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Abstract

In the era of large language models, Mixture-001
of-Experts (MoE) is a promising architecture002
for managing computational costs when scaling003
up model parameters. However, conventional004
MoE architectures like GShard, which activate005
the top-K out of N experts, face challenges in006
ensuring expert specialization, i.e. each expert007
acquires non-overlapping and focused knowl-008
edge. In response, we propose the DS-MoE009
architecture towards ultimate expert specializa-010
tion. It involves two principal strategies: (1)011
finely segmenting the experts into mN ones012
and activating mK from them, allowing for013
a more flexible combination of activated ex-014
perts; (2) isolating Ks experts as shared ones,015
aiming at capturing common knowledge and016
mitigating redundancy in routed experts. Start-017
ing from a modest scale with 2B parameters,018
we demonstrate that DS-MoE 2B achieves com-019
parable performance with GShard 2.9B, which020
has 1.5× expert parameters and computation.021
In addition, DS-MoE 2B nearly approaches the022
performance of its dense counterpart with the023
same number of total parameters, which sets024
the upper bound of MoE models. Subsequently,025
we scale up DS-MoE to 16B parameters and026
show that it achieves comparable performance027
with DeepSeek 7B and LLaMA2 7B, with only028
about 40% of computations.1029

1 Introduction030

Recent research and practices have empirically031

demonstrated that, with sufficient training data032

available, scaling language models with increased033

parameters and computational budgets can yield re-034

markably stronger models (Brown et al., 2020; Ope-035

nAI, 2023; Touvron et al., 2023a; Hoffmann et al.,036

2022). However, the endeavor to scale models to037

an extremely large scale is also associated with ex-038

ceedingly high computational costs. Considering039

1we will release the code and model checkpoint of DS-
MoE 16B to the public.

the substantial costs, the Mixture-of-Experts (MoE) 040

architecture (Jacobs et al., 1991; Jordan and Jacobs, 041

1994; Shazeer et al., 2017) has emerged as a popu- 042

lar solution, which enables parameter scaling while 043

concurrently keeping modest computational costs. 044

Despite the promising potential of MoE architec- 045

tures, existing MoE architectures like GShard (Lep- 046

ikhin et al., 2021) potentially suffer from issues of 047

knowledge hybridity and knowledge redundancy: 048

(1) Knowledge Hybridity: existing MoE practices 049

often employ a limited number of experts, and thus 050

tokens assigned to a specific expert will be likely 051

to cover diverse knowledge. Consequently, the des- 052

ignated expert will intend to assemble vastly differ- 053

ent types of knowledge in its parameters, which 054

are hard to utilize simultaneously. (2) Knowl- 055

edge Redundancy: tokens assigned to different 056

experts may require common knowledge. As a re- 057

sult, multiple experts may converge in acquiring 058

shared knowledge in their respective parameters, 059

thereby leading to redundancy in expert parameters. 060

These issues collectively limit the expert special- 061

ization in MoE models, i.e., each expert acquires 062

non-overlapping and focused knowledge. 063

In response to the aforementioned issues, we 064

introduce DS-MoE, an innovative MoE architec- 065

ture specifically designed towards ultimate expert 066

specialization. Our architecture involves two prin- 067

cipal strategies: (1) Fine-Grained Expert Seg- 068

mentation: while maintaining the number of pa- 069

rameters constant, we segment the experts into a 070

finer granularity by splitting the FFN intermedi- 071

ate hidden dimension. Correspondingly, keeping a 072

constant computational cost, we also activate more 073

fine-grained experts to enable a more flexible and 074

adaptable combination of activated experts. Fine- 075

grained expert segmentation allows diverse knowl- 076

edge to be decomposed more finely and be learned 077

more precisely into different experts, where each 078

expert will retain a higher level of specialization. 079

In addition, the increased flexibility in combining 080
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activated experts also contributes to more accurate081

knowledge acquisition. (2) Shared Expert Isola-082

tion: we isolate certain experts to serve as shared083

experts that are always activated, aiming at captur-084

ing and consolidating common knowledge across085

varying contexts. Through compressing common086

knowledge into these shared experts, redundancy087

among other routed experts will be mitigated. This088

can enhance the parameter efficiency and ensure089

that each routed expert retains specialized by fo-090

cusing on distinctive aspects. These architectural091

innovations in DS-MoE offer opportunities to train092

a parameter-efficient MoE language model where093

each expert is highly specialized.094

Starting from a modest scale with 2B parame-095

ters, we validate the advantages of the DS-MoE096

architecture. Empirical results on 12 diverse bench-097

marks indicate that DS-MoE 2B surpasses GShard098

2B (Lepikhin et al., 2021) by a substantial mar-099

gin, and even matches GShard 2.9B, a larger MoE100

model with 1.5× expert parameters and compu-101

tation. Remarkably, we find that DS-MoE 2B102

nearly approaches the performance of its dense103

counterpart with an equivalent number of parame-104

ters, which sets the strict upper bound of MoE lan-105

guage models. We also conduct elaborate ablation106

studies and specialization analysis, and the studies107

validate the effectiveness of our main strategies,108

and provide evidence supporting that DS-MoE can109

achieve higher expert specialization.110

Subsequently, we scale up the model parame-111

ters to 16B and train DS-MoE 16B on a large-112

scale corpus with 2T tokens. Evaluation results113

reveal that with only about 40% of computations, it114

achieves comparable performance with DeepSeek115

7B (DeepSeek-AI, 2024) and LLaMA2 7B (Tou-116

vron et al., 2023b), two strong 7B dense models.117

Our contributions are summarized as follows: (1)118

We introduce DS-MoE, an innovative MoE archi-119

tecture aiming at achieving ultimate expert special-120

ization. (2) We conduct extensive experiments to121

empirically validate the effectiveness of DS-MoE122

and reveal its high level of expert specialization. (3)123

We scale up DS-MoE to train a 16B MoE model124

which shows strong performance. (4) We will re-125

lease the code and model checkpoint of DS-MoE126

16B to the public.127

2 Preliminaries128

We first introduce a generic MoE architecture for129

Transformer language models. A standard Trans-130

former language model is constructed by stacking 131

L layers of standard Transformer blocks, where 132

each block can be represented as follows: 133
134

ul
1:T = Self-Att

(
hl−1
1:T

)
+ hl−1

1:T , (1) 135

hl
t = FFN

(
ul
t

)
+ ul

t, (2) 136

where T denotes the sequence length, ul
1:T ∈ 137

RT×d are the hidden states after the l-th attention 138

module, and hl
t ∈ Rd is the output hidden state of 139

the t-th token after the l-th Transformer block. For 140

brevity, we omit the layer normalization. 141

A typical practice to construct an MoE lan- 142

guage model usually substitutes Feed-Forward Net- 143

works (FFNs) in a Transformer with MoE layers 144

at specified intervals (Fedus et al., 2021; Lepikhin 145

et al., 2021; Du et al., 2022; Zoph, 2022). An MoE 146

layer is composed of multiple experts, where each 147

expert is structurally identical to a standard FFN. 148

Then, each token will be assigned to a few experts. 149

If the l-th FFN is substituted with an MoE layer, its 150

computation can be expressed as: 151
152

hl
t =

N∑
i=1

(
gi,t FFNi

(
ul
t

))
+ ul

t, (3) 153

gi,t =

{
si,t, si,t ∈ Topk({sj,t|1 ≤ j ≤ N},K),

0, otherwise,
(4) 154

si,t = Softmaxi

(
ul
t

T
el
i

)
, (5) 155

where N denotes the total number of experts, 156

FFNi(·) is the i-th expert FFN, gi,t denotes the 157

gate value for the i-th expert, si,t denotes the token- 158

to-expert affinity, Topk(·,K) denotes the set com- 159

prising K highest affinity scores among those cal- 160

culated for the t-th token and all N experts, and eli 161

is the centroid of the i-th expert in the l-th layer. 162

Note that for each token, only K out of N gate 163

values are nonzero. This sparsity property ensures 164

computational efficiency within an MoE layer. 165

3 DS-MoE Architecture 166

On top of the generic MoE architecture, DS-MoE 167

introduces two principal strategies, fine-grained 168

expert segmentation and shared expert isolation, 169

as illustrated in Figure 1. Both strategies aim at 170

elevating the level of expert specialization. 171

3.1 Fine-Grained Expert Segmentation 172

In scenarios where the number of experts is limited, 173

tokens assigned to a particular expert will be more 174

likely to cover diverse types of knowledge. As 175

a consequence, the designated expert will intend 176
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(a) Conventional Top-2 Routing (b) + Fine-grained Expert Segmentation (c) + Shared Expert Isolation 
(DS-MoE)

Figure 1: Illustration of DS-MoE. (a) showcases an MoE layer with the conventional top-2 routing strategy. (b)
illustrates the fine-grained expert segmentation strategy. Subsequently, (c) introduces the shared expert isolation
strategy, constituting the complete DS-MoE architecture.

to learn vastly different types of knowledge in its177

parameters, and they are hard to be simultaneously178

utilized. However, if each token can be routed179

to more experts, diverse knowledge will gain the180

potential to be decomposed and learned in different181

experts respectively, where each expert can still182

retain specialized and focused.183

In pursuit of the goal, while maintaining a con-184

sistent number of expert parameters and compu-185

tational cost, we segment the experts with a finer186

granularity. To be specific, on top of a typical MoE187

architecture shown in Figure 1(a), we segment each188

expert FFN into m smaller experts by reducing the189

FFN intermediate hidden dimension to 1
m times its190

original size. Since each expert becomes smaller, in191

response, we also increase the number of activated192

experts to m times to keep the same computation193

cost, as illustrated in Figure 1(b). Then, the output194

of an MoE layer can be expressed as:195
196

hl
t =

mN∑
i=1

(
gi,t FFNi

(
ul
t

))
+ ul

t, (6)197

gi,t =

{
si,t, si,t ∈ Topk({sj,t|1 ≤ j ≤ mN},mK),

0, otherwise,
(7)198

si,t = Softmaxi

(
ul
t

T
el
i

)
, (8)199

where the number of expert parameters is equal200

to N times a standard FFN, and mN denotes the201

number of fine-grained experts. Also, the number202

of nonzero gates will increase to mK.203

From a combinatorial perspective, fine-grained204

expert segmentation substantially enhances the 205

combinatorial flexibility of activated experts. As an 206

example, we consider the case where N = 16. A 207

typical top-2 routing strategy can yield
(
16
2

)
= 120 208

possible combinations. By contrast, if each ex- 209

pert is split into 4 smaller experts, we can yield 210(
64
8

)
= 4, 426, 165, 368 potential combinations. 211

The surge in combinatorial flexibility enhances the 212

potential for achieving more accurate and targeted 213

knowledge acquisition. 214

3.2 Shared Expert Isolation 215

With a conventional routing strategy, tokens as- 216

signed to different experts may require some com- 217

mon knowledge. As a result, multiple experts will 218

converge in acquiring shared knowledge in their 219

respective parameters, leading to parameter redun- 220

dancy. However, if there are shared experts that 221

capture and consolidate common knowledge across 222

varying contexts, the parameter redundancy among 223

other routed experts will be alleviated. 224

Towards this objective, we further isolate Ks ex- 225

perts as shared experts. Regardless of the router, 226

each token will be deterministically assigned to 227

these shared experts. In order to maintain a con- 228

stant computational cost, the number of activated 229

routed experts will be decreased by Ks, as depicted 230

in Figure 1(c). Finally, an MoE layer in the com- 231

3



plete DS-MoE architecture is formulated as:232
233

hl
t =

Ks∑
i=1

FFNi

(
ul
t

)
+

mN∑
i=Ks+1

(
gi,t FFNi

(
ul
t

))
+ ul

t,

(9)

234

gi,t=

{
si,t, si,t∈Topk({sj,t|Ks+1≤j≤mN},mK−Ks),

0, otherwise,
(10)

235

si,t = Softmaxi

(
ul
t

T
el
i

)
. (11)236

Finally, the number of shared experts is Ks, the237

number of routed experts is mN − Ks, and the238

number of nonzero gates is mK − Ks. The pro-239

totype of shared expert isolation can be credited240

to Rajbhandari et al. (2022). However, they derive241

this strategy from an engineering perspective, while242

we approach it from an algorithmic standpoint.243

3.3 Load Balance Consideration244

We employ an expert-level balance loss to mitigate245

the risk of routing collapse (Shazeer et al., 2017).246

The computation of the balance loss is as follows:247
248

LBal = α

N′∑
i=1

fiPi, (12)249

fi =
N ′

K′T

T∑
t=1

1(Token t selects Expert i), (13)250

Pi =
1

T

T∑
t=1

si,t, (14)251

where balance factor α is a hyper-parameter, 1(·)252

denotes the indicator function, N ′ is equal to253

(mN −Ks), and K ′ is equal to (mK −Ks).254

4 Validation Experiments255

4.1 Experimental Setup256

Training Data and Tokenization. Our training257

data is sampled from a large-scale corpus created258

by DeepSeek-AI (DeepSeek-AI, 2024), which fo-259

cuses on English and Chinese and is derived from260

diverse sources. For the purpose of validation ex-261

periments, we sample a subset containing 100B262

tokens from the corpus to train our models. For to-263

kenization, we utilize the HuggingFace Tokenizer2264

tools to train a byte pair encoding (BPE) (Sennrich265

et al., 2016) tokenizer with an 8K vocabulary size266

on a subset of the training corpus.267

Hyper-Parameters. In the validation experi-268

ments, we set the number of Transformer layers269

2https://github.com/huggingface/tokenizers

to 9 and the hidden dimension to 1280. We sub- 270

stitute all FFNs with MoE layers, and ensure that 271

the total number of expert parameters equals 16 272

times that of a standard FFN. Additionally, we keep 273

the activated expert parameters, including shared 274

expert parameters and activated routed expert pa- 275

rameters, as 2 times that of a standard FFN. Under 276

this configuration, each MoE model has approx- 277

imately 2B total parameters, with the number of 278

activated parameters around 0.3B. As for training, 279

we employ the AdamW optimizer (Loshchilov and 280

Hutter, 2019) and set the maximum learning rate 281

to 1.08 × 10−3. The batch size is set to 2K, and 282

with a maximum sequence length of 2K, each train- 283

ing batch contains 4M tokens. Correspondingly, 284

the total number of training steps is set to 25,000 285

to achieve 100B training tokens. In order to pre- 286

vent routing collapse, we set a balance factor of 287

0.01. Due to the page limit, we leave the other 288

hyper-parameters in Appendix A.1. We also de- 289

scribe the training framework and infrastructures 290

in Appendix B. 291

Evaluation Benchmarks. We conduct evalua- 292

tions on a wide range of benchmarks covering var- 293

ious types of tasks. For language modeling, we 294

evaluate the models on the test set of Pile (Gao 295

et al., 2020), and the evaluation metric is the cross- 296

entropy loss. For language understanding and 297

reasoning, we consider HellaSwag (Zellers et al., 298

2019), PIQA (Bisk et al., 2020), ARC-challenge 299

and ARC-easy (Clark et al., 2018), and the evalu- 300

ation metric for these tasks is accuracy. For read- 301

ing comprehension, we consider RACE-high and 302

RACE-middle (Lai et al., 2017), and the evalu- 303

ation metric is accuracy. For code generation, 304

we consider HumanEval (Chen et al., 2021) and 305

MBPP (Austin et al., 2021), and the evaluation 306

metric is Pass@1. For closed-book question an- 307

swering, we consider TriviaQA (Joshi et al., 2017) 308

and NaturalQuestions (Kwiatkowski et al., 2019), 309

and the metric is the Exactly Matching (EM) rate. 310

4.2 Evaluations 311

Baselines. Including DS-MoE, we compare five 312

models for validation experiments. Dense denotes 313

a standard dense Transformer model with 0.2B to- 314

tal parameters. Hash Layer (Roller et al., 2021) 315

and Switch Transformer (Fedus et al., 2021) are 316

two well-known MoE architectures based on top-1 317

routing, with 2.0B total parameters and 0.2B acti- 318

vated parameters. GShard (Lepikhin et al., 2021) 319
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Metric # Shot Dense Hash Layer Switch Transformer GShard DS-MoE

# Total Params N/A 0.2B 2.0B 2.0B 2.0B 2.0B
# Activated Params N/A 0.2B 0.2B 0.2B 0.3B 0.3B
FLOPs per 2K Tokens N/A 2.9T 2.9T 2.9T 4.3T 4.3T

Pile (Loss) N/A 2.060 1.932 1.881 1.867 1.808

HellaSwag (Acc.) 0 38.8 46.2 49.1 50.5 54.8
PIQA (Acc.) 0 66.8 68.4 70.5 70.6 72.3
ARC-easy (Acc.) 0 41.0 45.3 45.9 43.9 49.4
ARC-challenge (Acc.) 0 26.0 28.2 30.2 31.6 34.3

RACE-middle (Acc.) 5 38.8 38.8 43.6 42.1 44.0
RACE-high (Acc.) 5 29.0 30.0 30.9 30.4 31.7

HumanEval (Pass@1) 0 0.0 1.2 2.4 3.7 4.9
MBPP (Pass@1) 3 0.2 0.6 0.4 0.2 2.2

TriviaQA (EM) 5 4.9 6.5 8.9 10.2 16.6
NaturalQuestions (EM) 5 1.4 1.4 2.5 3.2 5.7

Table 1: Evaluation results for validation experiments. Bold font indicates the best.

HellaSwag PIQA ARC-easy ARC-challenge TriviaQA NaturalQuestions
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Figure 2: Ablation studies for DS-MoE. The performance is normalized by the best performance.

employs a top-2 learnable routing strategy, with320

2.0B total parameters and 0.3B activated parame-321

ters. DS-MoE has 1 shared expert and 63 routed322

experts, where each expert is 0.25 times the size of323

a standard FFN. Including DS-MoE, all compared324

models share the same training corpus and training325

hyper-parameters.326

Results. As shown in Table 1, (1) With more total327

parameters, Hash Layer and Switch Transformer328

achieve significantly stronger performance than the329

dense baseline with the same number of activated330

parameters. (2) Compared with Hash Layer and331

Switch Transformer, GShard has more activated pa-332

rameters and achieves slightly better performance.333

(3) With the same number of total and activated334

parameters, DS-MoE demonstrates overwhelming335

advantages over GShard. These results show the336

superiority of our DS-MoE architecture.337

4.3 DS-MoE Aligns Closely with the upper338

bound of MoE Models339

For a more precise understanding of the perfor-340

mance of DS-MoE, we compare it with larger base-341

lines with more parameters or computations. 342

Comparison with GShard×1.5. We first com- 343

pare DS-MoE with a larger GShard model with 1.5 344

times the expert size, which results in 1.5 times 345

both expert parameters and expert computation. 346

Evaluation results show that GShard×1.5 achieves 347

a Pile test loss of 1.808, and DS-MoE also achieves 348

the same Pile test loss. This underscores the signifi- 349

cant advantage of the DS-MoE architecture. Due to 350

the page limit, we show the complete evaluation re- 351

sults including all the benchmarks in Appendix C. 352

Comparison with Dense×16. We also compare 353

DS-MoE and a dense model with the same number 354

of total parameters. For a fair comparison, we do 355

not use the widely used ratio (1:2) between the at- 356

tention and FFN parameters. Instead, we configure 357

16 shared experts where each expert has the same 358

number of parameters as a standard FFN. This ar- 359

chitecture mimics a dense model with 16 times 360

standard FFN parameters, which sets the strict up- 361

per bound of MoE models in terms of the model 362

capacity. We find that this dense model achieves a 363
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Figure 3: Pile test loss with regard to different ratios of
disabled top routed experts.

Pile test loss of 1.806, while DS-MoE achieves a364

close Pile test loss of 1.808. Due to the page limit,365

we also show the complete evaluation results in366

Appendix C. To summarize, these results suggest367

that, at least at the scale of about 2B parameters and368

100B training tokens, the performance of DS-MoE369

aligns closely with the theoretical upper bound of370

MoE models.371

4.4 Ablation Studies372

We conduct ablation studies for DS-MoE to sub-373

stantiate the effectiveness of our two principal374

strategies. For a fair comparison, we ensure all375

models included in the comparison have the same376

number of total and activated parameters.377

Shared Expert Isolation. In order to evaluate378

the influence of shared expert isolation, based on379

GShard, we isolate one expert as the shared one.380

From Figure 2, we observe that compared with381

GShard, the isolation yields improved performance382

across a majority of benchmarks.383

Fine-Grained Expert Segmentation. For assess-384

ing the effectiveness of fine-grained expert segmen-385

tation, we segment each expert into 2 or 4 smaller386

experts, resulting in 32 (1 shared + 31 routed) or387

64 (1 shared + 63 routed) total experts. Figure 2388

shows a consistent trend that finer expert segmenta-389

tion granularity corresponds to better performance.390

4.5 Analysis on Expert Specialization391

We conduct an empirical analysis on the expert392

specialization of DS-MoE 2B, which refers to the393

model reported in Table 1.394

DS-MoE Exhibits Lower Redundancy Among395

Routed Experts. In order to assess the redun-396

dancy among routed experts, for each token, we397

mask a certain ratio of experts with the highest rout-398

ing probability, and then select top-K experts from399

the remaining routed experts. For fairness, we com-400

pare DS-MoE with GShard×1.5 since they have401
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Figure 4: Pile loss with regard to different numbers of
activated routed experts in DS-MoE.
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Figure 5: Comparison between GShard and DS-MoE
trained from scratch and with half the activated experts.

the same Pile loss when no experts are disabled. 402

As shown in Figure 3, compared with GShard×1.5, 403

DS-MoE is more sensitive to the disabling of top 404

routed experts. This implies lower parameter re- 405

dundancy in DS-MoE, since each routed expert is 406

more irreplaceable. 407

Shared Experts Are Irreplaceable by Routed 408

Experts. In order to investigate the role of the 409

shared expert in DS-MoE, we disable it and ac- 410

tivate one more routed expert. The evaluation on 411

Pile shows a significant increase in the Pile loss, ris- 412

ing from 1.808 to 2.414, even though we maintain 413

the same computational cost. This result indicates 414

that the shared expert captures fundamental and 415

essential knowledge not shared with routed experts, 416

making it irreplaceable by routed ones. 417

DS-MoE Acquires Knowledge More Accurately. 418

In order to validate our claim that higher flexibil- 419

ity in combining activated experts contributes to 420

more accurate and targeted knowledge acquisition, 421

we investigate whether DS-MoE can acquire req- 422

uisite knowledge with fewer activated experts. To 423

be specific, we vary the number of activated routed 424

experts from 3 to 7 and evaluate the resulting Pile 425

loss. As demonstrated in Figure 4, even with only 426

4 routed experts activated, DS-MoE is still compa- 427

rable with GShard. 428

Encouraged by these findings, we further train 429

a new MoE model from scratch, which comprises 430
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1 shared expert and 63 routed experts but only 3431

routed experts are activated. Figure 5 demonstrates432

that, even with the same total expert parameters433

and only half of the activated expert parameters,434

DS-MoE still outperforms GShard.435

5 Scaling up to DS-MoE 16B436

With the DS-MoE architecture, we further scale437

up our MoE model to a larger scale with 16B total438

parameters and train it on 2T tokens.439

5.1 Experimental Setup440

Training Data and Tokenization For training441

DS-MoE 16B, we sample 2T tokens from the same442

corpus as described in Section 4.1, and use a larger443

BPE tokenizer with a 100K vocabulary size.444

Hyper-Parameters For DS-MoE 16B, we set the445

number of Transformer layers to 28 and the hid-446

den dimension to 2048. We substitute all FFNs447

except for the first layer with MoE layers, since448

we observe that the load balance status converges449

especially slower for the first layer. Each MoE450

layer consists of 2 shared experts and 64 routed451

experts, where each expert is 0.25 times the size of452

a standard FFN. Each token will be routed to these453

2 shared experts and 6 out of 64 routed experts.454

Under this configuration, DS-MoE 16B has approx-455

imately 16.4B total parameters, with the number456

of activated parameters around 2.8B. As for train-457

ing, we employ the AdamW optimizer (Loshchilov458

and Hutter, 2019) and set the maximum learning459

rate to 4.2 × 10−4. The batch size is set to 4.5K,460

and with a maximum sequence length of 4K, each461

training batch contains 18M tokens. Correspond-462

ingly, the total number of training steps is set to463

106,449 to achieve 2T training tokens. In order to464

prevent routing collapse, we set a balance factor of465

0.001. Due to the page limit, we leave the other466

hyper-parameters in Appendix A.2.467

Evaluation Benchmarks In addition to the468

benchmarks used in the validation experiments, we469

incorporate additional benchmarks for a more com-470

prehensive evaluation. For language modeling, we471

also evaluate the models on the test set of Pile (Gao472

et al., 2020). Since the tokenizer used in DS-MoE473

16B is different from that used in LLaMA2 7B, we474

use bits per byte (BPB) as the evaluation metric for475

a fair comparison. For reading comprehension,476

we additionally consider DROP (Dua et al., 2019)477

and the evaluation metric is EM. For math reason-478

ing, we additionally incorporate GSM8K (Cobbe479

et al., 2021) and MATH (Hendrycks et al., 2021), 480

using EM as the evaluation metric. For multi- 481

subject multiple-choice, we additionally evaluate 482

the models on MMLU (Hendrycks et al., 2020) and 483

the evaluation metric is accuracy. For disambigua- 484

tion, we additionally consider WinoGrande (Sak- 485

aguchi et al., 2019) and the evaluation metric is 486

accuracy. Since DS-MoE 16B is pretrained on a 487

bilingual corpus, we also evaluate it on four Chi- 488

nese benchmarks: CLUEWSC (Xu et al., 2020), 489

CEval (Huang et al., 2023), CMMLU (Li et al., 490

2023), and CHID (Zheng et al., 2019). Evaluation 491

metrics for these benchmarks are accuracy or EM. 492

5.2 Evaluations 493

We compare DS-MoE 16B with LLaMA2 7B (Tou- 494

vron et al., 2023b) and DeepSeek 7B (DeepSeek- 495

AI, 2024), two strong and well-known dense mod- 496

els trained on 2T tokens. In addition, DS-MoE 16B 497

and DeepSeek 7B use the same training data. As 498

shown in Table 2, we have the following observa- 499

tions: (1) On the whole, with about only 40% of 500

the computations, DS-MoE 16B achieves compara- 501

ble performance with LLaMA2 7B and DeepSeek 502

7B. (2) DS-MoE 16B exhibits notable strengths 503

in language modeling and knowledge-intensive 504

tasks such as Pile, HellaSwag, and TriviaQA. (3) 505

Compared with the excellent performance on other 506

tasks, DS-MoE exhibits limitations in addressing 507

multiple-choice tasks, which may stem from the 508

limited attention parameters in DS-MoE 16B. (4) 509

Compared with LLaMA2 7B, DeepSeek 7B and 510

DS-MoE 16B have much stronger performance 511

on math, coding, and Chinese benchmarks. For 512

a more comprehensive understanding of the train- 513

ing process of DS-MoE 16B, we also provide the 514

benchmark curves of DS-MoE 16B and DeepSeek 515

7B (Dense) during training in Appendix D. 516

In addition, we provide a comparison between 517

DS-MoE 16B and other open source models on the 518

Open LLM Leaderboard in Appendix E. 519

6 Related Work 520

The Mixture of Experts (MoE) technique is first 521

proposed by Jacobs et al. (1991); Jordan and Jacobs 522

(1994) to deal with different samples with indepen- 523

dent expert modules. Shazeer et al. (2017) intro- 524

duce MoE into language model training and build a 525

large-scale LSTM-based (Hochreiter and Schmid- 526

huber, 1997) MoE models. As Transformer be- 527

come the most popular architecture for NLP, many 528
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Metric # Shot LLaMA2 7B (Dense) DeepSeek 7B (Dense) DS-MoE 16B

# Total Params N/A 6.7B 6.9B 16.4B
# Activated Params N/A 6.7B 6.9B 2.8B
FLOPs per 4K Tokens N/A 187.9T 183.5T 74.4T

Pile (BPB) N/A 0.76 0.75 0.74

HellaSwag (Acc.) 0 75.6 75.4 77.1
PIQA (Acc.) 0 78.0 79.2 80.2
ARC-easy (Acc.) 0 69.1 67.9 68.1
ARC-challenge (Acc.) 0 49.0 48.1 49.8

RACE-middle (Acc.) 5 60.7 63.2 61.9
RACE-high (Acc.) 5 45.8 46.5 46.4
DROP (EM) 1 34.0 34.9 32.9

GSM8K (EM) 8 15.5 17.4 18.8
MATH (EM) 4 2.6 3.3 4.3

HumanEval (Pass@1) 0 14.6 26.2 26.8
MBPP (Pass@1) 3 21.8 39.0 39.2

TriviaQA (EM) 5 63.8 59.7 64.8
NaturalQuestions (EM) 5 25.5 22.2 25.5

MMLU (Acc.) 5 45.8 48.2 45.0

WinoGrande (Acc.) 0 69.6 70.5 70.2

CLUEWSC (EM) 5 64.0 73.1 72.1
CEval (Acc.) 5 33.9 45.0 40.6
CMMLU (Acc.) 5 32.6 47.2 42.5
CHID (Acc.) 0 37.9 89.3 89.4

Table 2: Comparison among LLaMA2 7B, DeepSeek 7B, and DS-MoE 16B.

attempts extend FFNs in a Transformer as MoE lay-529

ers to build MoE language models. GShard (Lep-530

ikhin et al., 2021) and Switch Transformer (Fedus531

et al., 2021) are pioneers which employ learnable532

top-2 or top-1 routing strategies to scale the MoE533

language models to an extremely large scale. Hash534

Layer (Roller et al., 2021) and StableMoE (Dai535

et al., 2022) use fixed routing strategies for more536

stable routing and training. Zhou et al. (2022) pro-537

pose an expert-choice routing strategy, where each538

token can be assigned to different numbers of ex-539

perts. Zoph (2022) focus on the issues of training540

instability and fine-tuning difficulty in MoE mod-541

els, and propose ST-MoE to overcome these chal-542

lenges. In addition to research on MoE architec-543

tures and training strategies, recent years have also544

witnessed the emergence of numerous large-scale545

language or multimodal models (Lin et al., 2021;546

Du et al., 2022; Ren et al., 2023; Xue et al., 2023)547

based on existing MoE architectures. By and large,548

most of the previous MoE models are based on con-549

ventional top-1 or top-2 routing strategies, leaving550

large room for improving expert specialization. In551

response, we design the DS-MoE architecture to552

improve the expert specialization.553

7 Conclusion 554

In this paper, we introduce the DS-MoE archi- 555

tecture for MoE language models, with the ob- 556

jective of achieving ultimate expert specializa- 557

tion. Through fine-grained expert segmentation 558

and shared expert isolation, DS-MoE achieves sig- 559

nificantly higher expert specialization and perfor- 560

mance compared with prevailing MoE architec- 561

tures. Starting with a modest scale of 2B pa- 562

rameters, we validate the advantages of DS-MoE, 563

demonstrating its capability to approach the upper 564

bound performance for MoE models. Furthermore, 565

we provide empirical evidence to show that DS- 566

MoE has a higher level of expert specialization 567

than GShard. Scaling up to a larger scale of 16B 568

total parameters, we train DS-MoE 16B on 2T to- 569

kens and demonstrate its outstanding performance 570

comparable with DeepSeek 7B and LLaMA2 7B, 571

with only about 40% of computations. For research 572

purposes, we will release the model checkpoint of 573

DS-MoE 16B to the public, which can be deployed 574

on a single GPU with 40GB of memory. We as- 575

pire for this work to provide valuable insights for 576

both academia and industry, and contribute to the 577

accelerated advancement of large language models. 578
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Limitations and Future Work579

Although we find that finer granularity in expert580

segmentation always leads to better model perfor-581

mance, we just use a moderate granularity in DS-582

MoE 16B, since too fine granularity will decrease583

the computational efficiency. In future research, we584

plan to build a scaling law for the expert segmenta-585

tion granularity and explore finer segmentation on586

larger-scale models.587

In addition, since DS-MoE will select more ex-588

perts, it has the potential to result in additional589

communication overhead when the experts are dis-590

tributed across different devices. In the future, we591

will also design better algorithms and parallelism592

strategies to mitigate such additional communica-593

tion overhead.594

Finally, in this paper, we fix the number of expert595

parameters to 16 times that of a standard FFN, and596

the number of activated expert parameters to twice597

that of a standard FFN. In larger model settings, the598

optimal numbers of total parameters and activated599

parameters are also a topic for future research and600

discussion.601
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Appendices1000

A Details of Hyper-Parameters1001

A.1 Validation Experiments1002

Model Settings. In the validation experiments,1003

we set the number of Transformer layers to 9 and1004

the hidden dimension to 1280. We employ the1005

multi-head attention mechanism with a total of 101006

attention heads, where each head has a dimension1007

of 128. For initialization, all learnable parameters1008

are randomly initialized with a standard deviation1009

of 0.006. We substitute all FFNs with MoE lay-1010

ers, and ensure that the total number of expert pa-1011

rameters equals 16 times that of a standard FFN.1012

Additionally, we keep the activated expert parame-1013

ters, including shared expert parameters and acti-1014

vated routed expert parameters, as 2 times that of a1015

standard FFN. Under this configuration, each MoE1016

model has approximately 2B total parameters, with1017

the number of activated parameters around 0.3B.1018

Training Settings. We employ the AdamW op-1019

timizer (Loshchilov and Hutter, 2019) with hyper-1020

parameters set to β1 = 0.9, β2 = 0.95, and1021

weight_decay = 0.1. The learning rate is sched-1022

uled using a warmup-and-step-decay strategy. Ini-1023

tially, the learning rate linearly increases from 0 to1024

the maximum value during the first 2K steps. Sub-1025

sequently, the learning rate is multiplied by 0.3161026

at 80% of the training steps, and again by 0.316 at1027

90% of the training steps. The maximum learning1028

rate for validation experiments is set to 1.08×10−3,1029

and the gradient clipping norm is set to 1.0. The1030

batch size is set to 2K, and with a maximum se-1031

quence length of 2K, each training batch contains1032

4M tokens. Correspondingly, the total number of1033

training steps is set to 25,000 to achieve 100B train-1034

ing tokens. Due to the abundance of training data,1035

we do not use dropout during training. Given the1036

relatively small model size, all parameters, includ-1037

ing expert parameters, are deployed on a single1038

GPU device to avoid unbalanced computation. In1039

order to prevent routing collapse, we set the balance1040

factor to 0.01.1041

A.2 DS-MoE 16B1042

Model Settings. For DS-MoE 16B, we set the1043

number of Transformer layers to 28 and the hidden1044

dimension to 2048. We employ the multi-head1045

attention mechanism with a total of 16 attention1046

heads, where each head has a dimension of 128.1047

As for initialization, all learnable parameters are1048

randomly initialized with a standard deviation of 1049

0.006. We substitute all FFNs except for the first 1050

layer with MoE layers, since we observe that the 1051

load balance status converges especially slower for 1052

the first layer. Each MoE layer consists of 2 shared 1053

experts and 64 routed experts, where each expert 1054

is 0.25 times the size of a standard FFN. Each 1055

token will be routed to these 2 shared experts and 1056

6 out of 64 routed experts. An even finer expert 1057

segmentation granularity is not employed due to 1058

the potential reduction in computational efficiency 1059

associated with excessively small expert sizes. At a 1060

larger scale over 16B, a finer granularity can still be 1061

employed. Under our configuration, DS-MoE 16B 1062

has approximately 16.4B total parameters, with the 1063

number of activated parameters around 2.8B. 1064

Training Settings. We employ the AdamW op- 1065

timizer (Loshchilov and Hutter, 2019) with hyper- 1066

parameters set to β1 = 0.9, β2 = 0.95, and 1067

weight_decay = 0.1. The learning rate is also 1068

scheduled using a warmup-and-step-decay strat- 1069

egy. Initially, the learning rate linearly increases 1070

from 0 to the maximum value during the first 2K 1071

steps. Subsequently, the learning rate is multiplied 1072

by 0.316 at 80% of the training steps, and again by 1073

0.316 at 90% of the training steps. The maximum 1074

learning rate for DS-MoE 16B is set to 4.2× 10−4, 1075

and the gradient clipping norm is set to 1.0. The 1076

batch size is set to 4.5K, and with a maximum se- 1077

quence length of 4K, each training batch contains 1078

18M tokens. Correspondingly, the total number 1079

of training steps is set to 106,449 to achieve 2T 1080

training tokens. Due to the abundance of training 1081

data, we do not use dropout during training. We 1082

leverage pipeline parallelism to deploy different 1083

layers of a model on different devices, and for each 1084

layer, all the experts will be deployed on the same 1085

device. Therefore, there will not be unbalanced 1086

computation during training. In order to prevent 1087

routing collapse, we set a quite small balance fac- 1088

tor of 0.001 because we find that under our paral- 1089

lelization strategy, a higher balance factor cannot 1090

increase the computation efficiency, but instead, it 1091

will compromise the model performance. 1092

B Infrastructures 1093

We conduct experiments based on HAI- 1094

LLM (High-Flyer, 2023), an efficient and 1095

light-weight training framework which integrates 1096

multiple parallelism strategies, including tensor 1097

parallelism (Shoeybi et al., 2019; Narayanan 1098
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et al., 2021; Korthikanti et al., 2023), ZeRO data1099

parallelism (Rajbhandari et al., 2020), PipeDream1100

pipeline parallelism (Harlap et al., 2018), and more1101

specifically, expert parallelism (Lepikhin et al.,1102

2021) by combining data and tensor parallelism. In1103

order to optimize performance, we develop GPU1104

kernels with CUDA and Triton (Tillet et al., 2019)1105

for gating algorithms and fusing computations1106

across linear layers in different experts.1107

All experiments are carried out on clusters1108

equipped with NVIDIA A100 or H800 GPUs. Each1109

node in the A100 cluster contains 8 GPUs con-1110

nected pairwise via the NVLink bridge. The H8001111

cluster also features 8 GPUs per node, intercon-1112

nected using NVLink and NVSwitch within nodes.1113

For both A100 and H800 clusters, InfiniBand inter-1114

connects are utilized to facilitate communication1115

across nodes.1116

C Comparisons among DS-MoE and1117

Larger Models1118

We show the comparisons among DS-MoE, larger1119

GShard models, and larger dense models in Table 3.1120

D Training Benchmark Curves of1121

DS-MoE 16B1122

We present the benchmark curves during training1123

of DS-MoE 16B and DeepSeek 7B (Dense) in Fig-1124

ure 6 for reference.1125

E Evaluation on Open LLM Leaderboard1126

Beyond our internal evaluations, we also evaluate1127

DS-MoE 16B on the Open LLM Leaderboard3 and1128

compare it with other open source models. The1129

Open LLM Leaderboard is a public leaderboard1130

supported by HuggingFace, it consists of six tasks:1131

ARC (Clark et al., 2018), HellaSwag (Zellers et al.,1132

2019), MMLU (Hendrycks et al., 2020), Truth-1133

fulQA (Lin et al., 2022), Winogrande (Sakaguchi1134

et al., 2019), and GSM8K (Cobbe et al., 2021).1135

In addition to LLaMA2 7B, we take a broader set1136

of open source models into consideration, includ-1137

ing LLaMA 7B (Touvron et al., 2023a), Falcon1138

7B (Almazrouei et al., 2023), GPT-J 6B (Wang1139

and Komatsuzaki, 2021), RedPajama-INCITE 7B1140

and 3B (Together-AI, 2023), Open LLaMA 7B1141

and 3B (Geng and Liu, 2023), OPT 2.7B (Zhang1142

et al., 2022), Pythia 2.8B (Biderman et al., 2023),1143

GPT-neo 2.7B (Black et al., 2021), and BLOOM1144

3https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard

3B (Scao et al., 2022). The evaluation results, as 1145

presented in Figure 7, show that DS-MoE 16B 1146

consistently outperforms models with similar acti- 1147

vated parameters by a large margin. Moreover, it 1148

achieves comparable performance with LLaMA2 1149

7B, which has approximately 2.5 times the acti- 1150

vated parameters. 1151

14



Metric # Shot GShard×1.5 Dense×16 DS-MoE

Relative Expert Size N/A 1.5 1 0.25
# Experts N/A 0 + 16 16 + 0 1 + 63
# Activated Experts N/A 0 + 2 16 + 0 1 + 7
# Total Expert Params N/A 2.83B 1.89B 1.89B
# Activated Expert Params N/A 0.35B 1.89B 0.24B
FLOPs per 2K Tokens N/A 5.8T 24.6T 4.3T
# Training Tokens N/A 100B 100B 100B

Pile (Loss) N/A 1.808 1.806 1.808

HellaSwag (Acc.) 0 54.4 55.1 54.8
PIQA (Acc.) 0 71.1 71.9 72.3
ARC-easy (Acc.) 0 47.3 51.9 49.4
ARC-challenge (Acc.) 0 34.1 33.8 34.3

RACE-middle (Acc.) 5 46.4 46.3 44.0
RACE-high (Acc.) 5 32.4 33.0 31.7

HumanEval (Pass@1) 0 3.0 4.3 4.9
MBPP (Pass@1) 3 2.6 2.2 2.2

TriviaQA (EM) 5 15.7 16.5 16.6
NaturalQuestions (EM) 5 4.7 6.3 5.7

Table 3: Comparisons among DS-MoE, larger GShard models, and larger dense models. In the line of “# Experts”,
a + b denotes a shared experts and b routed experts. In the line of “# Activated Experts”, a + b denotes a activated
shared experts and b activated routed experts. DS-MoE achieves comparable performance with a GShard model
containing 1.5 times expert parameters and computation. In addition, DS-MoE nearly approaches the performance
of a dense model with 16 times FFN parameters, which sets the upper bound for MoE models in terms of the model
capacity.
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Figure 6: Benchmark curves during training of DS-MoE 16B and DeepSeek 7B (Dense).
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Figure 7: Comparison between DS-MoE 16B and open source models on the Open LLM Leaderboard.

17


	Introduction
	Preliminaries
	DS-MoE Architecture
	Fine-Grained Expert Segmentation
	Shared Expert Isolation
	Load Balance Consideration

	Validation Experiments
	Experimental Setup
	Evaluations
	DS-MoE Aligns Closely with the upper bound of MoE Models
	Ablation Studies
	Analysis on Expert Specialization

	Scaling up to DS-MoE 16B
	Experimental Setup
	Evaluations

	Related Work
	Conclusion
	Details of Hyper-Parameters
	Validation Experiments
	DS-MoE 16B

	Infrastructures
	Comparisons among DS-MoE and Larger Models
	Training Benchmark Curves of DS-MoE 16B
	Evaluation on Open LLM Leaderboard

