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ABSTRACT

Person re-identification (re-ID) via skeleton data is an emerging topic with im-
mense potential for safety-critical applications. Existing methods usually utilize
spatial or temporal skeleton semantics learning (SSL) tasks to facilitate skeleton
representation learning, while most SSL tasks are model-dependent and lack the
ability to capture general fine-grained (e.g., joint-level) spatial-temporal skeleton
patterns under different model architectures. To delve into multi-faceted generality
of SSL tasks, we first propose an SSL generality assessment framework termed
SCUT that identifies four key SSL properties: Spatial-temporal effectiveness, Co-
training compatibility, Unsupervised trainability, and Task transformability. By
formulating systematic evaluation criteria for each property, SCUT enables both
qualitative and quantitative analysis of SSL generality under varying models and
scenarios. Motivated by SCUT to fully harness skeleton context for semantics learn-
ing, we further devise a generic Probabilistic Masked Spatial-Temporal context
Reconstruction (Prompter) task to enhance performance of skeleton-based per-
son re-ID models. Specifically, Prompter first probabilistically and independently
masks joints’ structural locations to generate spatial context, and then randomly
conceal their motion trajectories to form temporal context. Through combining
both spatial and temporal skeleton context representations to jointly reconstruct
and infer skeleton sequences, Prompter encourages the model to capture general
valuable spatial-temporal skeleton patterns for person re-ID. Empirical evaluations
on SCUT and five benchmark datasets demonstrate the superiority of Prompter
to most state-of-the-art SSL tasks. We further validate its general effectiveness in
different skeleton modeling, RGB-estimated or cross-domain scenarios1.

1 INTRODUCTION

Person re-identification (re-ID) is a vital pattern recognition task to match and retrieve a certain
pedestrian from different views or scenes, which has driven many safety-critical applications such
as security authentication, smart surveillance, and human tracking (Vezzani et al., 2013; Ye et al.,
2021). With recently more accessible skeleton data from low-cost and contactless depth sensors like
Kinect (Shotton et al., 2011), skeleton-based person re-ID is attracting increasing attention in both
academia and industry (Liao et al., 2020; Rao et al., 2021b; Rao & Miao, 2023). Different from
conventional person re-ID methods that require visual appearance or facial features (Wang et al.,
2016), skeleton-based methods typically model body structural features and unique motion semantics
(e.g., gait (Murray et al., 1964)) from positions of key body joints to identify different persons, which
enjoy numerous advantages such as smaller data input, better privacy protection (e.g., without using
appearances), and higher robustness to view and background variations (Han et al., 2017).

Early skeleton-based methods (Andersson & Araujo, 2015) extract hand-crafted descriptors such as
pairwise joint distances to depict anthropometric and gait attributes of body for person re-ID. However,
these methods heavily rely on prior domain knowledge such as kinematics (Yoo et al., 2002) to model
skeleton data, which typically lack the ability to fully exploit latent skeleton semantics or features
beyond human cognition. To tackle this problem, recent mainstream methods (Liao et al., 2020; Rao

1Our anonymized codes and models (github.com/Anonymous-9273/Prompter) are publicly available.
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& Miao, 2023) resort to deep neural networks to perform skeleton representation learning. In these
methods, skeleton semantics learning (SSL) tasks such as skeleton reconstruction are widely adopted
as either a main objective (Rao et al., 2020; Rao et al., 2021b;a) or enhancement task (Rao et al.,
2021c; Rao & Miao, 2022; Rao & Miao, 2023) to help capture spatial-temporal skeleton patterns
and high-level semantics (e.g., skeleton pattern consistency) for person re-ID. Despite the success
of existing SSL tasks, most of them are designed based on certain model architectures or feature
representations (e.g., sequence representations), and often lack the ability to fully mine fine-grained
(e.g., joint-level) spatial and temporal semantics for person re-ID. These properties inherently limit
their effectiveness and adaptability to different models. On the other hand, current skeleton-based
person re-ID endeavors only provide a single performance metric (i.e., accuracy) of SSL tasks under
a particular model, but rarely explore and compare different properties associated with their generality
under varying models or scenarios. For example, they usually lack a general framework to define and
quantify key SSL attributes, such as compatibility and trainability (e.g., learnable under unsupervised
scenarios), which hinders a fair and multi-faceted evaluation of SSL generality in practice.

To address the above challenges, we first present a systematic generality assessment framework
termed SCUT that identifies and quantifies key characteristics of SSL tasks in terms of Spatial-
temporal effectiveness (STE), Co-training compatibility (CTC), Unsupervised trainability (UT), and
Task transformability (TT). Then, based on the SCUT framework, we for the first time evaluate the
co-training performance of existing state-of-the-art SSL tasks under different models and scenarios
(e.g., datasets), and quantitatively measure their general effectiveness in combining spatial and
temporal skeleton semantics learning for person re-ID. Our study empirically reveals that existing
SSL tasks often exhibit different compatibility (CTC) when applied to other models, and the SSL task
that explicitly incorporates spatial-temporal semantics learning (STE) and jointly optimizes multiple
sub-tasks (TT) achieves higher performance in most cases. Motivated by these key properties
to fully exploit valuable skeletal context information (e.g., structural context of body) for both
spatial and temporal pattern learning, we propose a generic Probabilistic Masked Spatial-Temporal
Conext Reconstruction (Prompter) task to enhance general skeleton semantics learning of different
models for person re-ID. In particular, Prompter leverages probabilistic spatial context masking
(PSCM) to probabilistically and independently mask skeletal structural locations (defined as “spatial
context”), and combines probabilistic temporal context masking (PTCM) to generate random partial
skeletal motion trajectories (defined as “temporal context”) to perform complete skeleton sequence
reconstruction. Based on the masked spatial and temporal skeleton context representations, Prompter
simultaneously reconstructs the unmasked positions and infers the masked parts of skeleton sequences,
so as to encourage the model to capture useful key spatial-temporal skeleton semantics (e.g., structural
joint relations) for person re-ID.

The main contributions can be summarized as:

• We identify the key properties of general skeleton semantics learning (SSL) to formulate the
first SSL generality assessment framework SCUT, and conduct a multi-faceted performance
evaluation of of existing state-of-the-art SSL tasks under varying models and scenarios.

• We propose average co-training performance gain and spatial-temporal performance gain to
quantitatively compare model compatibility (CTC) and spatial-temporal effectiveness (STE)
of SSL tasks. We empirically reveal the importance of transformability (TT) in SSL.

• We present a generic SSL task Prompter with probabilistic spatial (PSCM) and temporal
skeleton context masking (PTCM) for reconstruction and inference of skeleton sequences,
which enhances the general spatial-temporal skeleton semantics learning for person re-ID.

• Empirical evaluations on SCUT and five public datasets demonstrate the generality and
superiority of Prompter in improving various models, and it is scalable to be applied to
RGB-estimated skeletons, cross-domain person re-ID, and different skeleton modeling.

2 RELATED WORKS

Skeleton-Based Person Re-Identification. Early works extract hand-crafted skeleton descriptors
such as anthropometric and gait attributes from body joints for person re-ID: Seven Euclidean
distances between certain joint pairs are calculated as discriminative features (Barbosa et al., 2012),
while Munaro et al. (2014a) and Pala et al. (2019) further extend it to into 13 (D13) and 16 skeleton

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

descriptors (D16) respectively for person re-ID. Recent mainstream methods leverage deep neural
networks to learn representations from skeleton sequences or graphs: Liao et al. (2020) propose CNN-
based PoseGait to encode joint-based motion descriptors (denoted as DPG) for human recognition.
Rao et al. (2020) devise an attention-based encoder-decoder model (AGE) to encode gait features
from 3D skeletons, while SGELA (Rao et al., 2021b) further combines sequence contrastive learning
to enhance motion semantics learning. A masked contrastive learning framework SimMC is proposed
by Rao & Miao (2022) to learn skeleton prototypes and intra-sequence relations for person re-ID. The
multi-scale skeleton graphs are explored in MG-SCR (Rao et al., 2021c) and SM-SGE (Rao et al.,
2021a) to learn unique body relations and patterns at various levels. TranSG fuses both skeleton-level
and sequence-level graph representations for contrastive learning (Rao & Miao, 2023). Some recent
person re-ID works also combine RGB images and skeleton data to learn auxiliary anthropometric
attributes (Wang et al., 2020), body parts correlations (Lu et al., 2023), and clothing-invariant features
(Nguyen et al., 2024) to enhance their performance.

Skeleton Semantics Learning (SSL). Learning general spatial-temporal skeleton semantics is pivotal
to skeleton-based person re-ID Rao & Miao (2024). The attention-based reconstruction (AR) (Rao
et al., 2020) and attention-based contrastive learning (AC) (Rao et al., 2021b) are devised to learn
semantics of motion continuity within skeletons. In (Rao et al., 2021c), multi-level skeleton sequence
prediction (MSSP) task is proposed based on multi-level graphs, while Rao et al. (2021a) further
devise multi-scale skeleton reconstruction (MSR) to capture skeleton dynamics and cross-scale
component correspondence. The masked intra-sequence contrastive learning (MIC) is devised in
(Rao & Miao, 2022) to learn pattern invariance between different skeleton subsequences. A structure-
trajectory prompted reconstruction (STPR) task is proposed in (Rao & Miao, 2023) to learn structural
relations and pattern continuity of joints. As far as we know, our work is the first exploration and
assessment of multi-faceted generality of existing SSL tasks under different scenarios. Different from
previous tasks that rely on certain architectures or sequence-level representations, our method can be
generally applied to different models for both spatial and temporal joint-level semantics learning.

3 METHOD

3.1 PROBLEM FORMULATION

The input skeleton sequence is represented by S = (s1, · · · , sf ) ∈ Rf×J×3, where f is the total
number of skeletons in the sequence and si ∈ RJ×3 denotes the ith skeleton with 3D coordinates
of J body joints. Each sequence S belongs to an identity y ∈ {1, · · · , I} and I is the number of
different identity classes. The training set ΦT =

{
ST
i

}N1

i=1
, probe set ΦP =

{
SP
i

}N2

i=1
, and gallery

set ΦG =
{
SG
i

}N3

i=1
contain N1, N2, and N3 skeleton sequences of different persons collected

from different scenes or views. The model is trained to encode skeleton sequences into effective
representations, such that the encoded representations (denoted as {V P

i }N2
i=1) in the probe set can be

matched with the representations (denoted as {V G
i }N3

i=1) of the same identity in the gallery set.

The focus of this study is to devise a general SSL task that can be applied to different models (denoted
as base models) to learn more effective spatial-temporal skeleton semantics to improve person re-ID
performance. Formally, we denote a base model as Fθ(·) with the randomly-initialized learnable
parameters θ, and the model encoding process of skeleton sequences can be formulated as

Fθ(S) = V = [v1;v2; · · · ;vf ], (1)

where the optimal parameters θ∗ can be obtained by

θ∗ = argmin
θ

[λLD + (1− λ)LSSL]. (2)

In Eq. (1) and (2), vt ∈ RJ×H (t ∈ {1, 2, · · · , f}) represents the the tth skeleton representation
concatenated by J encoded body-joint representations with the embedding size H , [; ; ] denotes the
feature concatenation operation, θ∗ represents the optimal model parameters by jointly minimizing
downstream task objective loss LD (e.g., classification loss) and skeleton semantics learning objective
loss LSSL (e.g., reconstruction loss), and λ is the weight coefficient to fuse different losses. For
simplicity, we use S and V to denote the training skeleton sequence ST

i and its encoded representation
V T
i , respectively. It is worth noting that the SSL task (LSSL) typically plays an equally-important

3
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role as downstream objective (i.e., λ = 0.5) for skeleton representation learning, and can also serve
as a main task (i.e., λ = 0.0) in self-supervised learning paradigms (Rao et al., 2021a).

3.2 GENERALITY ASSESSMENT OF SKELETON SEMANTICS LEARNING

To evaluate multi-faceted generality of an SSL task across different models and scenarios, we propose
a generality assessment framework (SCUT) with four key quantitative and qualitative characteristics.

Quantitative Properties:

• Co-Training Compatibility (CTC). An SSL task with general applicability should be
compatible with different architectures and downstream objectives. In particular, if an SSL
task can be co-trained with different models, and achieve higher performance than the
original models on average, this SSL task is eligible to possess CTC. In principle, CTC
requires that the SSL task can be performed on the original skeleton representations without
necessitating the construction of a new independent architecture or component. Here we
define the average co-training performance gain to quantify the CTC of an SSL task by

GC =
1

NmNd

Nm∑
i=1

Nd∑
j=1

γi,j
A∗

i,j −Ai,j

Ai,j

, (3)

where GC ∈ (−1, 1) is the average co-training performance gain under a common assump-
tion that the absolute value of performance change after applying SSL does NOT exceed the
original performance value, Ai,j and A

∗
i,j respectively denote the average performance of

the ith applied base model on the jth dataset without SSL and employing the SSL task, γi,j
represents the weight coefficient to evaluate the SSL task on the combination of ith model
and jth dataset, Nm and Nd represents the number of different applied base models and
different datasets respectively. We adopt the most frequently used metric, Rank-1 accuracy,
as the performance indicator, and average their results when applied to different base models
on varying datasets (see Sec. 3). It is worth noting that we use four most common benchmark
datasets to evaluate SLL tasks, and consider each applied base model and dataset equally
significant (i.e., γi,j = 1). Intuitively, a larger GC value indicates incorporating the SSL
task into different models can achieve higher average accuracy improvement under varying
datasets (i.e., data distributions), thereby suggesting its better compatibility and adaptability.

• Spatial-Temporal Effectiveness (STE). As the core of skeleton-based person re-ID is to
capture both spatial body features and temporal motion patterns to discriminate different
persons (Rao & Miao, 2023), an SSL task is considered to possess higher general effective-
ness if it explicitly contains both spatial and temporal modeling (e.g., body structure and
trajectory dynamics) of skeleton data. STE requires that both temporal and spatial part in the
SSL task are effective (i.e., each part can individually improve the model performance), and
can be compatibly combined to achieve further improvement. The average spatial-temporal
performance gain is defined to measure the overall STE of an SSL task with

GST =
1

NmNd

Nm∑
i=1

Nd∑
j=1

γi,jR
ST
i,j

A∗
i,j −Ai,j

Ai,j

, (4)

where

RST
i,j =

min(AS
i,j −Ai,j , AT

i,j −Ai,j)

max(AS
i,j −Ai,j , AT

i,j −Ai,j)
. (5)

In Eq. (4) and (5), GST ∈ (−1, 1) denotes the average spatial-temporal performance gain
following the same notation of Eq. (3), AS

i,j and AT
i,j denote the average performance

of the ith base model on the jth dataset when applying only the spatial component or
temporal component of the SSL task, min(a, b) and max(a, b) denote the minimum and
maximum value between a and b. Here we adopt the relative ratio RST

i,j ∈ (0, 1] between the
performance gains of spatial part and temporal part (see Eq. (5)) as the scale coefficient to
consider the balance of spatial and temporal effectiveness: A good STE requires that both
temporal and spatial part can equally or similarly contribute to the performance improvement

4
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Table 1: Generality assessment of SSL based on four key properties. “DR” represents direct skeleton
reconstruction. ✔ indicates satisfying the corresponding property. “+” denotes combining tasks.

ID SSL Task Quantitative Qualitative Generality
CTC (GC) (%) STE (GST) (%) UT TT Ĝ

1 DR 2.66 ✔ 0.3783
2 AR (Rao et al., 2020) ✔ 0.2500
3 AR + AC (Rao et al., 2021b) ✔ 0.2500
4 MSSP (Rao et al., 2021c) ✔ 0.2500
5 MSR (Rao et al., 2021a) ✔ ✔ 0.5000
6 MIC (Rao & Miao, 2022) 3.86 ✔ 0.3798
7 STPR (Rao & Miao, 2023) 7.19 1.62 ✔ 0.5110
8 Prompter (Ours) 9.50 4.49 ✔ ✔ 0.7675

(i.e., RST
i,j → 1). When a part offers extremely overwhelming performance gain (i.e.,

RST
i,j ≪ 1) compared to the other part, it suggests that the other part possibly provides very

slight contribution to the improvement. Thus, a large RST
i,j indicates that both parts possess

independent effectiveness and their combination is empirically meaningful to improve the
performance. GST incorporates the contribution of both spatial and temporal components of
an SSL task to indicate the average performance gain for their spatial-temporal combination.

Qualitative Attributes:

• Unsupervised Trainability (UT). An SSL task without using class labels can be trained in
more general scenarios (e.g., unsupervised skeleton learning). The UT property guarantees
that the SSL task can be commonly applied to different datasets and unknown classes (i.e.,
class-agnostic). In practice, it encourages the model to learn class-agnostic general skeleton
semantics (e.g., universal motion patterns), which can be combined with class-specific
learning of the downstream task objective to enhance person re-ID performance.

• Task Transformability (TT). Transformability is a key attribute in general SSL tasks, as
it enables flexibly adapting the semantics learning objective to a certain architecture or
downstream task. If an SSL task explicitly contains other SSL tasks (defined as sub-tasks)
or can be potentially transformed to them under different probabilities, this SSL task is
considered to possess transformability (TT). For example, an SSL task that directly combines
reconstruction and prediction tasks possesses the TT property. Performing such task can be
viewed as to simultaneously optimize different SSL sub-tasks (see Sec. 4.3), therefore often
possessing higher generality and effectiveness than same-type SSL tasks without TT.

By synergizing the above key criteria, SCUT computes the final generality score of an SSL task with:

Ĝ = ω1[(ωCGC + (1− ωC)) I(CTC)] +ω2[(ωSTGST +(1−ωST))I(STE)] +ω3I(UT)+ω4I(TT),
(6)

where 0 ≤ Ĝ ≤ 1 is the normalized score of generality, I(·) represents the indicator function with
value 1 if the SSL task possesses the corresponding property otherwise value is 0, ω1, ω2, ω3, ω4 are
weight coefficients with ω1 + ω2 + ω3 + ω4 = 1 to combine scores of different properties, ωC and
ωST are coefficients to integrate the basic score and the average performance gain by CTC (i.e., GC)
and STE (i.e., GST). It should be noted that the score for average performance gain is added only
when the SSL task possesses corresponding property (i.e., I(·) = 1). As we equally focus on each
property and their achieved average performance gain in measuring the overall generality of SSL, we
assign the same weight value to each of their scores in Eq. (6).

Generality Comparison of State-of-the-Art SSL Tasks. As shown in Table 1, unsupervised
trainability (UT) is the most common attribute of SSL tasks, as existing SSL tasks are typically
designed for unlabeled skeleton learning and can learn effective general class-agnostic semantics.
However, only four tasks (ID = 1, 6, 7, 8) can be flexibly applied to different models without
constructing new model architectures or components, while the proposed Prompter (ID = 8) presents
higher co-training compatibility than other three tasks with a significant improvement of 2.31% to
6.84% average performance gain on varying models and datasets (shown in Table 2). For SSL tasks
that explicitly model spatial and temporal skeleton patterns, our method also shows the strongest
spatial-temporal effectiveness (STE), achieving more than twice the performance gain of the state-
of-the-art SSL task STPR (ID = 7). This demonstrates that Prompter could possess more balanced
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Figure 1: Schematics of Prompter: First, the structural locations and motion trajectories of body joints
in the input skeleton sequence s1, · · · , sf are encoded by the base model into feature embedding
(Emb.). Then, we apply PSCM and PTCM to probabilistically and independently mask the location
and trajectory embeddings to generate random spatial and temporal skeleton context representations,
which are exploited to reconstruct and infer the complete skeletal locations and trajectory by mini-
mizing LSSCR to learn general and valuable spatial-temporal semantics for person re-ID.

effective spatial and temporal semantics learning with higher combined performance. Interestingly,
only MSR (ID = 5) and Prompter (ID = 8) possess task transformability (TT): MSR contains DR
and cross-scale skeleton inference, while the proposed Prompter can be viewed as to perform DR
and STPR under different probabilities (see Sec. 3.3). Notably, our method (ID = 8) simultaneously
satisfies all key properties and achieves the highest generality score, suggesting that it could be more
flexibly and effectively applied to different models and scenarios. We further show the importance
and key effects of different properties such as TT and STE in SSL (analyzed in Sec. 3.3, 4.2, and 4.3).

3.3 PROBABILISTIC MASKED SPATIAL-TEMPORAL CONTEXT RECONSTRUCTION

To realize general and effective SSL, it is essential to align its objective to the key of skeleton-based
person re-ID, which aims to capture both spatial skeleton features (e.g., body structural features) and
temporal motion attributes (e.g., gait (Murray et al., 1964)). Such spatial and temporal patterns can
be respectively characterized by positions and relations of different body joints within each skeleton
and their corresponding trajectories. A straightforward method is to perform skeleton reconstruction
without explicit temporal or spatial modeling (Rao et al., 2021b), while such task usually lacks the
flexibility to fully exploit varying valuable context information (e.g., temporal context of trajectory)
of fine-grained skeleton representations (e.g., body joints) to capture richer skeleton semantics.
According to the crucial properties of SSL identified by SCUT (see Sec. 3.2), a more general solution
to these challenges is to explicitly model both spatial and temporal skeleton patterns (i.e., implement
STE) while combining multiple skeleton context based learning sub-objectives (i.e., establish TT) to
build a more effective SSL task. To this end, we propose Probabilistic Masked Spatial-Temporal
Context Reconstruction (Prompter) that randomly and independently masks structural locations of
joints (defined as “skeletal spatial context”) and motion trajectories of joints (defined as “skeletal
temporal context”) to jointly reconstruct and infer spatial-temporal context (e.g., masked positions)
of skeleton sequences, so as to learn general effective skeleton semantics for person re-ID.

Probabilistic Spatial Context Masking (PSCM). Given the tth skeleton representation vt with
structural locations of J body joints, v1

t ,v
2
t , · · · ,vJ

t , we mask their spatial context by randomly
discarding each location with a probability pS. The spatially-masked skeleton representation is
obtained by

ṽt =
1

nS

J∑
j=1

xjv
j
t , (7)

where ṽt ∈ RH denotes the masked spatial context representation of tth skeleton after applying
PSCM, xj ∈ {0, 1} is the jth location mask constructed by an independent and identically distributed
(IID) Bernoulli random variable with the probability pS of being 0 (i.e., xj ∼ Bernoulli(1− pS)),
nS =

∑J
j=1 xj denotes the number of unmasked structural locations, and nS ≥ 1 is used to avoid

empty skeleton context. Each body-joint location in the skeleton is assumed to be equally important
and we average them to generate the spatial context representation. It is noteworthy that PSCM
can be extended with other probabilistic distributions, and we adopt the commonly-used Bernoulli
distribution due to its simplicity and computational tractability (Boluki et al., 2020).
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Probabilistic Temporal Context Masking (PTCM). Provided the motion trajectory (i.e., temporal
positions), vi

1,v
i
2, · · · ,vi

f , of the ith body joint, we mask their temporal context by randomly
dropping each trajectory position with a probability pT as (shown in Fig. 1)

wi =
1

nT

f∑
t=1

ztv
i
t. (8)

In Eq. (8), wi ∈ RH denotes the masked temporal context representation of ith joint after applying
PTCM, and the mask zt ∈ {0, 1} is an IID Bernoulli random variable with zt ∼ Bernoulli(1− pT),
nT =

∑f
t=1 zT represents the number of unmasked positions in the i-joint motion trajectory, and

nT ≥ 1 is adopted to generate non-empty temporal context. Each position in the motion trajectory is
assigned with equal importance and we average them to obtain the temporal context representation.

Skeleton Context Reconstruction Objective. Based on the masked spatial and temporal context
representation, ṽ (see Eq. (7)) and w (See Eq. (8)), we propose the Spatial-temporal Skeleton Context
Reconstruction (SSCR) loss to reconstruct and infer the original skeleton sequences with

LSSCR =
α

N1

N1∑
i=1

∥∥∥S̃i − Si

∥∥∥2
2
+

(1− α)

N1

N1∑
i=1

∥∥Si − Si

∥∥2
2
, (9)

where the spatially and temporally predicted skeleton sequences are respectively represented by

S̃i =

[∥∥∥∥f
t=1

ΦS(RS(ṽt); IS(ṽt))

]
, (10)

Si =

[∥∥∥∥J
j=1

ΦT(RT(w
j); IT(w

j))

]⊤
. (11)

In Eq. (9), α is the weight coefficient to combine spatial and temporal skeleton context reconstruction,
Si, S̃i,Si ∈ Rf×J×3 denote the ith ground-truth training skeleton sequence, the ith predicted
skeleton sequences using spatial and temporal masked context representations respectively, and
∥ · ∥2 represents the ℓ2 norm. During the context reconstruction process (see Eq. (10) and (11)),
the objective of LSSCR not only reconstructs the structural locations and trajectory positions that
correspond to the unmasked skeleton context using reconstructing models RS(·) and RT(·), but also
infers the masked spatial and temporal positions based on the partial context (i.e., unmasked context
representations) using inferring models IS(·) and IT(·). Both reconstructing and inferring models
adopt identical architectures built by multi-layer perceptron (MLP) networks. ΦS(·) and ΦT(·) denote
permutation functions to sort predicted joint positions in a default spatial and temporal order based on
the pre-defined indices.

∥∥ denotes concatenating f skeletons or J body-joint trajectories to form the
skeleton sequence. For convenience, we use ⊤ to denote transposing the trajectory position matrix
from RJ×f×3 to Rf×J×3 to match the shape of original skeleton sequences.

By employing LSSCR, Prompter essentially exploits incomplete structural and motion information as
partial context to prompt the model for complete context reconstruction with an inference of unknown
spatial and temporal positions. This inherently requires the model to effectively comprehend and
utilize useful spatial (e.g., key structural relations of joints) and temporal skeleton semantics (e.g.,
motion continuity) to achieve precise reconstruction and inference, which facilitates the model to
capture more valuable spatial-temporal skeleton features for person re-ID.

Generalization of Prompter. The Prompter task can be viewed as a general probabilistic form
of existing reconstruction or masked reconstruction based SSL tasks (Rao et al., 2021a; Rao &
Miao, 2023). It owns the task transformability (TT): The direct spatial reconstruction with all body
joints unmasked is contained in Prompter with the probability of PS(J) = (1− pS)

J (see Appendix
II), while the masked spatial skeleton reconstruction with nS unmasked joints is a special case of
Prompter with the occurrence probability of PS(nS) =

(
J
nS

)
(pS)

J−nS(1− pS)
nS . This enables it to

jointly optimize different SSL sub-tasks and achieve better semantics learning performance (see
Sec. 4.2 and 4.3). Intuitively, Prompter introduces more possible spatial-temporal reconstruction
cases (i.e., under varying partial spatial and temporal contexts) than both direct reconstruction and
masked reconstruction (Rao & Miao, 2023) that employs a fixed number of masks, thereby potentially
improving the reconstruction diversity to reduce model over-fitting. We further reveal its relations to
model regularization methods (e.g., Dropout (Baldi & Sadowski, 2014)) in the appendices.
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Table 2: Performance evaluation of our method when applied to four state-of-the-art methods on
different datasets. We also include representative hand-crafted, supervised (♠), self-supervised and
unsupervised (♢) methods as performance reference. “+” denotes employing Prompter to co-train
models. The bold numbers indicate higher performance than the base model without using SSL.

Methods KS20 BIWI-W BIWI-S IAS-A IAS-B KGBD
mAP R1 R5 R10 mAP R1 R5 R10 mAP R1 R5 R10 mAP R1 R5 R10 mAP R1 R5 R10 mAP R1 R5 R10

DPG (Liao et al., 2020) 11.3 35.2 61.5 70.5 8.7 6.5 15.5 20.3 6.7 18.5 45.4 63.8 11.0 16.4 39.5 53.4 10.6 16.0 41.2 57.3 2.1 30.0 49.1 58.1
D13 (Munaro et al., 2014a) 18.9 39.4 71.7 81.7 17.2 14.2 20.6 23.7 13.1 28.3 53.1 65.9 24.5 40.0 58.7 67.6 23.7 43.7 68.6 76.7 1.9 17.0 34.4 44.2
D16 (Pala et al., 2019) 24.0 51.7 77.1 86.9 18.8 17.0 25.3 29.6 16.7 32.6 55.7 68.3 25.2 42.7 62.9 70.7 24.5 44.5 69.1 80.2 4.0 31.2 50.9 59.8
PoseGait♠ (Liao et al., 2020) 23.5 49.4 80.9 90.2 11.1 8.8 23.0 31.2 9.9 14.0 40.7 56.7 17.5 28.4 55.7 69.2 20.8 28.9 51.6 62.9 13.9 50.6 67.0 72.6
AGE♢ (Rao et al., 2020) 8.9 43.2 70.1 80.0 12.6 11.7 21.4 27.3 8.9 25.1 43.1 61.6 13.4 31.1 54.8 67.4 12.8 31.1 52.3 64.2 0.9 2.9 5.6 7.5
SGELA♢ (Rao et al., 2021b) 21.2 45.0 65.0 75.1 19.0 11.7 14.0 14.7 15.1 25.8 51.8 64.4 13.2 16.7 30.2 44.0 14.0 22.2 40.8 50.2 4.5 38.1 53.5 60.0
SM-SGE♢ (Rao et al., 2021a) 9.5 45.9 71.9 81.2 15.2 13.2 25.8 33.5 10.1 31.3 56.3 69.1 13.6 34.0 60.5 71.6 13.3 38.9 64.1 75.8 4.4 38.2 54.2 60.7
MG-SCR♠ (Rao et al., 2021c) 11.3 49.0 69.3 80.3 12.7 35.6 60.7 72.2 12.6 34.2 60.4 72.5 17.1 45.6 70.0 80.3 18.5 49.7 72.3 82.1 5.5 48.2 66.4 72.5
+ Promter (Ours) 13.2 56.3 76.0 82.4 13.5 39.5 65.1 75.6 13.4 37.6 64.5 75.9 20.1 52.7 74.4 82.8 20.5 51.7 73.8 83.4 7.0 50.9 67.3 73.0
SPC-MGR♢ (Rao & Miao, 2022) 21.7 59.0 79.0 86.2 19.4 18.9 31.5 40.5 16.0 34.1 57.3 69.8 24.2 41.9 66.3 75.6 24.1 43.3 68.4 79.4 6.9 40.8 57.5 65.0
+ Promter (Ours) 23.7 65.0 79.8 85.7 18.9 37.0 61.6 74.5 15.0 37.7 67.2 78.8 27.1 49.8 73.1 80.9 28.1 51.0 73.4 83.0 7.7 41.5 58.3 65.4
SimMC♢ (Rao & Miao, 2022) 21.1 65.6 81.0 86.9 19.5 23.7 36.4 44.2 11.7 40.1 63.2 74.2 18.5 43.1 65.1 72.3 22.3 43.8 67.0 74.9 11.0 53.6 65.2 70.5
+ Promter (Ours) 22.3 67.8 82.3 87.5 20.0 24.5 37.2 44.9 12.3 42.8 65.8 75.6 21.5 46.0 66.2 75.1 24.0 47.0 66.9 76.0 12.0 55.2 66.6 71.3
TranSG♠ (Rao & Miao, 2023) 42.5 71.3 85.4 88.9 25.5 31.2 44.9 50.7 26.7 66.6 83.6 91.4 31.8 48.0 65.5 71.8 37.9 56.1 77.5 85.1 18.1 57.0 68.0 73.4
+ Promter (Ours) 48.3 74.2 88.0 90.7 27.3 34.6 60.9 70.2 30.3 66.8 87.3 92.2 34.1 49.5 67.8 74.3 43.8 60.4 77.9 86.5 21.3 59.5 73.0 78.3

Table 3: Performance comparison of different SSL tasks when applied to state-of-the-art models on
different datasets. “+” denotes using the corresponding SSL task. ‡ indicates the model without using
any SSL task, and ∗ refers to the original task used in the model. The amount of network parameters
(million (M)) and computational complexity (giga foating-point operations (GFLOPs)) for the base
model employing a different SSL task are reported. Bold numbers denote the best performance
among compared SSL tasks, while the underline represents the best results among all methods.

Methods Params GFLOPs KS20 BIWI-W BIWI-S IAS-A IAS-B KGBD
mAP R1 R5 R10 mAP R1 R5 R10 mAP R1 R5 R10 mAP R1 R5 R10 mAP R1 R5 R10 mAP R1 R5 R10

‡ MG-SCR♠ 11.3 49.0 69.3 80.3 12.7 35.6 60.7 72.2 12.6 34.2 60.4 72.5 17.1 45.6 70.0 80.3 18.5 49.7 72.3 82.1 5.5 48.2 66.4 72.5
+ MIC 0.37 7.39 15.9 54.1 75.2 81.5 12.0 29.9 54.8 69.1 13.8 37.0 62.3 74.2 18.4 46.6 66.6 75.0 17.8 49.0 72.2 81.0 5.3 46.5 63.6 70.4
+ DR 0.99 8.44 13.1 52.0 72.1 80.5 13.1 34.1 63.2 74.9 13.0 35.0 62.8 74.5 18.3 46.6 73.1 82.6 16.4 45.6 71.0 80.5 4.9 46.8 64.8 71.8
+ STPR 0.35 7.31 13.0 53.3 74.0 82.4 12.7 36.3 62.9 74.9 12.9 36.8 61.6 72.8 18.4 52.3 73.4 82.3 19.9 51.4 73.2 81.7 5.6 48.7 65.2 71.8
+ Prompter (Ours) 0.35 7.31 13.2 56.3 76.0 82.4 13.5 39.5 65.1 75.6 13.4 37.6 64.5 75.9 20.1 52.7 74.4 82.8 20.5 51.7 73.8 83.4 7.0 50.9 67.3 73.0
‡ SPC-MGR♢ 21.7 59.0 79.0 86.2 19.4 18.9 31.5 40.5 16.0 34.1 57.3 69.8 24.2 41.9 66.3 75.6 24.1 43.3 68.4 79.4 6.9 40.8 57.5 65.0
+ MIC 0.01 0.75 23.4 62.9 79.0 84.0 14.8 35.1 62.3 75.1 13.5 36.3 65.0 75.1 22.9 47.0 70.0 79.3 26.9 49.3 71.8 82.8 7.5 40.6 57.9 65.0
+ DR 0.22 1.38 23.2 64.2 78.7 83.2 14.3 33.8 62.1 72.7 14.6 37.1 66.8 78.3 26.6 48.7 72.8 82.1 23.4 45.9 70.7 79.9 6.6 39.2 53.3 61.4
+ STPR 0.01 0.71 23.3 64.5 79.3 85.7 14.5 35.9 62.1 74.2 12.8 36.7 64.5 77.4 23.9 45.2 68.6 77.2 23.4 49.6 71.3 82.7 7.0 41.5 56.0 63.8
+ Prompter (Ours) 0.01 0.71 23.7 65.0 79.8 85.7 18.9 37.0 61.6 74.5 15.0 37.7 67.2 78.8 27.1 49.8 73.1 80.9 28.1 51.0 73.4 83.0 7.7 41.9 58.3 65.4
‡ SimMC♢ 21.1 65.6 81.0 86.9 19.5 23.7 36.4 44.2 11.7 40.1 63.2 74.2 18.5 43.1 65.1 72.3 22.3 43.8 67.0 74.9 11.0 53.6 65.2 70.5
+ MIC∗ 0.15 0.95 22.3 66.4 80.7 87.0 19.9 24.5 36.7 44.5 12.3 41.7 66.6 76.8 18.7 44.8 65.3 72.9 22.9 46.3 68.1 77.0 11.7 54.9 66.2 70.6
+ DR 3.06 9.00 20.1 64.5 79.3 85.2 19.4 24.1 35.0 43.0 10.9 41.0 66.0 75.0 19.0 40.4 61.2 69.3 21.4 42.6 63.1 72.9 10.4 53.8 64.5 69.5
+ STPR 1.57 5.36 21.0 66.9 80.7 87.1 19.8 24.4 36.7 43.4 11.9 42.1 66.4 75.1 19.5 45.0 64.0 72.4 23.6 46.7 65.3 74.2 11.7 55.4 66.3 71.0
+ Prompter (Ours) 1.57 5.36 22.3 67.8 82.3 87.5 20.0 24.5 37.2 44.9 12.3 42.8 65.8 75.6 21.5 46.0 66.2 75.1 24.0 47.0 66.9 76.0 12.0 55.5 66.6 71.3
‡ TranSG♠ 42.5 71.3 85.4 88.9 25.5 31.2 44.9 50.7 26.7 66.6 83.6 91.4 31.8 48.0 65.5 71.8 37.9 56.1 77.5 85.1 18.1 57.0 68.0 73.4
+ MIC 0.42 33.75 47.2 72.3 86.1 90.2 17.7 34.5 59.8 68.8 31.5 60.0 83.0 88.3 33.0 45.2 63.5 70.7 41.8 59.4 75.7 83.0 12.1 52.1 66.6 72.3
+ DR 0.41 33.69 47.8 73.2 86.7 90.4 22.0 33.8 56.5 68.9 29.0 63.5 85.6 92.0 32.1 48.2 66.2 71.6 42.8 58.0 75.2 81.6 13.3 52.8 66.6 72.9
+ STPR∗ 0.40 20.19 46.2 73.6 86.3 90.2 26.9 32.7 44.9 52.2 30.1 68.7 86.5 91.8 32.8 49.2 68.5 76.2 39.4 59.1 77.0 87.0 20.2 59.0 73.1 78.2
+ Prompter (Ours) 0.41 20.20 48.3 74.2 88.0 90.7 27.3 34.6 60.9 70.2 30.3 66.8 87.3 92.2 34.1 49.5 67.8 74.3 43.8 60.4 77.9 86.5 21.3 59.5 73.0 78.3

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUPS

SSL Co-Training. To apply the SSL task (e.g., Prompter) to different base models for skeleton-based
person re-ID, we employ the corresponding SSL objective (e.g., LSSCR) as LSSL in Eq. (2) to co-train
the model. For person re-ID task, we leverage the learned model to encode raw skeleton sequences of
the probe set ΦP into feature representations ({V P

i }N2
i=1) which are matched with the representations

({V G
i }N3

i=1) in the gallery set ΦG using Euclidean distance to predict the identity.

Datasets. We evaluate our method on four skeleton-based person re-ID datasets: IAS (Munaro et al.,
2014b), KS20 (Nambiar et al., 2017), BIWI (Munaro et al., 2014a), and KGBD (Andersson & Araujo,
2015), containing 11, 20, 50, and 164 different persons respectively. We also verify the generality of
Prompter on RGB-estimated skeletons from a large-scale multi-view benchmark dataset CASIA-B
(Yu et al., 2006) with 124 persons and three conditions (Normal (N), Bags (B), Clothes (C)). We
adopt common probe and gallery settings for a fair comparison (Rao & Miao, 2023).

Implementation Details. We compare Prompter with different state-of-the-art SSL tasks (DR, MIC
(Rao & Miao, 2022), STPR (Rao & Miao, 2023)) that can be compatibly co-trained with different
state-of-the-art models. The number of different body joints is J = 20 in IAS, BIWI, KGBD, J = 25
in KS20, and J = 14 in the estimated skeletons of CASIA-B. The sequence length is f = 6 for
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Table 4: Ablation study with differ-
ent configurations: Probabilistic spatial
(PSCM) or temporal context masking
(PTCM). We also include random spa-
tial masking (SM) or temporal masking
(TM) with fixed mask numbers for per-
formance comparison. “+” indicates em-
ploying the corresponding component,
and “+ PSCM + PTCM” denotes the
final configuration of Prompter.

ID Config. KS20 IAS-A IAS-B
mAP R1 mAP R1 mAP R1

1 Baseline 42.5 71.3 31.8 48.0 37.9 56.1
2 + SM 44.8 71.9 32.4 48.7 38.1 57.2
3 + PSCM 46.5 73.1 33.5 49.4 42.1 58.7
4 + TM 45.4 73.0 32.1 48.4 39.2 58.2
5 + PTCM 46.4 73.6 33.8 49.0 42.0 58.9
6 + SM + TM 46.2 73.6 32.8 49.2 39.4 59.1
7 + PSCM + PTCM 48.3 74.2 34.1 49.5 43.8 60.4

Table 5: Performance comparison of SSL tasks when
applied to RGB-estimated skeletons on CASIA-B. ♣
refers to appearance-based methods. “B-N” repre-
sents using the “Bags (B)” probe set and “Normal (N)”
gallery set. “—” indicates no published result.

Probe-Gallery C-C C-N B-N N-N B-B
Methods mAP R1 mAP R1 mAP R1 mAP R1 mAP R1

LMNN♣ (Weinberger & Saul, 2009) — 17.4 — 11.6 — 23.1 — 3.9 — 18.3
ITML♣ (Davis et al., 2007) — 20.1 — 10.3 — 21.8 — 7.5 — 19.5
ELF♣ (Gray & Tao, 2008) — 19.9 — 5.6 — 17.1 — 12.3 — 5.8
SDALF♣ (Farenzena et al., 2010) — 16.7 — 11.6 — 22.9 — 4.9 — 10.2
MLR♣ (Scores) (Liu et al., 2015) — 13.5 — 9.7 — 14.7 — 13.6 — 13.6
MLR♣ (Features) (Liu et al., 2015) — 25.4 — 20.3 — 31.8 — 16.3 — 18.9
AGE (Rao et al., 2020) 9.6 35.5 3.0 14.6 3.9 32.4 3.5 20.8 9.8 37.1
SM-SGE (Rao et al., 2021a) 9.7 27.2 3.0 10.6 3.5 16.6 6.6 50.2 9.3 26.6
MG-SCR (Rao et al., 2021c) 12.0 45.6 3.0 10.1 5.0 33.3 9.1 71.3 14.9 46.4
SPC-MGR (Rao & Miao, 2022) 11.8 48.3 4.3 22.4 4.6 28.9 9.1 71.2 11.4 44.3
SGELA (Rao et al., 2021b) 7.1 51.2 4.7 15.9 6.7 36.4 9.8 71.8 16.5 48.1
+ STPR (Rao & Miao, 2023) 15.7 65.6 6.7 23.0 8.6 44.1 13.1 78.5 17.9 67.1
+ MIC 16.1 67.8 5.6 22.2 8.9 43.0 13.1 76.2 16.5 64.0
+ DR 14.0 64.2 4.9 20.4 8.1 44.2 13.5 85.0 17.5 65.0
+ Prompter (Ours) 16.3 68.9 6.7 24.1 9.0 44.4 13.6 84.0 17.6 64.4

Kinect-based datasets (IAS, BIWI, KS20, KGBD) and f = 40 for the RGB-estimated skeleton data
(CASIA-B), following existing methods for a fair comparison. We employ the MLP network with
one hidden layer to build reconstructing and inferring models, and the embedding size is set to the
same size of features used in the original base models. The probabilities for spatial and temporal
masking are empirically set to pS = pT = 0.5, and we use α = 0.5 to equally combine spatial and
temporal reconstruction. We empirically adopt λ = 0.5 to fuse SSL and downstream task objectives.
We report average performance under random parameter initializations following existing works for a
fair comparison. More details are provided in the appendices.

Evaluation Metrics. The Cumulative Matching Characteristics (CMC) curve is calculated and we
report Rank-1 (R1), Rank-5 (R5), and Rank-10 accuracy (R10) as performance metrics. We also adopt
Mean Average Precision (mAP) (Zheng et al., 2015) to evaluate the overall performance.

4.2 EMPIRICAL EVALUATION

Performance of Prompter on State-of-the-Art Models. As shown in Table 2, incorporating the
proposed Prompter into SPC-MGR outperforms the original model without SSL by 0.7-18.1% for
Rank-1 accuracy and 0.8-4.0% for mAP in most cases (10 of 12 cases) of different datasets. When
applied to other state-of-the-art models without SSL, our approach also significantly improves their
performance on all datasets by up to 7.3% Rank-1 accuracy and 5.9% mAP. This demonstrates the
general effectiveness of Prompter on varying scenarios such as with frequent changes of viewpoints
(KS20), occasions (BIWI-W), and appearances (IAS-A), and also verifies its strong compatibility with
both supervised and unsupervised graph-based (MG-SCR, SPC-MGR, TranSG) and sequence-based
models (SimMC) to learn more discriminative spatial-temporal skeleton semantics for person re-ID.

Comparison with Different SSL Tasks. Compared with existing SSL tasks, applying Prompter to
different models achieves higher Rank-1 accuracy (23 of 24 cases) and mAP improvement (19 of 24
cases) in most datasets. It is interesting to note that MIC and DR usually produce large performance
variations among models, which may suggest their inconsistent compatibility (CTC) under different
models. Notably, our task also outperforms its transformable sub-tasks DR and STPR in most cases,
which justifies our analysis that the SSL task combining different tasks can be more effective than the
single contained task. With more consistent compatibility and higher effectiveness, Prompter can
serve as a general SSL paradigm for skeleton-based person re-ID and more skeleton-related tasks.

Ablation Study. We evaluate the effectiveness of each component in Prompter and adopt TranSG
without SSL (Rao & Miao, 2023) as the base model. As reported in Table 4, employing PSCM
or PTCM (ID = 3, 5) achieves better performance than using direct spatial or temporal masking
with fixed numbers of masks (ID = 2, 4) on different datasets. This verifies the effectiveness of the
proposed probabilistic context masking, as it can generate more diverse random context of body
structure and motion trajectory to facilitate reconstruction and the capture of richer useful semantics
for person re-ID. Incorporating both PSCM and PTCM (ID = 7) further enhances the performance
gain compared to direct masked reconstruction (ID = 6) (up to 4.4% mAP and 1.3% Rank-1 accuracy),
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Figure 2: Performance com-
parison of different SSL tasks
using different skeleton levels.
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Figure 3: Losses of DR, STPR,
and Prompter (LSSCR) when
solely training Prompter.

BIWI→A BIWI→B IAS→W IAS→S
Methods mAP R1 mAP R1 mAP R1 mAP R1

+ STPR 17.7 34.3 16.6 31.9 14.1 11.7 11.3 18.2
+ MIC 18.2 34.4 16.4 34.2 14.0 11.6 11.4 19.9
+ DR 17.7 31.3 18.2 32.8 15.1 12.0 11.6 18.8
+ Prompter (Ours) 19.1 35.8 18.5 34.9 15.8 12.9 11.7 19.9

Table 6: Performance compari-
son of different SSL tasks on the
cross-domain person re-ID task.
“A”, “B”, ”W”, ”S” represent
IAS-A, IAS-B, BIWI-W, BIWI-
S. “IAS→W” denotes training
the base model on the IAS train-
ing set and testing on BIWI-W.

which suggests the effectiveness and necessity of combining spatial and temporal skeleton semantics
learning (i.e., STE property) to learn more valuable distinguishing patterns for person re-ID.

4.3 FURTHER ANALYSIS

Application to RGB-Estimated Skeletons. To verify the general effectiveness of our method on
estimated skeletons instead of Kinect-based skeletons, we extract 3D skeletons from CASIA-B using
pose estimation models (Cao et al., 2019; Chen & Ramanan, 2017). As shown in Table 5, applying
Prompter outperforms the latest SSL task STPR (Rao & Miao, 2023) by up to 5.5% for Rank-1
accuracy and 0.6% for mAP in four conditions, and it also achieves better performance than existing
state-of-the-art skeleton-based models and classic appearance-based methods in most cases. This
demonstrates the effectiveness of Prompter to facilitate learning richer valuable semantics from
estimated skeletons, and further suggests its applicability to more general RGB-estimated scenarios.

Evaluation on Cross-Domain Person Re-ID. To validate the generality of skeleton semantics
learned from Prompter, we co-train the base model with Prompter on the source datasets and evaluate
its generalized performance on the target datasets without model fine-tuning. As shown in Table 6,
applying Prompter achieves higher performance than using other SSL tasks when generalizing the
learned model to other domains (i.e., datasets), which suggests that our method could capture more
general skeleton semantics (e.g., domain-shared discriminative features) for person re-ID.

Transfer to Different Skeleton Modeling. We evaluate the effectiveness of transferring Prompter to
varying levels of skeleton modeling (e.g., part-level or body-level skeleton graphs (Rao et al., 2021a)).
As shown in Fig. 2, our method outperforms different state-of-the-art SSL tasks on both original
and higher-level skeleton representations. This demonstrates its generality and stronger effectiveness
under different-level skeletal structures to facilitate the model to learn more discriminative features.

Loss Visualization. As shown in Fig. 3, solely applying Prompter simultaneously reduces DR and
STPR losses, which validates its TT property that enables the model to jointly learn with contained
sub-tasks. Consistent with the analysis in Sec. 3.3, Prompter introduces more diverse random cases
into training (which could increase the fluctuations in loss) and can potentially reduce over-fitting to
achieve a lower convergence value. More results and analyses are provided in the appendices.

5 CONCLUSION

In this paper, we propose the SCUT framework that identifies four key properties (STE, CTC, UT,
TT) to assess the generality of skeleton semantics learning (SSL) tasks across different models and
scenarios. Based on SCUT, we further devise a generic SSL task termed Prompter to probabilistically
and independently mask spatial context of structural locations and temporal context of motion
trajectories, which are exploited to reconstruct and infer complete skeleton sequences to capture
general effective spatial-temporal skeleton semantics for person re-ID. Extensive evaluations on
SCUT and five public datasets demonstrate the higher effectiveness and generality of Prompter than
other state-of-the-art SSL tasks, and it is highly scalable to be applied to various models and scenarios.
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We have reviewed the ICLR Code of Ethics and confirmed that our work complies with it.

Person re-ID models can be widely applied to different safe-critical areas such as security authen-
tication, criminal tracking, and smart surveillance. However, illegally or irresponsibly deploying
person re-ID technologies might invade personal privacy, thus it is important to establish relevant
laws to protect the privacy. While existing skeleton-based person re-ID models do not disclose
appearance-based information and have not been advanced enough to track individuals, such privacy
issue should be kept in mind when developing this technology further (e.g., combine with RGB
images). Our models and codes must only be used for legitimate research.

We would like to emphasize that the datasets used in our work are officially shared by reliable research
agencies, which guarantee that the collecting, processing, releasing, and using of data have gained
the formal consent of participants. To protect privacy, each individual is anonymized with a simple
identity number. We follow the official licenses of public datasets to assess and use skeleton data.

REPRODUCIBILITY STATEMENT

• Our anonymized codes and models are publicly available at https://github.com/Anonymous-
9273/Prompter.

• In Sec. A of Appendix I, we provide details of experimental settings, including (1)
Dataset description; (2) CASIA-B evaluation settings, (3) Dataset preprocessing strategy,
(4) Probe/gallery settings, (5) Experimental setup details, and (6) Utilized computational
resources.

• In Sec. B of Appendix I, we provide full experimental results for (1) Ablation study, (2)
Effects of hyper-parameters, (3) Multi-shot performance with different sequence lengths f ,
and (4) Pseudo codes of Prompter.

• In Sec. C of Appendix I, we provide additional visualization and analysis of (1) Training
metrics (e.g., different losses), (2) Skeleton representations, and (3) Confusion metrics.

• In Sec. E of Appendix I, we provide additional experimental results and analyses based on
reviewers’ constructive comments and valuable suggestions, including:

– We provide an additional comparison of key differences and similarity between our
method (i.e., skeleton-based person re-ID) and skeleton-based gait recognition methods
(for Reviewer iRXh).

– We evaluate the performance of different state-of-the-art gait recognition methods
(SkeletonGait, GaitTR, GPGait) on all datasets and compare them with our method
(for Reviewer iRXh).

– We provide an additional performance comparison of different SSL tasks (DR, MIC,
STPR, Prompter) under different skeleton levels (Joint-Level, Part-Level, Body-Level)
on different datasets (for Reviewer DvW6).

– We offer qualitative examples and analyses for the cross-domain person re-ID perfor-
mance, including confusion matrices and t-SNE feature visualization (for Reviewer
DvW6).

– We provide an additional overview of state-of-the-art skeleton semantics learning (SSL)
tasks, their source method, and method types (for Reviewer v2zj).

– We offer a detailed comparison between our method and existing state-of-the-art
masking strategies (for Reviewers iRXh, BHkC, v2zj).

– We integrate the proposed Prompter into the representative state-of-the-art gait recog-
nition method GPGait, and compare its performance with the original base model on
different datasets (for Reviwer DUn6).

– We additionally evaluated the representative state-of-the-art gait recognition method
and action recognition method ST-GCN on our benchmark datasets, and integrated the
proposed Prompter into them to verify its general applicability (for Reviewers BHkC,
iRXh, DvW6).
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• In Sec. A of Appendix II, we offer a general computing formula for occurrence probabilities
of different sub-tasks contained in Prompter.

• In Sec. B of Appendix II, we provide theoretical assumptions and analyses of Prompter on
potential model regularization.
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