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ABSTRACT

We consider situations where the presence of dominant simpler correlations with
the target variable in a training set can cause an SGD-trained neural network to
be less reliant on more persistently correlating complex features. When the non-
persistent, simpler correlations correspond to non-semantic background factors, a
neural network trained on this data can exhibit dramatic failure upon encountering
systematic distributional shift, where the correlating background features are re-
combined with different objects. We perform an empirical study on three synthetic
datasets, showing that group invariance methods across inferred partitionings of the
training set can lead to significant improvements at such test-time situations. We
also suggest a simple invariance penalty, showing with experiments on our setups
that it can perform better than alternatives. We find that even without assuming
access to any systematically shifted validation sets, one can still find improvements
over an ERM-trained reference model.

1 INTRODUCTION

If a training set is biased such that an easier-to-learn feature correlates with the target variable
throughout the training set, a modern neural network trained with SGD will use that factor to perform
predictions, ignoring co-occurring harder-to-learn complex predictive features (Shah et al., 2020).
Without any other criteria, this is arguably desirable behaviour, reflecting Occam’s razor. We consider
the situation where although such a simpler correlation is a dominant bias in the training set, a
minority group exists within the dataset where the bias does not manifest. In such cases, relying
on more complex predictive features which more pervasively explain the data can be preferable to
simpler ones that only explain most of it. For example, if all chairs are red, redness ought to be a
predictive rule for chairhood (without any other criteria for predictions). However, if some chairs are
not red, and all chairs have backs and legs, then one can infer that redness is less relevant.

In this paper, we will study object recognition tasks, where the objects correlate strongly with
simpler non-semantic background information for a majority of the images, but not for a minority
group. There is evidence in the literature that modern CNNs tend to fixate on simpler features such
as texture (Geirhos et al., 2019; Brendel & Bethge, 2019), canonical pose (Alcorn et al., 2019),
or contextual background cues (Beery et al., 2018). We are assuming that semantic features in a
classification context (ones that humans would agree contribute to their labelling of objects) are
more likely to persistently correlate with the target variable, while simpler non-semantic background
biases are more likely to exhibit non-persistent correlations in real-life data collection processes.
Based on this assumption, we will use combinations of objects and backgrounds to compare test-time
performances corresponding to particular distributional shifts.

Consider coloured MNIST digits such that there is a dominant, but not universal, correlation between
colour and digit identity for a majority of the images. In the situation we are considering, if the biasing
colours in the majority group are not recombined with different digits in the minority group, then there
is no signal for the model to disregard these biasing factors, which are retained as important predictive
rules. This can lead to poor performance at systematic generalisation (Lake & Baroni, 2018), where
an object occurs with another object’s biasing factor, and at semantic anomaly detection (Ahmed
& Courville, 2020), where a novel object appears with one of the biasing factors. In our example
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Table 1: For a coloured MNIST dataset with every digit correlated with a colour 80% of the time,
we see poor performance at systematically varying tasks. Performance improves if the minority
group combines colours from other biased digits - this provides corrective gradients that promote
invariance to colour. Non-systematic shifts are when unseen colours are used, and anomaly detection
is measured by decreased predictive confidence for an unseen digit (see Section 2 for more details).

Minority colours In-distribution Non-systematic shift Systematic shift Anomaly detection

Different 99.60 ± 0.02 53.26 ± 1.89 38.72 ± 2.27 7.70 ± 0.23
Recombinations 98.67 ± 0.39 85.05 ± 1.89 97.56 ± 0.05 46.59 ± 6.93

with coloured MNIST, if we colour the minority group digits with the colours used to bias (different)
digits in the majority group, we find a marked improvement at systematically shifted tests over the
case when the colours in the minority group are different colours altogether (see Table 1).

We investigate the role of encouraging robust predictive behaviour across such groups in terms of
improved performance at tasks with such distributional shifts. Our experiments suggest that training
with cross-group invariance penalties can result in models that have learned to be more reliant on
persistent complex correlations without being overwhelmed by simpler, yet less stable features, as
indicated by improved performance at systematic generalisation and semantic anomaly detection on
our synthetic setups.

We find that a recently proposed method (Creager et al., 2020) can be effective at inferring the
majority and minority groups along a learned feature-bias, and we use this inferred partition to
provide us with groups in the training set in our comparative study. We also suggest a new method
for encouraging predictions that rely on persistent correlations across such groups, with the intuition
that similar predictive behaviour across the groups should be promoted throughout training. With
experiments on three synthetic datasets, we compare the performance of recently proposed invariance
penalties and methods, and find that our variant can often perform better at tasks involving such
test-time distributional shifts.

2 SYSTEMATIC AND NON-SYSTEMATIC GENERALISATION

If we assume that data x is generated via a composition C of semantic factors hs and non-semantic
factors hn, we can use this decomposition, x = C(hs, hn), to generate test datasets to capture
different scenarios. While hn is actually independent of y, we shall have the independence property
pD(hn|y) = pD(hn) to not hold when there is bias in the dataset D due to hn–y correlations.

We can evaluate, for a particular target y and our system’s prediction of the target ŷ(x), the average
accuracy E

[
1{ŷ(C(hs, hn)) = y}

]
, as a measure of generalisation for the following different cases.

(a) Tr (b) Tg (c) Ts (d) Tn (e) Ta

Figure 1: COLOURED MNIST training and test sets for evaluating generalisation under non-semantic
marginal shift and systematic shift, and anomaly detection. (a) Training set; (b) In-distribution
generalisation set Tg, where the test set is coloured following the same scheme as for Tr; (c)
Systematic-shift generalisation set Ts, where we colour the test set with the biasing colours, but such
that no digit is coloured with its own biasing colour; (d) Non-systematic-shift generalisation set Tn,
where the test is coloured with random colours that are different from any of the colours seen in the
training set; and (e) Semantic anomaly detection set Ta, where we colour the held-out digits of the
test set randomly with the biasing colours.

2



Published as a conference paper at ICLR 2021

In-distribution generalisation hs ∼ p(hs|y) and hn ∼ p(hn|y): The validation and test sets are
assumed to possess the same biases as the training set, in that the class-conditional distribution of
non-semantic features in the test set match that of the training set, p(hn|y).

Generalisation under non-systematic-shift hs ∼ p(hs|y) and hn 6∼ p(hn)1: This estimates a form
of generalisation under distributional shift, where the non-semantic factors are sampled from outside
the marginal distribution of hn as present in the training set.

Generalisation under systematic-shift hs ∼ p(hs|y) and hn ∼ p(hn|y′) where y′ ∼
p(y) s.t. y′ 6= y: This estimates another form of generalisation under distributional shift but one
where non-semantic factors are sampled with intent to confuse: non-semantic factors for x are
sampled from the marginal distribution of a randomly picked different target, y′ 6= y. Although
systematicity, as discussed in Fodor & Pylyshyn (1988), and systematic generalisation, as discussed
in the NLP literature (Lake & Baroni, 2018; Bahdanau et al., 2019) consider recombinations of
intra-semantic factors as well, here, in the context of background-agnostic object recognition tasks,
we only consider hs − hn recombinations.

Semantic anomaly detection hs 6∼ p(hs) and hn ∼ p(hn): Such a datapoint should not be confi-
dently categorised as a known y, even if non-semantic features are shared (Ahmed & Courville, 2020).
We can use these x to evaluate anomaly detection, as indicated by decreased predictive confidence,
and measured by the area under the precision-recall curve (Hendrycks & Gimpel, 2017).

COLOURED MNIST: Consider an illustrative dataset with coloured MNIST digits. For the training
set, Tr, MNIST digits are coloured with a set of digit-correlated “biasing” colours 80% of the time,
and with ten random colours that are different from the biasing colours the remaining 20% of the
time. One digit is held out, for testing semantic anomaly detection. See Figure 1 for examples of the
four test sets corresponding to this setting, and also Appendix A for more details on the construction.

Improving performance for such scenarios involving distributional shift might come at a cost for in-
distribution performance, since more robust features might be harder to learn than simpler dominant
correlations that hold in-distribution. In real-world deployments where one is likely to encounter
unexpected situations, such as in a self-driving car, it can often be preferable to find appropriate
trade-offs such that classifiers can indicate reduced confidence upon encountering anomalous objects,
or continue to operate in changing environments, while continuing to achieve a desirable degree of
in-distribution predictive performance.

3 PREDICTIVE GROUP INVARIANCE ACROSS INFERRED SPLITS

In general, we do not expect to have direct knowledge of majority and minority groups corresponding
to the biasing non-semantic features in a dataset. We will later show how one might infer such groups
from the data, but we first describe an invariance penalty assuming we have access to the groups.

Learning features that are group invariant would require us to match the (class-conditioned) dis-
tribution of features from the majority and minority groups (Ganin et al., 2016; Li et al., 2018a).
In terms of predictive performance, we can alternatively ask for the class-conditioned distributions
of features to match in the sense that they lead to the same softmax distributions on average as
training progresses, without modifying the last linear layer. This implementation has the advantage of
doing away with an adversarial network, and the issues that tend to accompany the training of such
models. We shall refer to this objective as predictive group invariance (PGI). Intuitively, encouraging
matched predictive distributions across the groups with a fixed last layer pushes for over-emphasis on
minority-group features in the representation, thus acting as an implicit re-weighting of features in
both groups (leading to demoting the relevance of colour in the MNIST case, for example). When
a persistent feature does exist in both groups, using that feature can lead to equal training rates in
regularised networks, satisfying the penalty.

Consider a classifier that extracts a feature vector fθ(x), where θ are the parameters of a convolutional
neural network for example, with a linear layer w on top. The predictive distribution is then

pw(y|x) = σ(w>fθ(x)), (1)

where σ is a softmax, and predictions are made by performing an argmax.
1In this paper, we imply sampling from outside the support of p when we say h 6∼ p(h).
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Given a partition scheme for splitting the images x in our dataset D such that every i-th image x(i) is
associated with a partition-label α(i), we define distributions Pc,Qc for the subsets in class c:

x(i) ∼ Pc if α(i) = 0, y(i) = c, (2)

x(j) ∼ Qc if α(j) = 1, y(j) = c. (3)

We want to minimize empirical risk under the constraint that our feature extractor causes similar
predictive distributions on average for pictures of the same object in both partitions. Formally, we
want to optimise

min
θ,w

`(θ, w|D), (4)

s.t. θ ∈ argmin
Θ

d
(

E
x∼Pc

[pw(y|x)], E
x∼Qc

[pw(y|x)]
)
, ∀ c, (5)

where ` is the standard loss function for ERM training, for example, the categorical cross-entropy. A
softened objective for stochastic optimisation can be approximated as

L(w, θ|D, α) = `(θ, w|D) + λ

[∑
c

d
(

E
x∼Pc

[pw̃(y|x)], E
x∼Qc

[pw̃(y|x)]
)]

w̃=w (fixed)

. (6)

Since we are comparing distributions, we make the simplest natural choice of d to be the KL-
divergence,

d
(

E
x∼Pc

[pw̃(y|x)], E
x∼Qc

[pw̃(y|x)]
)

=
∑

E
x∼Qc

[pw̃(y|x)] log
Ex∼Qc [pw̃(y|x)]

Ex∼Pc [pw̃(y|x)]
. (7)

We use this particular ordering of Q‖P because with our grouping, P consists of examples that are
“easy” due to a particular bias, and so the mean predictive distribution for P tends to be correct
and low-entropy, while that for Q is more high-entropy and inaccurate. We take advantage of the
zero-forcing property of this KL divergence, encouraging the mean predictive distribution for Q to
closely match that of P. It is likely that different choices for d would be better suited for different
settings.

Partitioning the dataset Recently, Creager et al. (2020) have considered the question of finding
worst-case partitions for invariant learning given a collection of data. The key intuition is that an
invariant learning objective, as formulated by IRM (Arjovsky et al., 2019), is maximally violated by
splitting along a spurious correlation when predictions rely exclusively on it in a reference model
(see Theorem 1 in Creager et al. (2020) for details). In our case, this would consist of partitioning
into the majority and minority groups given our ERM-trained model early on in training as reference.

A soft-partition predicting network is used, g(x, y), conditioned on the input and the target, to
maximise the IRMv1 penalty (Arjovsky et al., 2019), which gives us soft partition-predictions, β̂, for
the examples,

β̂ = max
β

∑
e∈{0,1}

1∑
i′ β

(i)(e)

∑
i

β(i)(e)`(σ(Φ(x(i))), y(i))

+
∑

e∈{0,1}

γ
∣∣∣∣∣∣∇µ|µ=1.0

1∑
i′ β

(i)(e)

∑
i

β(i)(e)`(σ(µ ◦ Φ(x(i))), y(i))
∣∣∣∣∣∣2, (8)

where Φ(xi) = w>fθ(x) are the logits from the reference model, e ∈ {0, 1} indexes the partition,
β(i)(e) ∈ [0, 1] signifies the predicted probability for the i-th example being in partition e, such that
β(i)(e = 0) + β(i)(e = 1) = 1, and γ is a hyper-parameter. We can then compute the partition
α(i) = argmaxe β

(i)(e). In our implementation, we condition the partition predicting network
g on the features fθ(x) instead of the input x, and use separate networks for each category, i.e.
β(i) = gy(i)(fθ(x

(i))). We find this to perform better in preliminary experiments, improving training
and enabling more light-weight g networks. This also ensures that the same features as the ones
used by our ERM-trained reference model are used to predict partitions, resulting in partitions
corresponding to more consistent learned-feature biases. We provide more details in Appendix B.3.
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Figure 2: (left) COCO-ON-COLOURS; left block is the majority group, right block is the “unbiased”
minority group; (right) COCO-ON-PLACES.

4 RELATED WORK

The dominant perspective towards the issue of unreliable behaviour in novel domains has consisted
of treating the problem as that of domain generalisation (Blanchard et al., 2011). One hopes to
recover stable features by encouraging invariance across data sampled from different domains, so
that performance at test-time out-of-distribution (OoD) scenarios is less likely to be unstable.

Approaches along such lines typically resemble a cross-domain distribution-matching penalty applied
to the features being learned, augmenting the usual ERM term (Ganin et al., 2016; Sun & Saenko,
2016; Heinze-Deml & Meinshausen, 2017; Li et al., 2018; Li et al., 2018a;b), and evaluated on
datasets that consist of data in different modalities (Li et al., 2017; Peng et al., 2019; Venkateswara
et al., 2017), or collected through different means (Fang et al., 2013), or in different contexts (Beery
et al., 2018).

Works with the perspective of distributionally robust optimisation (DRO) have generally considered
using uncertainty sets around training data (Ben-Tal et al., 2013; Duchi & Namkoong, 2018) to
minimise worst-case losses, which can often have a regularising effect by effectively up-weighting
harder examples. More relevant to our discussion, group DRO methods have considered uncertainty
sets in terms of different groups of data, for example with different cross-group distributions of
labels (Hu et al., 2018), or groups collected differently (Oren et al., 2019), similarly to domain
generalisation datasets.

More recently, methods promoting the learning of stable features across data from different environ-
ments, or sources, have been proposed by using gradient penalties (Arjovsky et al., 2019), risk-based
extrapolation (Krueger et al., 2020), and masking gradients with opposing signs (Parascandolo et al.,
2020).

The typical datasets in such existing works are not curated with testing performance under systematic
distributional shift in mind, most often not characterising the specific shift in distribution. In recent
times, a commonly adopted synthetic dataset is the coloured MNIST variant used in Arjovsky et al.
(2019) – since this particular dataset uses flipped colours for the minority group, which is less of
a problem with ERM-training, the true digit labels were flipped at a sufficiently high frequency to
incapacitate ERM performance by forcing reliance on colour. We believe setups such as ours can be
better synthetic testbeds for developing ideas, where it is not necessary to alter ground truth labels to
expose a failure mode. In general, using better models of dataset bias implies a narrower disconnect
with realistic settings, with higher chances of the conclusions carrying over.

5 EXPERIMENTS

We compare performance with our four test sets - in-distribution, non-systematically shifted, sys-
tematically shifted, semantic anomalies - for a range of recently proposed methods for a set of three
synthesised datasets. Appendix B describes architectural details and training choices.

5.1 METHODS

We compare recent methods aimed at robust predictions across groups, and which do not require
changes to network capacity or additional adversaries to impose invariance penalties. We also do
not include methods based on advances in self-supervised feature learning, such as Carlucci et al.
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(2019), since such methods are developed with prior knowledge of the desired invariances, and are
thus limited in their generality.

Baseline: This is our reference model, trained via ordinary (regularised) empirical risk minimisation
(ERM) without any invariance penalties added. The choices for architecture and regularisers were
made to conform to the way modern networks are typically trained with in-distribution performance
in mind (details in Appendix B).

IRMv1, REx, GroupDRO: IRMv1 (Arjovsky et al., 2019) and REx (Krueger et al., 2020) are two
methods that augment the standard ERM term with invariance penalties across data from different
sources. GroupDRO (Sagawa et al., 2020) is an algorithm for distributional robustness, which works
by weighting groups of data as a function of their relative losses. See Appendix C for more details
about these methods.

cIRMv1, cREx, cGroupDRO: We implement label-conditional variants of the above algorithms,
which, to our knowledge, has not been explored. In the context of multi-class classification it
is reasonable to expect that performances might have multi-modal distributions along different
categories earlier in training, which suggests stratification by class might improve performance.

Reweight: We weight the losses in the biased group down. This is a heuristic form of re-balancing
the dataset, while choosing a hyper-parameter for the weight using the validation set, with the weight
serving to downweight the losses for the biased group. In preliminary experiments we found this
re-weighting variant (King & Zeng, 2001) to significantly outperform oversampling the minority
group, as suggested in Buda et al. (2018), or weighting the grouped losses using their population
ratios, as performed for imbalanced classes in Cui et al. (2019).

cMMD: Following Li et al. (2018), we match the MMD (Gretton et al., 2012) of the distribution of
features. In preliminary experiments, we find a conditional version (as done with adversarial models
in (Li et al., 2018a)) to perform significantly better, so we only report cMMD results here.

5.2 DATASETS

Evaluating performance in an unambiguous manner for the specific kinds of generalisation that we
aim to study necessitates controlled test-beds. In order to model these tasks, we use 3 synthetic
datasets of progressively higher complexity, approaching photo-realism.

COLOURED MNIST: This is the simplest setting, where the background information exists as part of
the object.

COCO-ON-COLOURS: We superimpose 10 segmented COCO (Lin et al., 2014) objects on coloured
backgrounds. The training set has 800 images per category, with nine in-distribution categories and
one held-out category for anomaly detection. Validation and test sets have 100 each images per
category. See Figure 2 (left). This is the most extreme dataset in our experiments in terms of the
contrast in complexity between the non-semantic correlating factor (background colour) vs. stable
features (objects).

COCO-ON-PLACES: Here we superimpose the same COCO objects on scenes from the PLACES
dataset (Zhou et al., 2017), with the place-scenes acting as the bias (figure 2, right). See Appendix A
for more details about how these datasets are constructed. While the backgrounds in this dataset
are more complex than colour, they still act as biasing factors, as indicated in the relatively poorer
performance at systematic generalisation, and were selected due to visually obvious and distinct
colour or texture.

5.3 RESULTS

In all cases, we have used the partition predictor to infer the two groups. The partition accuracies for
the three datasets at the end of one epoch of training the base models are in the table below. We tested
a more naïve approach by applying K-Means clustering to the losses, but found it to under-perform,
possibly because it cannot account for a consistent feature bias learned by our reference model.

COLOURED MNIST COCO-ON-COLOURS COCO-ON-PLACES

97.26 ± 0.71 98.22 ± 1.05 80.43 ± 1.41

6



Published as a conference paper at ICLR 2021

Table 2: Generalisation results on COLOURED MNIST.

Methods In-distribution Non-systematic shift Systematic shift Anomaly detection

Base (ERM) 99.60 ± 0.02 53.26 ± 1.89 38.72 ± 2.27 7.70 ± 0.23

IRMv1 99.47 ± 0.05 63.24 ± 3.04 55.19 ± 1.07 11.54 ± 1.18
REx 98.95 ± 0.11 72.12 ± 1.90 71.18 ± 3.27 15.54 ± 2.05
GroupDRO 89.47 ± 4.52 70.53 ± 1.79 79.17 ± 1.64 35.15 ± 10.83
Reweight 98.51 ± 0.12 75.01 ± 1.28 84.85 ± 0.61 28.60 ± 1.11

cIRMv1 99.36 ± 0.25 65.78 ± 3.53 61.09 ± 5.30 14.16 ± 2.12
cREx 98.56 ± 0.12 74.35 ± 2.09 80.01 ± 2.11 22.02 ± 2.52
cGroupDRO 95.65 ± 3.23 75.41 ± 3.45 81.14 ± 2.41 26.61 ± 6.61
cMMD 99.40 ± 0.03 97.17 ± 0.59 97.86 ± 0.16 78.32 ± 4.15

PGI 99.05 ± 0.08 98.58 ± 0.06 98.48 ± 0.05 89.42 ± 1.95

Table 3: Generalisation performance on COCO-ON-COLOURS.

Methods In-distribution Non-systematic shift Systematic shift Anomaly detection

Base (ERM) 90.57 ± 1.28 26.81 ± 4.93 1.10 ± 0.36 5.47 ± 0.08

IRMv1 91.61 ± 0.38 32.30 ± 4.52 2.11 ± 0.30 5.81 ± 0.17
REx 91.69 ± 0.50 36.57 ± 4.03 2.69 ± 0.81 5.73 ± 0.14
GroupDRO 43.06 ± 2.26 41.32 ± 4.39 43.24 ± 2.89 20.05 ± 3.08
Reweight 42.42 ± 3.47 47.56 ± 2.27 49.12 ± 1.63 18.15 ± 3.81

cIRMv1 91.53 ± 0.31 31.11 ± 4.51 1.74 ± 0.40 5.87 ± 0.16
cREx 74.75 ± 14.14 32.29 ± 7.71 29.75 ± 5.16 19.77 ± 14.98
cGroupDRO 41.10 ± 2.37 41.83 ± 2.96 42.10 ± 2.15 21.81 ± 5.40
cMMD 89.87 ± 1.13 55.02 ± 2.29 27.36 ± 1.57 8.82 ± 0.70

PGI 78.23 ± 2.01 55.57 ± 4.60 51.62 ± 3.09 18.84 ± 2.11

In Tables 2,3,4, we find that significant improvements can be achieved using group invariance methods.
All hyper-parameters for the results in this set are picked on a validation set consisting of a subset of
colours or backgrounds that are different from both the training and test sets, and an equally sized
subset of systematically varying colours or backgrounds from the biased majority group. In all cases,
the split is learned after one epoch of training, and the various penalties dropped in at this point with
a linearly ramped-in penalty co-efficient. Details about hyper-parameter selection are in Appendix C.

While conditional variants perform better at systematic generalisation for COLOURED MNIST,
perhaps owing to our hyper-parameter selection procedure of using a mixed-shift validation set,
performance at systematic shift appears to be traded off with non-systematic shift in some cases for
the more complex datasets. All aggregates are over 5 trials.

5.4 PRACTICAL CONSIDERATIONS FOR HYPER-PARAMETER SELECTION

While we find that with the use of group invariance penalties it is possible to encourage reliance upon
complex persistent correlations in the presence of dominant simple biases, this can sometimes come
at a cost to in-distribution performance when picking hyper-parameters using validation sets with
specific distributional shift. One might reasonably expect that this can be mis-aligned with real-life
situations: in practice, one typically does not have access to data corresponding exactly to unexpected
scenarios, besides not expecting to encounter situations outside the training distribution nearly as
often as situations for which a model has been trained and deployed. A practitioner might wish to
aim for a clearer trade-off with such situations, with prior knowledge of how often they might arise
compared to in-distribution situations, and with a surrogate validation set to model distributional
shift. Here, we will simply show that picking hyper-parameters without assuming access to validation
sets consisting of systematic distributional shift can still provide improvements over the baseline
reference model. We consider three cases.
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Table 4: Generalisation performance on COCO-ON-PLACES.

Methods In-distribution Non-systematic shift Systematic shift Anomaly detection

Base (ERM) 81.06 ± 1.01 45.25 ± 0.96 29.18 ± 1.24 9.21 ± 0.21

IRMv1 80.93 ± 0.71 45.17 ± 0.92 28.78 ± 0.73 9.39 ± 0.60
REx 81.55 ± 0.70 45.35 ± 0.92 29.56 ± 0.77 9.46 ± 0.51
GroupDRO 76.05 ± 0.87 43.72 ± 0.43 31.83 ± 0.54 9.61 ± 0.55
Reweight 81.14 ± 0.80 45.84 ± 0.70 30.37 ± 1.16 9.75 ± 0.69

cIRMv1 80.08 ± 1.90 44.96 ± 2.88 30.06 ± 2.07 9.64 ± 0.94
cREx 81.50 ± 0.76 45.44 ± 0.96 29.12 ± 0.97 9.17 ± 0.59
cGroupDRO 78.25 ± 0.31 41.69 ± 0.08 28.16 ± 0.91 9.45 ± 0.22
cMMD 79.64 ± 0.73 49.44 ± 0.99 35.86 ± 0.66 9.80 ± 0.45

PGI 75.00 ± 0.85 46.10 ± 0.79 36.25 ± 0.42 11.12 ± 0.85

cMMD (oracle split) 75.05 ± 0.98 47.88 ± 1.03 37.40 ± 1.07 10.76 ± 0.61
PGI (oracle split) 70.63 ± 0.48 48.11 ± 0.82 42.69 ± 0.84 12.56 ± 1.20

Table 5: Hyper-parameters with different validation sets for COLOURED MNIST

Validation In-distribution Non-systematic shift Systematic shift Anomaly detection

NS+S (PGI) 99.05 ± 0.08 98.58 ± 0.06 98.48 ± 0.05 89.42 ± 1.95
NS (PGI) 99.31 ± 0.05 98.21 ± 0.26 97.54 ± 0.41 76.00 ± 4.06
NS+ID (PGI) 99.30 ± 0.07 98.31 ± 0.27 97.48 ± 0.45 76.07 ± 5.67
ID only (PGI) 99.69 ± 0.03 63.62 ± 2.05 58.18 ± 2.05 11.81 ± 1.89

Base (ERM) 99.60 ± 0.02 53.26 ± 1.89 38.72 ± 2.27 7.70 ± 0.23

NS: Hyper-parameters are picked using only the validation set for non-systematic distributional shift
(which consists of backgrounds that are different from those in the training set and test sets). This
models the situation where we have access to some data that is different from our training data, and is
also considered somewhat representative of any shifts we might encounter.

NS + ID: Hyper-parameters are picked using an (equally-weighted) average of the NS and the
in-distribution validation sets. If we have prior knowledge of the likelihood of encountering data
from out-distributions in the wild, we could use this prior to use an appropriately sampled validation
set for hyper-parameter optimisation.

ID ONLY: Hyper-parameters are picked using only the in-distribution validation set.

We show results for the different schemes for our method in Tables 5, 6, 7. While the accuracies
under distributional shift are, as expected, less strong than in the previous set of results (NS+S in the
tables), we still find improvements over the reference model, indicating that one can still achieve an
improved classifier.

In Appendix D, we show similar results with all methods, and include only the best performing
method for both generalisation under systematic and non-systematic shift corresponding to the
different validation strategies in the tables in this section.

Table 6: Hyper-parameters with different validation sets for COCO-ON-COLOURS

Validation In-distribution Non-systematic shift Systematic shift Anomaly detection

NS+S (PGI) 78.23 ± 2.01 55.57 ± 4.60 51.62 ± 3.09 18.84 ± 2.11
NS (PGI) 85.78 ± 1.45 51.02 ± 2.32 38.85 ± 2.29 15.71 ± 3.25
NS+ID (PGI) 85.78 ± 1.45 51.02 ± 2.32 38.85 ± 2.29 15.71 ± 3.25
ID only (cMMD) 92.51 ± 0.41 44.59 ± 3.28 10.48 ± 0.98 6.05 ± 0.23

Base (ERM) 90.57 ± 1.28 26.81 ± 4.93 1.10 ± 0.36 5.47 ± 0.08
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Table 7: Hyper-parameters with different validation sets for COCO-ON-PLACES

Validation In-distribution Non-systematic shift Systematic shift Anomaly detection

NS+S (cMMD) 79.64 ± 0.73 49.44 ± 0.99 35.86 ± 0.66 9.80 ± 0.45
NS (cMMD) 79.64 ± 0.73 49.44 ± 0.99 35.86 ± 0.66 9.80 ± 0.45
NS+ID (cMMD) 79.64 ± 0.73 49.44 ± 0.99 35.86 ± 0.66 9.80 ± 0.45
ID only (PGI) 80.99 ± 0.52 47.63 ± 0.90 31.91 ± 0.89 9.59 ± 0.89

Base (ERM) 81.06 ± 1.01 45.25 ± 0.96 29.18 ± 1.24 9.21 ± 0.21

6 CONCLUSION

Our experiments investigate the potential usefulness of invariance penalties and methods at improving
performance under distributional shift, such as systematic generalisation and semantic anomaly
detection.

While our exploratory experiments are conducted in disambiguated synthetic setups, next steps
would involve investigating the potential for extending these approaches to real datasets used in the
field. Since such methods cannot work when spurious correlations are completely pervasive, it is
important to include sufficient diversity of data sources and curation in order to be able to reap the
advantages such techniques can afford us in real world applications. We note that peculiarities in
datasets and problems might give rise to different potential failings at robustness, calling for more
targeted invariance methods.

We find that our method of learning features that result in matched predictive behaviour throughout
training appears to hold promise at handling certain distributional shifts, although it does not always
perform best across different validation schemes. A practical line of inquiry would be the question of
how to make trade-offs in performance between in-distribution and unexpected situations.
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A DATASET DETAILS

In this section, we provide more details about how we constructed our synthetic datasets.

A.1 COLOURED MNIST

The training set, Tr, is constructed with an 80% colour-digit correlation per digit with nine RGB-
colours (with the zero digit held out, for testing semantic anomaly detection).

1 (0,100,0)
2 (188, 143, 143)
3 (255, 0, 0)
4 (255, 215, 0)
5 (0, 255, 0)
6 (65, 105, 225)
7 (0, 225, 225)
8 (0, 0, 255)
9 (255, 20, 147)

Table 8: RGB codes used to bias the digits in the majority group.

The ten colours for the minority group were picked such that their L2 distance is at least 50 units
away from the biasing colours. Prior to colouring, the digits were binarised to avoid grayscale tones
potentially resulting in unintentionally similar colours.

For the non-systematic validation and test sets, ten colours each were chosen such that they were at
least 50 units away from all other colours.

A.2 COCO-ON-COLOURS

We use the following nine categories for in-distribution objects: boat, airplane, truck, dog, zebra,
horse, bird, train, and bus. We hold out motorcycle for anomaly detection experiments. For
background colours, we use the same colours from the coloured MNIST experiments, and also use an
80/20 split for the majority and minority groups.

In case of multiple instances of the same object in an image, we pick the largest one, and filter our
dataset by mask area, such that only images with objects occupying at least 10K pixels are retained.
All images are finally resized to 64× 64.

The training set uses 800 such pictures per category, and the validation and test sets use 100 each.
The colour backgrounds for the minority group, non-systematically shifted validation and test sets
are picked using the same strategy as with the COLOURED MNIST dataset.

A.3 COCO-ON-PLACES

This dataset follows the same procedure as COCO-ON-COLOURS, except using scenes from the
Places dataset. In Table 9 we list the backgrounds from the corresponding scenes for the different
categories.

B NETWORK ARCHITECTURES AND TRAINING DETAILS

B.1 COLOURED MNIST

We use a 4-layer CNN with the first three layers being convolutional and the last layer linear. The
convolutional layers have feature dimensions of 64 − 128 − 256, and are all followed by a MAX
POOL, BATCH NORM layer, and RELU activation. Before being fed into the final linear layer, there is
a spatial mean-pooling operation. An L2 weight decay is added to all parameters with a co-efficient
of 1e−4.
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Majority group Minority group Validation Test

boat beach kasbah oast house water tower
airplane canyon lighthouse orchard waterfall
truck building facade pagoda viaduct zen garden
dog staircase rock arch
zebra desert (sand)
horse crevasse
bird bamboo forest
train broadleaf forest
bus ball pit

Table 9: Background scenes for the in-distribution majority group, minority group, and the non-
systematically shifted validation and test sets. (The mapping to categories only applies to the majority
group in the training set.)

Training is conducted for 30 epochs, with SGD + Momentum (0.9), using batch sizes of 512. The
learning rate is cut by 10 from its initial value of 0.1 at epochs 9, 18, and 24.

B.2 COCO-ON-BACKGROUNDS

For both COCO datasets, we use an architecture based off of Wide Resnet 28-10 (Zagoruyko &
Komodakis, 2016). Since our images are 64 × 64, we append an extra group of 4 residual blocks
with the same layer widths as in the previous group, and use a smaller widening factor of 4 instead
of 10 to avoid memory overflow (starting base dimension = 64). An L2 weight decay regulariser is
applied on all parameters with a coefficient of 5e−4.

We train for 200 epochs with SGD + Momentum (0.9), using batch sizes of 384, with an initial
learning rate of 0.1 which is cut by 10 at the 120th, 160th, 180th, and 190th epochs. We use the
initially large learning rate for longer following prior works such as Li et al. (2019) that have suggested
annealing schedules with longer periods of higher learning rates can improve generalisation, which
we do find to help the base network. In both cases, we apply data augmentation of random crops
(after symmetric padding) and random horizontal reflections.

B.3 PARTITIONING NETWORK

We use the same MLP with three hidden layers for all our partitioning networks, with dimensions
64− 32− 16. We use LAYER NORM (Ba et al., 2016) and RELU activations after each layer. To
avoid merely memorising hard examples, it is necessary to regularise this network, so we also apply
spectral normalisation (Yoshida & Miyato, 2017); this involves spectrally normalising every linear
layer, and excluding the scaling term in the layer normalisation transforms, as in Miyato et al. (2018).

We use a separate network for each class, training for 100 iterations each, with the same batch size
as used for training the rest of the model. We use the Adam optimiser (Kingma & Ba, 2014) with a
learning rate of 1e−4. In preliminary experiments we found a shared network for all categories to
also work, using conditional layer normalisation (Ba et al., 2016; de Vries et al., 2017). We didn’t
investigate it further for all datasets, since in general a larger number of classes in a dataset might
require larger capacity in the partition predictor to account for more features, and as the number of
classes go up, a number of smaller matrices can have a lower footprint than one very large matrix.

Network architecture design for the partitioning network was done only on the COLOURED MNIST
dataset, with access to true oracle group labels for a smaller set of in-distribution validation images
(20 per category). The same network architecture was applied for the two COCO datasets. The γ
hyper-parameter was learned separately for all datasets, using the smaller sets of validation images.
We find, in preliminary experiments, that using random partitionings lead to much worse performance.
This suggests that, although not performed for our present study, in more realistic situations one
could potentially tune these hyper-parameters by validating over classification accuracy as for the
invariance penalties.
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B.4 INVARIANCE PENALTIES

In all cases, we pause training of the base network after 1 epoch of training, and learn a partitioning
of the training set. This learned partition is used to drop in the invariance penalties as training
proceeds, and as in prior work (Arjovsky et al., 2019; Krueger et al., 2020), we find ramping in
the penalty co-efficient over a number of epochs to be useful for stable training. For IRM and REx
(and conditional variants), we find it helpful to scale the ERM term down by the penalty co-efficient
when the optimal validation co-efficient is greater than 1, as implemented by Arjovsky et al. (2019)
and Krueger et al. (2020).

C REVIEW OF BASELINES AND CONDITIONAL VARIANTS

We briefly review the group invariance methods we compared.

C.1 IRMV1

In Arjovsky et al. (2019), a risk regularisation method is described in order to encourage reliance on
features that obey stable correlations with the target variable across data from different environments.
The regularisation consists of a gradient penalty wrt a dummy multiplier on the logits, with the
intuition that scaling up or shrinking the logits in different environments can only result in local
improvements within each environment if the classifier uses features that correlate at different levels
in the different environments. The objective function is

min
Φ:X→Y

∑
e∈E
Re(Φ) + λ||∇µ|µ=1Re(s.Φ)||2. (9)

Φ comprises the predictor, which in our case is w>fθ(x). µ is a dummy multiplier, fixed at 1, and Re
is the environment risk, corresponding to the average loss for data in a particular environment when
using Φ.

For our conditional variant (cIRMv1), we stratify the gradient penalty over classes, so that the penalty
is applied separately per class in each environment.

The hyper-parameters we search over for this method include the penalty co-efficient λ and the
number of epochs of training over which to linearly ramp up λ to its full value.

C.2 REX

Krueger et al. (2020) proposed a risk regularisation method that aims to directly match training risks
across environments, by imposing a penalty that minimises the variance of risks across environments
(V-REx).

min
Φ:X→Y

∑
e∈E
Re(Φ) + λVar({· · · ,Re, · · · }). (10)

For our conditional variant (cREx), we apply the variance penalty stratified by class.

The hyper-parameters we search over for this method include the penalty co-efficient λ and the
number of epochs of training over which to linearly ramp up λ to its full value.

C.3 GROUPDRO

Sagawa et al. (2020) suggest an online algorithm for group-based distributionally robust optimisation,
which effectively re-weights group losses as a function of their evolving magnitudes, therefore putting
more emphasis on groups that fare worse through training.

For our conditional variant (cGroupDRO), we compute the group weights per class, by using the
losses belonging to the classes separately in each group.

The hyper-parameters we search over for this method include the learning rate for the online group-
weights and the two group adjustment hyper-parameters. Additionally, we sample equally from both
groups for this method, as suggested, finding it to improve results in preliminary experiments.
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C.4 REWEIGHT

We learn a hyper-parameter λ on validation, such that every example in the majority group is weighted
with 1/(λ+ 1) (because we only want to weight the majority group down).

The hyper-parameters we search over for this method include the penalty co-efficient λ and the
number of epochs of training over which to linearly ramp up λ to its full value.

C.5 MMD FEATURE MATCHING

Maximum mean discrepancy based distributional matching of features across domains has been shown
to be effective for domain generalisation (Li et al., 2018), and conditional matching of distributions
(usually with adversaries, for example, in Li et al. (2018a)) tends to work better. We found in
preliminary experiments that conditional MMD significantly outperformed the unconditional variant,
so we only ran full experiments and reported results using cMMD.

The group invariance penalty looks as follows

||E
[
φ(fθ(xgroup 0))

]
− E

[
φ(fθ(xgroup 1))

]
||2, (11)

where φ induces a kernel function K, which in our implementation is a mixture of 3 Gaussians with
bandwidths [1, 5, 10], which are the recommended set of bandwidths in Li et al. (2018). Adding
sharper or flatter bandwidths appeared to hurt performance in preliminary experiments.

The hyper-parameters we search over for this method include the penalty co-efficient λ and the
number of epochs of training over which to linearly ramp up λ to its full value.

C.6 HYPER-PARAMETER GRID SEARCH RANGES

In all cases, λ is searched over a range of

{1e−4, 1e−3, 1e−2, 0.1, 0.5, 1, 2, 5, 10, 20, 50, 100, 200, 500, 1000, 10000, 100000},

and the number of epochs over which to linearly ramp up λ is searched over {1, 5, 30} for MNIST
and {1, 10, 200} for COCO. For the GroupDRO methods, we search over {0.001.0.01, 0.1, 1.0, 10}
for the learning rate of the group-weights, and over {0, 1, 2, 3, 4, 5} for the group-adjustment hyper-
parameters, as recommended in Sagawa et al. (2020). We also average the losses group-wise as
already done in IRMv1 and REx for cMMD and PGI, except for COCO-ON-PLACES, where we find
this choice to hurt performance.

D DIFFERENT VALIDATION SETS

In this section, we report results for all the methods we compare, when picking hyper-parameters
using different validation sets, as discussed in Section 5.4.

We note that contrary to what one would typically do in a real-world deployment, we do not augment
the training sets with the validation sets for evaluating test time performance. This is because
the presence of data with systematic distributional shift at training time improves performance
significantly (as observed in Table 1), and our goal here is to perform an illustrative study about the
potential effectiveness of invariance methods at learning to generalise systematically.

While we could have augmented the training set with validation data when we are not using validation
sets with systematic distributional shift, we follow the same protocol in these cases of not augmenting
the training set, in order to keep the numbers comparable with each other across different validation
schemes.
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Table 10: Picking hyper-parameters only using a validation set of non-systematic shifts for
COLOURED MNIST.

Methods In-distribution Non-systematic shift Systematic shift Anomaly detection

Base (ERM) 99.60 ± 0.02 53.26 ± 1.89 38.72 ± 2.27 7.70 ± 0.23

IRMv1 99.61 ± 0.05 63.80 ± 3.58 55.38 ± 1.52 10.35 ± 0.43
REx 98.95 ± 0.11 72.12 ± 1.90 71.18 ± 3.27 15.54 ± 2.05
GroupDRO 98.70 ± 0.10 71.51 ± 2.61 77.95 ± 0.65 18.26 ± 2.11
Reweight 99.06 ± 0.06 77.03 ± 1.33 83.37 ± 0.61 17.10 ± 1.11

cIRMv1 99.36 ± 0.25 65.78 ± 3.53 61.09 ± 5.30 14.16 ± 2.12
cREx 99.20 ± 0.10 73.97 ± 1.07 76.06 ± 1.71 17.62 ± 2.29
cGroupDRO 97.89 ± 0.29 73.71 ± 3.21 76.90 ± 2.55 20.73 ± 4.63
cMMD 99.40 ± 0.07 97.36 ± 0.72 97.91 ± 0.19 78.14 ± 3.79

PGI 99.31 ± 0.05 98.21 ± 0.26 97.54 ± 0.41 76.00 ± 4.06

Table 11: Picking hyper-parameters using both a validation set of non-systematic shifts and the
in-distribution set for COLOURED MNIST.

Methods In-distribution Non-systematic shift Systematic shift Anomaly detection

Base (ERM) 99.60 ± 0.02 53.26 ± 1.89 38.72 ± 2.27 7.70 ± 0.23

IRMv1 99.61 ± 0.05 63.80 ± 3.58 55.38 ± 1.52 10.35 ± 0.43
REx 98.95 ± 0.11 72.12 ± 1.90 71.18 ± 3.27 15.54 ± 2.05
GroupDRO 98.70 ± 0.10 71.51 ± 2.61 77.95 ± 0.65 18.26 ± 2.11
Reweight 99.06 ± 0.06 77.03 ± 1.33 83.37 ± 0.61 17.10 ± 1.11

cIRMv1 99.36 ± 0.25 65.78 ± 3.53 61.09 ± 5.30 14.16 ± 2.12
cREx 99.20 ± 0.10 73.97 ± 1.07 76.06 ± 1.71 17.62 ± 2.29
cGroupDRO 97.89 ± 0.29 73.71 ± 3.21 76.90 ± 2.55 20.73 ± 4.63
cMMD 99.49 ± 0.04 96.36 ± 0.53 97.68 ± 0.17 71.15 ± 2.65

PGI 99.30 ± 0.07 98.31 ± 0.27 97.48 ± 0.45 76.07 ± 5.67

Table 12: Picking hyper-parameters using only the in-distribution set for COLOURED MNIST.

Methods In-distribution Non-systematic shift Systematic shift Anomaly detection

Base (ERM) 99.60 ± 0.02 53.26 ± 1.89 38.72 ± 2.27 7.70 ± 0.23

IRMv1 99.69 ± 0.02 60.18 ± 1.34 53.20 ± 1.44 9.71 ± 0.76
REx 99.71 ± 0.04 60.71 ± 1.38 50.87 ± 2.79 10.02 ± 0.69
GroupDRO 99.61 ± 0.01 52.21 ± 2.03 40.27 ± 2.08 7.37 ± 0.44
Reweight 99.66 ± 0.04 63.36 ± 4.60 58.09 ± 0.52 11.41 ± 0.49

cIRMv1 99.69 ± 0.01 60.43 ± 2.71 52.98 ± 2.14 10.40 ± 0.91
cREx 99.70 ± 0.02 61.06 ± 1.20 50.83 ± 2.33 9.21 ± 0.97
cGroupDRO 99.63 ± 0.01 55.53 ± 3.63 45.25 ± 2.24 8.69 ± 1.02
cMMD 99.70 ± 0.02 61.10 ± 1.66 51.06 ± 1.87 9.62 ± 1.09

PGI 99.69 ± 0.03 63.62 ± 2.05 58.18 ± 2.05 11.81 ± 1.89
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Table 13: Picking hyper-parameters only using a validation set of non-systematic shifts for COCO-
ON-COLOURS.

Methods In-distribution Non-systematic shift Systematic shift Anomaly detection

Base (ERM) 90.57 ± 1.28 26.81 ± 4.93 1.10 ± 0.36 5.47 ± 0.08

IRMv1 91.61 ± 0.38 32.30 ± 4.52 2.11 ± 0.30 5.81 ± 0.17
REx 91.69 ± 0.50 36.57 ± 4.03 2.69 ± 0.81 5.73 ± 0.14
GroupDRO 40.31 ± 2.11 38.84 ± 3.78 43.24 ± 2.84 17.99 ± 3.68
Reweight 73.17 ± 2.48 48.98 ± 2.65 39.80 ± 2.61 18.20 ± 3.80

cIRMv1 91.53 ± 0.31 31.11 ± 4.51 1.74 ± 0.40 5.87 ± 0.16
cREx 91.45 ± 0.39 32.43 ± 2.03 1.98 ± 0.68 5.75 ± 0.13
cGroupDRO 43.61 ± 4.33 39.15 ± 4.79 36.63 ± 4.81 18.21 ± 3.65
cMMD 89.87 ± 1.13 55.02 ± 2.29 27.36 ± 1.57 8.82 ± 0.70

PGI 85.78 ± 1.45 51.02 ± 2.32 38.85 ± 2.29 15.71 ± 3.25

Table 14: Picking hyper-parameters using both a validation set of non-systematic shifts and the
in-distribution set for COCO-ON-COLOURS.

Methods In-distribution Non-systematic shift Systematic shift Anomaly detection

Base 90.57 ± 1.28 26.81 ± 4.93 1.10 ± 0.36 5.47 ± 0.08

IRMv1 91.61 ± 0.38 32.30 ± 4.52 2.11 ± 0.30 5.81 ± 0.17
REx 91.69 ± 0.50 36.57 ± 4.03 2.69 ± 0.81 5.73 ± 0.14
GroupDRO 90.70 ± 0.56 33.10 ± 3.26 5.66 ± 0.95 6.60 ± 0.40
Reweight 90.25 ± 0.71 40.23 ± 3.32 10.60 ± 1.34 7.06 ± 0.52

cIRMv1 91.53 ± 0.31 31.11 ± 4.51 1.74 ± 0.40 5.87 ± 0.16
cREx 91.45 ± 0.39 32.43 ± 2.03 1.98 ± 0.68 5.75 ± 0.13
cGroupDRO 87.68 ± 0.59 36.40 ± 2.30 14.07 ± 2.47 9.82 ± 0.91
cMMD 89.87 ± 1.13 55.02 ± 2.29 27.36 ± 1.57 8.82 ± 0.70

PGI 85.78 ± 1.45 51.02 ± 2.32 38.85 ± 2.29 15.71 ± 3.25

Table 15: Picking hyper-parameters using only the in-distribution set for COCO-ON-COLOURS.

Methods In-distribution Non-systematic shift Systematic shift Anomaly detection

Base 90.57 ± 1.28 26.81 ± 4.93 1.10 ± 0.36 5.47 ± 0.08

IRMv1 91.54 ± 0.37 32.40 ± 3.62 1.93 ± 0.36 5.77 ± 0.23
REx 91.62 ± 0.38 31.89 ± 4.08 1.98 ± 0.37 5.74 ± 0.20
GroupDRO 91.44 ± 0.27 22.42 ± 3.00 0.56 ± 0.15 5.55 ± 0.19
Reweight 91.10 ± 0.50 38.63 ± 3.23 4.35 ± 1.13 6.13 ± 0.22

cIRMv1 91.31 ± 0.43 30.94 ± 3.73 1.65 ± 0.36 5.83 ± 0.17
cREx 91.70 ± 0.50 34.93 ± 4.58 2.24 ± 0.48 5.82 ± 0.19
cGroupDRO 91.75 ± 0.60 24.05 ± 3.44 0.94 ± 0.27 5.77 ± 0.13
cMMD 92.51 ± 0.41 44.59 ± 3.28 10.48 ± 0.98 6.05 ± 0.23

PGI 91.86 ± 0.33 32.46 ± 3.06 2.81 ± 0.53 5.88 ± 0.19

17



Published as a conference paper at ICLR 2021

Table 16: Picking hyper-parameters only using a validation set of non-systematic shifts for COCO-
ON-PLACES.

Methods In-distribution Non-systematic shift Systematic shift Anomaly detection

Base (ERM) 81.06 ± 1.01 45.25 ± 0.96 29.18 ± 1.24 9.21 ± 0.21

IRMv1 80.93 ± 0.71 45.17 ± 0.92 28.78 ± 0.73 9.39 ± 0.60
REx 81.25 ± 0.76 45.40 ± 0.95 29.20 ± 1.28 9.46 ± 0.98
GroupDRO 76.05 ± 0.87 43.72 ± 0.43 31.83 ± 0.54 9.61 ± 0.55
Reweight 80.90 ± 0.50 44.87 ± 1.26 29.34 ± 0.99 9.59 ± 0.54

cIRMv1 81.48 ± 0.67 45.59 ± 1.27 29.28 ± 0.96 9.80 ± 0.78
cREx 81.50 ± 0.76 45.44 ± 0.96 29.12 ± 0.97 9.17 ± 0.59
cGroupDRO 78.25 ± 0.31 41.69 ± 0.08 28.16 ± 0.91 9.45 ± 0.22
cMMD 79.64 ± 0.73 49.44 ± 0.99 35.86 ± 0.66 9.80 ± 0.45

PGI 80.99 ± 0.52 47.63 ± 0.90 31.91 ± 0.89 9.59 ± 0.89

cMMD (oracle split) 80.04 ± 1.01 49.02 ± 1.18 35.60 ± 0.72 10.55 ± 0.55
PGI (oracle split) 75.98 ± 0.75 47.50 ± 0.87 37.27 ± 1.40 11.57 ± 0.71

Table 17: Picking hyper-parameters using both a validation set of non-systematic shifts and the
in-distribution set for COCO-ON-PLACES.

Methods In-distribution Non-systematic shift Systematic shift Anomaly detection

Base (ERM) 81.06 ± 1.01 45.25 ± 0.96 29.18 ± 1.24 9.21 ± 0.21

IRMv1 80.93 ± 0.71 45.17 ± 0.92 28.78 ± 0.73 9.39 ± 0.60
REx 81.25 ± 0.76 45.40 ± 0.95 29.20 ± 1.28 9.46 ± 0.98
GroupDRO 80.61 ± 0.44 41.96 ± 1.00 27.19 ± 0.67 9.05 ± 0.06
Reweight 80.90 ± 0.50 44.87 ± 1.26 29.34 ± 0.99 9.59 ± 0.54

cIRMv1 81.48 ± 0.67 45.59 ± 1.27 29.28 ± 0.96 9.80 ± 0.78
cREx 81.50 ± 0.76 45.44 ± 0.96 29.12 ± 0.97 9.17 ± 0.59
cGroupDRO 78.25 ± 0.31 41.69 ± 0.08 28.16 ± 0.91 9.45 ± 0.22
cMMD 79.64 ± 0.73 49.44 ± 0.99 35.86 ± 0.66 9.80 ± 0.45

PGI 80.99 ± 0.52 47.63 ± 0.90 31.91 ± 0.89 9.59 ± 0.89

cMMD (oracle split) 79.56 ± 0.64 46.74 ± 0.83 34.78 ± 0.76 9.78 ± 0.59
PGI (oracle split) 78.70 ± 0.86 47.28 ± 1.05 32.84 ± 0.89 11.13 ± 0.90

Table 18: Picking hyper-parameters using only the in-distribution set for COCO-ON-PLACES.

Methods In-distribution Non-systematic shift Systematic shift Anomaly detection

Base (ERM) 81.06 ± 1.01 45.25 ± 0.96 29.18 ± 1.24 9.21 ± 0.21

IRMv1 80.93 ± 0.71 45.17 ± 0.92 28.78 ± 0.73 9.39 ± 0.60
REx 81.25 ± 0.76 45.40 ± 0.95 29.20 ± 1.28 9.46 ± 0.98
GroupDRO 80.61 ± 0.44 41.96 ± 1.00 27.19 ± 0.67 9.05 ± 0.06
Reweight 81.53 ± 0.66 45.77 ± 1.33 29.39 ± 0.97 9.55 ± 0.79

cIRMv1 81.48 ± 0.67 45.59 ± 1.27 29.28 ± 0.96 9.80 ± 0.78
cREx 80.68 ± 0.69 44.80 ± 1.39 29.76 ± 1.05 9.95 ± 0.79
cGroupDRO 80.23 ± 0.13 41.86 ± 0.60 25.88 ± 1.20 9.43 ± 0.68
cMMD 81.11 ± 0.51 46.57 ± 0.97 31.54 ± 0.88 9.79 ± 0.79

PGI 80.99 ± 0.52 47.63 ± 0.90 31.91 ± 0.89 9.59 ± 0.89

cMMD (oracle split) 81.59 ± 0.65 45.47 ± 1.40 29.16 ± 0.96 9.15 ± 0.36
PGI (oracle split) 81.22 ± 1.09 45.16 ± 0.96 29.24 ± 0.64 9.31 ± 0.67
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E MEASURING SEMANTIC ANOMALY DETECTION

We use the test set with non-systematic distributional shift as the normal data, and the held-out
class data combined systematically with the biasing colours or backgrounds as the anomalous data.
For MNIST, this means there is 9 times more normal data than anomalous data, which reflects the
typical situation of anomalies being rarer. Our choice of normal data makes this a harder task than
usual, since we are assessing for higher (than the anomalies) predictive confidences for non-semantic
shift with semantic factors kept the same, and reduced predictive confidence for semantic shift with
non-semantic factors from the seen data. For the COCO datasets, we only sample 100 images from
the held-out class to resemble the MNIST experimental setup.

Anomaly detection is measured using average precision, treating the anomalous class as positive,
with the negative of the predictive softmax confidence as the score (Hendrycks & Gimpel, 2017).

F ALGORITHM

Algorithm 1: Algorithm for PGI
Initialise all classifier parameters θ, w and partition-predicting networks, gc, ∀c ∈ [C] ;
for one epoch do

for mini-batches Db ∈ D do
gradθ := ∇θ`(θ, w|Db) ;
gradw := ∇w`(θ, w|Db) ;
θ, w := optimizer(gradθ, gradw) ;

end
end
for all classes c ∈ [C] do

Learn a partition for images in D with labels c, (Eq. 8)
end
for T − 1 epochs do

for mini-batches Db ∈ D do
gradθ := ∇θ(`(θ, w|Db) + λ.penalty) (Eq. 6,7) ;
gradw := ∇w`(θ, w|Db) ;
θ, w := optimizer(gradθ, gradw) ;

end
end
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