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Abstract
Function calling using Large Language Mod-001
els (LLMs) is an active research area that aims002
to empower LLMs with the ability to execute003
APIs to perform real-world tasks. However,004
sequential function calling using LLMs with in-005
terdependence between functions is still under-006
explored. To this end, we introduce GraphQL-007
RestBench, a dataset consisting of natural lan-008
guage utterances paired with function call se-009
quences representing real-world REST API010
calls with variable mapping between functions.011
In order to represent the response structure012
of the functions in the LLM prompt, we use013
the GraphQL schema of the REST APIs. We014
also introduce a custom evaluation framework015
for our dataset consisting of four specially016
designed metrics. We evaluate three open-017
source code LLMs on our dataset using few-018
shot Chain-of-Thought and ReAct prompting019
to establish a reasonable baseline.020

1 Introduction021

Tool use in Large Language Models (LLMs) is022

an active area of research that aims to overcome023

the limits of pretraining LLMs (which usually re-024

sults in a “knowledge cutoff date”) by enabling the025

LLMs to fetch data that they were not trained on026

using tools such as web APIs and databases. In027

this context the idea of using LLMs for function028

calling has gained traction since using tools in the029

form of functions requires LLMs to accurately pass030

correct parameter values to the functions. Any web031

API can be encapsulated as a function which re-032

quires inputs in a predefined format and outputs a033

structured response object.034

The idea of empowering LLMs to use tools to035

harness external knowledge and perform complex036

computational tasks was introduced by Toolformer037

(Schick et al., 2024). There have been several at-038

tempts to train LLMs to use tools such as APIs039

(Liang et al., 2023; Shen et al., 2024; Patil et al.,040

2023; Song et al., 2023; Patil et al., 2024).041

Figure 1: An example sequential function calling sce-
nario from Spotify in GraphQLRestBench.

LLMs still do not perform well on API calling 042

due to their inability to generate accurate input 043

arguments and their tendency to hallucinate the 044

wrong usage of an API call. It is essential for 045

API-augmented LLMs to have robust planning and 046

decision-making capabilities. Planning based ap- 047

proaches like ReAct (Yao et al., 2022) encounter 048

challenges in effectively adapting API feedback 049

and generating viable plans. RestGPT (Song et al., 050

2023) introduced a coarse-to-fine online planning 051

mechanism for task decomposition and API selec- 052

tion, and API execution. 053

While methods like ReAct and RestGPT have 054

demonstrated promising abilities for online plan- 055

ning and execution, they may generate incorrect 056

APIs during the exploration phase. In contrast, Go- 057

rilla (Patil et al., 2023) focuses on the ability of the 058

LLM to call a given API correctly. We wish to ex- 059
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tend this approach to the sequential API execution060

scenario of RestGPT. While the Gorilla OpenFunc-061

tions framework (see the Berkeley Function Calling062

Leaderboard (Yan et al., 2024)) supports single and063

parallel function calls, it does not as yet support064

the use case of chained or sequential function calls065

where there exist mappings between the input and066

output parameters of functions.067

The fundamental difficulty in calling sequential068

APIs in a single shot is the lack of knowledge about069

the response structure of APIs. While the OpenAPI070

specification of the API might provide some clue as071

to the response structure, it is often incomplete or072

inadequate for the purpose of defining the variable073

mapping in pythonic form.074

GraphQL (Inc., 2015) is a query language for075

APIs that allows the user to easily find the useful076

fields and types in the API response object by in-077

specting the so-called GraphQL “schema” of the078

API using a feature called “introspection”. As a so-079

lution to the above problem, we propose using the080

GraphQL schema of the APIs as a reliable source081

of information regarding their response structure.082

Tools like StepZen (IBM, 2024), Apollo (Apollo083

Graph Inc, 2024), and Hasura (Hasura, 2024) are084

available for automatically generating the GraphQL085

schema for querying RESTful APIs and databases.086

In this paper, we introduce a new dataset,087

GraphQLRestBench which is built using the Rest-088

Bench dataset introduced by RestGPT. Notably,089

RestBench only provides API sequences and not090

input-output parameter mappings between APIs.091

In GraphQLRestBench, we additionally add the092

GraphQL schema generated by StepZen for the093

APIs and also Python code to call the APIs in a094

sequence using input-output parameter mapping095

given the response structure of the APIs obtained096

from the GraphQL schema. The task is to generate097

the correct Python code consisting of a sequence098

of function calls with accurate parameter mapping099

between functions (see Figure 1). We introduce a100

custom evaluation framework for our dataset con-101

sisting of four task-specific metrics. We also evalu-102

ate three open source code LLMs on this task using103

Chain-of-Thought (Wei et al., 2022) and ReAct104

(Yao et al., 2022) style prompting as a reasonable105

baseline.106

2 Related Work107

Tool use and function calling (Mialon et al., 2023)108

presents a survey of augmented language models in109

general. Gorilla (Patil et al., 2023) introduced the 110

idea of fine-tuning a base LLM for function call- 111

ing by supplementing it with information retrieval. 112

Toolformer (Schick et al., 2024) fine-tunes an LLM 113

on the task of function calling with some custom 114

built tools. (Yang et al., 2024) teaches LLMs to use 115

such tools with self-instruction. TaskMatrix (Liang 116

et al., 2023) studied the problem of task comple- 117

tion using a large number of APIs. ToolLLM (Qin 118

et al., 2023) is a general tool-use framework en- 119

compassing data construction, model training, and 120

evaluation over 16,000 APIs from RapidAPI Hub. 121

Agent-based frameworks have also been ex- 122

plored in this area. ReAct (Yao et al., 2022) studied 123

the integration of reasoning and acting (by means 124

of function calls) in LLM agents. Inspired by Re- 125

Act, RestGPT (Song et al., 2023) proposes a dual- 126

agent planner-executor approach to connect LLMs 127

with real-world RESTful APIs. (Song et al., 2024) 128

introduced exploration-based trajectory optimiza- 129

tion for open-source LLM agents by fine-tuning on 130

the agent trajectories. AnyTool (Du et al., 2024) in- 131

troduced self-reflective, hierarchical agents for API 132

calling using the function calling ability of GPT-4 133

(Achiam et al., 2023). HuggingGPT (Shen et al., 134

2024) is an LLM-powered agent that connects var- 135

ious AI models in machine learning communities 136

such as Hugging Face to solve AI tasks. 137

RESTful is the popular web service develop- 138

ment standard (Li et al., 2016), which supports 139

HTTP protocols and URIs to serve resources. Ope- 140

nAPI Specification (Initiative, 2021) describes the 141

operations, parameters, and response schemas in 142

RESTful APIs. 143

Function calling datasets APIBench from Go- 144

rilla (Patil et al., 2023) consists of HuggingFace, 145

TorchHub, and TensorHub APIs. RestBench from 146

RestGPT (Song et al., 2023) consists of APIs from 147

TMDB movie database and Spotify music player. 148

ToolBench from ToolLLM (Qin et al., 2023) con- 149

sists of 16,464 real-world RESTful APIs spanning 150

49 categories from RapidAPI Hub. AnyToolBench 151

from AnyTool (Du et al., 2024) is similar to Tool- 152

Bench but with a different evaluation protocol. 153

GraphQL (Wittern et al., 2018) discussed gen- 154

erating GraphQL wrappers for REST APIs using 155

the OpenAPI specifications. (Farré et al., 2019) 156

proposed automatic GraphQL schema generation 157

for data-intensive web APIs using a semantic meta- 158

model. Works such as (Brito and Valente, 2020) 159

compare GraphQL and REST frameworks. 160
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3 Methodology161

In this section we explain the methodology we used162

to create the GraphQLRestBench dataset.163

GraphQL schema Generation First we generate164

GraphQL schema for all the API endpoints in Rest-165

Bench, except for those whose output schema is166

never required. We use the import curl command167

from the StepZen CLI to generate the GraphQL168

schema for the endpoints using appropriate dummy169

values for the parameters if required. The schema170

files thus generated are collated to form the com-171

bined schema for a given sample (sequence of API172

calls) in RestBench.173

Function Signature Generation We programmat-174

ically generated function signatures in the OpenAI175

compatible format used by Gorilla OpenFunctions176

(Patil et al., 2023) and the Berkeley Function Call-177

ing LeaderBoard (Yan et al., 2024) by parsing the178

OpenAPI specifications for Spotify and TMDB179

available in RestBench.180

API Function Calling We then manually gener-181

ated the code to call the APIs, where each API is182

encapsulated by a function named as the Query183

type corresponding to the API in the GraphQL184

schema, and the arguments of the function are the185

API parameters (which may be in the path, the186

query string or the body of the REST API call).187

Some arguments are required whereas others are188

optional as per the OpenAPI specification. In the189

ground truth code that we generated, we consid-190

ered only the required arguments and ignored the191

optional ones. The generated code is organized as192

a sequence of function calls along with variables to193

store the function outputs.194

Data Organization195

Each sample of GraphQLRestBench consists of196

(1) a natural language utterance from a sample197

of RestBench, (2) the function signatures of the198

ground truth APIs in the sample, (3) the combined199

GraphQL schema of these APIs, and (4) the ground200

truth code to call these APIs as functions.201

split overall spotify tmdb

train 107 38 69
val 16 6 10
test 32 12 20

Table 1: Number of samples in each data split of
GraphQLRestBench

Data Splits We split both Spotify and TMDB data 202

from GraphQLRestBench into train, validation and 203

test splits in the ratio 7:1:2. The corresponding 204

splits from the two domains are combined to form 205

the overall train, validation and test splits. Statistics 206

of the data are shown in Table 1. 207

4 Experiments 208

We report results on our test data, benchmarking 209

multiple open source models, namely CodeLlama 210

(Rozière et al., 2024), DeepSeek Coder (Guo et al., 211

2024) and Granite Code (Mishra et al., 2024). We 212

demonstrate the capability of these models on our 213

code generation task using (i) Chain-of-Thought 214

style prompting (Wei et al., 2022) where the model 215

reasons about the sequence of functions it must 216

call as well as the parameter values it must use, 217

generating additional code if necessary to extract 218

the correct parameter values from API responses 219

represented by GraphQL types, and (ii) ReAct style 220

prompting (Yao et al., 2022) where the model gen- 221

erates code in a step by step fashion (one function 222

call per step) 223

As in RestBench, our dataset contains real-world 224

examples from two domains: Spotify (Spotify, 225

2024) and TMDB (TMDB, 2024). For each do- 226

main, we carefully select representative few-shot 227

examples from the corresponding train splits to 228

guide the model in understanding the sequence of 229

function calls and parameter assignments required 230

to generate the correct Python code. 231

Metrics We used the following metrics to eval- 232

uate performance of all the models on our test 233

data. (1) Arg Match (full): This metric measures 234

the exact match of all the function arguments in 235

the generated and ground truth code snippets post 236

standardization of response variable names. It as- 237

signs a score of 1 if all the arguments of all the 238

functions in the ground truth code snippet are also 239

present in the generated code snippet and a score 240

of 0 otherwise. The final score is the average of 241

the scores over the code snippets. (2) Arg Match 242

(functions): This metric measures the exact match 243

of all the function arguments per function post re- 244

sponse variable name standardization. It assigns 245

a score of 1 if all the arguments of a ground truth 246

function call are also present in the generated func- 247

tion call and a score of 0 otherwise. The final score 248

is the average of the scores over the functions. (3) 249

Seq Match (full): This metric measures the exact 250

match of the sequence of functions in the generated 251
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Model Prompt Test Arg Match Arg Match Seq Match Seq Match
Style split (full) (functions) (full) (conn. subseq.)

codellama-34b-instruct CoT overall 0.6875 0.8051 0.9062 0.9375
deepseek-coder-33b-instruct CoT overall 0.7500 0.8701 0.9687 1.0000
granite-34b-code-instruct CoT overall 0.7812 0.8701 0.9375 0.9687
codellama-34b-instruct ReAct overall 0.7188 0.8182 0.9062 0.8750
deepseek-coder-33b-instruct ReAct overall 0.7500 0.8312 0.9375 0.8438
granite-34b-code-instruct ReAct overall 0.7812 0.8571 0.8750 0.8750

codellama-34b-instruct CoT spotify 0.5833 0.7741 0.9166 0.9166
deepseek-coder-33b-instruct CoT spotify 0.5833 0.7741 1.0000 1.0000
granite-34b-code-instruct CoT spotify 0.5000 0.7096 0.9166 0.9166
codellama-34b-instruct ReAct spotify 0.4167 0.7097 0.8333 0.7500
deepseek-coder-33b-instruct ReAct spotify 0.5000 0.7419 1.0000 0.7500
granite-34b-code-instruct ReAct spotify 0.5000 0.6774 0.8333 0.8333

codellama-34b-instruct CoT tmdb 0.7500 0.8260 0.9000 0.9500
deepseek-coder-33b-instruct CoT tmdb 0.8500 0.9347 0.9500 1.0000
granite-34b-code-instruct CoT tmdb 1.0000 1.0000 1.0000 1.0000
codellama-34b-instruct ReAct tmdb 0.9000 0.8913 0.9500 0.9500
deepseek-coder-33b-instruct ReAct tmdb 0.9000 0.8913 0.9000 0.9000
granite-34b-code-instruct ReAct tmdb 0.9500 0.9783 0.9000 0.9000

Table 2: Few-shot Chain-of-Thought (CoT) and ReAct prompting results on the test split of GraphQLRestBench.

and ground truth code snippets. It assigns a score252

of 1 if the two sequences match and a score of 0253

otherwise. The final score is the average of the254

scores over the code snippets. (4) Seq Match (con-255

nected subsequences): A connected subsequence256

is a sequence of function calls that are dependent257

because of input-output variable mapping. We can258

extract all such connected subsequences from a259

code snippet by matching the input and output vari-260

able names. This metric measures the exact match261

of these connected subsequences in the generated262

and ground truth code snippets. It assigns a score263

of 1 if all the connected subsequences match and a264

score of 0 otherwise. The final score is the average265

of the scores over the code snippets. This metric is266

more robust than Seq Match (full) since functions267

can be called in any order so long as they are not268

dependent on each other.269

Models We used three open-source code LLMs270

available on Hugging Face, codellama-34b-instruct271

(Meta), deepseek-coder-33b-instruct (DeepSeek),272

and granite-34b-code-instruct (IBM). We also ex-273

perimented with gorilla-openfunctions-v2 but the274

results were very poor.275

Experimental Setup For the few shot learning276

setting, we prompt models using greedy decod-277

ing and a temperature setting of 0.05. We use278

3-shot prompting for CodeLLama and DeepSeek279

Coder (which have 16K context length) for Chain-280

of-Thought and ReAct prompting. In case of Gran-281

ite Code (which has 8K context length), some ad-282

justments were needed: (i) for CoT, only 2-shot283

prompts were used due to limited context length, 284

and (ii) for ReAct, the function descriptions were 285

stripped out from the function specs (this saves 286

context length but slightly affects performance). 287

Results 288

We compare the few-shot performance of the three 289

LLMs in Table 2. We see that in the overall test 290

split, Deepseek Coder is generally the best model, 291

while Granite Code performs better for Arg Match 292

(full). CodeLLama and DeepSeek Coder perform 293

better on Spotify data while Granite Code performs 294

better on TMDB data. We see that Seq Match (con- 295

nected subsequences) is generally higher than Seq 296

Match (full), indicating that models can generate in- 297

dependent functions in an arbitrary order, but they 298

are less likely to generate dependent functions in 299

the wrong order since it would result in incorrect 300

code. We observe that ReAct performs better than 301

Chain-of-Thought for CodeLLama on TMDB data 302

which also affects overall scores. 303

Conclusion 304

In this paper, we introduce GraphQLRestBench, a 305

new benchmark for evaluating sequential function 306

calling performance of Large Language Models 307

(LLMs). GraphQLRestBench leverages GraphQL 308

schema for input-output variable mapping and code 309

generation. We propose new metrics that better 310

evaluate sequential function calling and evaluate 311

open source code LLMs using few shot Chain-of- 312

Thought and ReAct style prompting on this dataset. 313
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Limitations and Ethical Statement314

In this section, we briefly highlight the limitations315

and ethical considerations of our work. This work316

suffers from three major limitations:317

• RestBench is a relatively small dataset, con-318

sisting only of two domains (Spotify and319

TMDB). Since our dataset is based on Rest-320

Bench, it is also small in size. It is difficult to321

fine-tune LLMs effectively on this data.322

• The function calls are currently not executable.323

In future we would like to add the execution324

functionality in the evaluation framework.325

• We did not evaluate the performance of state326

of the art closed source models like GPT-4327

(Achiam et al., 2023) or Claude 3 (Anthropic,328

2024), preferring instead to evaluate open329

source models. While these open source mod-330

els are quite good, they do not match the per-331

formance of the closed source models.332

Ethical Considerations333

In this work, we have used publicly available334

datasets and open source Large Language Models.335

There are mentions of names of people and organi-336

zations in the dataset. While this can be considered337

innocuous data about well known people, we do338

not know if the organisations that produced and339

released these datasets offered options for people340

to opt out.341

Our work proposes methods to use LLMs for342

function calling, namely generating functions from343

natural language instructions given function spec-344

ifications and GraphQL schema generated from345

REST APIs. Function calling is a well known task.346

Several datasets and leaderboards exist for this task.347

However, the potential for a malicious user or or-348

ganization using this kind of work for exploiting349

vulnerabilities in REST APIs does exist.350

Such exploitation of vulnerabilities could lead to351

leak of sensitive data from API services and could352

generally be used for distributed denial of service353

attacks. While such attacks can be carried out by354

malicious users coding themselves, LLMs could355

help scale such attacks. But this kind of misuse of356

LLMs is possible with all code models. The ability357

to generate code using natural language in general358

and our contribution here to the particular aspect359

of function calling can be used by malicious users360

but is generally useful to a much larger population361

who use it for good and productive reasons.362
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