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ABSTRACT

It has been widely observed that larger neural networks perform better in many
real-world applications. While this scaling trend affirms the need to train a giant
model across multiple devices, it is challenging to partition a model with mil-
lions of parameters to run efficiently and effectively on various devices deployed
in a cluster of accelerators, e.g., GPUs and TPUs. Recently, a novel approach
to distributed training deep neural network (DNN) models has been proposed,
pipeline parallelism. Compared with data parallelism, the existing works achieved
a significant speed-up ratio even with a naive partition scheme.

This paper presents a deep reinforcement learning (DRL)-based pipeline parallelism
framework, DRL-PP, that learns to optimize the pipeline schedule for training large
DNN models across multiple accelerators. The core of DRL-PP is a DRL agent
consisting of a graph encoder, describing the semantics of an operator in the
computational graph, followed by a recurrent model partitioner and a pipeline
scheduler that learns to partition and place operations on various GPU devices
automatically. In particular, by generating placement in a recurrent way, DRL-PP
can partition DNN models in a more flexible and balanced manner, which improves
accelerator utilization and speeds up DNN training. We deployed and extensively
evaluated DRL-PP on various benchmarks. Compared with the state-of-the-art,
DRL-PP can speed up the distributed training of benchmark models up to 6.8 x and
1.3x over data parallelism and PipeDream, respectively.

1 INTRODUCTION

With the growth of machine learning, today, deep neural networks (DNNs) have been widely used
in many real-world applications and DNN models are becoming exceedingly large For example,
most state-of-the-art image classification models and natural language processing models (

; , ) have billions of parameters and take days or even weeks to train to
satlsfactory accuracy. To address the increasing training overhead of DNN models, it is common to
use a cluster of accelerators, e.g., GPUs or TPUs, to speed up the training process.

However, it is non-trivial to distribute the DNN training task over a cluster. Data parallelism and
model parallelism are the two most popular distributed training methods researchers have studied
for many years. Data parallelism ( R ), namely, splits the machine learning
task along the data dimensions. It distributes input data across the accelerators and processes data
concurrently. At the end of each round, it aggregates results from all workers and updates the models
on all workers. Unlike data parallelism, which requires storage of all parameters by each worker,
model parallelism ( , ) splits the task along the parameter dimensions. Thus each
worker only holds part of the model’s parameters and processes the corresponding part of the training
task. While data parallelism usually achieves better efficiency, model parallelism is a must when
training exceedingly large models, e.g., Bidirectional Encoder Representations from Transformers
(BERT) ( , ), that cannot fit into a single accelerator’s memory.

A novel distributed training method has recently been proposed, pipeline parallelism (

, ), which combines the advantages of data parallelism and model parallelism. Exist-
ing works ( , ; ) further improve the partition scheme and pipeline execution,
which greatly speed up DNN training. While the idea of distributing tasks in a pipelined fashion
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Figure 1: An illustration of pipeline schedule of existing pipeline parallelism frameworks.

is not novel, there are still many challenges when applying it to DNN training tasks, especially for
complex DNN models.

In this paper, we propose a deep reinforcement learning (DRL) based pipeline parallelism framework,
called DRL-PP, that learns to optimize pipeline placement for training large DNN models across
multiple accelerators distributedly. The core of DRL-PP is a DRL agent consisting of three compo-
nents, the graph encoder, recurrent partitioner, and pipeline scheduler. The graph encoder describes
the semantics of operators in a computational graph by a graph convolutional network (GCN). The
recurrent partitioner learns to partition the DNN models by traversing the computational graph node
by node. With the pipeline scheduler, partitions are automatically assigned to several GPU devices
with an optimal pipeline placement.

Unlike previous work, which treated the DNN model as a chain structure, the recurrent partitioner
of the DRL-PP partitions DNN models without compressing their branches. Thus, the placements
generated by DRL-PP are more flexible and balanced. Moreover, existing works assume that they
can profile the runtime performance of DNN models on the clusters, which may not be true in
practice. In contrast, DRL-PP uses deep reinforcement learning to automatically learn the statistics
of the real-world environment by trial and error, which is more general and effective. As a result,
DRL-PP can accelerate distributed training up to 6.8 x and 1.3 x over data parallelism and PipeDream
respectively.

2 PRELIMINARIES AND RELATED WORKS

2.1 PIPELINE PARALLELISM

Due to the outstanding performance of large DNN models trained on a tremendous amount of data
samples, today’s DNN models are becoming exceedingly large. It takes days, even weeks, to train the
DNN models to satisfactory accuracy. Thus there is an emerging need to speed up the training process
with a cluster of accelerators, e.g., GPUs or TPUs. However, training a DNN model distributedly
is non-trivial. Data parallelism and model parallelism are the two most popular distributed training
methods researchers have studied for many years. Recently, a novel distributed training method has
been proposed, pipeline parallelism, which combines the advantages of data parallelism and model
parallelism. Pipeline parallelism has achieved significant speedup for DNN model training, especially
in large scale distributed training.

GPipe ( , ) is the first work that proposes to use pipeline parallelism for distributed
DNN training. First, it partitions the deep neural network across different accelerators. Then, as
Figure 1a shown, GPipe splits a mini-batch of training samples into micro-batches and processes
them in a pipeline fashion. Finally, after the gradients of all micro-batches have been computed,
GPipe updates the model’s parameters for all accelerators synchronously. Unlike data parallelism, the
accelerators do not need to exchange gradients with each other since the gradients are computed on the
accelerators that store the corresponding parameters and can be applied locally. The communication
overhead of GPipe is the same as model parallelism, which is the intermediate results (activations
and gradients) computed by each accelerator.

Beyond GPipe, PipeDream ( , ) pointed out that the “bubbles” (white blocks
in Figure 1) in the pipeline can be further minimized. As Figure 1b shows, they use asynchronous
weight updates, which compute gradients based on outdated weights. This approach eliminates the
bubble caused by weight synchronization between accelerators. As a trade-off, PipeDream needs to



Under review as a conference paper at ICLR 2024

Pipeline Optimizer

O Q Cluster
O EncoderH Partitioner F Placer GPUs

O Q 0 [1/1/3/3[1/1/5/5/3 8
:> O&Qﬂ@ OO GPUO :> 1 |2|2|4|4 22|66
'/O‘\O O oo O(I aPU1 2 113 22] 3 [8] 4|2
X —_—

O Q @) o b O -0 O— GPu2 Pipeline Execution

raph .
Deep Neural Netowrk cor?voIFL)Jtion partition scheme placement

Figure 2: An overview of the architecture of DRL-PP.

keep track of outdated weights for back propagation, and gradient staleness is also introduced into
DNN training.

In Figure 1b, all partitions in the pipeline have the same computation time for forward and backward,
respectively. This is an ideal case in which the utilization of the accelerator can be maximized.
However, it is difficult to partition a DNN model evenly in practice, especially when there are
large layers in DNN models. To address this problem, PipeDream proposes to accelerate large
partitions/layers through data parallelism. This allows a more flexible pipeline schedule and model
partitioning scheme. Therefore, DNN models can be trained on multiple accelerators more efficiently.

2.2 CHALLENGES AND OPPORTUNITIES

Both GPipe and PipeDream assume DNN models are chain-structured. However, this is not true for
many models, such as AlexNet, ResNeXt, and NASnet. Although PipeDream proposed that they
could convert a multi-branching neural network into a chain structure by branch compression, this
may result in some “large layers” in DNN models. Therefore, it is more challenging to load-balance
these “large layers” in the pipeline.

Another problem is that PipeDream schedules the pipeline based on the profiled computation time of
each layer in DNN models. PipeDream partitions a DNN model by measuring the computation time
of each layer on a single accelerator. It computes the accumulated computation time of each partition
by adding up the computation time of all layers in the partition. And then it estimates communication
time by dividing activation size by bandwidth. Finally, PipeDream finds the optimal pipeline by
solving a cost model-based partitioning problem with dynamic programming. However, profiling
distributed machine learning training systems and workloads is difficult in practice. Even small errors
can make a huge difference in pipeline placement. Thus, there is a need to design an efficient pipeline
parallelism framework that optimize the pipeline schedule for training DNN models for different
hardware environments agnostically.

3  PROPOSED FRAMEWORK: DRL-PP

To address the problems in the state-of-the-art pipeline parallelism frameworks, we propose a deep
reinforcement learning (DRL) based pipeline parallelism framework, DRL-PP, that learns to optimize
the pipeline partition for training large models across multiple accelerators distributedly. As Figure 2
illustrates, the core of DRL-PP is a DRL agent consisting of three components: encoder, partitioner,
and scheduler, where the encoder describes the semantics of an operator in the computational graph,
the partitioner partitions DNN models by walking through the computational graph node by node
recurrently, and the scheduler assigns the partitions to accelerators smartly. By interacting with a
real-world environment, DRL-PP gradually learns to partition and pipeline DNN models optimally.

3.1 GRAPH ENCODER

The DNN model can be represented by a computational graph where the nodes are operators and
the edge represents data flow between them. Many existing works ( ,
; , ) propose using graph neural networks (GNNs) to learn Comprehens1ve
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Figure 3: An illustration of the graph partitioner generating partitions recurrently.

representations of operators in a DNN model. Our framework also adopts this design in our DRL
agent. We use a three-layer graph convolutional network (GCN) as the graph encoder. The formulation
of each graph convolutional layer is described as follows:

GConv(X,A) = ¢ (Xeuf)—l AX @’) (1

where D~ denotes the degree matrix, Aisthe adjacency matrix with inserted self-loops, X represents
the node feature matrix, o is a nonlinear function, || is the concatenation operator, and ©, © are the
trainable parameters.

The node features fed into the graph encoder are the operator’s type, input degree, input size, output
degree, output size, and parameter size. The operator type is one-hot encoded, and the other features
are normalized to range from O to 1. The adjacency matrix is a symmetric matrix, which means we
add edges in both directions to make the graph undirected.

3.2 RECURRENT MODEL PARTITION ALGORITHM

Different from the existing pipeline parallelism frameworks which convert the DNNs into a chain
before partitioning, DRL-PP partitions the DNNs directly over the computational graph. Although
graph partitioning is a well-studied problem in the research community, it turns out that heuristics

failed to find a satisfactory partition scheme for DNN models ( , ). And a fixed
partition scheme also limits the flexibility of pipeline scheduling ( , ; ,
). Inspired by XGNN ( , ), we designed a recurrent model partitioner that

generates partitions by walking through the computational graph node by node.

As Figure 3 illustrated, the partitioner consists of two components, a graph cutter and a candidate
select The graph cutter computes a partition score based on the summary representation of current
and previous partitions. The candidate selector computes the scores for all nodes that can be added to
the current partition. In each recurrent step, the partitioner samples an action based on the calculated
scores. This will be either adding a candidate node to the current partition or cutting the graph at the
current node. The output graph will become the input graph in the next recurrent step.

The detailed recurrent graph partition algorithm of DRL-PP can be described by pseudocode as
Algorithm 1, where LSTM(H, Seq) is the LSTM layers that are initialized with hidden representation
H and the input data is sequence Seq, MLP is multi-layer perceptions that compute the partition
scores and candidate scores.

As described in Algorithm 1, the partitioner first summarizes the partition H¢: by sum the represen-
tations of nodes H,, in each partition. Then, the graph cutter encodes the summary of the current
partition into a hidden representation H¢ by an LSTM layer. It computes the partition score Sg by
an multi-layer perception (MLP). The partition score indicates how good the current partition is; the
higher the score, the more likely it is for the partitioner to take cut action. Next, the candidate selector
encodes the representation of nodes in the current partition {H,,, Yv; € G} } and the candidate node

)j?
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Algorithm 1 Recurrent Graph Partition Algorithm

Require: H — node representations, G — computational graph, K — number of partition, V. initial
candidate nodes, 1" temperature of encouraging exploration
Ensure: Subgraphs {G;,G5,--- ,G% }.
1: Initialize: representation of empty partition Hgs = [0, - -, 0], score of empty partition Sgs = 0.
2: fork=1to K —1do
3:  Initialize new partition G} = {vs}

4 repeat
5: Add all predecessors into the current partition Gj, = G5, U predecessors(G3)
6: Add all successors into candidate nodes V. = V. U successors(G;) \ {Gj,...,G}}
7: if V_ is () then
8: Cut the graph by set S,,,, = 00
9: else
10: Compute score of cut action Sg,,,, =S¢y | — T
11: end if
12: Compute summary of k-th partition Hgs = ZmeG; H,,
13: Compute encoded representation of k-th partition Hg: = LSTM(Hg: ,{Hg; })
14: Compute score of k-th partition Sg: = MLP(Hg: )
15: Compute score of candidates S,, = MLP(LSTM(Hg: ,{H.,, : Yv; € Gj.} U{H,,}))
16: Compute policy of actions P = Softmax({Sa,,, } U{Sy, : Yv; € V..})
17: Sample an action a from the policy P
18: Update candidate nodes V. = V. \ {a}
19: Update current partition Gj, = G U {a}
20:  until a == acys

21:  Cut graph and sample a new start node from policy vs = Sample(IP)
22:  Update candidate actions V,, = V. \ {vs}

23: end for
24: Let the left of nodes become last partition G5, = G\ {G},...,G%_,}
25: Return subgraphs {G5,GS,--- ,G% }.

{H,,} into hidden representation H,,, and feeds it into the MLP to compute the candidate scores
v

Finally, we apply the softmax function to the partition score S and candidate scores .S, to get the

action policy P. We sample an action a for each recurrent step, and then update the current partition

% and the candidate nodes V. accordingly. The partitioner performs the recurrent step repeatedly
until all nodes are partitioned.

Note that we limit the max number of partitions K equal to the number of accelerators. So we stop
partitioning at the (K — 1)-th cut, and the rest of the nodes will be the last partition. However, the
partitioner may generate fewer partitions than the number of accelerators. In this case, some partitions
will be assigned to multiple accelerators by the pipeline scheduler. Similar to data parallelism, the
parameters of these partitions will be replicated on multiple accelerators.

3.3 PIPELINE SCHEDULER

With the partition scheme generated by the model partitioner, we now need to assign partitions
to accelerators. We first generate a learnable embedding for each accelerator, called accelerator
embedding. Then, we sum the node representations in each partition to get summary representation
of partitions. As Figure 4a shows, we concatenate the embeddings of accelerators and summary
representations of partitions in pairs and feed them into a MLP, which computes a score for each
accelerator-partition pair. As Figure 4b shown, we apply the softmax function to the scores of
partitions accelerator by accelerator (column-wise). By doing so, each accelerator only holds one
partition. It is possible that some partitions are not assigned to accelerators. In this case, we will
penalize the pipeline scheduler with a negative reward and sample a new placement. Figure 4c and 4d
show how the model partitions are placed on the accelerators and executed with the pipeline schedule
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Figure 4: An illustration of the pipeline scheduler generating placement with given model partitions
and accelerators.

with the generated placement and partition scheme. In this example, the green partition is replicated
on GPU 0 and 1, and trained with data parallelism.

3.4 TRAINING WITH DEEP REINFORCEMENT LEARNING

In DRL-PP, we train all three components jointly with the proximal policy optimization (PPO) (Schul-
man et al., 2017) algorithm to gradually learn a better policy network. We sample multiple placements
for each partition scheme generated by the model partitioner. We evaluate all valid placements (each
partition are assigned to at least one accelerator) in a real-world environment and measure the per
mini-batch runtime for each placement. We use the negative natural logarithm of the per mini-batch
runtime as the reward:

Ri,j = — hl T‘i7j (2)
where r; ; is the per mini-batch runtime of training DNN models with placement j and partition
scheme ¢. For the reward of the partition scheme, we use the average of the rewards of placements
sampled from the same partition scheme.

4 EVALUATION

4.1 BENCHMARKS AND BASELINES

We selected five typical DNN models from image classification and natural language processing tasks
as our benchmarks for evaluation:

Image Classification Task We chose four popular image classification models as benchmarks,
ResNet-50 (He et al., 2016), VGG-16 (Slm(m\an & Zisserman, 2015), AlexNet (Krizhevsky et al.,

2012), and ResNeXt- 101 (Xie et al,, 2017). These image classification models are also used as
benchmarks in PipeDream’s experiments. We use the same per-GPU mini-batch size of 64 for all
image classification models.

Natural Language Processing. We use the 4 LSTM layers version of Google’s Neural Machine
Translation (GNMT) with an attention layer as a benchmark, where each LSTM layer has 256 hidden
units. The sequence length is limited to between 20 and 50 words. The per-GPU mini-batch size is
set to 128, where the model can fit into a single GPU.

We compare the performance of DRL-PP to three baselines:
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Table 1: Per mini-batch runtime (in seconds) of placements found by different approaches.

SPEEDUP OVER

MODELS DP GPIPE PIPEDREAM DRL-PP
DP PIPEDREAM
RESNET-50 [14] 0.051 0.158 0.051 0.051 Ix Ix
VGG-16 [25] 0.165 0.193 0.107 0.082 2.01x 1.3x
ALEXNET [16] 0.057 0.068 0.012 0.010 5.7x 1.2x
RESNEXT-101 [27] 0.125 0.297 0.125 0.116 1.08x 1.08x
GNMT-4 [26] 1.082 1.141 0.841 0.689 1.57x% 1.22x
Data Parallelism (DP) and GPipe. We use the data parallelism module (pyt, ) and
GPipe ( , ) provided by PyTorch to train the benchmarking models across mul-

tiple accelerators. We use the NCCL backend to achieve the best performance ( ) ; s
). Different from DRL-PP and PipeDream, both data parallelism and GPipe use synchromzed
weight updates, which means there is no staleness introduced during training.

PipeDream. We use the open source code published by the authors on the GitHub (pip, ) to
reproduce the results on our experimental platform. And for multi-branching deep neural networks,
we compress the branches using the script provided in their git repo. Note that PipeDream was
implemented with the Gloo backend (Glo, ), which is known to be slower than the NCCL
backend. The reason they didn’t use the NCCL backend is that pipeline parallelism uses point-to-
point communication operations to send and receive model activations between accelerators. And the
NCCL backend requires explicit synchronization to perform point-to-point communication operations.
PipeDream does not synchronize communications between accelerators. Hence, we use the Gloo
backend for PipeDream in the experiments.

4.2 EXPERIMENTAL SETUP

We implement our framework DRL-PP with PyTorch (pyt, ) and evaluate all baselines using
the following settings':

Architecture of the DRL Agent. In our framework, the graph encoder consists of three-layers of
GCNs with 32, 64, and 128 hidden units respectively, the graph partitioner consists of two one-layer
perceptions with 128 hidden units and two LSTM layers with 128 hidden units, and the pipeline
scheduler is two-layer MLP with 128 hidden units. The size of accelerator embeddings is 128.

Staleness and Weight Update. To be a fair comparison, we implemented the same update mecha-
nisms as PipeDream (as shown in Figure 1b and 4d ), which maintains all versions of activations for
different mini-batches. As a result, the staleness introduced by DRL-PP is the same as PipeDream.
Therefore, the performance of benchmarking models trained with DRL-PP and PipeDream is similar.
The only difference is the per mini-batch runtime caused by the different pipelining schedules.

Performance Evaluation Metric. We evaluate placement performance by measuring the per mini-
batch runtime of training the benchmarking models. To be accurate as possible, the per mini-batch
runtime is averaged over 30 mini-batches during the DRL agent training, and 1000 mini-batches in
the final evaluation.

4.3 RESULTS AND ANALYSIS

We summarize the results of a comparison of DRL-PP with data parallelism, GPipe and PipeDream
for all benchmarks in Table 1, and analyze the results as follows"

GPipe. In all benchmarks, GPipe is the slowest framework among all baselines. This is because
GPipe is designed based on model parallelism. It is typically used for training large models that cannot
fit into a single GPU, where data parallelism cannot be implemented. It uses synchronized weight

"Hardware & software environment for evaluation and other hyperparameters for DRL training are listed in
the Appendix.
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update mechanisms to avoid introducing any staleness during the training. Thus, the accelerators are
not fully utilized in the pipeline schedule.

PipeDream and DRL-PP. As Table 1 shows, our framework DRL-PP either outperforms or achieves
the same performance as data parallelism and other pipeline parallelism frameworks in all benchmarks.
For ResNet-50, both DRL-PP and PipeDream achieved the same performance as data parallelism.
The reason is that ResNet-50’s activation size is too large, and that the communication overhead is
more significant than the benefits of pipeline parallelism. As a result, both methods failed to find a
better pipeline scheme than data parallelism for ResNet-50. For other benchmarks, they all find a
better placement than data parallelism with significant speedup.

For VGG-16, AlexNet and GNMT-4, both PipeDream and DRL-PP find similar placements. They
partition VGG-16 and AlexNet into two stages and replicate the first large stage on 3 GPUs with data
parallelism. They place the second stage on the last GPU. For GNMT-4, they both partition it into four
stages and place each stage on a GPU. DRL-PP, however, finds a better pipelining placement than
PipeDream for GNMT-4. This is because GNMT-4 is a multi-branch DNN. PipeDream compresses
the DNN branches into a “large layer”. Hence, the computational graph is converted into a chain
structure and placed as other chain-structured DNNSs. In contrast, DRL-PP views multi-branched
DNNs as a graph and partitions the model inside the branches. As the experimental results show,
DRL-PP’s pipeline placements are 1.22x faster than PipeDream’s for GNMT-4.

Placement Analysis. We analyze the placement found by DRL-PP and PipeDream. For ResNet-50,
both methods find that data parallelism is the best placement and model parallelism does not speed
up the training. Both methods divided VGG16 into two stages, where the first stage is replicated
on 3 GPUs, and their outputs are aggregated on the last stage. This placement is referred as "3-1"
placement. The only difference between them is that DRL-PP partitioned 2 more layers into the first
stage than PipeDream, which makes the partitions more balanced. We also observed similar trends
on AlexNet and ResNeXt-101. It is due to the fact that the last half of the model has many more
parameters, while the computation time is much shorter than the first half, that these models have
been partitioned into "3-1" placements. Thus, stage replication is applied to the first half of the model
to speed up the computation. The parameters of the last half of the model are stored on a single GPU,
to avoid the overhead of parameter synchronization between GPUs.

We notice that PipeDream’s speedup over data parallelism is less significant than reported in
PipeDream ( , ), especially for VGG-16. There are two reasons. First, our
experiments use fewer accelerators. PipeDream used 16 GPUs while we only used 4 GPUs. Second,
the placement of VGG-16 is "15-1", which means the size of partitions is highly unbalanced. In
our experiments, we found that the placement generated by DRL-PP for VGG-16 was also highly
unbalanced. As we only have 4 GPUs, the 3-1 placement is the most optimal placement on our
cluster.

For the GNMT-4 model, both DRL-PP and PipeDream find that "1-1-1-1" placement (model par-
allelism) is the most effective placement. The reason is that, in GNMT-4 model, the activations
size between layers is much smaller than the parameters size. Thus, the communication cost of
model parallelism is less than data parallelism and there is no room to speed up the training by stage
replication.

Another observation is that the placements generated by DRL-PP and PipeDream are very similar.
PipeDream, however, requires accurate profiling of DNN training workloads and system performance,
including the computation power of accelerators and bandwidth between them. This may not be
feasible in practice. And even a small profiling inaccuracy can result in a significant placement drop.

Convergence of DRL Agent. We investigate the training process of DRL-PP in optimizing the
pipeline schedule for the VGG-16 model. Figure 5 illustrates the training curve of DRL-PP’s DRL
agent, which indicates that it can efficiently discover near-optimum placements within 200 training
steps. Subsequently, DRL-PP gradually explores and improves the quality of placements, finally
converging at the 600th step. The entire training process takes approximately 4 hours, which is
negligible compared to the actual training time required for VGG-16 over ImageNet.

Staleness and Convergence of DNN Training. PipeDream and DRL-PP use asynchronous weight
updates to accelerate pipeline execution, which also introduces staleness in DNN training. To analyze
the influence of staleness on model convergence, we measured the wall-clock training time and
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number of epochs of different methods to train VGG16 model to target validation top-1 accuracy
of 68% on ImageNet dataset. As Figure 6 shows, DRL-PP takes about 28.4 hours for VGG16 to
converge to the target validation accuracy, which is 1.26x and 1.91 x faster than PipeDream and data
parallelism respectively. The speedup ratio is slightly less than the results in Table 1, the reason is
that DRL-PP takes a few more epochs to train VGG16 to the target accuracy. Specifically, DRL-PP
takes 60 epochs to reach the target validation accuracy, which is 2 epochs more than PipeDream and
4 epochs more than data parallelism.

5 MORE RELATED WORKS

Pipeline Parallelism. PipeDream-2BW ( , ) is a variant version of PipeDream
that focusing on memory efficiency of the pipeline parallelism. Its double-buffered weight update
(2BW) and flush mechanisms ensure high throughput, low memory footprint, and weight update
semantics similar to data parallelism. They has shown great efficiency on optimizing transformer-
based language models. i.g., BERT and GPT.

HetPipe ( , ) improves the pipeline parallelism by considering the heterogeneity of
devices when partitioning the workloads. It groups a mixture of devices into a virtual worker such
that each worker has similar computational resources, and then partition and pipeline the neural
network across multiple virtual workers.

Device Placement. Mirhoseini et al. ( , ) proposed to use of a DRL agent
to generate the model parallelism scheduling plan (device placement) for deep neural networks.
Hierarchical Planner ( s ), Spotlight ( s ), Placeto ( s
), Post ( R ), and EAGLE ( , ) followed this idea and proposed many
advanced DRL agent architecture to improve the quality of generated device placement. GDP (
, ) and Mars ( , ) further improves the generalizability of the agent. Thereby,
they do not need to re-train the DRL agent from scratch for the unseen machine learning workloads.

6 CONCLUDING REMARKS

In this paper, we introduce a DRL-based pipeline parallelism framework DRL-PP. The core of
DRL-PP is a DRL agent consisting of a graph encoder, a recurrent model partitioner and a pipeline
scheduler. DRL-PP has several advantages: it is agnostic to the machine learning cluster architecture
(except the number of accelerators), partitions the DNNs with a graph view, does not require branch
compression for partitioning the multi-branching DNN models, compatible with asynchronous
pipeline weight updates proposed by PipeDream, enjoys the benefit of the most efficient distributed
communication backend NCCL. From the experimental results, DRL-PP can speed up benchmark
models’ training by up to 6.8 x faster over data parallelism and 1.3 x faster than PipeDream.
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