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Abstract

As a cornerstone in language modeling, tok-001
enization involves segmenting text inputs into002
pre-defined atomic units. Conventional statisti-003
cal tokenizers often disrupt constituent bound-004
aries within words, thereby corrupting semantic005
information. To address this drawback, we in-006
troduce morphological structure guidance to to-007
kenization and propose a deep model to induce008
character-level structures of words. Specifi-009
cally, the deep model jointly encodes internal010
structures and representations of words with a011
mechanism named MorphOverriding to ensure012
the indecomposability of morphemes. By train-013
ing the model with self-supervised objectives,014
our method is capable of inducing character-015
level structures that align with morphological016
rules without annotated training data. Based017
on the induced structures, our algorithm tok-018
enizes words through vocabulary matching in019
a top-down manner. Empirical results indicate020
that the proposed method effectively retains021
complete morphemes and outperforms widely022
adopted methods such as BPE and WordPiece023
on both morphological segmentation tasks and024
language modeling tasks. The code will be025
released later.026

1 Introduction027

Tokenization, the initial step of language model-028

ing, segments natural language into manageable029

units. While this process is crucial for represent-030

ing natural language, research on new tokenization031

methods has remained limited, particularly in con-032

trast to the rapid advancements in language model033

architectures and learning approaches. Currently,034

the de-facto tokenizers are BPE (Sennrich et al.,035

2016) and WordPiece (Schuster and Nakajima,036

2012), which have been widely adopted by state-037

of-the-art language models such as GPT (Radford038

et al., 2019) and BERT (Devlin et al., 2019). How-039

ever, numerous studies have challenged these meth-040

ods (Bostrom and Durrett, 2020; Church, 2020;041

Figure 1: BPE (top) tokenizes a word through a bottom-up
greedy merging approach given pre-learned merge operations,
while ours (bottom) tokenizes a word via a top-down vocabu-
lary matching while traversing a global parse tree.

Hofmann et al., 2021; Minixhofer et al., 2023), 042

arguing that they cannot adequately capture lin- 043

guistic information. They often disrupt constituent 044

boundaries within words, leading to unnatural and 045

fragmented token representations. Figure 1(top) 046

demonstrates an example where BPE fails to iden- 047

tify the appropriate boundaries in a word. 048

Inspired by linguistic theories that words have 049

internal structures (Selkirk, 1982; Marvin, 2002; 050

Cotterell and Schütze, 2015), we seek to tok- 051

enize words based on their morphological struc- 052

tures as shown in Figure 1(bottom), aiming to en- 053

hance the alignment between tokenization and the 054

morphological intricacies of language. Specifi- 055

cally, we consider an unsupervised approach to 056

induce character-level morphological structures 057

within words, which circumvents the need for an- 058

notated morphological data that are unavailable for 059

many languages. Our approach draws inspiration 060

from syntactic composition models (Maillard et al., 061

2017), where a sentence is encoded as a weighted 062

sum over all composed root representations of its 063

underlying binary parse trees via dynamic program- 064

ming. Instead of composing a sentence from words, 065

we apply composition models on characters in a 066

word to induce its morphological parse tree. To 067

train the composition model, we propose two self- 068

supervised objectives akin to next token prediction 069

and span prediction that effectively leverage both 070
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contextual information at the sentence level and071

semantic information at the subword level. Thus072

the model can learn to assign higher probabilities073

to morphological constituents of a word and induce074

the underlying morphological parse tree.075

However, character sequences present a unique076

challenge to composition models because mor-077

phemes, the smallest meaning-bearing units in a078

language (Jurafsky and Martin, 2009), are indecom-079

posable. While we can represent a constituent by080

composing its sub-constituents in most cases, we081

cannot represent a subword by composing its com-082

ponents if the subword is a morpheme. For exam-083

ple, the meaning of windsurf can be decomposed084

to wind+surf, but wind is a morpheme whose085

meaning is not a function of its components. To086

address the challenge, we propose a mechanism087

named MorphOverriding. During the bottom-up088

composition process in our model, upon identifying089

a subword that matches an entry in a heuristically090

constructed morpheme vocabulary, we compute the091

subword representation from both its components092

and the corresponding morpheme embedding, i.e.,093

the model may learn to mix or override the com-094

position with the morpheme embedding. Our ex-095

periments show that such a mechanism is critical096

in morphological structure induction.097

Building upon the resolution of morphological098

structure induction, we introduce a novel tokeniza-099

tion algorithm named TreeTok, which includes both100

vocabulary construction and word segmentation.101

During vocabulary construction, TreeTok first uti-102

lizes a tree-based BPE variant to build an initial103

vocabulary and then applies a tree-based Unigram104

variant to prune the initial vocabulary to a speci-105

fied size. Because TreeTok operates in a top-down106

manner, it does not need to retain all intermedi-107

ate tokens produced by merge operations in the108

vocabulary as BPE does. By this means, we can109

build a more compact vocabulary by pruning less110

important subwords. During word segmentation,111

we employ a lightweight parser with compact pa-112

rameters distilled from the composition model to113

parse a word into a character-level binary tree and114

then apply top-down vocabulary matching to en-115

hance the tokenizer’s alignment to morphological116

structure, as illustrated in Figure 1.117

In our experiments, we train TreeTok and base-118

lines on the Wikitext-103 corpus (McClosky et al.,119

2006) and assess their performance on morpho-120

logical segmentation tasks and language modeling121

tasks. Evaluation results indicate that TreeTok con- 122

sistently outperforms BPE and WordPiece across 123

all the tasks. 124

In conclusion, our contributions are three-fold: 125

• We propose a composition model with Mor- 126

phOverriding for modeling the compositionality 127

within words. 128

• We propose effective self-supervised objectives 129

to train the composition model to induce morpho- 130

logical structures of words highly consistent with 131

gold morphological segmentations. 132

• We propose a novel tokenization algorithm based 133

on induced morphological parse trees. 134

2 Related Work 135

Subword Tokenizers. Subword tokenization, 136

with typical methods such as BPE (Sennrich et al., 137

2016) and WordPiece (Schuster and Nakajima, 138

2012), has become customary in most NLP fields. 139

BPE builds its vocabulary by repeatedly merging 140

the most frequent subword unit pairs, whereas 141

WordPiece selects pairs using the highest mutual 142

information. During tokenization, both apply these 143

learned merge operations in the same order to new 144

text initialized with characters. Unigram (Kudo, 145

2018), another popular tokenizer, builds its vocabu- 146

lary in the opposite direction: it starts with a large 147

set of potential subwords and prunes them based 148

on delta entropy in a unigram language model. 149

Our tokenizer aims to build upon the advantages 150

of these effective statistical tokenizers and augment 151

them with unsupervised induced tree structures. 152

Unsupervised Morphological Segmentation. In 153

the line of work on unsupervised morphologi- 154

cal segmentation, the most well-known model is 155

Morfessor (Creutz and Lagus, 2002), along with 156

its multiple variants (Creutz and Lagus, 2005; 157

Grönroos et al., 2014, 2020). In Morfessor, an 158

online search algorithm is utilized to apply a hier- 159

archical word splitting strategy with a Minimum 160

Description Length (MDL) (Rissanen, 1989) cost 161

function. However, although some studies (Ataman 162

and Federico, 2018; Hou et al., 2023) find unsuper- 163

vised morphologically motivated segmentation can 164

improve data-driven tokenizers, most other stud- 165

ies (Machácek et al., 2018; Domingo et al., 2019; 166

Sälevä and Lignos, 2021) find no reliable improve- 167

ment of such methods over BPE. According to 168

Gallé (2019), the effectiveness of BPE lies in its 169

superior compression capability. A more detailed 170

discussion can be found in Mielke et al. (2021). 171
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Some other studies try to model morphological172

structures using Bayesian PCFGs (Johnson et al.,173

2007) or a non-parametric Bayesian generalization174

of PCFGs (Johnson et al., 2006). However, they are175

pure statistical models and do not utilize modern176

neural methodologies.177

Our method differs from previous unsuper-178

vised morphological methods in our character-179

based structures, thereby possessing the superior180

compression capability of BPE. Meanwhile, our181

method leverages modern neural methodologies to182

better utilize contextual and intra-word semantic183

information.184

Composition Model. In this work, we utilize a185

composition model to induce morphological struc-186

tures. Composition models jointly learn represen-187

tations and structures of a symbol sequence by188

transforming text encoding into a combinatorial189

optimization problem. Maillard et al. (2017) pro-190

poses a CKY-like (Cocke, 1969; Kasami, 1966;191

Younger, 1967) encoder, in which each constituent192

is represented as a weighted average of the set of193

composed representations computed from different194

splits of the constituent. Drozdov et al. (2019) pro-195

poses a deep inside-outside encoder (Baker, 1979;196

Lari and Young, 1990), enabling the encoder to197

learn underlying structures via an auto-encoding198

objective. Recently, a series of studies (Hu et al.,199

2024a,b) have been conducted to reduce the deep200

inside-outside encoder complexity from cubic to201

linear, on which our work is based.202

3 Methodology203

Given a word x = {x1, x2, ..., xn} where xi is204

the i-th character, we aim to parse it into a binary205

tree and then tokenize it via top-down vocabulary206

matching. The parser is a deep composition model207

capable of jointly modeling the internal structures208

and representations of words and is trained by opti-209

mizing self-supervised objectives. In the following210

sections, we sequentially introduce the composi-211

tion model, training objectives, and the tree-based212

tokenization algorithm.213

3.1 Composition Model for Word214

For a given word x, we denote ii,j as the represen-215

tation of subword xi:j = {xi, ..., xj}. The inside216

pass (Drozdov et al., 2019) of a composition model217

computes a composition vector īki,j and a compat-218

ibility score āki,j for each pair of sub-constituents219

Figure 2: (a) The composition representation of asking (i1,6)
is a weighted sum over all subword pairs such as ask+ing
(̄i31,6) and as + king (̄i21,6). (b) The composition function.
Take ask (i1,3) as an example. s1,3 is EV[ask] if ask∈ V. Thus
the representation of ask depends not only on its components
but also on EV[ask]. However, if asking /∈ V, then s1,6 is
Eempty and the representation of asking (i1,6) only depends
on the composition representation of its components.

(i, k) and (k + 1, j). The compatibility score indi- 220

cates how likely these two sub-constituents are to 221

be merged. The constituent representation ii,j is 222

computed as a weighted average over composition 223

vectors of all possible pairs of sub-constituents as 224

follows: 225

āk
i,j , ī

k
i,j = fα(ii,k, ik+1,j) ,

ŵk
i,j =

exp(āk
i,j)∑j−1

k′=i exp(ā
k′
i,j)

, ii,j =

j−1∑
k=i

ŵk
i,j ī

k
i,j .

(1) 226

The inside pass starts with characters by initializ- 227

ing ii,i with character embeddings and recursively 228

computes constituent representations bottom up 229

following Equation 1. Representation i1,n of the 230

whole word x is regarded as the word embedding 231

EMB(x). fα is the composition function imple- 232

mented with a multi-layered Transformer. An ex- 233

ample of the bottom-up composition process is 234

depicted in Figure 2(a). In this work, we employ 235

a pruned version of deep inside encoder (Hu et al., 236

2024b) as our backbone, which is easy to scale up, 237

thanks to the logarithmic parallel time complexity 238

and the linear space complexity. 239

The limitation of this approach is that the repre- 240

sentation of any subword is always composed of 241

its component pairs, which is incompatible with 242

the linguistic constraint that morphemes are the 243

smallest meaning-bearing units and should not be 244

decomposed further. Hence, we introduce Mor- 245

phOverriding to enable a subword representation 246

to disentangle from its component pairs when the 247

subword is a morpheme. Specifically, we construct 248

a morpheme vocabulary V heuristically using a 249

statistical method (BPE in this work), in which 250

each entry is associated with a learnable vector in a 251

morpheme embedding table E. When xi:j hits the 252

vocabulary V, we insert its morpheme embedding 253

si,j into the computation of ii,j , making it possi- 254
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ble to mix or override the composition vector with255

the morpheme embedding. Thus, the composition256

vector and the compatibility scores can then be257

reformulated as:258

āk
i,j , ī

k
i,j = fα(ii,k, ik+1,j , si,j) ,

si,j =

{
EV[xi:j ] if xi:j ∈ V
Eempty if xi:j /∈ V

,
259

Figure 2(b) illustrates the composition function260

equipped with MorphOverriding. Our experiments261

demonstrate that this mechanism is crucial for262

character-level structure induction.263

Tree induction. For a given span (i, j), the best264

split-point is k with the highest compatibility score265

āki,j . Thus, to derive a parse tree, we can recursively266

select the best split-points top-down starting from267

the root span (1, n). As the pruned inside-outside268

encoder produces a lightweight parser (Hu et al.,269

2022) with a compact parameter set as a byproduct,270

we use it for efficient inference during tokenization.271

3.2 Training Objectives272

The overall loss for training the composition model273

is the summation of an auto-encoding loss Lae and274

an auto-regression loss Lar. The auto-encoding275

loss is based on predicting each character or mor-276

pheme from the rest of a word, leveraging intra-277

word information. The auto-regression loss is278

based on next token prediction that leverages con-279

textual information to disambiguate the underlying280

structures of a word. Under these objectives, the281

composition model learns to assign proper scores282

to each split point of a subword.283

Auto-encoding Loss. Auto-encoding is a com-284

mon practice of training a composition model. For285

our character-level composition model, we try to286

predict each character xi based on its neighbor-287

ing context representations i1,i−1 and ii+1,n (Hu288

et al., 2021). However, the auto-encoding objective289

turns out to be empirically ineffective when train-290

ing our model probably because unlike word-level291

auto-encoding that requires selecting from tens of292

thousands of words in a vocabulary, here we only293

need to select from tens of characters, which is294

much less challenging. To enhance learning effi-295

cacy, we propose predicting both individual char-296

acters and morphemes in the vocabulary V. For297

instance, given the word windsurf, we mask out298

wind and let the model uncover the masked mor-299

pheme based on the visible part surf. Analogous300

to the inside pass, the outside pass computes each 301

outside representation oi,j in a top-down manner 302

based on context information outside span (i, j), 303

whose details are described in Appendix A.3. we 304

use oi,j to predict each subword xi:j that belongs 305

to V: 306

Lae = − 1

N
∑

xi:j∈V

log
exp(oT

i,jEV[xi:j ])∑|V|
k=1 exp(o

T
i,jEk)

, 307

where N is the total number of subwords belonging 308

to the vocabulary 1 309

Auto-regression Loss. Given a sentence S = 310

{x1, ...,xm}, whose word embedding is computed 311

by the composition model, we feed the composed 312

word embeddings into a causal language model and 313

let it pick the correct next word from candidates 314

built via in-batch sampling for each step. Let ht 315

denote the t-th hidden states of the causal language 316

model and W denote a deduplicated vocabulary 317

built on all input words in the same batch, we have 318

the auto-regression loss defined as: 319

Lar = − 1

m

m−1∑
t=1

log
exp(htEMB(xt+1))∑
x∈W exp(htEMB(x))

. 320

3.3 Tokenization 321

The proposed tree-based tokenization algorithm, 322

TreeTok, includes segmentation and vocabulary 323

construction procedures. As the latter depends on 324

the former, we first discuss the segmentation proce- 325

dure, followed by the vocabulary construction. 326

Segmentation Procedure. Given a constructed 327

vocabulary, whose details are described later, we 328

parse each word into a morphological tree and seg- 329

ment it via a top-down matching approach, as il- 330

lustrated in Figure 1(bottom). Specifically, during 331

the top-down traversal of a parse tree, we retain 332

a subword and backtrack if the subword matches 333

an entry in the vocabulary. Note that unsupervised 334

structural learning is often imperfect, causing er- 335

roneous tokenization. For instance, an incorrect 336

parse tree [[[book]e]d] may yield tokens book 337

e d where e d should be merged. To address this 338

issue, we propose a post-processing step to deal 339

with mergeable pairs of segmented tokens. Specifi- 340

cally, we define the information entropy of a token 341

1Note that multiple subwords may be mutually exclusive,
such as “asking” with “ask” and “king”. Intuitively, it is more
reasonable to predict a constituent than a distituent from its
context. Therefore, we assign a constituency weight to each
subword in the objective, as detailed in Appendix A.4.
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t as −
∑

log 1
COUNT(t) , where COUNT(t) is the fre-342

quency of t in the entire corpus. Therefore, the343

entropy of a certain merge is the sum of the infor-344

mation entropies of all tokens. We find the optimal345

merge by searching for the one with minimal in-346

formation entropy among all potential merges via347

dynamic programming. Detailed pseudo-code can348

be found in Appendix A.1.349

Vocabulary Construction. One drawback of350

BPE and WordPiece is that they have to keep all351

intermediate “junk” tokens produced during the352

iterations of merge operations, which results in353

limited vocabulary space occupied by these mean-354

ingless tokens. For instance, if the corpus contains355

many occurrences of low and lower, the mean-356

ingless token lo will be added to the vocabulary357

before low and will not be removed later. However,358

with the top-down matching framework, we don’t359

need bottom-up merge operations to restore tokens,360

allowing us to prune unnecessary tokens and create361

a more compact vocabulary. To build a compact362

vocabulary, we propose a vocabulary construction363

algorithm in which we employ a tree-based BPE-364

like algorithm to build a heuristic vocabulary and365

a tree-based Unigram algorithm to prune unnec-366

essary subword units. Specifically, we initialize367

the token vocabulary with the character vocabulary368

and repeat the following steps to build a heuristic369

vocabulary given character-level tree structures of370

words:371

1. Count adjacent token pairs that share the same372

parent in the tree structure, e.g., given [[b[o373

o]]k], only the pair (o, o) is counted.374

2. Merge adjacent symbol pairs whose counts ex-375

ceed a given threshold, e.g., [[b[o o]]k] →376

[[b oo]k].377

3. Repeat 1-2 until there are no new symbol pairs.378

In the pruning procedure, we start from the heuris-379

tic symbol vocabulary and prune it as follows:380

1. Tokenize the corpus via the top-down matching381

according to the current vocabulary. The total382

entropy of the whole corpus is defined as HV =383

−
∑

t∈V COUNT(t) log 1
COUNT(t) .384

2. For each token s, calculate the entropy gain385

after removing that word from the vocabulary386

denoted as ∆Hs = HV/{s} − HV. Intuitively,387

the higher ∆Hs is, the more important s is.388

3. Sort delta entropy of tokens and remove the389

lowest k% from V. Repeat step 1-2 until |V|390

reaches the target vocabulary size.391

In practice, we design a tree-based Viterbi algo- 392

rithm (Viterbi, 1967) to implement the pruning pro- 393

cedure efficiently. The pseudo-code is presented in 394

Appendix A.2. 395

4 Experiments 396

We evaluate the performance of TreeTok against 397

the de-facto tokenizers such as BPE, WordPiece, 398

and Unigram as primary baselines. 399

Training setups. For a fair comparison, we train 400

all tokenizers from scratch on the lowercase ver- 401

sion of the Wikitext-103 corpus (McClosky et al., 402

2006) without any word boundary marker and set 403

the same vocabulary size of 30,000. For BPE, 404

WordPiece, and Unigram, we use the implementa- 405

tion and default training paradigm provided by the 406

HuggingFace library2. Regarding the composition 407

model, we train it with a context window of up to 408

512 characters. We use GPT2 implemented from 409

HuggingFace3 as our causal language model when 410

computing the auto-regression loss. We present 411

detailed configurations of our model and training 412

setup in Appendix A.5. 413

Evaluation datasets. We compare our tokenizer 414

with other tokenizers for morphological alignment 415

using two datasets with gold-standard morpholog- 416

ical segmentation. One is from the Morpho Chal- 417

lenge 2010 Workshop (Kurimo et al., 2010) (Mor- 418

pho), which contains 1,000 word forms with their 419

segmentations corresponding to the surface forms 420

of morpheme labels. The dataset contains instances 421

of all kinds of morphological transformations, in- 422

cluding inflection, derivation, and compounding. 423

The other dataset is from Minixhofer et al. (2023) 424

(Compound), which contains 759 compound words 425

specifically designed to test the models’ capabil- 426

ities in decompounding. We also use these mor- 427

phological segmentation datasets to evaluate the 428

induced morphological parse trees. 429

In addition, we evaluate the tokenizers using sta- 430

tistical metrics that have been shown to strongly 431

correlate with the performance on downstream 432

tasks. These metrics are calculated on the vali- 433

dation set of Wikitext-103. 434

4.1 Tokenization Quality 435

Metrics. We measure the performance of mor- 436

phological segmentation via accuracy, i.e., the ra- 437

2https://github.com/huggingface/tokenizers
3https://github.com/huggingface/transformers
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Morpho (Acc.) ↑ Compound (Acc.) ↑ |V|
BPE 19.50 62.98 30,000
WordPiece 26.20 62.19 30,000
Unigram 27.10 53.10 30,000
TreeTok 37.9 68.07 30,000
For reference
SECOS† — 41.2 N.A.
Morfessor 41.30 84.85 85,000+

Table 1: Results on two morphological segmentation datasets.
The result of SECOS† is copied from Minixhofer et al. (2023).
Due to Morfessor’s inability to specify the size of the vocabu-
lary, its utility as a tokenizer is limited. Therefore, the results
of SECOS and Morfessor are for reference because of their
different vocabulary sizes.

tio of examples that are correctly segmented. We438

also consider a few statistical metrics that can di-439

rectly assess the quality of tokenization, includ-440

ing Rényi Efficiency (Zouhar et al., 2023), aver-441

age sentence-level perplexity, and average num-442

ber of tokens per sentence. Rényi Efficiency is443

introduced by Zouhar et al. (2023) as a princi-444

pled intrinsic measure of tokenization quality and445

is claimed to yield a Pearson correlation of 0.78446

with BLEU (Papineni et al., 2002) on machine447

translation. Sentence-level perplexity is defined448

as − log p(s) = −
∑n

i=1 log p(si|s<i), where449

s = {s1, s2, ..., sn} is a sentence with si being450

the i-th token. Since different tokenizers generate451

distinct segmentations leading to different numbers452

of tokens of the same word, sentence-level perplex-453

ity provides fairer evaluation compared with the454

default token-level perplexity − 1
n log p(s).455

Baselines. In addition to BPE, WordPiece, and456

Unigram, we also include two linguistically-457

motivated segmentation methods SECOS (Riedl458

and Biemann, 2016) and Morfessor (Creutz and459

Lagus, 2002) for reference.460

Morphological Segmentation. According to Ta-461

ble 1, TreeTok significantly surpasses BPE, Word-462

Piece, and Unigram on the two morphological seg-463

mentation datasets. The results demonstrate the464

efficacy of TreeTok in aligning with morphology.465

The superiority of Morfessor as shown in the466

table mainly comes from its much larger vocab-467

ulary. On the Compound task, we observe many468

cases where TreeTok segments a low-frequency469

constituent word into smaller pieces due to its ab-470

sence in vocabulary, whereas Morfessor can find471

it in its extensive vocabulary. Because of the huge472

difference in vocabulary sizes, Morfessor is not473

directly comparable to the other tokenizers.474

Rényi↑ PPL↓ avg. #tokens
BPE 44.66 107.76 26.58
WordPiece 44.54 110.97 26.60
Unigram 45.07 106.91 31.68
TreeTok 44.82 107.26 25.99

Table 2: Results for different tokenization models on Wiki-
Text103 with 30,000 vocabulary size.

Rényi efficiency & Perplexity. Table 2 reports 475

the evaluation results in terms of Rényi efficiency 476

and perplexity (PPL). TreeTok outperforms BPE 477

and WordPiece on both Rényi and PPL. The im- 478

provements illustrate the benefits of TreeTok’s 479

structural constraints and more compact vocabulary. 480

The tree structure constraints enable the segmen- 481

tation of words into more morphology-aligned to- 482

kens, while the compact vocabulary allows for the 483

inclusion of meaningful morphemes by removing 484

intermediate tokens in the pruning process during 485

vocabulary construction, under a top-down match- 486

ing framework. Unigram performs slightly bet- 487

ter than TreeTok, but produces 22% more tokens 488

on average. A possible explanation for the better 489

performance of Unigram is that Unigram tends to 490

produce inflectional suffixes such as “-ing” and 491

“-ly”, while other methods tend to retain entire 492

words. This difference makes it easier for Unigram 493

to share the same stems and affixes between dif- 494

ferent word forms, thus achieving better parameter 495

sharing. However, under the Transformer architec- 496

ture, an additional 22% number of tokens means 497

extra inference steps and nearly 1.4 times the cost 498

of self-attention. Such additional costs only bring 499

marginal improvements as can be seen in the table. 500

We also note that TreeTok achieves the short- 501

est average token length among all the tokenizers, 502

which is desirable as Gallé (2019) shows that given 503

a fixed vocabulary size budget, the fewer tokens a 504

tokenizer needs to cover the test set, the better the 505

translation. 506

4.2 Tree Structure Quality 507

Since tree structures play an important role in both 508

vocabulary construction and segmentation, we eval- 509

uate the quality of trees induced by various compo- 510

sition models. 511

Metric. We use recall of morphemes (van den 512

Bosch and Daelemans, 1999) in a tree to assess the 513

quality of the tree structures against gold-standard 514

segmentations, which is defined as the percentage 515
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Morpho Compound
EN. EN.

Fast R2D2 67.69 48.96
Neural PCFG 39.87 58.33
TreeTok 90.10 86.20

w/o context 70.00 63.02
w/o MorphOverriding 75.99 46.35
w/o span loss 86.79 73.70

Table 3: Performance evaluation of our model, baseline mod-
els, and ablation studies on morphological segmentation, mea-
sured by morpheme recall rate.

of morphemes in the gold segmentation that can516

be found in the spans of the evaluated tree. We517

discard spans that are trivial for a tree (character-518

level and word-level spans) and report word-level519

recall (averaged over word samples).520

Baselines. For baseline composition models, we521

include Fast-R2D2 (Hu et al., 2022), which is a522

variant of DIORA (Drozdov et al., 2019), and an523

efficient variant of neural PCFG (Yang et al., 2022).524

We also include four variants of our composition525

model for an ablation study. In w/o context, we re-526

move the auto-regression loss from our architecture527

so that each representation only contains informa-528

tion from individual words. In w/o MorphOverrid-529

ing, we degenerate si,j to the default empty em-530

bedding regardless of whether span xi:j hits the531

external vocabulary or not. In w/o span loss, for532

our auto-encoding loss, we only count loss from533

predicting characters instead of every subword span534

that hits the external vocabulary.535

Results and Discussions. As shown in Table 3,536

our model outperforms all the other composition537

models. Compared with Fast-R2D2, our main538

differences lie in the training objectives and the539

MorphOverriding mechanism. This result fully540

validates the effectiveness of these improvements.541

Our ablation experiments further analyze the con-542

tribution of these improvements to performance543

enhancement. Specifically, we have the following544

findings from each ablation.545

Removing the auto-regression loss to prevent546

the model from getting feedback from contextual547

information significantly impacts the performance548

on both tasks, especially Morpho. We believe that549

contextual information can help the model capture550

the regularities of tenses and learn how to build551

composition representations for compound words.552

For example, consider how the context can help553

Figure 3: The effect of changing the vocabulary size learned
by BPE. The initial results on both tasks show that the per-
formance curve is a concave function where the maximum
resides in the middle.

determine whether we should build the represen- 554

tation of asking as ask+ing or as+king. While 555

either is a valid combination of morphemes, the 556

former is more likely to be learned by our model 557

since the context around asking often indicates the 558

continuous tense or the gerund form, thus matching 559

better with ing. 560

Removing MorphOverriding from the model re- 561

sults in a significant decrease of around 50% in per- 562

formance on the decompounding task. The results 563

consolidate our insight about conventional compo- 564

sition models violating the indecomposability of 565

morphemes. Creating a morpheme’s representation 566

using its components’ representation might make 567

representations of disparate morphemes (e.g., wind 568

and win) entangled together. 569

Removing the span loss also causes a perfor- 570

mance drop on the two morphology tasks. This 571

aligns well with the insight behind our design 572

of morpheme-level loss, which augments the 573

character-level loss by enhancing the learning of 574

intra-word representations for most morphemes 575

that are at an intermediate granularity. 576

Influence of Heuristic Vocabulary Size Addi- 577

tionally, we conduct experiments to investigate how 578

the size of our heuristic morpheme vocabulary in- 579

fluences the performance of structure induction. 580

Figure 3 shows that the optimal size of an exter- 581

nal vocabulary should be neither too large nor too 582

small. According to our hypothesis that the compo- 583

sitional representation of subcomponents of a mor- 584

pheme should be overridden by a high-level repre- 585

sentation, ideally, the external vocabulary should 586

contain all morphemes and only morphemes, be- 587

cause our model will trigger the soft morpheme 588

overriding mechanism for every span that hits the 589
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original word bed commonly windsurfing tricycles uniquenesses
BPE bed commonly wind/sur/fing tric/y/cles uniqu/eness/es
Unigram b/e/d common/ly wind/surf/ing t/r/i/cycle/s unique/ness/e/s
WordPiece bed commonly winds/ur/fing tric/y/cles unique/ness/es
TreeTok bed commonly wind/surf/ing tri/cycles unique/ness/es

Table 4: Example tokenizations.

external vocabulary. If we use BPE to construct590

this external vocabulary and the vocabulary size is591

too small, many morphemes, particularly those in592

the form of long standalone words, will not have593

the chance to be included in the vocabulary. Con-594

versely, if the vocabulary size is too large, BPE595

will continue to merge across morphemes, creating596

longer spans that are not the smallest meaning-597

bearing units.598

4.3 Case Studies599

To complement our quantitative evaluations of dif-600

ferent tokenizers and further examine their differ-601

ence, we list some of their tokenizations over the602

same words in Table 4. Since our tokenizer’s per-603

formance is related to the tree structures learned by604

our composition model, we also include some of605

these tree structures in Figure 4.606

Tokens produced by Unigram often include607

many characters. We observe that in addition to608

words that are out-of-domain (e.g., Japanese Ro-609

maji), single-character tokens mostly happen on610

short words with lengths of two or three (e.g., as,611

it, to, oil, etc.). This observation is consistent612

with notably longer tokenized sequences of Uni-613

gram observed in Table 2 compared to other to-614

kenization methods. Note the overall likelihood615

of segmentation would be
∏n

i=1 p(tokeni) in a un-616

igram language model. Therefore, we speculate617

that Unigram tends to split short words into charac-618

ters since many characters have a dominantly high619

probability, while the length penalty resulting from620

the product of probabilities in short words is not621

significant.622

BPE and WordPiece often violate morpheme623

boundaries and tokenize words into some inter-624

mediate “junk” tokens stored in their vocabulary625

during the bottom-up vocabulary construction. In626

Table 4, we can see many such examples such as627

fing, cles, and eness.628

TreeTok aligns significantly better with morphol-629

ogy. Our vocabulary construction algorithm that630

brings the best from both BPE construction and631

Figure 4: Example tree structures induced by our composition
model.

Unigram pruning, helps eliminate “junk” tokens. 632

In addition, with top-down matching under linguis- 633

tic structure constraints, we alleviate the issue of 634

breaking morpheme boundaries and excessively 635

fragmenting words. 636

From Figure 4, we find the high-level structures 637

of the trees learned by our model are generally accu- 638

rate, whereas some of the low-level structures still 639

do not make sense. This is because MorphOver- 640

riding allows the model to learn the most reason- 641

able segmentation among different high-level splits 642

based on context, while making the low-level struc- 643

tures less important, resulting in a certain degree 644

of randomness within them. 645

5 Conclusion 646

In this work, we proposed a tree-based tokenizer 647

(TreeTok) to better align with morphology. To make 648

the method as general-purpose as possible, the most 649

critical challenge is how to induce character-level 650

structures without relying on human-annotated 651

data. Our research revealed that the key to solving 652

this problem lies in recognizing the indecompos- 653

ability of morphemes. We introduce a composition 654

model with a MorphOverriding mechanism to in- 655

corporate this inductive bias and propose two self- 656

supervised objectives. Together, we can effectively 657

induce tree structures that are highly consistent 658

with human-labeled morphology. Ultimately, we 659

achieved consistently positive results when compar- 660

ing TreeTok against strong baselines like BPE and 661

WordPiece on various tasks. This study provides 662

new insights into unsupervised morphological seg- 663

mentation and offers a novel approach different 664

from traditional statistical models. 665
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6 Limitations666

Our main limitation is that we need additional train-667

ing and inference overheads. Considering that the668

composition model only needs to be trained once669

and the overall time consumption is acceptable4,670

we believe it is not a fatal flaw. Regarding infer-671

ence cost, because a lightweight parser is produced672

as a byproduct, it can be afforded by even CPU673

environments.674
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Jonne Sälevä and Constantine Lignos. 2021. The effec-907
tiveness of morphology-aware segmentation in low-908
resource neural machine translation. In Proceedings909
of the 16th Conference of the European Chapter of910
the Association for Computational Linguistics: Stu-911
dent Research Workshop, EACL 2021, Online, April912
19-23, 2021, pages 164–174. Association for Com-913
putational Linguistics.914

Mike Schuster and Kaisuke Nakajima. 2012. Japanese915
and korean voice search. 2012 IEEE International916
Conference on Acoustics, Speech and Signal Process-917
ing (ICASSP), pages 5149–5152.918

Elisabeth Selkirk. 1982. The Syntax of Words. Linguis-919
tic inquiry monographs. MIT Press.920

Rico Sennrich, Barry Haddow, and Alexandra Birch.921
2016. Neural machine translation of rare words with922
subword units. In Proceedings of the 54th Annual923
Meeting of the Association for Computational Lin-924
guistics (Volume 1: Long Papers), pages 1715–1725,925
Berlin, Germany. Association for Computational Lin-926
guistics.927

Antal van den Bosch and Walter Daelemans. 1999.928
Memory-based morphological analysis. In Proceed-929
ings of the 37th Annual Meeting of the Association930
for Computational Linguistics, pages 285–292, Col-931
lege Park, Maryland, USA. Association for Compu-932
tational Linguistics.933

Andrew J. Viterbi. 1967. Error bounds for convolutional934
codes and an asymptotically optimum decoding algo-935
rithm. IEEE Trans. Inf. Theory, 13(2):260–269.936

Songlin Yang, Wei Liu, and Kewei Tu. 2022. Dynamic937
programming in rank space: Scaling structured in-938
ference with low-rank HMMs and PCFGs. In Pro-939
ceedings of the 2022 Conference of the North Amer-940
ican Chapter of the Association for Computational941

Linguistics: Human Language Technologies, pages 942
4797–4809, Seattle, United States. Association for 943
Computational Linguistics. 944

Daniel H Younger. 1967. Recognition and parsing of 945
context-free languages in time n3. Information and 946
control, 10(2):189–208. 947

Vilém Zouhar, Clara Meister, Juan Gastaldi, Li Du, 948
Mrinmaya Sachan, and Ryan Cotterell. 2023. To- 949
kenization and the noiseless channel. In Proceedings 950
of the 61st Annual Meeting of the Association for 951
Computational Linguistics (Volume 1: Long Papers), 952
pages 5184–5207, Toronto, Canada. Association for 953
Computational Linguistics. 954

11

https://doi.org/10.3115/1073083.1073135
https://doi.org/10.3115/1073083.1073135
https://doi.org/10.3115/1073083.1073135
https://doi.org/10.18653/v1/N16-1075
https://doi.org/10.18653/v1/N16-1075
https://doi.org/10.18653/v1/N16-1075
https://doi.org/10.18653/v1/N16-1075
https://doi.org/10.18653/v1/N16-1075
https://api.semanticscholar.org/CorpusID:9365056
https://api.semanticscholar.org/CorpusID:9365056
https://api.semanticscholar.org/CorpusID:9365056
https://doi.org/10.18653/V1/2021.EACL-SRW.22
https://doi.org/10.18653/V1/2021.EACL-SRW.22
https://doi.org/10.18653/V1/2021.EACL-SRW.22
https://doi.org/10.18653/V1/2021.EACL-SRW.22
https://doi.org/10.18653/V1/2021.EACL-SRW.22
https://api.semanticscholar.org/CorpusID:22320655
https://api.semanticscholar.org/CorpusID:22320655
https://api.semanticscholar.org/CorpusID:22320655
https://doi.org/10.18653/v1/P16-1162
https://doi.org/10.18653/v1/P16-1162
https://doi.org/10.18653/v1/P16-1162
https://doi.org/10.3115/1034678.1034726
https://doi.org/10.1109/TIT.1967.1054010
https://doi.org/10.1109/TIT.1967.1054010
https://doi.org/10.1109/TIT.1967.1054010
https://doi.org/10.1109/TIT.1967.1054010
https://doi.org/10.1109/TIT.1967.1054010
https://doi.org/10.18653/v1/2022.naacl-main.353
https://doi.org/10.18653/v1/2022.naacl-main.353
https://doi.org/10.18653/v1/2022.naacl-main.353
https://doi.org/10.18653/v1/2022.naacl-main.353
https://doi.org/10.18653/v1/2022.naacl-main.353
https://doi.org/10.18653/v1/2023.acl-long.284
https://doi.org/10.18653/v1/2023.acl-long.284
https://doi.org/10.18653/v1/2023.acl-long.284


A Appendix955

A.1 Pseudo-codes of tokenization956

Algorithm 1 Tokenize
1: Input: string x, parse tree root r, vocabulary V
2: procedure TOKENIZE(x, r, V)
3: t← [] ▷ tokenized subword units list
4: stack ← [r]
5: while |stack| > 0 do
6: c← POP(stack)
7: i, j ← c.i, c.j
8: x̄← xi:j

9: if x̄ ∈ V then
10: APPEND(t, x̄)
11: else if i < j then ▷ Non-terminal nodes
12: PUSH(stack, c.right)
13: PUSH(stack, c.left)

14: t← POSTMERGE(t,V)
15: ▷ post processing if over-split
16: return t

Algorithm 2 Post-Merge Algorithm
1: Input: tokens t, vocab2entropy V
2: procedure POSTMERGE(t, V)
3: n← length of t
4: if n ≤ 1 then
5: tMERGE ← t
6: else
7: H[n][n] init with∞ ▷ Best entropy
8: s[n][n] init with [] ▷ Best segments
9: for i← 0 to n− 1 do ▷ Base case

10: Hi,i ← V[xi]
11: si,i ← [xi]

12: for h← 1 to n− 1 do ▷ Iterate tree height
13: for i← 0 to n− h− 1 do
14: j ← i+ h
15: kBEST ← −1
16: m← concatenate ti . . . tj
17: HBEST ← GET(V,m,∞)
18: for k ← i to j − 1 do
19: ifHi,k +Hk+1,j ≤ HBEST then
20: kBEST ← k
21: HBEST ← Hi,k +Hk+1,j

22: if kBEST ̸= −1 then
23: si,j ← si,kBEST + skBEST+1,j

24: else
25: si,j ← [m] ▷ Merge
26: Hi,j ← HBEST

27: tMERGE ← s0,n−1

28: return tMERGE

A.2 Pseudo-codes of vocab construction957

Please refer to Algorithm 3 for details.958

Algorithm 3 Vocabulary Construction
1: Input: tree-freq pair list T , vocab size k, pruning rate α
2: procedure VOCABULARY CONSTRUCTION(T, k, α)
3: procedure E-STEP(T,V)
4: V

′
← DICT( ) ▷ E-step: Update vocab freq

5: for {root, freq} ∈ T do
6: , seg ← TREEVITERBI(root,V, null)
7: for token ∈ seg do
8: V

′
[token]← V

′
[token] + freq

9: return V
′

10:
11: procedure M-STEP(T,V)
12: l← DICT( ) ▷ M-step: Update delta loss
13: for {root, freq} ∈ T do
14: lword ← DICT( ) ▷ word-level delta-loss
15: , seg ← TREEVITERBI(root,V, lword)
16: for token ∈ seg do
17: loss← lword[token]
18: l[token]← l[token] + loss ∗ freq
19: return V

′

20:
21: V← INITVOCAB(T ) ▷ Init with a BIG vocab
22: while |V| > k do
23: V← E-STEP(T,V) ▷ Estimate token count
24: L← M-STEP(T,V) ▷ Maximize delta losses
25: Remove min(|V| − k, ⌊α|V|⌋) of the
26: tokens t with lowest Lt from V
27: return V

Algorithm 4 TreeViterbi
1: Input: parse tree root r, vocabulary V, delta loss dict l
2: procedure TREEVITERBI(r,V, l)
3: w ← r.token
4: if r.i = r.j then
5: s← GET(V, w,∞) ▷ Infinity entropy if w /∈ V
6: return s, [w]
7: else
8: sL, wL ← TREEVITERBI(r.left,V, l)
9: sR, wR ← TREEVITERBI(r.right,V, l)

10: s← GET(V, w,∞)
11: if l then ▷ Enter in M-step
12: l[w]← l[w] + MAX(sL + sR − s, 0)
13: ▷ Record delta loss: Entropy increase
14: if sL + sR > s then
15: return s, [w]
16: else
17: return sL + sR, wL + wR

Algorithm 5 Vocabulary Initialization
1: Input: tree-freq pair list T , threshold k
2: procedure INITVOCAB(T, k)
3: V← All character freq
4: n← |V|
5: while True do
6: V

′
← COUNTBIGRAMS(T,V)

7: Prune all the entries in V
′

with freq less than k

8: V.MERGE(V
′
) ▷ Add new items in V

′
to V

9: if |V| = n then
10: break
11: n = |V|
12: return V
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Algorithm 6 Count Bigrams
1: Input: tree-freq pair list T , vocabulary V
2: procedure COUNTBIGRAMS(T,V)
3: V

′
← DICT( ) ▷ Store new merges

4: procedure RECURCOUNT(r, f )
5: if r.left & r.right then
6: hitL ← RECURCOUNT(r.left, f)
7: hitR ← RECURCOUNT(r.right, f)
8: if hitL and hitR then
9: if r.token ∈ V then

10: return True
11: else
12: V

′
[r.token]← f ▷ Merge: new entry

13: return False
14: else
15: return False
16: else
17: return True
18: for {root, freq} ∈ T do
19: RECURCOUNT(root, freq)
20: return V

′

A.3 The neural outside pass959

The outside computation is akin to the inside pass960

but in a top-down manner. we denote the outside961

representation and score of a given span as ōki,j and962

b̄ki,j respectively, whose parent span is (i, k) or (k,963

j) for k > j or k < i.964

ōk
i,j =

{
fβ(oi,k, ij+1,k) if k > j
fβ(ok,j , ik,i−1) if k < i

,

b̄ki,j =

{
ϕβ(oi,k, ij+1,k) if k > j
ϕβ(ok,j , ik,i−1) if k < i

,

w̌k
i,j =

exp(b̄ki,j)∑
k′>j,k′<i exp(b̄

k′
i,j)

,oi,j =
∑

k>j,k<i

w̌k
i,j ō

k
i,j .

965

A.4 Span weights966

An intuitive idea is that the larger the probability967

of a span’s existence, the greater its weight. A span968

exists if its parent span exists and the span is an im-969

mediate child of its parent span. Therefore, we can970

recursively estimate the existence probability of971

each span top-down (Hu et al., 2023) and formalize972

the auto-encoding loss as follows:973

pi,j =
∑
k<i

pk,jŵ
i
k,j +

∑
k>j

pi,kŵ
j
i,k , p1,n = 1 ,

Lae = − 1∑
pi,j

∑
xi:j∈V

pi,j log
exp(oT

i,jEV[xi:j ])∑|V|
k=1 exp(o

T
i,jEk)

.
974

A.5 Experimental Setup and975

Hyperparameters976

Our composition function uses 4 layers of Trans-977

former layers. For span representations, we978

use 128-dimensional embeddings with 4 attention979

heads, 512-dimensional hidden layer representa- 980

tions, and a vocabulary size of 7835. This vocabu- 981

lary is built from concatenating 1903 most frequent 982

characters in the training set of wikitext-103 and 983

a 10,000-entry BPE dictionary, excluding all char- 984

acters. To guide the composition function, our 985

lightweight parser is a 4-layer Transformer model 986

that uses 64-dimensional embeddings with 4 at- 987

tention heads and 128-dimensional hidden layer 988

representations. For the causal language model, we 989

use a 3-layer GPT2 equipped with 128-dimensional 990

embeddings and 4 attention heads and follow the 991

original configuration for the rest of the hyperpa- 992

rameters. 993

Our composition models are trained on 8 PPUs 994

with a learning rate of 1e-2 for the light-weight 995

parser and 5e-4 for the rest. The batch size is 8× 996

128, and for each sample, we limit the context 997

window to 512 characters (whitespace included). 998

The total number of training steps is ten times the 999

number of sentences in Wikitext-103. 1000
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