitative results for all tasks on our project site, and include visualizations of success and
failures for each task category in the prior section. Overall, we found that reinforcement learning
methods with constrained action spaces provide a promising interface for learning tool manipulation.

Our benchmark is also reasonably fast, with 100K training steps taking 10 minutes of walltime,
and 300K training steps taking 30 minutes of walltime. These measurements are reported with

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

Figure 9: Success rate curves for the 16 tasks in MuJoCo Manipulus with 3 Model-Free RL Base-
lines: CrossQ, SAC, and PPO. Success Rates are reported every 50 episodes as the average success
over the last 50 episodes, and each baseline result is averaged over 5 seeds with shading for the 95%
CIs. We do not apply smoothing to the curves.

an NVIDIA RTX 4090 GPU and an Intel i9-13900K CPU. In the future, we plan to integrate the
recent MuJoCo-XLA (MJX) bindings into our benchmark so our simulation can run even faster with
GPU-accelerated physics simulation.

5 CONCLUSION

This paper proposes a novel benchmark, MuJoCo Manipulus, which contains 16 tool manipulation
tasks that collectively include 14 diverse tools. We benchmark CrossQ, SAC, and PPO for learning
tool manipulation. Our findings reveal that there are multiple tasks where these methods struggle
to learn successful policy behaviors. This motivates directions in future work to improve robot tool
manipulation.

While promising, MuJoCo Manipulus has a few limitations. Our benchmark runs simulation on the
CPU, and in the future we plan to integrate MuJoCo-XLA (MJX) support for accelerated physics
simulation on the GPU. Additional improvements to our work include: supporting data collection
and imitation learning; evaluating simulation-to-real transfer capability of algorithms developed
with our benchmark; and incorporating bimanual and dexterous robot manipulation. We hope this
inspires a new era in robot learning and tool manipulation.

Ethics Statement. This paper does not involve the collection or annotation of new data. We build
this benchmark on top of a well-established simulator—MuJoCo—which is released under strict

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

ethical guidelines. While we do not see any immediate ethics concerns, we acknowledge that our
research could be used as part of an eventual robot system that abuses tool use. For autonomous
robots, it is critical to ensure their safety when they perform delicate or dangerous manipulation
tasks, especially in the presence of humans. We strive to ensure that our benchmark, as well as
future applications on top of this benchmark, are developed responsibly and ethically to maintain
safety and preserve privacy.

Reproducibility Statement. MuJoCo Manipulus is built based on the well-established MuJoCo
physics engine with enhanced user support. We will fully release our code and scripts to accurately
reproduce the results in this paper. We commit to providing first-class support for future robot
learning research. In addition, we plan to continue improving the benchmark by expanding the
range of tool manipulation tasks and other robot learning tasks.

REFERENCES

H. Harry Asada and Y. Asari. The direct teaching of tool manipulation skills via the impedance
identification of human motions. In IEEE International Conference on Robotics and Automation
(ICRA), 1988.

Christpher Baber. Cognition and Tool Use: Forms of Engagement in Human and Animal Use of
Tools. CRC Press, 2003.

Aditya Bhatt, Daniel Palenicek, Boris Belousov, Max Argus, Artemij Amiranashvili, Thomas Brox,
and Jan Peters. Crossq: Batch normalization in deep reinforcement learning for greater sample
efficiency and simplicity. In International Conference on Learning Representations, 2024. URL
https://openreview.net/forum?id=PczQtTsTIX.

Lukas Biewald. Experiment tracking with weights and biases, 2020. URL https://www.
wandb.com/. Software available from wandb.com.

Greg Brockman, Vicki Cheung, Ludwig Pettersson, Jonas Schneider, John Schulman, Jie Tang, and
Wojciech Zaremba. OpenAI Gym, 2016.

Dian Chen, Brady Zhou, Vladlen Koltun, and Philipp Krähenbühl. Learning by Cheating. In Con-
ference on Robot Learning (CoRL), 2019.

Nikita Chernyadev, Nicholas Backshall, Xiao Ma, Yunfan Lu, Younggyo Seo, and Stephen James.
BiGym: A Demo-Driven Mobile Bi-Manual Manipulation Benchmark. In Conference on Robot
Learning (CoRL), 2024.

Yifei Dong, Shaohang Han, Xianyi Cheng, Werner Fried, Rafael I. Cabral Muchacho, Máximo A.
Roa, Jana Tumova, and Florian T. Pokorny. Co-Designing Tools and Control Policies for Robust
Manipulation. arXiv preprint arXiv:2409.11113, 2024.

Kuan Fang, Yuke Zhu, Animesh Garg, Andrey Kurenkov, Viraj Mehta, Li Fei-Fei, and Sil-
vio Savarese. Learning Task-Oriented Grasping for Tool Manipulation from Simulated Self-
Supervision. In Robotics: Science and Systems (RSS), 2018.

Jennifer Grannen, Yilin Wu, Suneel Belkhale, and Dorsa Sadigh. Learning Bimanual Scooping
Policies for Food Acquisition. In Conference on Robot Learning (CoRL), 2022.

Jiayuan Gu, Fanbo Xiang, Xuanlin Li, Zhan Ling, Xiqiang Liu, Tongzhou Mu, Yihe Tang, Stone
Tao, Xinyue Wei, Yunchao Yao, Xiaodi Yuan, Pengwei Xie, Zhiao Huang, Rui Chen, and Hao
Su. ManiSkill2: A Unified Benchmark for Generalizable Manipulation Skills. In International
Conference on Learning Representations (ICLR), 2023.

Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and Sergey Levine. Soft Actor-Critic: Off-Policy
Maximum Entropy Deep Reinforcement Learning with a Stochastic Actor. In International Con-
ference on Machine Learning (ICML), 2018.

Beining Han, Meenal Parakh, Derek Geng, Jack A Defay, Gan Luyang, and Jia Deng. FetchBench:
A Simulation Benchmark for Robot Fetching. In Conference on Robot Learning (CoRL), 2024.

11

https://openreview.net/forum?id=PczQtTsTIX
https://www.wandb.com/
https://www.wandb.com/

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Eric Heiden, Miles Macklin, Yashraj S Narang, Dieter Fox, Animesh Garg, and Fabio Ramos. DiS-
ECt: A Differentiable Simulation Engine for Autonomous Robotic Cutting. In Robotics: Science
and Systems (RSS), 2021.

Minho Heo, Youngwoon Lee, Doohyun Lee, and Joseph J. Lim. FurnitureBench: Reproducible
Real-World Benchmark for Long-Horizon Complex Manipulation. In Robotics: Science and
Systems (RSS), 2023.

Rachel Holladay, Tomás Lozano-Pérez, and Alberto Rodriguez. Force-and-Motion Constrained
Planning for Tool Use. In IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS), 2019.

Ryan Hoque, Lawrence Yunliang Chen, Satvik Sharma, Karthik Dharmarajan, Brijen Thananjeyan,
Pieter Abbeel, and Ken Goldberg. Fleet-DAgger: Interactive Robot Fleet Learning with Scalable
Human Supervision. In Conference on Robot Learning (CoRL), 2022.

Shengyi Huang, Rousslan Fernand Julien Dossa, Chang Ye, Jeff Braga, Dipam Chakraborty, Kinal
Mehta, and João G.M. Araújo. CleanRL: High-quality Single-file Implementations of Deep Re-
inforcement Learning Algorithms. Journal of Machine Learning Research, 23(274):1–18, 2022.
URL http://jmlr.org/papers/v23/21-1342.html.

Stephen James, Zicong Ma, David Rovick Arrojo, and Andrew J. Davison. RLBench: The Robot
Learning Benchmark and Learning Environment. In IEEE Robotics and Automation Letters (RA-
L), 2020.

Rajat Kumar Jenamani, Priya Sundaresan, Maram Sakr, Tapomayukh Bhattacharjee, and Dorsa
Sadigh. FLAIR: Feeding via Long-horizon AcquIsition of Realistic Dishes. In Robotics: Sci-
ence and Systems (RSS), 2024.

Chengshu Li, Ruohan Zhang, Josiah Wong, Cem Gokmen, Sanjana Srivastava, Roberto Martı́n-
Martı́n, Chen Wang, Gabrael Levine, Wensi Ai, Benjamin Martinez, Hang Yin, Michael Lin-
gelbach, Minjune Hwang, Ayano Hiranaka, Sujay Garlanka, Arman Aydin, Sharon Lee, Jiankai
Sun, Mona Anvari, Manasi Sharma, Dhruva Bansal, Samuel Hunter, Kyu-Young Kim, Alan Lou,
Caleb R Matthews, Ivan Villa-Renteria, Jerry Huayang Tang, Claire Tang, Fei Xia, Yunzhu Li,
Silvio Savarese, Hyowon Gweon, C. Karen Liu, Jiajun Wu, and Li Fei-Fei. BEHAVIOR-1K: A
Human-Centered, Embodied AI Benchmark with 1,000 Everyday Activities and Realistic Simu-
lation. In Conference on Robot Learning (CoRL), 2022.

Mengxi Li, Rika Antonova, Dorsa Sadigh, and Jeannette Bohg. Learning Tool Morphology for
Contact-Rich Manipulation Tasks with Differentiable Simulation. In IEEE International Confer-
ence on Robotics and Automation (ICRA), 2023.

Xingyu Lin, Yufei Wang, Jake Olkin, and David Held. SoftGym: Benchmarking Deep Reinforce-
ment Learning for Deformable Object Manipulation. In Conference on Robot Learning (CoRL),
2020.

Xingyu Lin, Carl Qi, Yunchu Zhang, Zhiao Huang, Katerina Fragkiadaki, Yunzhu Li, Chuang Gan,
and David Held. Planning with Spatial-Temporal Abstraction from Point Clouds for Deformable
Object Manipulation. In Conference on Robot Learning (CoRL), 2022.

Yun Liu, Haolin Yang, Xu Si, Ling Liu, Zipeng Li, Yuxiang Zhang, Yebin Liu, and Li Yi. TACO:
Benchmarking Generalizable Bimanual Tool-ACtion-Object Understanding. In IEEE Conference
on Computer Vision and Pattern Recognition (CVPR), 2024.

Ziang Liu, Stephen Tian, Michelle Guo, Karen Liu, and Jiajun Wu. Learning to Design and Use
Tools for Robotic Manipulation. In Conference on Robot Learning (CoRL), 2023.

Jianlan Luo, Charles Xu, Fangchen Liu, Liam Tan, Zipeng Lin, Jeffrey Wu, Pieter Abbeel, and
Sergey Levine. FMB: A Functional Manipulation Benchmark for Generalizable Robotic Learn-
ing. In International Journal of Robotics Research (IJRR), 2024a.

Zhengyi Luo, Jiashun Wang, Kangni Liu, Haotian Zhang, Chen Tessler, Jingbo Wang, Ye Yuan,
Jinkun Cao, Zihui Lin, Fengyi Wang, Jessica Hodgins, and Kris Kitani. SMPLOlympics: Sports
Environments for Physically Simulated Humanoids. arXiv preprint arXiv:2407.00187, 2024b.

12

http://jmlr.org/papers/v23/21-1342.html

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Oier Mees, Lukas Hermann, Erick Rosete-Beas, and Wolfram Burgard. CALVIN: A Benchmark for
Language-Conditioned Policy Learning for Long-Horizon Robot Manipulation Tasks. In IEEE
Robotics and Automation Letters (RA-L), 2022.

Gautham Narasimhan, Kai Zhang, Ben Eisner, Xingyu Lin, and David Held. Self-supervised Trans-
parent Liquid Segmentation for Robotic Pouring. In IEEE International Conference on Robotics
and Automation (ICRA), 2020.

Soroush Nasiriany, Abhiram Maddukuri, Lance Zhang, Adeet Parikh, Aaron Lo, Abhishek Joshi,
Ajay Mandlekar, and Yuke Zhu. RoboCasa: Large-Scale Simulation of Everyday Tasks for Gen-
eralist Robots. In Robotics: Science and Systems (RSS), 2024.

Lerrel Pinto, Marcin Andrychowicz, Peter Welinder, Wojciech Zaremba, and Pieter Abbeel. Asym-
metric Actor Critic for Image-Based Robot Learning. In Robotics: Science and Systems (RSS),
2018.

Carl Qi, Xingyu Lin, and David Held. Learning Closed-Loop Dough Manipulation Using a Differ-
entiable Reset Module. In IEEE Robotics and Automation Letters (RA-L), 2022.

Carl Qi, Yilin Wu, Lifan Yu, Haoyue Liu, Bowen Jiang, Xingyu Lin, and David Held. Learning Gen-
eralizable Tool-use Skills through Trajectory Generation. In IEEE/RSJ International Conference
on Intelligent Robots and Systems (IROS), 2024.

Zengyi Qin, Kuan Fang, Yuke Zhu, Li Fei-Fei, and Silvio Savarese. KETO: Learning Keypoint
Representations for Tool Manipulation. In IEEE International Conference on Robotics and Au-
tomation (ICRA), 2020.

Antonin Raffin, Ashley Hill, Adam Gleave, Anssi Kanervisto, Maximilian Ernestus, and Noah
Dormann. Stable-Baselines3: Reliable Reinforcement Learning Implementations. Journal of
Machine Learning Research, 22(268):1–8, 2021. URL http://jmlr.org/papers/v22/
20-1364.html.

Aravind Rajeswaran, Vikash Kumar, Abhishek Gupta, Giulia Vezzani, John Schulman, Emanuel
Todorov, and Sergey Levine. Learning Complex Dexterous Manipulation with Deep Reinforce-
ment Learning and Demonstrations. In Robotics: Science and Systems (RSS), 2018.

Allen Z. Ren, Bharat Govil, Tsung-Yen Yang, Karthik Narasimhan, and Anirudha Majumdar. Lever-
aging Language for Accelerated Learning of Tool Manipulation. In Conference on Robot Learn-
ing (CoRL), 2022.

Florian Richter, Ryan K. Orosco, and Michael C. Yip. Open-Sourced Reinforcement Learning
Environments for Surgical Robotics. arXiv preprint arXiv:1903.02090, 2019.

Connor Schenck and Dieter Fox. Visual closed-loop control for pouring liquids. In IEEE Interna-
tional Conference on Robotics and Automation (ICRA), 2017.

Connor Schenck, Jonathan Tompson, Dieter Fox, and Sergey Levine. Learning Robotic Manipula-
tion of Granular Media. In Conference on Robot Learning (CoRL), 2017.

Samuel Schmidgall, Axel Krieger, and Jason Eshraghian. Surgical Gym: A high-performance GPU-
based platform for reinforcement learning with surgical robots. In IEEE International Conference
on Robotics and Automation (ICRA), 2024.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal Policy
Optimization Algorithms. arXiv preprint arXiv:1707.06347, 2017.

Daniel Seita, Pete Florence, Jonathan Tompson, Erwin Coumans, Vikas Sindhwani, Ken Gold-
berg, and Andy Zeng. Learning to Rearrange Deformable Cables, Fabrics, and Bags with Goal-
Conditioned Transporter Networks. In IEEE International Conference on Robotics and Automa-
tion (ICRA), 2021.

Daniel Seita, Yufei Wang, Sarthak Shetty, Edward Li, Zackory Erickson, and David Held.
ToolFlowNet: Robotic Manipulation with Tools via Predicting Tool Flow from Point Clouds.
In Conference on Robot Learning (CoRL), 2022.

13

http://jmlr.org/papers/v22/20-1364.html
http://jmlr.org/papers/v22/20-1364.html

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Carmelo Sferrazza, Dun-Ming Huang, Xingyu Lin, Youngwoon Lee, and Pieter Abbeel. Humanoid-
Bench: Simulated Humanoid Benchmark for Whole-Body Locomotion and Manipulation. In
Robotics: Science and Systems (RSS), 2024.

Haochen Shi, Huazhe Xu, Samuel Clarke, Yunzhu Li, and Jiajun Wu. RoboCook: Long-Horizon
Elasto-Plastic Object Manipulation with Diverse Tools. In Conference on Robot Learning (CoRL),
2023.

Priya Sundaresan, Jiajun Wu, and Dorsa Sadigh. Learning Sequential Acquisition Policies for
Robot-Assisted Feeding. In Conference on Robot Learning (CoRL), 2023.

Andrew Szot, Alex Clegg, Eric Undersander, Erik Wijmans, Yili Zhao, John Turner, Noah Maestre,
Mustafa Mukadam, Devendra Chaplot, Oleksandr Maksymets, Aaron Gokaslan, Vladimir Von-
drus, Sameer Dharur, Franziska Meier, Wojciech Galuba, Angel Chang, Zsolt Kira, Vladlen
Koltun, Jitendra Malik, Manolis Savva, and Dhruv Batra. Habitat 2.0: Training Home Assis-
tants to Rearrange their Habitat. In Neural Information Processing Systems (NeurIPS), 2021.

Russ Tedrake and the Drake Development Team. Drake: Model-based design and verification for
robotics, 2019. URL https://drake.mit.edu.

Emanuel Todorov, Tom Erez, and Yuval Tassa. MuJoCo: A Physics Engine for Model-Based Con-
trol. In IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), 2012.

Mark Towers, Ariel Kwiatkowski, Jordan Terry, John U Balis, Gianluca De Cola, Tristan Deleu,
Manuel Goulão, Andreas Kallinteris, Markus Krimmel, Arjun KG, et al. Gymnasium: A Standard
Interface for Reinforcement Learning Environments. arXiv preprint arXiv:2407.17032, 2024.

Saran Tunyasuvunakool, Alistair Muldal, Yotam Doron, Siqi Liu, Steven Bohez, Josh
Merel, Tom Erez, Timothy Lillicrap, Nicolas Heess, and Yuval Tassa. dmcontrol :
Softwareandtasksforcontinuouscontrol. Software Impacts, 6 : 100022, 2020. ISSN2665 −
9638. doi : . URL https://www.sciencedirect.com/science/article/pii/
S2665963820300099.

Dylan Turpin, Liquan Wang, Stavros Tsogkas, Sven Dickinson, and Animesh Garg. GIFT: Gener-
alizable Interaction-aware Functional Tool Affordances without Labels. In Robotics: Science and
Systems (RSS), 2021.

Mark Van der Merwe, Dmitry Berenson, and Nima Fazeli. Learning the Dynamics of Compliant
Tool-Environment Interaction for Visuo-Tactile Contact Servoing. In Conference on Robot Learning
(CoRL), 2022.

Lirui Wang, Kaiqing Zhang, Allan Zhou, Max Simchowitz, and Russ Tedrake. Robot Fleet Learning
via Policy Merging. In International Conference on Learning Representations (ICLR), 2024.

Zi Wang, Caelan Reed Garrett, Leslie Pack Kaelbling, and Tomás Lozano-Pérez. Learning Compo-
sitional Models of Robot Skills for Task and Motion Planning. In International Journal of Robotics
Research (IJRR), 2019.

S. L. Washburn. Tools and Human Evolution. Scientific American, 1960.

Xinyue Wei, Minghua Liu, Zhan Ling, and Hao Su. Approximate convex decomposition for 3d
meshes with collision-aware concavity and tree search. ACM Transactions on Graphics (TOG), 41
(4):1–18, 2022.

Annie Xie, Frederik Ebert, Sergey Levine, and Chelsea Finn. Improvisation through Physical
Understanding: Using Novel Objects as Tools with Visual Foresight. In Robotics: Science and
Systems (RSS), 2019.

Mengdi Xu, Peide Huang, Wenhao Yu, Shiqi Liu, Xilun Zhang, Yaru Niu, Tingnan Zhang, Fei Xia,
Jie Tan, and Ding Zhao. Creative Robot Tool Use with Large Language Models. arXiv preprint
arXiv:2310.13065, 2023a.

14

https://drake.mit.edu
https://www.sciencedirect.com/science/article/pii/S2665963820300099
https://www.sciencedirect.com/science/article/pii/S2665963820300099

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

Zhenjia Xu, Zhou Xian, Xingyu Lin, Cheng Chi, Zhiao Huang, Chuang Gan, and Shuran Song.
RoboNinja: Learning an Adaptive Cutting Policy for Multi-Material Objects. In Robotics: Science
and Systems (RSS), 2023b.

Qinxi Yu, Masoud Moghani, Karthik Dharmarajan, Vincent Schorp, William Chung-Ho Panitch,
Jingzhou Liu, Kush Hari, Huang Huang, Mayank Mittal, Ken Goldberg, et al. ORBIT-Surgical: An
Open-Simulation Framework for Learning Surgical Augmented Dexterity. In IEEE International
Conference on Robotics and Automation (ICRA), 2024.

Tianhe Yu, Deirdre Quillen, Zhanpeng He, Ryan Julian, Karol Hausman, Chelsea Finn, and Sergey
Levine. Meta-World: A Benchmark and Evaluation for Multi-Task and Meta Reinforcement Learn-
ing. In Conference on Robot Learning (CoRL), 2019.

Ying Yuan, Haichuan Che, Yuzhe Qin, Binghao Huang, Zhao-Heng Yin, Kang-Won Lee, Yi Wu,
Soo-Chul Lim, and Xiaolong Wang. Robot Synesthesia: In-Hand Manipulation with Visuotactile
Sensing. In IEEE International Conference on Robotics and Automation (ICRA), 2024.

Kevin Zakka, Philipp Wu, Laura Smith, Nimrod Gileadi, Taylor Howell, Xue Bin Peng, Sumeet
Singh, Yuval Tassa, Pete Florence, Andy Zeng, and Pieter Abbeel. RoboPianist: Dexterous Piano
Playing with Deep Reinforcement Learning. In Conference on Robot Learning (CoRL), 2023.

Andy Zeng, Pete Florence, Jonathan Tompson, Stefan Welker, Jonathan Chien, Maria Attarian,
Travis Armstrong, Ivan Krasin, Dan Duong, Vikas Sindhwani, and Johnny Lee. Transporter Net-
works: Rearranging the Visual World for Robotic Manipulation. In Conference on Robot Learning
(CoRL), 2020.

Yuke Zhu, Josiah Wong, Ajay Mandlekar, Roberto Martı́n-Martı́n, Abhishek Joshi, Soroush Nasiri-
any, and Yifeng Zhu. robosuite: A Modular Simulation Framework and Benchmark for Robot
Learning. In arXiv preprint arXiv:2009.12293, 2020.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

A ADDITIONAL DETAILS OF SIMULATION TASKS

A.1 COMPARISON OF TOOL SKILLS IN CURRENT BENCHMARKS

We compare the distribution of Tool Skills in MuJoCo Manipulus with other benchmarks, and in-
clude the # of Tool Skills in other benchmarks below:

Meta-World

Skills Tools

Assembly Ring Tool
Disassembly Ring Tool
Hammering Hammer
Insertion Peg
Removal Peg

RoboSuite

Skills Tools

Assembly Peg/Nut
Wiping Brush
Insertion Peg

Fleet-Tools

Skills Tools

Scooping Spatula
Splitting Knife
Hitting Hammer
Spanning Wrench

ManiSkill2

Skills Tools

Insertion Peg
Plugging Charger
Filling Bucket
Excavating Shovel
Pouring Bottle
Writing Pencil

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

RLBench

Skills Tools

Closing Box, Door, Drawer, Fridge, Grill, Jar, Laptop, Microwave
Emptying Container, Dishwasher
Hitting Pool Cue, Hockey
Insertion Peg, USB, Charger
Pick-and-Place Cup, Plate
Sweeping Broom, Dustpan
Removal USB

MuJoCo Manipulus (Ours)

Skills Tools

Pouring Cup, Mug, Pan, Pot, Bowl, Plate
Stacking Bowl, Plate
Scooping Ladle, Hand-Shovel
Scraping Spatula, Butcher Knife
Ping-Pong Paddle
Mini-Golf Golf Club
Hammering Hammer
Gathering Brush

A.2 OBSERVATION SPACE

In our tasks, we support state and visual observations. During experiments, we use state-based
observations to train each baseline method. The size of visual observations is 3 × 128 × 128,
representing a 128x128 RGB image of the environment. The observation spaces for each task are
described in the main text.

A.3 ACTION SPACE

In our tasks, we provide 2-DoF, 3-DoF, or 4-DoF action spaces by default, which are carefully
chosen to ensure the tool is capable of solving the given task while exhibiting safe, compliant tool
behavior. However, all our tasks can, in principle, be extended to full 6-DoF action spaces by
enabling the full degrees of rotation. We restrict the number of DoFs mainly to enable off-the-shelf
RL algorithms to make reasonable learning progress. The action spaces for each task are described
in the main text.

A.4 REWARD FUNCTIONS

Our benchmark supports both sparse and dense rewards. In the main paper, we benchmark using
dense rewards since it is necessary to guide standard reinforcement learning algorithms. However,
we encourage the community to explore learning from sparse rewards. Below, we provide details of
our reward functions.

A.4.1 PRELIMINARIES

We use a tolerance function, originally from the DeepMind Control Suite (Tunyasuvunakool et al.
(2020)), to constrain individual rewards to the range [0, 1] while applying smooth increases and
decreases to those rewards w.r.t. changes in the environment. We empirically found that using
tolerance functions for individual rewards leads to more stable policy learning. Related benchmarks,
such as Meta-World (Yu et al. (2019)) and ManiSkill2 (Gu et al. (2023)), also use a similar notion
of tolerance functions for their rewards.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

Pouring Tasks.

The reward function consists of three stages:

STAGE 1: REACH THE LIFT TARGET

Let the tool position be ptool and the lift target position be plift target. Define the distance between
these positions as:

d = ∥ptool − plift target∥
The lift reward is given by:

Rlift = tolerance(d, bounds = [0, 0.05],margin = 0.1, sigmoid = gaussian)

STAGE 2: ROTATE THE TOOL

Let the tool’s rotation about the relevant axis be qtool. Define the bounds for a valid rotation as
[0.7, 0.9]. The pour reward is:

Rpour = tolerance(qtool, bounds = [0.7, 0.9],margin = 0.7, sigmoid = gaussian)

STAGE 3: CHECK PARTICLES IN BIN

Let the bin target position be pbin target, and the positions of particles be pi for i = 1, . . . , N . Com-
pute the distances from particles to the bin target:

di = ∥pi − pbin target∥

If Rlift = 1.0, the bin reward is:

Rbin =
1

N

N∑
i=1

tolerance(di, bounds = [0, 0.09],margin = 0, sigmoid = gaussian)

Otherwise:
Rbin = 0

TOTAL REWARD

The total reward is:
R = Rlift +Rpour +Rbin

The reward is clipped to the range [0, 3]:

R = min(max(R, 0), 3)

SUCCESS CONDITION FOR SPARSE REWARD

The task is considered successful if:

success =
{
1 if Rbin = 1.0

0 otherwise

Stacking Tasks.

The reward function is composed of the following stages:

STAGE 1: MINIMIZE DISTANCE BETWEEN MARKER AND TARGET

Let the marker position be pmarker and the target position be ptarget. Define the distance between
these positions as:

da = ∥pmarker − ptarget∥
The reward for minimizing this distance is:

Rstage 1 = tolerance(da, bounds = [0, 0.01],margin = 0.275, sigmoid = gaussian)

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

STAGE 1 PENALTY: ENSURE QUATERNION STABILITY

Let the first component of the quaternion for the marker body be q0. To ensure stability, we compute:
Pquat = tolerance(q0, bounds = [0.99, 1.01],margin = 0.01, sigmoid = gaussian)

TOTAL REWARD

The total reward is computed as the product of the stage 1 reward and the quaternion penalty:
R = Rstage 1 · Pquat

If R = 1.0, an additional reward of 1.0 is added:

R =

{
R+ 1.0 if R = 1.0

R otherwise

Finally, the reward is clipped to the range [0, 2]:
R = min(max(R, 0), 2)

SUCCESS CONDITION FOR SPARSE REWARD

The task is considered successful if:

success =
{
1 if R = 1.0

0 otherwise

Scooping Tasks.

The reward function consists of two stages:

STAGE 1: REACH THE YELLOW PARTICLE

Let the position of the scooper be pscooper, and the position of the yellow particle be pparticle yellow.
Define the horizontal distance between these positions as:

da = ∥pscooper − pparticle yellow∥
The reward for reaching the yellow particle is:

Rreach = tolerance(da, bounds = [0, 0.025],margin = 0.1, sigmoid = gaussian)

Additionally, introduce a penalty based on the height difference between the scooper and the yellow
particle:

hdiff = pscooper,z − pparticle yellow,z

The height penalty is given by:
Pheight a = tolerance(hdiff, bounds = (−∞, 0],margin = 0.02, sigmoid = gaussian)

The adjusted reach reward is:
Rreach = Rreach · Pheight a

STAGE 2: SCOOP THE YELLOW PARTICLE TOWARDS THE LIFT TARGET

Let the position of the lift target be ptarget. Define the distance between the yellow particle and the
lift target as:

db = ∥pparticle yellow − ptarget∥
The reward for scooping the yellow particle towards the lift target is:

Rscoop = tolerance(db, bounds = [0, 0.05],margin = 0.05, sigmoid = gaussian)

Introduce a penalty based on the height difference between the scooper and the lift target:
hdiff b = pscooper,z − ptarget,z

The height penalty for this stage is:
Pheight b = tolerance(hdiff b, bounds = [0, 0.1],margin = 0.1, sigmoid = gaussian)

The adjusted scoop reward is:
Rscoop = Rscoop · Pheight b

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

TOTAL REWARD

The total reward is the sum of the reach and scoop rewards:
R = Rreach +Rscoop

If Rscoop ≥ 0.95, a success bonus of 2.0 is added:

R =

{
R+ 2.0 if Rscoop ≥ 0.95

R otherwise

Finally, the reward is clipped to the range [0, 4]:
R = min(max(R, 0), 4)

SUCCESS CONDITION FOR SPARSE REWARD

The task is considered successful if:

success =
{
1 if Rscoop ≥ 0.95

0 otherwise

Scraping Tasks.

The reward function consists of two stages:

STAGE 1: REACHING REWARD

Let the position of the tool be ptool, and the position of the yellow particle be pparticle yellow. Define
the distance between these positions as:

dreach = ∥ptool − pparticle yellow∥
The reaching reward is given by:

Rreach = tolerance(dreach, bounds = [0, 0.01],margin = 0.12, sigmoid = gaussian)

STAGE 2: MOVING TO BIN REWARD

Let the position of the bin target be pbin target. Define the distance between the yellow particle and
the bin target as:

dmove = ∥pparticle yellow − pbin target∥
The moving reward is given by:

Rmove = tolerance(dmove, bounds = [0, 0.05],margin = 0.1825, sigmoid = gaussian)

TOTAL REWARD

The total reward is the sum of the reaching reward and the moving reward:
R = Rreach +Rmove

If Rmove = 1.0, indicating that the yellow particle is successfully in the bin, a success bonus of 2.0
is added:

R =

{
R+ 2.0 if Rmove = 1.0

R otherwise
Finally, the reward is clipped to the range [0, 4]:

R = min(max(R, 0), 4)

SUCCESS CONDITION FOR SPARSE REWARD

The task is considered successful if:

success =
{
1 if Rmove = 1.0

0 otherwise

Ping Pong.

The reward function consists of two stages:

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

STAGE 1: MINIMIZE DISTANCE BETWEEN BALL AND PADDLE

Let the position of the paddle (marker) be ppaddle and the position of the ball be pball. Define the
distance between these positions as:

da = ∥ppaddle − pball∥

The reward for minimizing this distance is:

Rstage 1 = tolerance(da, bounds = [0, 0.01],margin = 0.4, sigmoid = gaussian)

If Rstage 1 = 1.0, a large reward of 49 is added:

Rtotal = Rtotal + 49 if Rstage 1 = 1.0

STAGE 2: MINIMIZE DISTANCE BETWEEN BALL AND TARGET

Let the position of the target be ptarget. Define the distance between the ball and the target as:

db = ∥pball − ptarget∥

The reward for minimizing this distance is:

Rstage 2 = tolerance(db, bounds = [0, 0.1],margin = 0.8, sigmoid = gaussian)

TOTAL REWARD

The total reward is updated as:

Rtotal = Rtotal +Rstage 1 +Rstage 2

If Rstage 2 = 1.0, indicating that the ball successfully reached the target, a large reward of 49 is
added, and success is marked as:

Rtotal = Rtotal + 49, success = True

Finally, the total reward is clipped to the range [0, 100]:

Rfinal = min(max(Rtotal, 0), 100)

SUCCESS CONDITION FOR SPARSE REWARD

The task is considered successful if:

success =
{
1 if Rstage 2 = 1.0

0 otherwise

Mini Golf.

The reward function is composed of two stages:

STAGE 1: ROTATE THE TOOL

Let the rotation of the golf club be represented by qtool[2], which is the third component of its
quaternion. The reward for rotating the tool is defined as:

Rrotate = tolerance (x = qtool[2], bounds = [−0.4,−0.2],margin = 0.4, sigmoid = gaussian)

STAGE 2: MOVE GOLF BALL TO TARGET

Let the position of the golf ball be pball and the position of the target be ptarget. Define the distance
between them as:

d = ∥pball − ptarget∥
The reward for moving the golf ball to the target is:

Rmove = tolerance (x = d, bounds = [0, 0.04],margin = 0.85, sigmoid = gaussian)

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

TOTAL REWARD

The total reward is the sum of the rewards from both stages:
Rtotal = Rrotate +Rmove

If Rmove = 1.0, indicating that the golf ball successfully reached the target, an additional bonus of
2.0 is added:

Rtotal =

{
Rtotal + 2.0 if Rmove = 1.0

Rtotal otherwise
Finally, the reward is clipped to the range [0, 4]:

Rfinal = min(max(Rtotal, 0), 4)

SUCCESS CONDITION FOR SPARSE REWARD

The task is considered successful if:

success =
{
1 if Rmove = 1.0

0 otherwise

Gather Cubes.

The reward function consists of calculating rewards for three particle colors: red, green, and blue.

REWARD FOR EACH PARTICLE

For each particle, the reward is calculated in two stages:

STAGE 1: REACHING REWARD

Let the position of the tool be ptool, and the position of the particle (color c) be pparticle,c. Define the
distance between them as:

dreach,c = ∥ptool − pparticle,c∥
The reaching reward is given by:

Rreach,c = tolerance (x = dreach,c, bounds = [0, 0.03175],margin = 0.12, sigmoid = gaussian)

STAGE 2: MOVING TO BIN REWARD

Let the position of the bin target be ptarget. Define the distance between the particle (color c) and the
bin target as:

dbin,c = ∥pparticle,c − ptarget∥
The moving reward is given by:

Rmove,c = tolerance (x = dbin,c, bounds = [0, 0.075],margin = 0.1825, sigmoid = gaussian)

If the particle reaches the bin (Rmove,c = 1.0), an additional bonus of 2.0 is added:

Rparticle,c = Rreach,c +Rmove,c +

{
2.0 if Rmove,c = 1.0

0 otherwise
A success state is recorded for particle c:

successc =
{
1 if Rmove,c = 1.0

0 otherwise

TOTAL REWARD

The total reward is the sum of the rewards for all particles:

Rtotal =
∑

c∈{red, green, blue}

Rparticle,c

If all particles reach the bin (successred = successgreen = successblue = 1), a large bonus of 5.0 is
added:

Rtotal =

{
Rtotal + 5.0 if all particles succeed
Rtotal otherwise

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2025

SUCCESS CONDITION FOR SPARSE REWARD

The task is considered successful if:

success =
{
1 if all particles succeed
0 otherwise

Hammer Nail.

The reward function consists of two main stages with an auxiliary reward in the first stage.

STAGE 1: ALIGN MARKER WITH INITIAL NAIL TARGET

Let the position of the marker be pmarker and the position of the initial nail target be pnail target initial.
Define the distance between them as:

d1a = ∥pmarker − pnail target initial∥
The reward for minimizing this distance is:

R1a = tolerance (x = d1a, bounds = [0, 0.01],margin = 0.17, sigmoid = gaussian)

AUXILIARY REWARD: MAINTAIN SIMILAR HEIGHT

The height difference between the marker and the initial nail target is:

d1b = pmarker,z − pnail target initial,z

where pmarker,z and pnail target initial,z are the z-coordinates of the marker and initial nail target, respec-
tively. The auxiliary reward for minimizing this height difference is:

R1b = tolerance (x = d1b, bounds = [−0.01, 0.01],margin = 0.01, sigmoid = gaussian)

STAGE 2: ALIGN INITIAL NAIL TARGET WITH FINAL NAIL TARGET

Let the position of the final nail target be pnail target final. Define the distance between the initial and
final nail targets as:

d2 = ∥pnail target initial − pnail target final∥
The reward for minimizing this distance is:

R2 = tolerance (x = d2, bounds = [0, 0.015],margin = 0.035, sigmoid = gaussian)

TOTAL REWARD

The total reward is the sum of the rewards from all stages:

Rtotal = R1a +R1b +R2

REWARD CLIPPING

The total reward is clipped to the range [0, 3]:

Rfinal = min(max(Rtotal, 0), 3)

SUCCESS CONDITION FOR SPARSE REWARD

If R2 = 1.0, indicating that the initial nail target successfully aligns with the final nail target, the
task is considered successful:

success =
{
1 if R2 = 1.0

0 otherwise

A.5 ENVIRONMENT RESET RANDOMIZATION

We apply position randomization to tools and objects in each environment, and include details for
this below.

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2025

A.5.1 POSITION RANDOMIZATION FOR TASKS

Let the position randomization vector be denoted as:

r =

[
rx
ry

]
where each component rx and ry is drawn randomly from a uniform distribution over the range
[−0.05, 0.05]:

rx, ry ∼ U(−0.05, 0.05)

For each object (Tool, MoCap, and Particles) within the MuJoCo model, the position in the x and y
directions is adjusted by adding this randomization:

pobject = pobject + r

where:

pobject =

[
px
py
pz

]

is the original position of the object in 3D space. For all objects (Tool, MoCap, and Particles), the
new position is updated as:

pobject[: 2]← pobject[: 2] + r

This ensures that only the x and y components of the position are modified, leaving the z-component
unchanged.

• In Pouring, the same position randomization is applied to the tool/mocap and the particles
inside the tool.

• In Scooping, we do not randomize the position of the particle – we only randomize the
(x, y) position of the tool/mocap.

• In Stacking, there are no particles, so only the position of the tool/mocap is randomized.
• In Scraping and Gathering, we apply 2 separate position randomizations to the tool/mocap

and the objects the tool interacts with.
• In Ping Pong, we apply the same position randomization to rx (forward/backward place-

ment) of the paddle and the ball.
• In Mini Golf, we apply the same position randomization to ry (horizontal placement) of

the golf club and the ball. Additionally, we draw ry from U(−0.02, 0.02)
• In Hammer Nail, we apply 2 separate position randomizations to the hammer/mocap rx

(forward/backward placement) and the nail’s ry (upward/downward placement).

24

	Introduction
	Related Work
	Robot Tool Manipulation
	Benchmarks in Robot Learning and Manipulation

	The Benchmark: MuJoCo Manipulus
	Overview of Simulation Framework
	Tasks

	Learning Robot Tool Manipulation
	Reinforcement Learning Experiments
	Reinforcement Learning Results

	Conclusion
	Additional Details of Simulation Tasks
	Comparison of Tool Skills in Current Benchmarks
	Observation Space
	Action Space
	Reward Functions
	Preliminaries

	Environment Reset Randomization
	Position Randomization for Tasks

