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Figure 1: Text-conditioned and class-conditioned samples generated by SAR models.

ABSTRACT

We introduce a new paradigm for AutoRegressive (AR) image generation, termed
Set AutoRegressive Modeling (SAR). SAR generalizes the conventional AR to the
next-set setting, i.e., splitting the sequence into arbitrary sets containing multiple
tokens, rather than outputting each token in a fixed raster order. To accommo-
date SAR, we develop a straightforward architecture termed Fully Masked Trans-
former. We reveal that existing AR variants correspond to specific design choices
of sequence order and output intervals within the SAR framework, with AR and
Masked AR (MAR) as two extreme instances. Notably, SAR facilitates a seamless
transition from AR to MAR, where intermediate states allow for training a causal
model that benefits from both few-step inference and KV cache acceleration, thus
leveraging the advantages of both AR and MAR. On the ImageNet benchmark, we
carefully explore the properties of SAR by analyzing the impact of sequence order
and output intervals on performance, as well as the generalization ability regard-
ing inference order and steps. We further validate the potential of SAR by training
a 900M text-to-image model capable of synthesizing photo-realistic images with
any resolution. We hope our work may inspire more exploration and application
of AR-based modeling across diverse modalities. Code will be available.
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1 INTRODUCTION

The success of AutoRegressive (AR) models in Large Language Models (LLMs) (Radford, 2018;
Radford et al., 2019; Brown, 2020; Raffel et al., 2020; Yang, 2019; Touvron et al., 2023) has also
driven their development in image generation, where some recent work (Ramesh et al., 2021; Yu
et al., 2021; 2022; Tian et al., 2024; Li et al., 2024; Sun et al., 2024; Liu et al., 2024) has demon-
strated that the generative capabilities of AR models can rival or even surpass those of diffusion
models (Song & Ermon, 2019; Song et al., 2020b; Ho et al., 2020; Dhariwal & Nichol, 2021; Rom-
bach et al., 2022; Song et al., 2020a; Lipman et al., 2022; Liu et al., 2022; Karras et al., 2022; Peebles
& Xie, 2023; Esser et al., 2024; Gao et al., 2024; Zhuo et al., 2024).

Despite their strong performance, the large number of inference steps in AR models due to the ‘next-
token prediction’ manner has become a bottleneck. This limitation has inspired explorations on
more efficient AR approaches, with the idea of outputting multiple tokens simultaneously. Existing
work (Chang et al., 2022; Yu et al., 2023a; Chang et al., 2023; Li et al., 2023; 2024; Ni et al.,
2024) usually adopts BERT-like (Devlin, 2018) masked modeling approaches to exchange the cost
of always performing global computations (thus KV cache is not allowed) for fewer inference steps.
Another stream of work designs proper sequence orders and arranges multiple tokens with similar
properties into one group, to predict these tokens at once, e.g., the scale-aware order (Tian et al.,
2024; Zhang et al., 2024; Ma et al., 2024). We conclude that, in the training phase, these approaches
pay attention to two aspects: one is the sequence order, the other is the output intervals. The
defined order and intervals split the sequence into token sets. AR splits the sequence into sets of
single tokens, VAR (Tian et al., 2024) builds several multi-scale sets for an image, and Masked AR
(MAR) (Chang et al., 2022; Li et al., 2023; 2024) randomly divides the sequence into a masked set
and an unmasked set. Fig. 2 (a1, a2) illustrates examples for AR with intervals of length 1, while
(d1, d2) demonstrates MAR with 2 output intervals.

In this work, we present Set AutoRegressive Modeling (SAR), extending causal learning by gener-
alizing sequence order and output intervals to arbitrary configurations. Specifically, compared with
AR that splits the training process into sub-processes that output one single token in fixed raster
order, SAR is able to input token sequence in any order (some examples are illustrated in Fig. 3 and
Fig. 5), and splits it into any number of token sets, each as a sub-process that output multiple to-
kens. In order to represent the sequential relationship of token sets, we introduce generalized causal
masks. As shown in Fig. 2, the classical causal mask (a1) is a lower triangular matrix; when the set
contains more than one token (b1, c1, d1), the matrix becomes block-wise and is called a generalized
causal mask. Within our framework, we show that AR, VAR (analogously), and MAR emerge as
special cases of SAR, with AR and MAR representing two extreme instances. Refer to the left side
of Fig.2 and Table1 for conceptual illustrations. Moreover, by the new formulation, we offer a path
for smoothly transiting between AR and MAR. The intermediate states of SAR enables one to train
a few-step causal model in support of KV cache acceleration that inherits both the advantages of AR
and MAR models. Given that classical AR models, such as the decoder-only transformer, fails in
the SAR setting, we propose a simple model architecture termed Fully Masked Transformer (FMT).
FMT adopts the encoder-decoder structure proposed in the original transformer (Vaswani, 2017) to
enable both recording the output position and facilitating position-aware interaction between seen
and output tokens. It incorporates generalized causal masks into each attention process to keep the
causal manner, and the details can be referred to Fig. 4.

Under the SAR framework with FMT, we conduct experiments to explore the properties of SAR
on the ImageNet 256 × 256 benchmark. We examine the relationship between the two hyper-
parameters—sequence order and output intervals—and their impact on model performance, few-step
generalization ability, and inference order generalization ability, discussing the associated trade-offs.
Then, we train a text-to-image model on 20 million high-aesthetic images to further validate the gen-
eration capability of the transition states in SAR. Using limited computational resources and data,
our model demonstrates the capability to generate photo-realistic images of arbitrary aspect ratios
that adhere to the text descriptions.

Our main contributions are:

i) We propose Set AutoRegressive Modeling, that unifies existing AR variants and offers new
states between the two extremes, AR and MAR. The new states enables the training of
few-step causal generation models.
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AR and BERT are actually one thing
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Venn diagram of SAR Comparison on detailed training behavior

Mask In Imagination

Figure 2: Conceptual illustration. SAR integrates existing AR variants by manipulating the sequence
order and output intervals, creating a smooth transition path from classic AR to MAR.

Rearrange

Figure 3: Sequence in any order
can be rearranged as a causal one.

Table 1: Comparison among existing autoregressive image
generation paradigms. SAR is more flexible and enjoys mer-
its of other paradigms.

Method AR VAR MAR SAR

Few-step inference % ! ! !

KV cache ! ! % !
Training/inference Match Match Unmatch Flexible
Common VAE ! % ! !

ii) In line with SAR, we design a transformer model named Fully Masked Transformer, which
enables causal learning with any sequence order and any output intervals.

iii) We conduct extensive experiments to investigate the properties of SAR and the modeling
capability of FMT. With a particular focus on the transition states, we explore the effective-
ness of text-to-image generation.

2 RELATED WORK

2.1 AUTOREGRESSIVE AND MASKED MODELING

Originated in language processing, GPT series (Radford, 2018; Radford et al., 2019; Brown, 2020)
and BERT (Devlin, 2018) are representative works in autoregressive and masked modeling respec-
tively. During the AR training, the current output token can only be observed by the preceding
tokens. At inference tokens remain unchanged once output, facilitating the use of KV cache accel-
eration. Recently some work (Cai et al., 2024; Gloeckle et al., 2024) studies to reduce the inference
steps by training multiple prediction heads and conducting speculative decoding (Leviathan et al.,
2023; Chen et al., 2023) at inference. In contrast, BERT (Devlin, 2018) employs a bidirectional
modeling approach known as masked modeling, to capture contextual information. It randomly
masks a portion of tokens at a high masking ratio and trains the model to predict these masked to-
kens. At inference, BERT models can iteratively generate the output sequence with fewer steps than
AR methods, at the cost of global calculation. Additionally, some works have introduced context
perception into AR models. For example, XLNet (Yang, 2019) integrates insights from BERT by
permuting the input sequence to enable bidirectional training with AR models. On image modality,
our work not only provides further unification of AR and BERT models but also builds a smooth
path connecting AR and BERT, where one can train models with both their merits.

2.2 AUTOREGRESSIVE IMAGE GENERATION

By tokenizing continuous images into discrete tokens using VQ-VAE (Van Den Oord et al., 2017;
Razavi et al., 2019; Esser et al., 2021), image synthesis can be accomplished by AR models (Esser

3
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Table 2: Some examples on SAR setting.
rand(N,K) means randomly generate K nat-
ural numbers, whose total sum is N .
SAR order #sets intervals

AR raster N 1, 1, 1, ...

VAR custom log4N + 1 1, 4, 16...

MAR random 1 rand(N, 2)

Transition random K rand(N,K)

Table 3: Model setting of Fully Masked Trans-
former. The numbers of encoder and decoder lay-
ers are set equal for simplicity. Other configura-
tions follows LlamaGen (Sun et al., 2024).
SAR Parameters Enc. Layers Dec. Layers Width Heads

B 125M 6 6 768 12

L 394M 12 12 1024 16

XL 893M 18 18 1280 20

et al., 2021; Lee et al., 2022; Ramesh et al., 2021; Yu et al., 2021; 2022; Liu et al., 2024; Luo et al.,
2024) just like language modeling. Recently, Llamagen (Sun et al., 2024) verifies the generation
capability of plain LLM, Llama (Touvron et al., 2023) on image modality. VAR (Tian et al., 2024)
divides the image latent space into several scale groups by training a multi-scale VAE, and conduct
next-scale prediction. Li et al. (2024) points out that the BERT-like image generation models (e.g.,
MaskGIT (Chang et al., 2022), MagViT (Yu et al., 2023a;b), MAGE (Li et al., 2023), MAR (Li
et al., 2024)) can also be regarded as autoregressive ones at inference, and as a result, we call BERT-
like image generation models as MAR models. AutoNAT (Ni et al., 2024) revisits and improves
the designs of training and inference of MAR models. Li et al. (2024) additionally shows that
autoregressive image generation can also be conducted on continuous latent space with diffusion
loss. Our proposed SAR paradigm can encompass the existing approaches as special instances,
and provide the users with more flexible design space regarding various trade-offs. The supporting
model of SAR is built upon LlamaGen (Sun et al., 2024) for its plain nature.

3 METHOD

In this section, we first review the AR and MAR paradigms. Then, we point out that conceptually
these two methods differ in sequence order and output intervals, based on which we introduce Set
AutoRegressive Modeling (SAR), and present the model design.

3.1 PRELIMINARY

AutoRegressive Modeling (AR). AR models the distribution of a token sequence {x1, x2, ..., xn}
by the ‘next-token prediction’ objective defined as

p(x1, ..., xn) =

n∏
i=1

p(xi|x1, ..., xi−1) , (1)

where p(x1, x2, ..., xn) is the probability density function. Regarding the implementation, AR mod-
els are typically a decoder-only transformer with causal masks, as shown in Fig. 2 (a1). During
training, the input to the model is set as the sequence shifted by one position, i.e., dropping the last
token, and padding a class token at the beginning (under the class-conditioned setting). The target
is the original sequence, such that each output token is aligned with its ‘next token’. At inference,
the model can output tokens one by one in an autoregressive manner.

Masked AutoRegressive Modeling (MAR). MAR has recently been abstracted by Li et al. (2024),
which describes the inference process of BERT-like (Devlin, 2018) image generation methods
(Chang et al. (2022); Li et al. (2023); Yu et al. (2023a;b); Li et al. (2024)). In training, the in-
put tokens are partially random masked with a high ratio (e.g., 70%− 100% in Li et al. (2024)), and
the model is trained to learn to predict the masked part. Fig. 2 (a2) and (d2) illustrate that AR trains
n sub-processes in a single iteration, while MAR processes one sub-process at a time. At inference,
these methods can predict multiple tokens at once, costing less number of steps than AR models.
However, because the masked modeling process is not causal, it cannot support causal techniques,
e.g., KV cache acceleration. Li et al. (2024) define ‘next set-of-tokens prediction’ as

p(x1, ..., xn) = p(X1, ..., XK) =

K∏
k=1

p(Xk|X1, ..., Xk−1) , (2)
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Algorithm 1 SAR Training
Input: Dataset D, Model M , Loss Function L,
Sequence Order od, Output Intervals intv
Output: Model M
for image code x, label y in D do
x← rearrange(x,od), t← x
x← drop last(x,intv[−1])
x← concat(y, x)
me,mds,mdc ← gen masks(intv)
o←M(x,me,mds,mdc,od)
l← L(o, t), backpropagate l

end for
return M

Algorithm 2 SAR Inference
Input: Model M , Label y, Sequence Or-
der od, Output Intervals intv
Output: Image Code x
x← zero initialize(sum(intv))
me,mds,mdc ← gen masks(intv)
for i in intv do

o←M(y,me,mds,mdc,od, i)
z ← sample(o)
y ← concat(y, z)
x← scatter(x, z,od, i)

end for
return x

where Xk = {xi, xi+1, ..., xj} is a set of tokens to be predicted at the k-th step. Eq. equation 2
generalizes vanilla next-token prediction Eq. equation 1 at inference time.

3.2 SET AUTOREGRESSIVE MODELING

Sequence order and output intervals characterize autoregressive paradigms. Actually, the to-
ken sequence in any output order can be rearranged into a causal one. AR is the simplest case
whose input sequence is inherently causal. The other two instances with respect to an 8 × 8 image
token grid are shown in Fig. 3. The left order is derived by downsampling the tokens using nearest
neighbor interpolation (so the token value stays unchanged after interpolation). We make the model
progressively output tokens downsampled with a scale factor of 1/8, 1/4, and 1/2, and finally the
rest of the tokens in a scale-aware order. It shares a similar spirit with VAR (Tian et al., 2024), so we
call it a ‘next-scale’ variant. In this case, we can rearrange the tokens in the scale order. The right
subfigure corresponds to mask modeling. By putting the unmasked tokens at the front and masked
ones as the rest, we also derive a causal sequence.

Next, we consider the output intervals. For example, the output intervals of the ‘next-scale’ variant
in Fig. 3 are 1, 4, 16, 43, while those of the masked variant are the number of masked tokens and
unmasked tokens. Since these variants output multiple tokens in each interval, they should be paired
with generalized causal masks in training. Some conceptual instances are shown in Fig. 2 (b1, c1,
d1), where generalized causal masks extend the classical causal mask (a1) to a block-wise format.
The generalized causal mask can be uniquely determined by the output intervals.

SAR generalizes AR by extending the sequence order and the output intervals to any possible sce-
narios. In Fig. 2 (a1, d1) we can see that the causal mask of AR and MAR are two extreme case. In
the intermediate states of SAR, one can train causal models with few-step inference enabled, which
do not appear in either AR or MAR families. For example, if a 8-token sequence is split into 4
sets with 1, 2, 2, 3 tokens, the causal mask should be like that in Fig. 2 (b1). In short, SAR extends
‘next-set prediction’ in Eq. 2 to the training phase.

The model implementation—Fully Masked Transformer. The realization of SAR is not straight-
forward, though. Classical AR models, e.g., the decoder-only transformer fails in three aspects. i)
When AR shifts the sequence to align the current set with the previous set, it will find the number
of tokens may not be equal. ii) AR models can only model the output-seen relations with fixed and
simple ‘next token’ forms of relative positional relationships, rendering them ineffective in complex
scenarios involving arbitrary sets. iii) Given a token at a specific position, AR models output it
based on its relative steps to the first token, leading to failure when outputting arbitrary sets. These
drawbacks inspire the design philosophy: i) the model should have perception of absolute positions
for outputting arbitrary token sets, and ii) the output tokens and the seen tokens should be placed
into two containers, each with positional encoding, to facilitate their position-aware interaction.

Hence, we split the decoder-only transformer into two parts, an encoder and an decoder. The
encoder takes in the image tokens and extract the semantic features. The decoder records
the output position with position embeddings and models the interaction between output tokens
and seen tokens from the encoder, at the cost of adding cross-attention in each decoder layer.
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(a) Naïve Padding Solution

(b) Fully Masked Transformer

Dropped
Image Tokens
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Figure 4: The model architecture of Fully Masked
Transformer. Conceptually, it is the transformer in
Vaswani (2017) plus generalized causal masks.

Additionally, generalized causal masks are
added into each attention process, in the spirit
of ‘the current token set to be predicted can
only see preceding sets’. In short, it can be
regarded as a vanilla encoder-decoder trans-
former (Vaswani, 2017) with generalized causal
masks in all attention processes. Consequently,
we refer to it as the Fully Masked Transformer
(FMT). Due to the fully causal feature, FMT
naturally supports causal techniques like KV
cache acceleration.

The training procedure. In order to train one
model under the SAR framework, one should
first specify the hyper-parameters, sequence or-
der and output intervals. Based on the order
setting, we first rearrange the sequence to the
causal version (Fig. 3). And we set the target
as the rearranged causal sequence. Next, based
on the output intervals, we drop the last set of
the rearranged sequence and prepend a class to-
ken. The resulting sequence is then fed into the
encoder. Then the model can be trained with
the common cross entropy loss. We list several
combinations of sequence order and output in-
tervals in Table 2, where we also add the num-
ber of sets for better understanding. The overall
training procedure is illustrated in Algorithm 1.

The inference configuration. Since our work
is a generalized AR framework, SAR naturally supports advanced strategies developed for AR mod-
els, such as top-k, top-o, and min-p sampling. In this work, we directly apply some simple strategies
for inference; one may also customize their own inference schedules. The inference algorithm is
summarized in Algorithm 2.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETTINGS

We conduct exploratory experiments on ImageNet (Deng et al., 2009) 256 × 256 benchmark. We
use the tokenizer provided by Sun et al. (2024), and precompute the image codes before training as
in Sun et al. (2024). We always use a batch size of 256 and learning rate of 1e − 4 during training.
Models in the transition states SAR-TS in Table 4 is trained for 300 epochs, while all other models
are trained for 200 epochs. Other training settings follow Sun et al. (2024). For evaluation, we report
the common used FID (Heusel et al., 2017), IS (Salimans et al., 2016), Precision and Recall metrics.
Unless otherwise specified, the default setting is cfg=2.0, top-k=0 (all), top-p=1.0, temperature=1.0.
The evaluation is conducted following Dhariwal & Nichol (2021).

4.2 HYPER-PARAMETERS IN SAR

Configuration on sequence order and output intervals for training. We test several hyper-
parameter combinations containing some common settings and two customized ones named ‘next-
scale’ and ‘masked modeling’. Among the common settings, we control the sequence order, the
output schedule, and the number of sets, where the latter two jointly determine the output intervals.
There are six choices in order.

The first four is shown in Fig. 5. (a) The ‘raster’ order is the classical AR order, while (b) is
its reversed version. (c) and (d) are the ‘Swiss roll’, clockwise, from outside to inside and from
inside to outside respectively. The other two are fixed-random and random. The former means that
we randomly generate an order and fix it during training, while the latter indicates online random.
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Figure 5: Some sequence order settings in the experiment.
Taking the 8× 8 case as illustration.

There are two types of output sched-
ules involved, which can determine
the output intervals based on the
number of sets as follows: i) co-
sine: given a set number K, the out-
put intervals {ni}K1 follows ni =
[N(cos(π2

i
K )−cos(π2

i−1
K ))], as in Li

et al. (2024). Note: here at least one
token is ensured to be output at each
step, thus given sequence order as raster and step number as 256, it will recover to AR. ii) random:
given a set number K, we randomly generate K − 1 natural numbers (there may be equal numbers)
between 0 and N with the same probability, such that the sequence can be split into K intervals
by these partition numbers. Under the common settings, we conduct experiments in the format
of (sequence order)-(number of sets)-(output schedule). For example, raster-64-cosine indicates a
raster-order sequence with 64 sets under a cosine schedule.

The customized settings includes i) next-scale: we rearrange the 16 × 16 image tokens such that
the 1st set contains the 1/16 nearest neighbor downsampled token, the 2nd set contains the four 1/8
downsampled tokens, ..., the 5th set contains the rest of tokens, as illustrated on the left of Fig. 3,
and ii) masked modeling: we follow the settings in Li et al. (2024). Actually it can be derived by
removing the loss of the first token set and modifying the random strategy in ‘random-2-random’.

Configuration on model size of FMT. The implementation of FMT is based on the GPT model in
LlamaGen (Sun et al., 2024). For simplicity, we do not adopt the asymmetric design in He et al.
(2022), but just divide the N -layer transformer into an encoder and a decoder, each with an equal
number of layers. One can refer to Table 3 for detailed model configurations. Compared with
LlamaGen, we add an extra cross-attention module at each decoder layer, so under the same model
size, the number of parameters of FMT is slightly larger.

4.3 MAIN RESULTS

Figure 7: Trade-off between
performance and time, using
LlamaGen-L as a reference.

Table 4 presents a comprehensive comparison of performance
across various methods and models, where we train models for each
AR setting within the SAR paradigm.

SAR as AR. The raster-256-cosine variant of SAR recovers to con-
ventional AR. We evaluate the performance of FMT-B, FMT-L, and
FMT-XL trained for 200 epochs, with the results presented in Ta-
ble 4. Under the same setting (stared in Table 4), FMT outperforms
LlamaGen under the same model size.

SAR as MAR. SAR recovers to MAR under the ‘masked modeling’
setting. The performance of FMT is also shown in Table 4.

SAR as VAR, analogously. By customizing the sequence order and
output intervals as ‘next-scale’, illustrated on the left side of Fig. 3,
we derived a rough variant of VAR. The results are presented in Table 4. While this serves primarily
as a conceptual example, its performance lags significantly behind that of VAR (Tian et al., 2024).

Transition states of SAR. The last three rows of Table 4 present the performance (64 steps) of a
specific design choice in the transition states of SAR, which will be detailed in the ablation study.
Compared to FMT under the AR configuration, the performance in this case is somewhat lower.
However, models trained under this setting can generalize across inference steps and orders while
maintaining their causal features. A straightforward merit is that, we can enable KV cache accel-
eration while performing few-step inference. A diagram on performance-time trade-off is shown in
Fig. 7, where the inference time is tested by generating a batch of 8 images on one A100 GPU. And
of course, we can also apply other causal techniques to promote the performance or efficiency.

4.4 ABLATION STUDY

Varying sequence orders in training/inference. Table 5 presents the results obtained by fixing the
output intervals to 1, 1, . . . while training and inferring with various sequence orders. It is clear that
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Table 4: Performance comparison among various paradigms and models. ‘-re’ means rejection
sampling. For LlamaGen (Sun et al., 2024), * means direct training on 256×256 images; otherwise,
training is on 384× 384 and the output is resized in evaluation. ‘TS’ denotes transition state.
Type Model #Params FID↓ IS↑ Precision↑ Recall↑

GAN
BigGAN (Brock, 2018) 112M 6.95 224.5 0.89 0.38

GigaGAN (Kang et al., 2023) 569M 3.45 225.5 0.84 0.61
StyleGAN-XL (Sauer et al., 2022) 166M 2.30 265.1 0.78 0.53

Diffusion

ADM (Dhariwal & Nichol, 2021) 554M 10.94 101.0 0.69 0.63
CDM (Ho et al., 2022) - 4.88 158.7 - -

LDM-4 (Rombach et al., 2022) 400M 3.60 247.7 - -
DiT-XL/2 (Peebles & Xie, 2023) 675M 2.27 278.2 0.83 0.57

Masked AR

MaskGIT (Chang et al., 2022) 227M 6.18 182.1 0.80 0.51
MaskGIT-re (Chang et al., 2022) 227M 4.02 355.6 - -

MAGE (Li et al., 2023) 230M 6.93 195.8 - -
MAR-H (Li et al., 2024) 943M 1.55 303.7 0.81 0.62

(SAR, K=1) FMT-B 125M 6.98 222.28 0.87 0.36
FMT-L 394M 6.13 278.81 0.88 0.40

VAR VAR-d30-re (Tian et al., 2024) 2.0B 1.80 356.4 0.83 0.57
(SAR, customized) FMT-B 125M 12.49 148.53 0.76 0.36

AR

VQGAN-re (Esser et al., 2021) 1.4B 5.20 280.3 - -
ViT-VQGAN-re (Yu et al., 2021) 1.7B 3.04 227.4 - -

RQTran.-re (Lee et al., 2022) 3.8B 3.80 323.7 - -
LlamaGen-B* (cfg=2.00) 111M 5.46 193.61 0.84 0.46
LlamaGen-L (cfg=2.00) 343M 3.07 256.06 0.83 0.52

LlamaGen-XL (cfg=1.75) 775M 2.62 244.08 0.80 0.57
LlamaGen-L* (cfg=2.00) 343M 4.41 288.17 0.86 0.48

LlamaGen-XL* (cfg=1.75) 775M 3.39 227.08 0.81 0.54
(SAR, K=N) FMT-B (cfg=2.00) 125M 5.40 216.93 0.87 0.42

FMT-L (cfg=2.00) 394M 3.72 297.54 0.86 0.49
FMT-XL (cfg=1.75) 893M 2.76 273.76 0.84 0.55

SAR-TS
FMT-B (cfg=2.00) 125M 7.04 182.01 0.84 0.40
FMT-L (cfg=2.00) 394M 4.75 261.27 0.84 0.46

(random-16-random) FMT-XL (cfg=1.90) 893M 4.24 249.23 0.82 0.51

Table 5: FID results of training/inference with different order set-
tings. The model is FMT-B.

Training/inference raster reversed-raster roll reversed-roll fixed-random random

raster 5.40 136.54 114.41 99.13 132.61 120.82
reversed-raster 133.18 6.01 123.47 118.67 146.48 138.29
roll 81.93 114.23 6.93 133.50 130.28 117.69
reversed-roll 125.78 134.25 155.04 6.44 128.62 125.56
fixed-random 104.24 117.23 116.58 103.03 7.49 86.90
random 22.95 22.91 13.66 10.32 7.83 7.76 Figure 6: Effect of order.

although position embeddings are used, a fixed sequence order typically does not allow the model
to generalize across different inference orders.

Fixed few-step generation. By fixing the sequence order to the raster order and using a cosine
schedule for the intervals, we investigate few-step SAR training by varying only the number of sets.
As illustrated on the left of Fig. 8, we observe that, i) since both the order and the schedule are fixed,
the best inference performance typically occurs when the number of sets used at inference matches
that used in training; ii) from the inset in the upper right, it is evident that only the 64-set configura-
tion is effective for few-step generation, while the others significantly degrade performance.

Randomness in orders enables few-step generalization. We fix the number of sets at 256 and
the interval schedule to 1, 1, . . ., varying only the sequence order. As shown in Fig. 6, models
trained with the raster, reversed raster, roll, and reversed roll orders struggle to generalize to few-
step generation. In contrast, models trained with a random order demonstrate good generalization
across inference steps, albeit at the cost of lower FID scores (5.40 FID with raster order vs. 7.76
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Figure 8: Effect of set numbers when training SAR with (left) raster order and cosine schedule,
(middle) raster order and random schedule, and (right) random order and cosine schedule.

Figure 9: Exploration when sequence order and output schedule are both set as random. Left:
Performance wrt. number of sets. Middle: After causal training, comparison between causal and
full attention calculation. Right: Training loss of various set numbers.

FID with random order). It may be surprising that fixing a randomly generated order during training
can achieve similar generalization ability to that of a fully random order.

Random output intervals enables few-step generalization. We fix the sequence order to raster and
use a random schedule with varying numbers of sets. The results on the middle of Fig. 8 indicate that
when the number of sets is large (e.g., 64 or 256), random intervals facilitate few-step generalization.

The relationship between number of sets and causal learning. Under the setting of random
sequence order, we examine performance in relation to the number of sets. Figures 8 (right) and 9
(left) show the results with cosine and random output schedules, respectively. We observe that,
with a large number of sets, performance remains stable; however, it declines significantly when
the set number decreases to 4 in the cosine case and 2 in the random case. Intuitively, to develop
a causal model, the model must be trained to predict sets one by one, with more sets indicating a
greater degree of causality. If the number of sets is too small, the model struggles to learn causal
relationships effectively. Another interesting observation is that, after trained with small number
of sets, abandoning causality can help restore performance. As shown in the middle of Fig. 9, the
performance of the model trained with 2 sets gets better when replacing the causal attention with
full attention. However, model trained with other set numbers cannot benefit from full attention,
because they receive more sufficient causal learning. The last subfigure of Fig. 9 illustrates the loss
curves during training, where the level of loss may be regarded as a measure of training difficulty.
The loss of the best-performing configuration, 16 sets, is situated at a mid-level.

Further discussion on the MAR setting of SAR. There are some details that need to be clarified.
i) In Sec. 4, we mentioned that the MAR setting is derived based on ‘random-2-random’ by only
supervising the second set, and using the random strategy in Li et al. (2024). From Table 6, Row
1 vs. Row 2 tells us that, with the same model, removing the loss of the first set has little impact
on model training; not removing it may even lead to better performance. This fact demonstrates
that the transition from K = 2 to K = 1 (i.e., MAR) in SAR is smooth. ii) It is worth noting
that, in the MAR case the generalized causal masks in the encoder self-attention and decoder cross-
attention is equivalent to having none. And only the causal mask in decoder self-attention will affect
the training. Intuitively, there is no need to prepare causal mask in training because at inference
MAR always conduct global attention. Row 1 vs. Row 3 in Table 6 indicates that the existence of
causal mask in decoder self-attention hurts the performance. iii) Row 4 is a setting from Fig. 9. The
large discrepancy in performance between Row 2 and Row 4 emphasizes the importance of proper
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Table 6: Relationship between performance and detailed MAR settings. The inference process is
BERT-like, with full attention.
Row Random Strategy K Causal Mask in Decoder Self-Attn FID↓ IS↑ Precision↑ Recall↑

1 MAR (Li et al., 2024) 1 ! 8.81 148.36 0.76 0.46
2 MAR (Li et al., 2024) 2 ! 7.19 183.31 0.83 0.39
3 MAR (Li et al., 2024) 1 % 6.98 222.28 0.87 0.36
4 Equal Probability 2 ! 29.20 46.91 0.65 0.52

random strategy. This also suggests that our strategy for SAR transition states may not be optimal,
which could explain the sub-optimal SAR-TS results in Table 4.

4.5 APPLICATION: TEXT-TO-IMAGE GENERATION

1 step 4 steps, 0.50s 8 steps, 0.68s 16 steps, 0.97s 32 steps, 1.71s 64 steps, 3.35s 128 steps, 6.14s

Figure 10: Step number and time cost of Lumina-SAR at 1024×1024 (Full 4096 steps cost 187.8s).

We leverage the FMT-XL model for text-to-image (T2I) generation. The sequence order and the out-
put schedule are set as random, the best practice with random order in ImageNet experiments. We
adopt the training strategy with multiple aspect ratios enabled in Gao et al. (2024); Zhuo et al. (2024)
and the multi-stage policy in Zhuo et al. (2024); Sun et al. (2024); Chen et al. (2024). Specifically,
we set the number of sets as 16 and the base resolution as 256× 256 in the first stage, and gradually
increase the number of sets and the base resolution by a factor of 2. The final resolution is 1024. At
each training stage, we group images with different aspect ratios but similar resolutions, which are
further padded to the same length. As for the language part, we adopt the Gemma-2B (Team et al.,
2024) as the text encoder and concatenate the text embedding with the image tokens, with the con-
ventional causal mask like that in Fig. 2 (a1). Other training settings including text-image training
data are following Zhuo et al. (2024), and we name our T2I model as Lumina-SAR. As visualized
in Fig. 1, Lumina-SAR can flexibly produce photo-realistic images in arbitrary resolutions.

We examine the time cost of Lumina-SAR for generating one image using one A100 GPU, as illus-
trated in Fig. 10. We observe that Lumina-SAR begins to produce acceptable images at around 4 to
8 steps. With 64 to 128 steps, it can deliver high-quality outputs, requiring a processing time of only
3 to 6 seconds. Typically, the full 4096 steps take 56 times longer than that required for 64 steps.

5 CONCLUSION

In this work, we propose Set AutoRegressive Modeling (SAR), a new AR paradigm that enables
users to freely customize the AR training and inference processes. For SAR, we also develop a
preliminary model architecture called the Fully Masked Transformer. We carefully explore the
properties of SAR, with a particular focus on the intermediate states, which facilitate training models
capable of both few-step generation and KV cache acceleration. Additionally, we train a T2I model
under the SAR paradigm to validate the generation capabilities at the transition states of SAR.

Limitation. As a newly emerging paradigm, the exploration of SAR in this paper is limited, partic-
ularly concerning the performance of SAR intermediate states on ImageNet. Future work may focus
on developing better training and inference schedules, designing model architectures that are more
compatible with SAR, and exploring the application of SAR across additional modalities.
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A APPENDIX

A.1 MORE VISUALIZATIONS ON IMAGENET.

For 256 × 256 image generation on ImageNet, we generate some random samples that are not
cherry picked. Fig. 11 and Fig. 12 exhibit samples produced by FMT-XL trained under the random-
16-random and raster-256-cosine settings, respectively.

Figure 11: Samples generated by FMT-XL trained with SAR, random-16-random.
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Figure 12: Samples generated by FMT-XL trained with SAR, raster-256-cosine (i.e., classical AR).

A.2 MORE VISUALIZATIONS ON T2I IMAGE SYNTHESIS

We provide additional visualizations generated by Lumina-SAR, and show them in Fig. 13.

A.3 DETAILS ON FULLY MASKED TRANSFORMER

The position embedding as input to the decoder can be either learnable or fixed, such as sine embed-
ding. In class-conditioned generation, we use learned embedding as in Li et al. (2024). In the T2I
model, we use sine embedding to accommodate training with multiply aspect ratios: after each input
image is fed into FMT, we first generate its sine embedding. Similar to LlamaGen (Sun et al., 2024),
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Figure 13: Samples generated by Lumina-SAR. The model is FMT-XL trained under the random-
x-random setting of SAR, where x is set as 16, 32 and 64 at the stage of 256× 256, 512× 512 and
1024× 1024 respectively.

we use RoPE Su et al., 2024 to enable the position-aware interaction. Both the position embedding
and RoPE are rearranged like what is done to the input tokens according to the sequence order, such
that the positions are aligned.

A.4 THE PERFORMANCE WRT. EVALUATION CONFIGURATIONS

We provide the results when adjusting the scale of classifier-free guidance and the top-k values in
Fig. 14, where we use FMT-L trained under the random-16-random setting for 300 epochs and the
number of sampling steps is set to 64. We observe behavior in SAR that is similar to that of classical
AR models.

Figure 14: The effect of cfg scale (left), and top-k sampling (right).

A.5 AN ISSUE ON THE GENERATION OF SAR-TS ON IMAGENET

We found that the SAR-TS models frequently encounter framing misalignment issues when generat-
ing images, which may be the reason for its higher FID scores. Some randomly generated examples
are shown in Fig. 15. In a simultaneously generated batch of 8 images, the first, third, fifth, seventh
and eighth exhibit this issue.
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Figure 15: The framing misalignment issue on generated samples by SAR-TS models.

18


	Introduction
	Related Work
	Autoregressive and Masked Modeling
	Autoregressive Image Generation

	Method
	Preliminary
	Set AutoRegressive Modeling

	Experiments
	Experimental Settings
	Hyper-parameters in SAR
	Main results
	Ablation Study
	Application: Text-to-Image Generation

	Conclusion
	Appendix
	More Visualizations on ImageNet.
	More Visualizations on T2I Image Synthesis
	Details on Fully Masked Transformer
	The Performance wrt. Evaluation Configurations
	An Issue on the Generation of SAR-TS on ImageNet


