
AssistanceZero: Scalably Solving Assistance Games

Cassidy Laidlaw 1 Eli Bronstein 1 Timothy Guo 1 Dylan Feng 1 Lukas Berglund 1 Justin Svegliato 1

Stuart Russell 1 Anca Dragan 1

Abstract

Assistance games are a promising alternative to
reinforcement learning from human feedback
(RLHF) for training AI assistants. Assistance
games resolve key drawbacks of RLHF, such as
incentives for deceptive behavior, by explicitly
modeling the interaction between assistant and
user as a two-player game where the assistant
cannot observe their shared goal. Despite their
potential, assistance games have only been
explored in simple settings. Scaling them
to more complex environments is difficult
because it requires both solving intractable
decision-making problems under uncertainty
and accurately modeling human users’ behav-
ior. We present the first scalable approach to
solving assistance games and apply it to a new,
challenging Minecraft-based assistance game
with over 10400 possible goals. Our approach,
AssistanceZero, extends AlphaZero with a neural
network that predicts human actions and rewards,
enabling it to plan under uncertainty. We show
that AssistanceZero outperforms model-free
RL algorithms and imitation learning in the
Minecraft-based assistance game. In a human
study, our AssistanceZero-trained assistant
significantly reduces the number of actions
participants take to complete building tasks in
Minecraft. Our results suggest that assistance
games are a tractable framework for training
effective AI assistants in complex environments.
Our code and models are available at https:
//github.com/cassidylaidlaw/
minecraft-building-assistance-game.

1University of California, Berkeley, CA, USA. Correspondence
to: Cassidy Laidlaw <cassidy laidlaw@cs.berkeley.edu>.

Proceedings of the 42nd International Conference on Machine
Learning, Vancouver, Canada. PMLR 267, 2025. Copyright 2025
by the author(s).

Human digs
outline of

foundation Assistant begins breaking
blocks within the outline

Human + assistant finish
the foundation together

Digging a foundation: the assistant watches the human outline the house’s
foundation and then digs it out.

Assistant watches human
begin to build roof

Assistant continues building
roof; human free to build
rest of house

Assistant completes roof

Building a roof: the assistant infers the structure of the roof from human actions
and completes it while the human builds another part of the house.

Assistant has built stone
walls one block too tall

Human breaks one of the
incorrect blocks

Assistant breaks the remaining
blocks that are too tall

Learning from corrections: the assistant builds the walls too tall, but when the
human breaks one of the blocks it learns the correct height and breaks the others.

Figure 1: We develop an AI assistant that helps users build
houses in Minecraft using assistance games, an alternative
to reinforcement learning from human feedback (RLHF).
Our assistant helps real human players build a variety of
goal houses it has never seen during training. It displays
emergent behaviors like understanding pragmatic communi-
cation and learning from corrections.

1. Introduction
The pipeline of pretraining, supervised fine-tuning (SFT),
and reinforcement learning from human feedback (RLHF)
or its variants has become the dominant paradigm for train-
ing general AI assistants. RLHF involves fine-tuning pre-
trained foundation models to take actions (i.e., produce
responses) that are preferred by human annotators accord-
ing to criteria like helpfulness and harmlessness (Bai et al.,
2022). However, RLHF-trained assistants have a number of
drawbacks. Annotators can be fooled into giving positive
feedback for unhelpful actions, incentivizing deceptive or
manipulative assistant behavior (Lang et al., 2024; Williams
et al., 2025). Furthermore, RLHF does not encourage mod-
els to maintain uncertainty about a user’s goals; the objective
of producing highly rated single-turn responses discourages
the assistant from asking clarifying questions or hedging its

1

https://github.com/cassidylaidlaw/minecraft-building-assistance-game
https://github.com/cassidylaidlaw/minecraft-building-assistance-game
https://github.com/cassidylaidlaw/minecraft-building-assistance-game

AssistanceZero: Scalably Solving Assistance Games

1

2

3

4

5

Human judgements
of helpfulness

-40%

-20%

0%

+20%

Change in human
place/break actions

vs. playing alone

Pretraining
+ SFT

Assistance
game (ours)

Human
assistant

Figure 2: In a human study, we find that our assistant signif-
icantly reduces the number of actions taken by participants
when compared to building without an assistant. Our assis-
tance game-based assistant is judged as considerably more
helpful than one trained with a pretraining and supervised
fine-tuning (SFT) pipeline, and is rated nearly as helpful
as an expert human assistant. Error bars on the left plot
indicate 90% confidence intervals; box plots on the right
indicate the median, quartiles, range, and outliers.

responses (Shani et al., 2024). Non-chatbot AI assistants
like GitHub Copilot (Chen et al., 2021) suffer similar prob-
lems: when a coding task is ambiguous, Copilot cannot ask
for clarification. Furthermore, autocomplete assistants like
Copilot do not take into account the collaborative nature
of assistance—an AI assistant’s actions should complement
its user’s actions rather than merely predicting or replacing
them.

An alternative paradigm for training AI assistants is assis-
tance games (Fern et al., 2014; Hadfield-Menell et al., 2016;
Shah et al., 2020). Assistance games avoid the aforemen-
tioned drawbacks of RLHF by explicitly accounting for both
the interactive nature of assistance and uncertainty about the
user’s goal. In particular, an assistance game is a two-player
game in which an assistant and a user take actions in a shared
environment (Figure 3b). The two agents share a reward
function, but crucially the assistant is initially uncertain
about it. Assistance games remove incentives for deception
since the assistant’s performance depends on the true latent
reward function, rather than human feedback. They also
incentivize the assistant to interact with the user to resolve
its uncertainty. Finally, solving assistance games results in
assistants whose actions complement the user’s actions to
achieve optimal joint performance. In the conclusion (Sec-
tion 6), we envision a recipe for applying assistance games
to LLM post-training to replace RLHF.

Given the advantages of assistance games, why do they
remain a poorly studied method for training AI assistants?
Assistance games have been used to solve very toy problems,
but have been largely dismissed in complex settings due to

seemingly insurmountable challenges. First, the AI assistant
must maintain uncertainty over reward functions and make
decisions under that uncertainty, which is considered com-
putationally intractable (Papadimitriou & Tsitsiklis, 1987;
Madani et al., 2003).

Second, unlike RLHF, solving assistance games requires
a human model that can predict a human’s response to AI
actions. An accurate human model is essential to produce a
value-aligned AI (Fisac et al., 2020); if the AI assistant fails
to understand human communication strategies, it could
perform poorly with real humans (Carroll et al., 2019). Past
work on assistance games has used RL- or planning-based
human models (Woodward et al., 2020; Zhi-Xuan et al.,
2024), which can differ significantly from real human be-
havior.

We tackle these challenges and show that complex assis-
tance games can be tractably solved. To do so, we introduce
a new assistance game benchmark, the Minecraft Building
Assistance Game (MBAG), in which an AI assistant helps
a human build a goal structure in a Minecraft-based envi-
ronment without prior knowledge of the goal (Figure 1).
Creating an effective assistant in MBAG is a major chal-
lenge because the distribution over goal structures is highly
complex, and the number of possible goals is far larger than
in prior work (over 10400, compared to less than 20); the
state and action spaces are significantly larger as well.

Using MBAG, we investigate whether deep reinforcement
learning (RL) algorithms are capable of solving assistance
games. We find that PPO, a popular model-free RL al-
gorithm, can easily build known goal houses in MBAG;
however, it struggles to help when the goal structure is un-
known. We believe PPO fails because it requires learning
both how to predict the goal and act based on its predictions
simultaneously from high variance feedback.

Thus, to better solve assistance games, we introduce a new
algorithm called AssistanceZero that separates prediction
and action by extending AlphaZero (Silver et al., 2017).
Similarly to AlphaZero, AssistanceZero combines Monte
Carlo tree search (MCTS) with a neural network to choose
actions. AssistanceZero employs a neural network with
additional heads that predict rewards and human actions,
which are used by MCTS to effectively plan under uncer-
tainty (Figure 4). AssistanceZero results in much more
effective assistants than PPO (Table 1). We also tackle the
second challenge of solving assistance games by exploring
how to develop effective human models that produce helpful
assistants. Interestingly, we find that the best human models
in MBAG also combine MCTS with imitation learning, a
method known as piKL (Jacob et al., 2022).

We compare policies trained via an assistance game to
those trained with other approaches, such as a pipeline

2

AssistanceZero: Scalably Solving Assistance Games

R(s, aR)

aR

s

(a) RLHF

R(s, aH, aR;θ)

aH

s

aR

s

Reward/goal
parameters θ

(b) Assistance game

Figure 3: Assistance games are an alternative paradigm to
RLHF for developing helpful and harmless AI assistants.
In RLHF (top), an assistant policy is trained to take in the
environment state (e.g., human chat messages) and produce
an action (e.g., a response message). The assistant policy
is trained to maximize a reward function which is learned
from human feedback. In contrast, in assistance games (bot-
tom), the human is assumed to be another agent acting in
the same environment as the assistant, rather than an exoge-
nous source of feedback. The human and assistant share a
reward function, but it depends on reward parameters that
are initially known only to the human.

analogous to pretraining and SFT. In MBAG, we find that
AssistanceZero-trained assistants greatly outperform those
trained with pretraining+SFT or other approaches, both with
our best human model (Table 3) and with real humans (Fig-
ure 2). The AssistanceZero assistant displays many helpful
emergent behaviors, such as adapting based on corrections
(Figure 1). Overall, our results suggest that assistance games
are tractable to scale and can be a superior framework for
training helpful assistants in challenging environments. We
believe our approach can be extended to creating assistants
for a range of real-world settings, such as AI pair program-
mers that help solve coding tasks.

Our contributions may be summarized as: (1) we overcome
the difficulties of solving assistance games by proposing
AssistanceZero, a new model-based RL algorithm; (2) we
show that assistant policies trained via assistance games out-
perform those trained via other assistance paradigms, both in
simulation and with real humans; (3) we introduce MBAG,
a benchmark for assistance games with exponentially more
goals than in prior work; and, (4) we investigate approaches
to human modeling and determine the most effective human
models for solving assistance games.

2. Background and related work
We begin by introducing the assistance game formalism and
surveying related work. An assistance game is a Markov
game in which two players, the human H and the assistant
R, interact to optimize a shared reward function. It consists
of a state space S , action spaces AH and AR for the human
and assistant, a set of possible reward parameters Θ, and
a discount factor γ ∈ [0, 1]. The reward parameters can
represent any information that encodes the shared goal or
task; for example, in a coding task, they could consist of
a set of test cases that the solution should pass. Reward
parameters and an initial state are sampled from a predefined
distribution p(s1, θ). At each timestep t = 1, . . . , T , both
agents select actions aHt ∈ AH, aRt ∈ AR; receive shared
reward R(st, a

H
t , aRt ; θ); and the environment transitions

to state st+1 according to a transition distribution p(st+1 |
st, a

H
t , aRt).

A human policy πH : S × Θ → ∆(AH) defines a dis-
tribution over actions πH(aH | s, θ) given an environ-
ment state and reward parameters. An assistant policy
πR : (S × AH × AR)∗ × S → ∆(AR) defines a dis-
tribution over actions πR(aRt | ht) conditioned on the
state-action history up until the current timestep: ht =
(s1, a

H
1 , aR1 , . . . , st−1, a

H
t−1, a

R
t−1, st). Note that the assis-

tant policy is not conditioned on the reward parameters
since it cannot observe them. While in general a human
policy might also depend on ht, for simplicity we assume
that πH is only conditioned on (s, θ); previous results show
there is an optimal human policy conditioned only on (s, θ)
(Hadfield-Menell et al., 2016). Given a pair of policies
(πH, πR), we can define their joint expected return as

J(πH, πR) = E
[∑T

t=1 γ
t−1R(st, a

H
t , aRt ; θ)

]
,

the expected discounted sum of their shared reward, where
(s1, θ) ∼ p(s1, θ); aHt ∼ πH(aH | st, θ); aRt ∼ πR(aR |
ht); and st+1 ∼ p(st+1 | st, aHt , aRt). For a fixed human
policy πH, we define a best response to it as an assistant
policy πR that maximizes J(πH, πR).

Related work Assistance games were introduced by
Fern et al. (2014) and Hadfield-Menell et al. (2016) under
the names “hidden-goal MDPs” and “cooperative inverse
reinforcement learning.” A few prior works have explored
small-scale assistance games (Dragan & Srinivasa, 2013;
Javdani et al., 2015; Malik et al., 2018; Fisac et al., 2020;
Woodward et al., 2020; Zhi-Xuan et al., 2024) with around
ten or fewer discrete reward parameters, small 2D grid-
worlds, and unrealistic goals, such as collecting lemons
or gemstones. We aim to scale assistance games to much
larger structured reward parameter spaces, similar to the
goals real humans have when interacting with assistants; in
our environment |Θ| ≈ 10400.

Our approach to solving assistance games builds on tech-

3

AssistanceZero: Scalably Solving Assistance Games

niques for scalably solving games (Silver et al., 2017; Brown
et al., 2020; Hu et al., 2021a), modeling human behavior
(Carroll et al., 2019; Laidlaw & Dragan, 2021; Yang et al.,
2022; Jacob et al., 2022), and training effective collabora-
tive agents (Stone et al., 2010; Hu et al., 2020; Treutlein
et al., 2021; Strouse et al., 2021; Hu et al., 2021b; Bakhtin
et al., 2023). Minecraft and Minecraft-like environments
have been previously used as testbeds for assistance and col-
laboration (Szlam et al., 2019; Gray et al., 2019; Bara et al.,
2021; Skrynnik et al., 2022; Kiseleva et al., 2022; Zholus
et al., 2022; Mehta et al., 2024) as well as for general inter-
active learning (Kanervisto et al., 2021; Baker et al., 2022;
Fan et al., 2022; Milani et al., 2023; Wang et al., 2024).

3. The Minecraft Building Assistance Game
To investigate how to solve complex assistance games, we
introduce the Minecraft Building Assistance Game (MBAG).
When designing MBAG, we aimed to satisfy a few desider-
ata to make it a useful environment for studying assistance
games more broadly. First, the distribution over reward pa-
rameters p(θ) should be complex but structured, similar to
human preferences in other domains. As described in the
related work, most past work on assistance games has con-
sidered only a small number of possible reward functions.
Second, there should be a variety of ways for the assistant to
help the human that require varying amounts of information
about the reward function. Finally, the environment should
be tractable for academic labs to train RL agents, making
it feasible to empirically study more complex assistance
games. In the remainder of this section, we describe the
structure and implementation of MBAG.

A state in MBAG consists of a 3-dimensional grid of blocks,
player locations within the grid, and player inventories.
Each location in the grid can be one of ten block types,
including air; we use an 11 × 10 × 10 grid for our exper-
iments. Each agent, or player, can be at any unoccupied
discrete location within the 3-dimensional grid. The action
space consists of a no-op, moving in one of the six cardinal
directions, placing a block, or breaking a block. Place and
break actions are parameterized by a location, and place
actions are also parameterized by a block type. This means
that in the 11× 10× 10 environment there are over 20,000
possible actions. The players can only reach a limited dis-
tance to break or place blocks and many actions are invalid
given the current state (e.g., it is impossible to break an air
block); thus, usually a small subset of all actions are valid.

The reward parameters θ consist of a goal grid of blocks.
To assign rewards for human and assistant actions, we use
the edit distance d(s, θ) between the current state s and
the goal θ, i.e., the minimum number of place and break
block actions necessary to transform s to the goal. The
reward function R(s, aH, aR; θ) = d(s′, θ)− d(s, θ) is the

Overall Human Assistant
Assistant goal % actions goal %

PPO baseline 71.6 ± 1.0 203 ± 3 0.0 ± 0.8
− LSTM 72.4 ± 0.9 200 ± 3 2.2 ± 0.7
+ rew. engineering 74.0 ± 0.9 200 ± 3 3.5 ± 0.7
+ aux. loss 74.1 ± 0.9 191 ± 3 7.2 ± 1.0

AssistanceZero 79.8 ± 0.9 158 ± 3 27.0 ± 1.5
− test-time MCTS 80.2 ± 0.9 158 ± 3 27.3 ± 1.3

Human alone 70.8 ± 1.0 200 ± 3 —

Table 1: Our proposed algorithm AssistanceZero produces
more effective assistants for a fixed human model compared
to a carefully tuned PPO implementation. We evaluate how
well assistant policies perform with an imitation learning-
based human model at building goal structures not seen
during training. See Section 4 for details.

difference in edit distance before and after the assistant and
human actions. This means that correct (incorrect) place or
break actions give a reward of +1 (-1).

At the start of an episode, the goal is sampled from a dataset
of houses based on the CraftAssist dataset (Gray et al., 2019).
We maintain separate train and test datasets to evaluate
generalization. While the human agent can observe the
goal, it is not visible to the assistant. MBAG satisfies our
first desideratum because there is an exponentially large
number of possible goals (on the order of 10400), making
the goal distribution much more complex than prior studies
of assistance games. However, due to the structured nature
of the houses, the assistant can still infer information about
the goals from human interaction. MBAG also satisfies the
second desideratum because some assistant strategies, like
digging a foundation, require very little knowledge of the
goal. On the other hand, adding final decorations requires
specific information. For more details about the MBAG
environment, see Appendix B.

4. Solving assistance games with
AssistanceZero

Using MBAG, we first examine how to solve the complex
problem of sequential decision-making under uncertainty
posed by assistance games. We begin by assuming we have
a fixed human policy πH(aH | s, θ) and study how to find
a best response assistant policy. For now, we use a human
model πH based on imitation learning; see Section 4.3 for
more details about our approach to human modeling.

4.1. PPO fails to solve assistance games

Shah et al. (2020) show that finding a best response to a
fixed human policy in an assistance game is equivalent to
solving a single-agent partially observable Markov decision

4

AssistanceZero: Scalably Solving Assistance Games

process (POMDP); we call this an assistance POMDP. An
effective tool to solve many POMDPs is model-free deep
RL, which leverages the generalization capabilities of deep
neural networks to perform well in environments that are
intractable to solve via other methods like dynamic program-
ming or planning (Ni et al., 2022). In particular, proximal
policy optimization (PPO) (Schulman et al., 2017) with a
recurrent policy network has shown promise in a variety of
partially observable and multi-agent settings (OpenAI et al.,
2019; Yu et al., 2022).

We use PPO to train assistant policies in MBAG through
a standard model-free RL loop. PPO collects a set of roll-
outs from several environments in parallel; human actions
are sampled from the fixed human model πH, and assistant
actions are sampled from the current assistant policy πR,
which is parameterized as a convolutional neural network
(Hochreiter & Schmidhuber, 1997). At the beginning of
each training episode, a goal structure θ is randomly sam-
pled from the training dataset Dtrain. Then, PPO optimizes
the assistant policy’s parameters using a surrogate loss func-
tion which aims to increase the policy’s reward.

To test our PPO assistant policy, we evaluate it with the same
imitation learning-based human model over 1,000 episodes
with goal structures from our test set Dtest. We collect three
performance metrics: the average percentage of the goal
structure that is completed, the total number of place and
break blocks taken by the human, and the percentage of the
total goal structure built by the assistant. We also evaluate
the human model playing alone. Compared to this base-
line, ideally the human model-assistant pair should achieve
an equal or higher goal percentage while requiring fewer
human actions. See Appendix E for the full details of our
training and evaluation setup.

Unfortunately, we found that PPO struggles in MBAG. An
assistant trained with recurrent PPO does not help the hu-
man model at all (first row of Table 1). Surprisingly, non-
recurrent PPO slightly outperforms recurrent PPO (second
row). We believe this setting is challenging for PPO due to
the high variance of the reward signal it uses for learning.
Since the reward function is shared, the reward depends not
only on the assistant’s actions, but also on those of the hu-
man model, which the assistant can only control indirectly.
Furthermore, since the assistant is uncertain about the goal
structure, even taking an action that is helpful in expectation
given the observation history will sometimes result in nega-
tive reward. The sequential and long-horizon nature of the
task exacerbates these issues, further increasing the noise in
the reward-to-go signal that PPO seeks to optimize.

As a result, the most discernible signal PPO receives early
in training is that place and break actions tend to be incor-
rect, incurring negative reward. Thus, the assistant policy
converges to building little to nothing. To decrease the noise

MCTS

s

s

a

s

s

a

s

a

a

Policy
head

V̂
Value
head

Optimize L(ϕ) = 1
n

∑n
t=1

[
λpolicyDKL

(
π

MCTS
t ∥πϕ

(· | s)
)

+ λvalue

(
V̂ ϕ(st)−∑T

t′=t
γt′−tR(st′ , at′)

)2]
Rollouts

Updated weights

(a) AlphaZero

MCTS

h

h

aR, aH

h

h

aR, aH

h

aR, aH

aR, aH

Policy head

V̂ Value head

Reward parameter
prediction head

Human action
prediction head

Optimize L(ϕ) in (1)Rollouts Weights

(b) AssistanceZero

Figure 4: AssistanceZero (bottom) extends AlphaZero (top)
to solve assistance games. While AlphaZero requires access
to the transition and reward functions to run MCTS, in assis-
tance games the rewards and human actions depend on the
reward parameters θ, which are not visible to the assistant.
AssistanceZero learns to predict the reward parameters and
human actions from rollouts, enabling it to plan with MCTS
and train an effective assistant policy.

in the reward signal and incentivize the assistant to act more,
we explore training the assistant based on only the reward
from its own actions1. We also experiment with adding an
auxiliary loss term to encourage placing the correct blocks.
These slightly increase the percentage of the goal built by
the assistant-human model pair while reducing or maintain-
ing the number of human model actions (third and fourth of
Table 1). However, they are still only barely helpful. Thus,
to tractably solve complex assistance games such as MBAG,
we turn to an alternative approach.

4.2. AssistanceZero

Given the failure of PPO to train effective assistant policies
in MBAG, we propose a different algorithm for solving as-

1This no longer solves the assistance game and could be dan-
gerous; the assistant may be incentivized to prevent the human
from taking actions so that it can take them instead.

5

AssistanceZero: Scalably Solving Assistance Games

sistance POMDPs: AssistanceZero. We hypothesize that
PPO struggles because the reward signal is very noisy, and
it must learn to both predict the goal structure and act based
on its predictions from this noisy signal. Thus, we design
AssistanceZero to separate goal prediction and action se-
lection by learning a goal predictor and then using it for
planning. Specifically, AssistanceZero is an extension of
AlphaZero, a deep RL algorithm that has achieved super-
human performance in complex competitive games like Go
and chess (Silver et al., 2017). Like AlphaZero, Assis-
tanceZero chooses actions using a variant of Monte Carlo
tree search (MCTS) (Kocsis & Szepesvári, 2006). MCTS
builds a search tree by simulating the results of taking dif-
ferent sequences of actions from the current state. However,
it requires knowledge of both the reward and the next state
resulting from an action, neither of which is known in an
assistance POMDP: the next state depends on the human’s
action, and the reward R(s, aH, aR; θ) depends on the re-
ward parameters θ which are not visible to the assistant.

To overcome these challenges, AssistanceZero employs a
recurrent neural network with parameters ϕ that takes as
input a state-action history h and has four heads: a policy
head πϕ(aR | h), a value head V̂ ϕ(h), a reward parameter
prediction head p̂ϕ(θ | h), and a human action prediction
head p̂ϕ(aH | h). The policy and value heads select actions
and evaluate the value of states, respectively, similarly to
the policy and value networks in AlphaZero. The reward
parameter and human action prediction heads predict dis-
tributions over θ and aH so that MCTS can estimate the
reward and next state given a selected action. Concretely,
in MBAG, the reward parameter head predicts a probability
distribution over the possible block types at each location in
the world.

Similar to PPO, we train the AssistanceZero network by
collecting rollouts in several parallel environments, select-
ing assistant actions using MCTS with the current network
parameters. Then, the four heads are trained using separate
loss terms. As in AlphaZero, the policy head is updated
to minimize the KL divergence towards the policy output
from MCTS, and the value head to minimize the squared
error with the reward-to-go. The reward parameter and
human action prediction heads are trained with negative
log-likelihood loss to predict θ and aH, respectively. We
found that the reward parameter prediction head is prone
to overfitting to the most recently seen goal structures, so
we additionally include a KL divergence term from the cur-
rent prediction p̂ϕ(θ | ht) to the predictions made when
ht was originally sampled, which we denote as p̂t(θ). The
full AssistanceZero loss can be written for a trajectory of n

timesteps as
L(ϕ) = 1

n

∑n
t=1

[
λpolicyDKL

(
πMCTS
t ∥πϕ(· | ht)

)
+ λvalue

(
V̂ ϕ(ht)−

∑T
t′=t γ

t′−tR(st′ , a
H
t′ , a

R
t′ ; θ)

)2

− λreward log p̂
ϕ(θ | ht) + λprev-rewDKL

(
p̂ϕ(θ | ht)∥p̂t(θ)

)
− λaction log p̂

ϕ(aHt | ht)
]
, (1)

where λpolicy, λvalue, λreward, λprev-rew, and λaction are weights
that trade off the five loss terms, and πMCTS

t refers to the
action distribution output by MCTS at timestep t. After a
few epochs of gradient descent on L(ϕ) over the collected
episodes, AssistanceZero collects new episodes by running
MCTS with the updated network parameters and repeats the
process. The technique of learning an approximate belief
distribution over the reward parameters θ from rollouts is
similar to learned belief search (Hu et al., 2021a). The vari-
ant of MCTS employed by AssistanceZero is also similar
to POMCP (Silver & Veness, 2010), a variant of MCTS
for POMDPs, except that we use a learned model of the
environment. AssistanceZero is also related to model-based
extensions of AlphaZero like MuZero (Schrittwieser et al.,
2020); however, MuZero assumes full observability and
that the next state is deterministic, which is not the case in
assistance games. See Appendix A for a full description of
AssistanceZero and our variant of MCTS.

We train and evaluate AssistanceZero assistant policies us-
ing the same setup as the PPO assistants; the results are
shown in the bottom row of Table 1. Our AssistanceZero
assistant significantly outperforms PPO-based assistants
across all metrics, increasing the percentage of the goal com-
pleted by building 27% of the structure while reducing the
number of human model actions by 42. To ensure a fair com-
parison, we also evaluate AssistanceZero without MCTS at
test-time, using only the policy head to select actions. This
does not reduce the assistant’s performance, demonstrat-
ing that AssistanceZero does not outperform PPO simply
because it uses additional test-time compute.

4.3. Choosing a human model

While we have shown that AssistanceZero can train assis-
tants that perform well with a fixed human model, it remains
unclear how to obtain a good human model in the first place.
Ideally, an assistant policy should perform well not only
with the human model it was trained with, but with real hu-
mans. We explore a number of approaches from the human-
AI interaction literature for developing human models in
MBAG, including reward-based and data-based models.

Reward-based human models assume that humans choose
actions approximately optimally to maximize their reward
function. We use deep RL to train two reward-based models
to build goal structures by themselves. For one model, we
use PPO with an entropy coefficient, which approximates

6

AssistanceZero: Scalably Solving Assistance Games

Human Cross entropy Goal % after X min
model Alone w/ asst. 3 5 10 20

PPO 12.23 12.24 79 96 99 100
AlphaZero 6.85 6.52 82 97 100 100
BC-alone 2.11 2.15 8 13 30 58
BC-with-asst. 2.13 2.06 10 18 40 71
BC-combined 1.89 1.99 9 17 41 71
piKL-alone 2.18 2.37 25 40 66 82
piKL-with-asst. 2.25 2.29 26 42 74 92
piKL-combined 1.98 2.20 26 44 75 91

Humans subjs. — — 25 42 80 95

Table 2: We evaluate eight human models based on their
cross entropy with the actions of real humans (playing ei-
ther with or without an assistant) and how well they perform
at building goal structures alone compared to human sub-
jects. We find that the reward-based human models, PPO
and AlphaZero, are poor predictors of human actions and
build houses faster than human subjects. BC models pre-
dict human actions well but build houses more slowly than
human subjects. Finally, piKL models, which combine the
BC models with planning, predict human actions well and
build houses at a similar rate to human subjects. The most
accurate BC and piKL models are trained on the combined
human-alone and human-with-assistant data.

Boltzmann rationality, a common noisily-optimal model of
human behavior (Luce, 1959; 1977; Ziebart et al., 2010).
We train the other model using AlphaZero.

Next, we train a series of data-based human models us-
ing behavior cloning (BC), which predicts actions from
states using supervised learning. For the training dataset,
we record 18 episodes in MBAG of five human subjects
building houses randomly selected from Dtrain. In half of
these episodes the human builds alone and in the other half
an experienced Minecraft player acts as an assistant. We dis-
play the goal structure to subjects as a transparent blueprint
overlaying the normal Minecraft game, while keeping it
hidden from the human assistant. Using BC, we train three
human models: one on the data where the subject played
alone (BC-alone), one on the subset played with the as-
sistant (BC-with-assistant), and one on the whole dataset
(BC-combined); see Appendix E.1 for details. While our for-
mal definition of assistance games assumes that the human
model is Markov, we find that a recurrent, history-based BC
model is more predictive of human actions than a Markov
policy. Besides capturing the non-Markovian behavior of
individual humans, a recurrent human model can also im-
plicitly model a mixture of human policies. This allows a
single recurrent model to potentially capture the variance in
the skill levels of real humans.

Some recent work has proposed combining reward-based

and data-based human models (Cornelisse & Vinitsky,
2024). To explore this type of human modeling, we im-
plement piKL (Jacob et al., 2022), which uses MCTS with
an imitation-learned prior policy to select actions that maxi-
mize reward but are also human-like. We experiment with
piKL models based on each of our three BC models.

We evaluate all eight human models according to prediction
accuracy, performance alone, and efficacy for training as-
sistants. To measure prediction performance, we calculate
the cross entropy of each model on human data; for the BC
and piKL models, we use cross-validation. We also evaluate
each human model building 1,000 goal structures alone to
determine how well it performs compared to our human sub-
jects. Finally, for each human model, we train an assistant
with AssistanceZero and then evaluate the assistant policy
with every other human model for 100 episodes. This helps
determine if a human model leads to an assistant that gener-
alizes well to other human models. See Appendix D.1 for
more details on our human model training and evaluation.

The results of our human model evaluations are shown in
Table 2 and Figure 9. Similarly to past work (Carroll et al.,
2019; Laidlaw & Dragan, 2021; Bakhtin et al., 2021), we
find that pure reward-based models are poor predictors of
human actions. Both the PPO and AlphaZero human models
have very high cross entropy with real human actions and
build goal structures much more quickly than human sub-
jects. The BC human models have considerably lower cross
entropy, with the lowest cross entropy achieved by the BC
model trained on the combined BC dataset. However, they
also seem to suffer from compounding errors, i.e., small
prediction errors accumulating over time (Ross et al., 2011),
and thus build less of the goal structure than real humans.
The piKL models are slightly less predictive in terms of
cross entropy but closely match human performance.

The results of training AssistanceZero assistants with one
human model and testing with another are shown in Fig-
ure 9. We evaluate each assistant-human model pair based
on both the average goal percentage completed and the mean
number of human actions. Compared to the human models
building alone, in most cases assistants are able to main-
tain or increase the goal percentage while decreasing the
number of human actions, demonstrating their effectiveness.
Overall, the piKL human models seem to produce the best
assistants according to both metrics. We chose to use the
AssistanceZero assistant trained with the piKL-combined
human model for the remainder of our experiments. It
achieves low cross entropy on human data, similar perfor-
mance by itself to humans alone, and produces an assistant
that generalizes to other human models.

7

AssistanceZero: Scalably Solving Assistance Games

Assistant Overall Human Assistant
training goal % actions goal %

Pretraining 89.8 ± 0.7 240 ± 4 2.3 ± 0.5
SFT 90.4 ± 0.7 241 ± 4 2.9 ± 0.3
Assistance game 92.6 ± 2.4 179 ± 11 26.0 ± 3.3
Hum. model alone 90.0 ± 0.8 245 ± 4 —

Table 3: We compare three approaches to building assistants
in our MBAG benchmark: pretraining, which is analogous
to autocomplete-based assistants like GitHub Copilot; SFT,
which is analogous to the first stage of RLHF; and assistance
games. We evaluate the assistant policy trained with each
approach based on the same metrics as Table 1. The policy
based on assistance games outperforms the others in all
metrics, building around a quarter of the goal structure itself
and allowing the human to take many fewer actions.

5. Comparing assistance paradigms
Given our complete recipe for training an assistant in MBAG
via assistance games—fixing a piKL policy for the human
model and then using AssistanceZero to solve the resulting
assistance POMDP—we now compare assistance games to
other paradigms for training AI assistants. In particular, we
develop pipelines for training MBAG assistants analogous
to those used by GitHub Copilot/OpenAI Codex (Chen et al.,
2021) and the supervised fine-tuning (SFT) stage of RLHF
(Bai et al., 2022; Ouyang et al., 2022), since these are two
dominant paradigms for training current AI assistants. We
compare the resulting policies to our AssistanceZero-trained
assistant.

Both RLHF and Codex begin with pretrained language mod-
els, which allows them to learn useful representations and
to be able to predict human actions. One way to view the
pretraining data is that it consists of humans solving a va-
riety of tasks. For example, Codex was trained on GitHub,
and files in GitHub can be viewed as human demonstrations
of solving various programming tasks. Thus, in MBAG,
we analogously generate a pretraining corpus by using the
BC-combined human model to generate 10,000 episodes
where it builds randomly selected goal structures from our
training set Dtrain. We then remove information about the
goal structure from the observations and train a recurrent
neural network on the resulting dataset, which we refer to
as the pretrained model. Similarly to language or code
models, this model can predict human actions without goal
information and has learned representations that allow it
to understand the structure of human goals. By sampling
actions from the pretrained model at a low temperature, we
obtain an assistant similar to GitHub Copilot: it acts to build
the goal structure when it is highly confident about which
actions the human will take, and does not take actions when
it is unconfident.

We further train the pretrained model using supervised fine-
tuning (SFT), the first stage of RLHF. For SFT, we use
data of a human expert acting as the assistant from the
same data collection sessions used to train the BC-with-
assistant human models. We fine-tune the pretrained model
to imitate the human assistant, similar to how LLMs are
trained to imitate human-written assistant responses during
the SFT stage of RLHF. We use a grid search over 540
hyperparameter combinations to find the best combination
of learning rate, training epochs, data augmentation, and
dropout for the SFT policy; see Appendix E.3.1 for details.

We do not directly compare to a full RLHF baseline because
it is not easily applicable to the MBAG environment. RLHF
is usually formulated as a single-agent problem (Christiano
et al., 2017; Ouyang et al., 2022), so the additional human
agent in MBAG would make it difficult to apply standard
techniques. Furthermore, in LLMs, RLHF is applied to only
a single step of interaction between the assistant and the user,
i.e., the comparison data used by RLHF uses conversations
which only differ in the last assistant message. In MBAG,
the equivalent would be to compare single assistant actions
taken in response to a given history of human and assistant
actions. However, it may be quite difficult to judge assistant
actions in isolation; for instance, more than half of assistant
actions are usually movement, and it is unclear how to
judge the relative usefulness of say, moving left versus up.
For these reasons, we decided to only compare to an SFT
baseline, especially since SFT alone for LLMs can often
achieve performance close to that of RLHF (Zhou et al.,
2023).

Evaluation with human models We compare the pre-
trained and SFT models to our assistance game-based pol-
icy in Table 3. We evaluate each with the piKL-combined
human model over 1,000 episodes and report the same met-
rics as in Table 1. Both the pretrained and SFT policies
slightly decrease the number of human actions (by around
4-5) needed to achieve a similar goal completion percentage.
The SFT policy builds around 3% of the goal structure on
average. In contrast, the policy trained with AssistanceZero
decreases the number of human actions by around 65 while
leading to a higher goal completion percentage; it builds
around 26% of the goal itself.

Human study To validate our promising results, we
measure the performance of AI assistants with real humans.
We compare humans playing in four conditions: alone (no
assistant), with the SFT policy, with our AssistanceZero-
trained assistant, and with an expert human assistant. We
use a within-subjects design where each participant builds
the same house five times in a row. The first episode is
used as practice to familiarize the subject with the Minecraft
controls and goal structure. Then, the subject builds the
house under the four conditions in a random order.

8

AssistanceZero: Scalably Solving Assistance Games

We collect both subjective and objective metrics of the as-
sistants’ helpfulness. After playing with each assistant,
subjects rate its overall helpfulness, answer Likert scale
agree-disagree questions about the assistant (e.g., whether
it understood their intentions), and provide free-response
comments. We also measure the number of actions taken
by the human subject to complete the goal structure with an
assistant, normalized by dividing by the number of actions
needed for the subject to complete the goal alone.

An overview of the human study results are shown in
Figure 2, with more results in Appendix C.1. The
AssistanceZero-trained assistant performs considerably bet-
ter than the SFT assistant and approaches the human base-
line. Participants rate the AssistanceZero assistant’s help-
fulness on average as 3.1 ± 0.4 on a 5-point scale (90%
confidence interval), while the SFT assistant is rated 1.7
± 0.3 and the human baseline is rated 4.0 ± 0.5. Also,
our assistant enables participants to build the goal structure
with significantly fewer place and break actions compared
to building alone (one-sided t-test p < 0.05). Qualitatively,
participants were impressed by AssistanceZero’s ability to
learn effectively from corrections (e.g., breaking multiple
incorrect blocks after the human broke one or two of them),
while noting the SFT assistant was not helpful at all. How-
ever, there is still a sizeable gap between our assistant’s
performance and the expert human baseline, demonstrating
that MBAG is a challenging benchmark for assistance. We
hope this will inspire others to develop even more effective
AI assistants in MBAG and other complex, collaborative
tasks.

6. Conclusion
We have introduced the Minecraft Building Assistance
Game and used it to show how to scalably solve assistance
games using AssistanceZero. Furthermore, we have found
that assistants trained via assistance games outperform those
trained similarly to typical LLM post-training piplines.

Future work: LLM post-training In the future, assis-
tance games can be applied to LLM post-training as well.
Here, we briefly outline a vision for how this could work.
To build an LLM-based assistance game, one would treat
the human and assistant chat messages as actions. That is,
the human and assistant alternate taking actions until the
human ends the conversation, with the state consisting of all
previous messages. For reward parameters, one could cu-
rate a large dataset of natural language descriptions of tasks
that humans might want to solve. Then, a human model
could be built by prompting an LLM to act as a human solv-
ing a given task—possibly with additional fine-tuning on
abundant real human chat data. To measure reward, another
LLM could evaluate whether the task is completed by the
end of a chat conversation. Another possibility is to build

a coding-specific assistant by representing goals as sets of
test cases that should be passed by writing a block of code.

By training an LLM in this assistance game to help with the
initially unknown human task, it could be possible to avoid
some of the pitfalls of RLHF. Because the assistant would
be optimizing over multiple chat turns and under uncertainty
about the goal, it would be incentivized to ask clarifying
questions, especially if the tasks are complex enough that
they cannot be described in one or two messages. Fur-
thermore, because rewards would be judged by an equally
powerful LLM based on the task description, there would
be less incentive for deception: if an assistant fooled the
human model to appear successful, it would still receive low
reward from the judge. In the case of the coding assistant,
if some test cases are hidden to the human, the assistant
would have the incentive to look for bugs even if the human
does not notice them, since the final reward is based on the
hidden test cases.

We hope our work on assistance games will eventually help
LLMs move beyond simply answering questions to become
effective collaborators in complex, real-world tasks.

Impact statement
Our paper aims to improve techniques for solving assistance
games, which we hope may eventually be used more broadly
as a paradigm for training helpful and harmless AI assistants.
As we have argued, assistance games could remove incen-
tives for deception that exist in RLHF, the dominant current
techniques for building AI assistants. Furthermore, Russell
(2019) argues that assistance games could form the core
of a solution to the problem of controlling superintelligent
AI (Bostrom, 2016). We hope our contributions will allow
future work to further explore the strengths and weaknesses
of assistants trained with assistance games.

Acknowledgements
We would like to thank Micah Carroll for acting as the
expert human assistant in the user study; Mark Bedaywi,
Jessy Lin, and Niklas Lauffer for feedback on drafts; and
Cam Allen for helpful discussions.

This work was supported by a grant from Open Philanthropy
to the Center for Human-Compatible Artificial Intelligence
at UC Berkeley and a grant from the National Science Foun-
dation (NSF) Human-Centered Computing (HCC) to Pro-
fessor Anca Dragan (award number 2310757). Cassidy
Laidlaw is supported by a National Defense Science and
Engineering Graduate (NDSEG) Fellowship and an Open
Philanthropy AI Fellowship. Eli Bronstein is supported by a
National Science Foundation Computer and Information Sci-
ence and Engineering Graduate Fellowship (CSGrad4US).

9

AssistanceZero: Scalably Solving Assistance Games

References
Bai, Y., Jones, A., Ndousse, K., Askell, A., Chen, A., Das-

Sarma, N., Drain, D., Fort, S., Ganguli, D., Henighan,
T., Joseph, N., Kadavath, S., Kernion, J., Conerly, T.,
El-Showk, S., Elhage, N., Hatfield-Dodds, Z., Hernan-
dez, D., Hume, T., Johnston, S., Kravec, S., Lovitt, L.,
Nanda, N., Olsson, C., Amodei, D., Brown, T., Clark,
J., McCandlish, S., Olah, C., Mann, B., and Kaplan, J.
Training a Helpful and Harmless Assistant with Rein-
forcement Learning from Human Feedback, April 2022.
arXiv:2204.05862 [cs].

Baker, B., Akkaya, I., Zhokhov, P., Huizinga, J., Tang, J.,
Ecoffet, A., Houghton, B., Sampedro, R., and Clune, J.
Video PreTraining (VPT): Learning to Act by Watching
Unlabeled Online Videos. In Koyejo, S., Mohamed, S.,
Agarwal, A., Belgrave, D., Cho, K., and Oh, A. (eds.),
Advances in Neural Information Processing Systems 35:
Annual Conference on Neural Information Processing
Systems 2022, NeurIPS 2022, New Orleans, LA, USA,
November 28 - December 9, 2022. arXiv, 2022.

Bakhtin, A., Wu, D. J., Lerer, A., and Brown, N. No-Press
Diplomacy from Scratch. In Ranzato, M., Beygelzimer,
A., Dauphin, Y. N., Liang, P., and Vaughan, J. W. (eds.),
Advances in Neural Information Processing Systems 34:
Annual Conference on Neural Information Processing
Systems 2021, NeurIPS 2021, December 6-14, 2021, vir-
tual, pp. 18063–18074. arXiv, 2021.

Bakhtin, A., Wu, D. J., Lerer, A., Gray, J., Jacob, A. P.,
Farina, G., Miller, A. H., and Brown, N. Mastering the
Game of No-Press Diplomacy via Human-Regularized
Reinforcement Learning and Planning. In The Eleventh
International Conference on Learning Representations,
ICLR 2023, Kigali, Rwanda, May 1-5, 2023. OpenRe-
view.net, 2023.

Bara, C.-P., CH-Wang, S., and Chai, J. MindCraft: Theory
of Mind Modeling for Situated Dialogue in Collabora-
tive Tasks. In Proceedings of the 2021 Conference on
Empirical Methods in Natural Language Processing, pp.
1112–1125, Online and Punta Cana, Dominican Republic,
2021. Association for Computational Linguistics. doi:
10.18653/v1/2021.emnlp-main.85.

Bostrom, N. Superintelligence: Paths, Dangers, Strategies.
Oxford University Press, Oxford, reprint edition edition,
May 2016. ISBN 978-0-19-873983-8.

Brown, N., Bakhtin, A., Lerer, A., and Gong, Q. Combining
Deep Reinforcement Learning and Search for Imperfect-
Information Games. In Larochelle, H., Ranzato, M.,
Hadsell, R., Balcan, M.-F., and Lin, H.-T. (eds.), Ad-
vances in Neural Information Processing Systems 33:
Annual Conference on Neural Information Processing

Systems 2020, NeurIPS 2020, December 6-12, 2020, vir-
tual. arXiv, 2020.

Carroll, M., Shah, R., Ho, M. K., Griffiths, T., Seshia, S. A.,
Abbeel, P., and Dragan, A. D. On the Utility of Learning
about Humans for Human-AI Coordination. In Wallach,
H. M., Larochelle, H., Beygelzimer, A., d’Alché Buc, F.,
Fox, E. B., and Garnett, R. (eds.), Advances in Neural In-
formation Processing Systems 32: Annual Conference on
Neural Information Processing Systems 2019, NeurIPS
2019, December 8-14, 2019, Vancouver, BC, Canada, pp.
5175–5186, 2019.

Chen, M., Tworek, J., Jun, H., Yuan, Q., Pinto, H. P. d. O.,
Kaplan, J., Edwards, H., Burda, Y., Joseph, N., Brockman,
G., Ray, A., Puri, R., Krueger, G., Petrov, M., Khlaaf,
H., Sastry, G., Mishkin, P., Chan, B., Gray, S., Ryder, N.,
Pavlov, M., Power, A., Kaiser, L., Bavarian, M., Winter,
C., Tillet, P., Such, F. P., Cummings, D., Plappert, M.,
Chantzis, F., Barnes, E., Herbert-Voss, A., Guss, W. H.,
Nichol, A., Paino, A., Tezak, N., Tang, J., Babuschkin,
I., Balaji, S., Jain, S., Saunders, W., Hesse, C., Carr,
A. N., Leike, J., Achiam, J., Misra, V., Morikawa, E.,
Radford, A., Knight, M., Brundage, M., Murati, M.,
Mayer, K., Welinder, P., McGrew, B., Amodei, D., Mc-
Candlish, S., Sutskever, I., and Zaremba, W. Evaluating
Large Language Models Trained on Code, July 2021.
arXiv:2107.03374 [cs].

Christiano, P., Leike, J., Brown, T. B., Martic, M., Legg,
S., and Amodei, D. Deep reinforcement learning from
human preferences. arXiv:1706.03741 [cs, stat], July
2017. arXiv: 1706.03741.

Cornelisse, D. and Vinitsky, E. Human-compatible driving
partners through data-regularized self-play reinforcement
learning, June 2024. arXiv:2403.19648 [cs].

Dragan, A. D. and Srinivasa, S. S. A policy-blending for-
malism for shared control. The International Journal
of Robotics Research, 32(7):790–805, June 2013. ISSN
0278-3649. doi: 10.1177/0278364913490324. Publisher:
SAGE Publications Ltd STM.

Fan, L., Wang, G., Jiang, Y., Mandlekar, A., Yang, Y., Zhu,
H., Tang, A., Huang, D.-A., Zhu, Y., and Anandkumar,
A. MineDojo: Building Open-Ended Embodied Agents
with Internet-Scale Knowledge. In Koyejo, S., Mohamed,
S., Agarwal, A., Belgrave, D., Cho, K., and Oh, A. (eds.),
Advances in Neural Information Processing Systems 35:
Annual Conference on Neural Information Processing
Systems 2022, NeurIPS 2022, New Orleans, LA, USA,
November 28 - December 9, 2022. arXiv, 2022.

Fern, A., Natarajan, S., Judah, K., and Tadepalli, P. A

10

AssistanceZero: Scalably Solving Assistance Games

Decision-Theoretic Model of Assistance. Journal of Arti-
ficial Intelligence Research, 50:71–104, May 2014. ISSN
1076-9757. doi: 10.1613/jair.4213.

Fisac, J. F., Gates, M. A., Hamrick, J. B., Liu, C., Hadfield-
Menell, D., Palaniappan, M., Malik, D., Sastry, S. S., Grif-
fiths, T. L., and Dragan, A. D. Pragmatic-Pedagogic Value
Alignment. In Amato, N. M., Hager, G., Thomas, S., and
Torres-Torriti, M. (eds.), Robotics Research, Springer
Proceedings in Advanced Robotics, pp. 49–57, Cham,
2020. Springer International Publishing. ISBN 978-3-
030-28619-4. doi: 10.1007/978-3-030-28619-4 7.

Gray, J., Srinet, K., Jernite, Y., Yu, H., Chen, Z., Guo, D.,
Goyal, S., Zitnick, C. L., and Szlam, A. CraftAssist: A
Framework for Dialogue-enabled Interactive Agents, July
2019. arXiv: 1907.08584.

Grill, J.-B., Altché, F., Tang, Y., Hubert, T., Valko, M.,
Antonoglou, I., and Munos, R. Monte-Carlo Tree Search
as Regularized Policy Optimization. In Proceedings of
the 37th International Conference on Machine Learning,
ICML 2020, 13-18 July 2020, Virtual Event, volume 119
of Proceedings of Machine Learning Research, pp. 3769–
3778. PMLR, 2020.

Hadfield-Menell, D., Russell, S. J., Abbeel, P., and Dragan,
A. Cooperative Inverse Reinforcement Learning. In
Advances in Neural Information Processing Systems 29,
pp. 3909–3917. Curran Associates, Inc., 2016.

He, K., Zhang, X., Ren, S., and Sun, J. Deep Residual Learn-
ing for Image Recognition. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition,
pp. 770–778, 2016.

Hochreiter, S. and Schmidhuber, J. Long Short-Term Mem-
ory. Neural Computation, 9(8):1735–1780, November
1997. ISSN 0899-7667. doi: 10.1162/neco.1997.9.8.
1735.

Hu, H., Lerer, A., Peysakhovich, A., and Foerster, J. “Other-
Play” for Zero-Shot Coordination. In International Con-
ference on Machine Learning, pp. 4399–4410. PMLR,
2020.

Hu, H., Lerer, A., Brown, N., and Foerster, J. Learned
Belief Search: Efficiently Improving Policies in Partially
Observable Settings, June 2021a. arXiv:2106.09086 [cs].

Hu, H., Lerer, A., Cui, B., Pineda, L., Brown, N., and
Foerster, J. Off-Belief Learning. In Proceedings of the
38th International Conference on Machine Learning, pp.
4369–4379. PMLR, July 2021b. ISSN: 2640-3498.

Jacob, A. P., Wu, D. J., Farina, G., Lerer, A., Hu, H.,
Bakhtin, A., Andreas, J., and Brown, N. Modeling Strong
and Human-Like Gameplay with KL-Regularized Search.

In Chaudhuri, K., Jegelka, S., Song, L., Szepesvári, C.,
Niu, G., and Sabato, S. (eds.), International Conference
on Machine Learning, ICML 2022, 17-23 July 2022, Balti-
more, Maryland, USA, volume 162 of Proceedings of Ma-
chine Learning Research, pp. 9695–9728. PMLR, 2022.

Javdani, S., Srinivasa, S., and Bagnell, A. Shared Autonomy
via Hindsight Optimization. In Robotics: Science and
Systems XI. Robotics: Science and Systems Foundation,
July 2015. ISBN 978-0-9923747-1-6. doi: 10.15607/
RSS.2015.XI.032.

Johnson, M., Hofmann, K., Hutton, T., and Bignell, D. The
Malmo platform for artificial intelligence experimenta-
tion. In Proceedings of the Twenty-Fifth International
Joint Conference on Artificial Intelligence, IJCAI’16,
pp. 4246–4247, New York, New York, USA, July 2016.
AAAI Press. ISBN 978-1-57735-770-4.

Kanervisto, A., Milani, S., Ramanauskas, K., Topin, N.,
Lin, Z., Li, J., Shi, J., Ye, D., Fu, Q., Yang, W., Hong,
W., Huang, Z., Chen, H., Zeng, G., Lin, Y., Micheli, V.,
Alonso, E., Fleuret, F., Nikulin, A., Belousov, Y., Svid-
chenko, O., and Shpilman, A. MineRL Diamond 2021
Competition: Overview, Results, and Lessons Learned.
In Kiela, D., Ciccone, M., and Caputo, B. (eds.), NeurIPS
2021 Competitions and Demonstrations Track, 6-14 De-
cember 2021, Online, volume 176 of Proceedings of Ma-
chine Learning Research, pp. 13–28. PMLR, 2021.

Kiseleva, J., Li, Z., Aliannejadi, M., Mohanty, S., ter Hoeve,
M., Burtsev, M., Skrynnik, A., Zholus, A., Panov, A., and
Srinet, K. Interactive grounded language understanding in
a collaborative environment: Iglu 2021. In NeurIPS 2021
Competitions and Demonstrations Track, pp. 146–161.
PMLR, 2022.

Kocsis, L. and Szepesvári, C. Bandit Based Monte-Carlo
Planning. In Fürnkranz, J., Scheffer, T., and Spiliopoulou,
M. (eds.), Machine Learning: ECML 2006, Lecture Notes
in Computer Science, pp. 282–293, Berlin, Heidelberg,
2006. Springer. ISBN 978-3-540-46056-5.

Laidlaw, C. and Dragan, A. The Boltzmann Policy Distribu-
tion: Accounting for Systematic Suboptimality in Human
Models. October 2021.

Lang, L., Foote, D., Russell, S., Dragan, A., Jenner, E., and
Emmons, S. When Your AIs Deceive You: Challenges
of Partial Observability in Reinforcement Learning from
Human Feedback, November 2024. arXiv:2402.17747
[cs].

Liang, E., Liaw, R., Nishihara, R., Moritz, P., Fox, R., Gold-
berg, K., Gonzalez, J., Jordan, M. I., and Stoica, I. RLlib:
Abstractions for Distributed Reinforcement Learning. In
Dy, J. G. and Krause, A. (eds.), Proceedings of the 35th

11

AssistanceZero: Scalably Solving Assistance Games

International Conference on Machine Learning, ICML
2018, Stockholmsmässan, Stockholm, Sweden, July 10-15,
2018, volume 80 of Proceedings of Machine Learning
Research, pp. 3059–3068. PMLR, 2018.

Luce, R. D. Individual choice behavior. 1959. Publisher:
John Wiley.

Luce, R. D. The Choice Axiom After Twenty Years. Journal
of Mathematical Psychology, 15(3):215–233, June 1977.
ISSN 0022-2496. doi: 10.1016/0022-2496(77)90032-3.

Madani, O., Hanks, S., and Condon, A. On the unde-
cidability of probabilistic planning and related stochas-
tic optimization problems. Artificial Intelligence, 147
(1):5–34, July 2003. ISSN 0004-3702. doi: 10.1016/
S0004-3702(02)00378-8.

Malik, D., Palaniappan, M., Fisac, J. F., Hadfield-Menell, D.,
Russell, S., and Dragan, A. D. An Efficient, Generalized
Bellman Update For Cooperative Inverse Reinforcement
Learning. In Dy, J. G. and Krause, A. (eds.), Proceedings
of the 35th International Conference on Machine Learn-
ing, ICML 2018, Stockholmsmässan, Stockholm, Sweden,
July 10-15, 2018, volume 80 of Proceedings of Machine
Learning Research, pp. 3391–3399. PMLR, 2018.

Mehta, N., Teruel, M., Deng, X., Sanz, S. F., Awadallah, A.,
and Kiseleva, J. Improving Grounded Language Under-
standing in a Collaborative Environment by Interacting
with Agents Through Help Feedback. In Graham, Y. and
Purver, M. (eds.), Findings of the Association for Com-
putational Linguistics: EACL 2024, St. Julian’s, Malta,
March 17-22, 2024, pp. 1306–1321. Association for Com-
putational Linguistics, 2024.

Milani, S., Kanervisto, A., Ramanauskas, K., Schulhoff,
S., Houghton, B., Mohanty, S., Galbraith, B., Chen, K.,
Song, Y., Zhou, T., Yu, B., Liu, H., Guan, K., Hu, Y.,
Lv, T., Malato, F., Leopold, F., Raut, A., Hautamäki,
V., Melnik, A., Ishida, S., Henriques, J. F., Klassert, R.,
Laurito, W., Novoseller, E., Goecks, V. G., Waytowich,
N., Watkins, D., Miller, J., and Shah, R. Towards Solving
Fuzzy Tasks with Human Feedback: A Retrospective of
the MineRL BASALT 2022 Competition, March 2023.
arXiv:2303.13512 [cs].

Ni, T., Eysenbach, B., and Salakhutdinov, R. Recurrent
Model-Free RL Can Be a Strong Baseline for Many
POMDPs. In Chaudhuri, K., Jegelka, S., Song, L.,
Szepesvári, C., Niu, G., and Sabato, S. (eds.), Interna-
tional Conference on Machine Learning, ICML 2022,
17-23 July 2022, Baltimore, Maryland, USA, volume
162 of Proceedings of Machine Learning Research, pp.
16691–16723. PMLR, 2022.

OpenAI, Berner, C., Brockman, G., Chan, B., Cheung, V.,
Debiak, P., Dennison, C., Farhi, D., Fischer, Q., Hashme,
S., Hesse, C., Józefowicz, R., Gray, S., Olsson, C., Pa-
chocki, J., Petrov, M., Pinto, H. P. d. O., Raiman, J., Sali-
mans, T., Schlatter, J., Schneider, J., Sidor, S., Sutskever,
I., Tang, J., Wolski, F., and Zhang, S. Dota 2 with Large
Scale Deep Reinforcement Learning, December 2019.
arXiv:1912.06680 [cs].

Ouyang, L., Wu, J., Jiang, X., Almeida, D., Wainwright, C.,
Mishkin, P., Zhang, C., Agarwal, S., Slama, K., Ray, A.,
Schulman, J., Hilton, J., Kelton, F., Miller, L., Simens, M.,
Askell, A., Welinder, P., Christiano, P. F., Leike, J., and
Lowe, R. Training language models to follow instructions
with human feedback. Advances in Neural Information
Processing Systems, 35:27730–27744, December 2022.

Papadimitriou, C. H. and Tsitsiklis, J. N. The Complexity
of Markov Decision Processes. Mathematics of Opera-
tions Research, 12(3):441–450, 1987. ISSN 0364-765X.
Publisher: INFORMS.

Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J.,
Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga,
L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison,
M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L.,
Bai, J., and Chintala, S. PyTorch: An Imperative Style,
High-Performance Deep Learning Library. In Advances
in Neural Information Processing Systems, volume 32.
Curran Associates, Inc., 2019.

Ross, S., Gordon, G., and Bagnell, D. A Reduction of Imi-
tation Learning and Structured Prediction to No-Regret
Online Learning. In Proceedings of the Fourteenth Inter-
national Conference on Artificial Intelligence and Statis-
tics, pp. 627–635. JMLR Workshop and Conference Pro-
ceedings, June 2011. ISSN: 1938-7228.

Russell, S. Human Compatible: Artificial Intelligence and
the Problem of Control. Penguin Books, October 2019.

Schrittwieser, J., Antonoglou, I., Hubert, T., Simonyan,
K., Sifre, L., Schmitt, S., Guez, A., Lockhart, E., Hass-
abis, D., Graepel, T., Lillicrap, T., and Silver, D. Mas-
tering Atari, Go, Chess and Shogi by Planning with a
Learned Model. Nature, 588(7839):604–609, Decem-
ber 2020. ISSN 0028-0836, 1476-4687. doi: 10.1038/
s41586-020-03051-4. arXiv:1911.08265 [cs, stat].

Schulman, J., Wolski, F., Dhariwal, P., Radford, A., and
Klimov, O. Proximal Policy Optimization Algorithms,
August 2017. arXiv: 1707.06347.

Shah, R., Freire, P., Alex, N., Freedman, R., Krasheninnikov,
D., Chan, L., Dennis, M. D., Abbeel, P., Dragan, A., and
Russell, S. Benefits of Assistance over Reward Learning.
October 2020.

12

AssistanceZero: Scalably Solving Assistance Games

Shani, L., Rosenberg, A., Cassel, A., Lang, O., Calandriello,
D., Zipori, A., Noga, H., Keller, O., Piot, B., Szpektor, I.,
Hassidim, A., Matias, Y., and Munos, R. Multi-turn Re-
inforcement Learning with Preference Human Feedback.
Advances in Neural Information Processing Systems, 37:
118953–118993, December 2024.

Silver, D. and Veness, J. Monte-Carlo Planning in Large
POMDPs. In Advances in Neural Information Processing
Systems, volume 23. Curran Associates, Inc., 2010.

Silver, D., Hubert, T., Schrittwieser, J., Antonoglou, I., Lai,
M., Guez, A., Lanctot, M., Sifre, L., Kumaran, D., Grae-
pel, T., Lillicrap, T., Simonyan, K., and Hassabis, D.
Mastering Chess and Shogi by Self-Play with a Gen-
eral Reinforcement Learning Algorithm, December 2017.
arXiv:1712.01815 [cs].

Skrynnik, A., Volovikova, Z., Côté, M.-A., Voronov, A.,
Zholus, A., Arabzadeh, N., Mohanty, S., Teruel, M.,
Awadallah, A., Panov, A., Burtsev, M., and Kiseleva,
J. Learning to Solve Voxel Building Embodied Tasks
from Pixels and Natural Language Instructions, Novem-
ber 2022. arXiv:2211.00688 [cs].

Stone, P., Kaminka, G., Kraus, S., and Rosenschein, J. Ad
Hoc Autonomous Agent Teams: Collaboration without
Pre-Coordination. volume 3, January 2010.

Strouse, D., McKee, K., Botvinick, M., Hughes, E., and
Everett, R. Collaborating with Humans without Human
Data. In Advances in Neural Information Processing Sys-
tems, volume 34, pp. 14502–14515. Curran Associates,
Inc., 2021.

Szlam, A., Gray, J., Srinet, K., Jernite, Y., Joulin, A., Syn-
naeve, G., Kiela, D., Yu, H., Chen, Z., Goyal, S., Guo,
D., Rothermel, D., Zitnick, C. L., and Weston, J. Why
Build an Assistant in Minecraft?, July 2019. arXiv:
1907.09273.

Treutlein, J., Dennis, M., Oesterheld, C., and Foerster, J.
A New Formalism, Method and Open Issues for Zero-
Shot Coordination. In Proceedings of the 38th Inter-
national Conference on Machine Learning, pp. 10413–
10423. PMLR, July 2021. ISSN: 2640-3498.

Wang, G., Xie, Y., Jiang, Y., Mandlekar, A., Xiao, C., Zhu,
Y., Fan, L., and Anandkumar, A. Voyager: An Open-
Ended Embodied Agent with Large Language Models.
Trans. Mach. Learn. Res., 2024, 2024.

Williams, M., Carroll, M., Narang, A., Weisser, C., Murphy,
B., and Dragan, A. D. On Targeted Manipulation and
Deception when Optimizing LLMs for User Feedback.
In The Thirteenth International Conference on Learn-
ing Representations, ICLR 2025, Singapore, April 24-28,
2025. OpenReview.net, 2025.

Woodward, M., Finn, C., and Hausman, K. Learning to
Interactively Learn and Assist. Proceedings of the AAAI
Conference on Artificial Intelligence, 34(03):2535–2543,
April 2020. ISSN 2374-3468. doi: 10.1609/aaai.v34i03.
5636. Number: 03.

Yang, M., Carroll, M., and Dragan, A. Optimal
Behavior Prior: Data-Efficient Human Models for
Improved Human-AI Collaboration, November 2022.
arXiv:2211.01602 [cs].

Yu, C., Velu, A., Vinitsky, E., Gao, J., Wang, Y., Bayen,
A., and Wu, Y. The Surprising Effectiveness of PPO
in Cooperative, Multi-Agent Games, November 2022.
arXiv:2103.01955 [cs].

Zhi-Xuan, T., Ying, L., Mansinghka, V., and Tenenbaum,
J. B. Pragmatic Instruction Following and Goal Assis-
tance via Cooperative Language-Guided Inverse Plan-
ning. In Dastani, M., Sichman, J. S., Alechina, N., and
Dignum, V. (eds.), Proceedings of the 23rd International
Conference on Autonomous Agents and Multiagent Sys-
tems, AAMAS 2024, Auckland, New Zealand, May 6-10,
2024, pp. 2094–2103. International Foundation for Au-
tonomous Agents and Multiagent Systems / ACM, 2024.
doi: 10.5555/3635637.3663074.

Zholus, A., Skrynnik, A., Mohanty, S., Volovikova, Z., Kise-
leva, J., Szlam, A., Coté, M.-A., and Panov, A. I. IGLU
Gridworld: Simple and Fast Environment for Embodied
Dialog Agents, May 2022. arXiv:2206.00142 [cs].

Zhou, C., Liu, P., Xu, P., Iyer, S., Sun, J., Mao, Y., Ma, X.,
Efrat, A., Yu, P., Yu, L., Zhang, S., Ghosh, G., Lewis,
M., Zettlemoyer, L., and Levy, O. LIMA: Less Is More
for Alignment. In Oh, A., Naumann, T., Globerson, A.,
Saenko, K., Hardt, M., and Levine, S. (eds.), Advances in
Neural Information Processing Systems 36. arXiv, 2023.

Ziebart, B. D., Bagnell, J. A., and Dey, A. K. Modeling in-
teraction via the principle of maximum causal entropy. In
Proceedings of the 27th International Conference on In-
ternational Conference on Machine Learning, ICML’10,
pp. 1255–1262, Madison, WI, USA, June 2010. Omni-
press. ISBN 978-1-60558-907-7.

13

AssistanceZero: Scalably Solving Assistance Games

Appendix

A. AssistanceZero details
In this appendix, we describe the full details of the AssistanceZero algorithm.

MCTS To choose actions during training and deployment, AssistanceZero uses Monte Carlo tree search (MCTS). MCTS
repeats a three-stage process for Nsim simulations, adding one additional node during each simulation to a tree where nodes
represent histories and branches are action pairs (aH, aR).

In the selection stage, an assistant action aR is selected at the current history node h that maximizes

Q(h, aR) + cPUCT πϕ(aR | h)
√∑

b∈AR N(h, b)

1 +N(h, aR)
, (2)

where N(h, aR) is the number of times action aR has previously been selected at node h, πϕ(aR | h) is the output of the
network’s policy head, and cPUCT is a tunable parameter that balances exploration and exploitation. Q(h, aR) is an estimate
of the Q-value of aR; we will describe how this is calculated later. Once an assistant action is chosen, then a human action
aH is sampled according to the probabilities output by the human action predictor head p̂ϕ(aH | h). Then, the state s′

resulting from taking actions (aH, aR) is calculated and the state and actions are appended to h to reach a node h′. The
reward associated with the transition is estimated by marginalizing over the reward parameter distribution output by the
reward prediction head:

R̂(h, aH, aR) =
∑
θ∈Θ

R(s, aH, aR; θ) p̂ϕ(θ | h′). (3)

Then, the selection process repeats until a node h is reached which has not previously been reached.

In the expansion stage, the new node is input to the network to calculate the policy head outputs πϕ(aR | h), the value
estimate V̂ ϕ(h), the human action predictions p̂ϕ(aH | h), and the reward parameter predictions p̂ϕ(θ | h). The policy
outputs at the root node have Dirichlet noise applied, similarly to AlphaZero.

In the backup stage, the Q-values of all ancestor nodes of h are recursively updated with the discounted sum of rewards along
edges of the tree plus the value estimate V̂ ϕ(h). As normally in MCTS, Q(h, aR) is simply the average of the Q-values
estimated over all previous simulations that have taken aR in node h. For actions with no visits, Q(h, aR) is set to the
average of all backed-up values for node h:

Q(h, aR) =

∑
b∈AR N(h, b)Q(h, b)∑

b∈AR N(h, b)
if N(h, aR) = 0.

When selecting actions according to (2), we normalize Q-values by the highest and lowest value seen among all visits to that
node, similarly to MuZero (Schrittwieser et al., 2020). We scale the Q-values such that the higest value seen is mapped to 1
and the lowest value seen is mapped to 0.

The resulting policy from MCTS is defined as
πMCTS(aR | h) ∝ N(h, aR)τ ,

where τ is an inverse temperature parameter.

Training procedure As described in Section 4.2, AssistanceZero alternates between rolling out trajectories in the
environment by selecting actions with MCTS and updating the network according to the loss function in (1). Specifically,
each training step consists of the following phases:

1. Run MCTS in a large number of environments in parallel to collect trajectories. Because episodes are long (1,500
timesteps), we collect only a smaller number of timesteps from each environment, which we call fragments. Then,
all environments are paused mid-episode until the next trajectory collection phase. When an episode ends due to the
completion of the goal structure or after 1,500 timesteps, a new episode begins with a newly sampled goal structure;
data continues to be sampled until the required number of timesteps is reached.

2. Store the collected data in a replay buffer. Each fragment is kept as a single unit within the replay buffer to enable
training recurrent policies.

3. Sample data from the replay buffer and run SGD to minimize the loss in (1), then update the networks used for sampling
with the new weights.

14

AssistanceZero: Scalably Solving Assistance Games

Python environment
(>100x real time)

Minecraft w/
Malmo mod

AI assistants

Human
models

Real humans

Video

Detected
human actions

AI actions

State sync

Figure 5: The architecture of the MBAG environment. The Python environment (left) can run on its own very quickly on a
single CPU core, enabling efficient training for AI assistants and human models. However, it can also connect to a running
Minecraft instance (right) with a custom version of the Malmo mod (Johnson et al., 2016). This enables visualizing AI
policies and recording video of them; collecting data of humans playing by themselves or with each other; and, testing AI
assistants with real humans.

Lower-variance reward estimation There is some subtlety in the best way to estimate rewards depending on the structure
of the reward function. In some environments, such as MBAG, the environment’s reward function is decomposable into a
component that depends only on the human’s action and a component that depends only on the assistant’s action:

R(s, aH, aR; θ) = RH(s, aH; θ) +RR(s, aR; θ).

In this case, one can estimate the reward equivalently in expectation to (3) as

R̂(h, aH, aR) =
∑
θ∈Θ

RH(s, aH; θ) p̂ϕ(θ | h′) +RR(s, aR; θ) p̂ϕ(θ | h). (4)

That is, in (4) the human’s reward is estimated based on estimated reward parameters at the next timestep using h′, while the
assistant’s reward is estimated based on the estimated reward parameters at the current timestep using h. This is preferable
to (3) because the second term no longer depends on aH, which is sampled for each simulation of MCTS and thus introduces
additional variance.

The reason that (4) is equivalent to (3) in expectation is that the assistant’s action is independent of the reward parameters
θ given the history h, since the assistant policy πR(aR | h) only takes as input h and not θ. On the other hand, it is not
possible to do the same to estimate the human’s component of the reward, since aH does reveal information about θ.

B. Environment details
Minecraft is typically a difficult environment to use for reinforcement learning because it is slow and resource intensive. To
avoid these challenges, we implement MBAG as a “Minecraft simulator” written in a mix of pure Python and C. MBAG
can be used without a running Minecraft game, allowing for training to take place more quickly and with fewer resources
(MBAG can run around 100x the speed of Minecraft). However, MBAG can also interact with the Microsoft Malmo
mod (Johnson et al., 2016) to allow the Python environment to sync with Minecraft. This allows policies to be visualized
by watching them run in a Minecraft. It also enables human-AI play, in which human actions detected in Minecraft are
translated into their equivalents in MBAG, and AI actions taken in MBAG are translated into actions in Minecraft.

We provide two versions of MBAG: one where the players must collect resources by breaking a regenerating “palette” of
blocks located on one side of the environment, and one where the players have unlimited blocks. In the former version,
players may also give blocks to other players; give actions are parameterized by a location, similar to place and break
block actions. For the purposes of this paper, we investigate the second version with unlimited blocks; this version of the
environment is more difficult to build an assistant for, since the assistant cannot simply collect resources to help the human.

B.1. Goal structures

We base the goal structures for MBAG on the CraftAssist houses dataset, which was collected by Gray et al. (2019); they
gave study participants the open-ended task of building any house in Minecraft and recorded the resulting structure. Since
we require that goal structures in MBAG have a one-block gap on all sides, their dimensions can be at most 9 × 8 × 8.
However, many of the goal structures in the CraftAssist dataset are much larger. When houses in the dataset are no more
than twice the desired dimensions, we scale them down to fit.

15

AssistanceZero: Scalably Solving Assistance Games

C. Human study
C.1. Full human study results

Here, we include additional results from our human study, including the participant demographics and more survey questions
from the 16 subjects.

0 5 10

Number of participants

>100 hours
10-100 hours

<10 hours
None

Experience playing Minecraft

0 5 10

Number of participants

>1,000 hours
100-1,000 hours

10-100 hours
<10 hours

Experience playing 3D
first-person video games

0 5 10

Number of participants

>1,000 hours
100-1,000 hours

10-100 hours
<10 hours

Experience playing computer
or video games in general

0 5 10

Number of participants

Non-binary

Female

Male

Gender

0 5 10

Number of participants

30-39

25-29

18-24

Age

Figure 6: The demographics of the participants in our human study and their prior experience playing Minecraft and video
games.

How would
you rate

your own
performance
at the task?

How would
you rate

the assistant’s
overall

helpfulness?

I wanted
the assistant
to be more
active in

placing and
breaking
blocks.

I wanted
the assistant

to be less
active in

placing and
breaking
blocks.

I could
predict

what the
assistant

was going
to do.

The assistant
understood

my intentions.

The assistant
could predict

the goal
house well.

The assistant
learned from
its mistakes.

The assistant
was helpful

overall.

I preferred
building the

house with the
assistant

instead of
by myself.

1

2

3

4

5

Human alone Pretraining + SFT Assistance game Human assistant

Figure 7: The full set of survey questions that participants answer after playing with each assistant. For the first two
questions, participants answered with a 1-5 scale. For the remaining statements, participants answered with a 1-5 scale from
“strongly disagree” to “strongly agree.” The mean of the responses are shown along with 90% confidence intervals.

16

AssistanceZero: Scalably Solving Assistance Games

C.2. Study design

Figure 8: An example screenshot of the Minecraft game seen in the human study, which is provided to participants in the
“Minecraft Guide.”

We conduct the study with a total of 16 participants. To begin the study, each subject answers demographic and survey
questions related to their prior experience playing Minecraft and other video games (see Figure 6 for results). Next, we
describe the task of building a goal structure with an assistant where the subject can see the goal but the assistant cannot.
The subject is provided with a “Minecraft Guide” describing the Minecraft mechanics, keyboard and mouse controls, and
how the goal structure is visualized. There are three goal display options: the entire goal is visible as translucent goal blocks,
only the currently placeable goal blocks are shown, and the goal is completely hidden (only the current world state is visible).
See Figure 8 for an example screenshot.

After reading the guide, the subject plays a practice round by building a goal structure alone in order to familiarize themselves
with the Minecraft environment and the goal. Next, they build the same structure in each of the four conditions—no assistant,
with the SFT policy, with our AssistanceZero-trained assistant, and with an expert human assistant—in a randomly permuted
order. The human assistant is an experienced Minecraft player who is not a co-author on this paper and was recruited from
the same institution as the authors.

We randomly sample a unique goal structure for each participant from our test set Dtest. Since each subject builds their
assigned goal structure five times, there may be a learning effect where the participant builds the house more quickly
and efficiently for later conditions. We account for this effect by using a Latin square design. We randomly sample four
permutations of the four assistance conditions, resulting in a total of 16 orders, one for each participant. The study is
single-blind, meaning that subjects are not given any information about the assistant they were building with, including
whether the three assistants differ from each other.

After completing the goal in each condition, the subject completes survey questions about their own and the assistant’s
performance. See Figure 7 for the full list of survey questions and results.

Subjects are paid $20 for their participation in the form of an Amazon gift card.

17

AssistanceZero: Scalably Solving Assistance Games

D. Additional results
D.1. Human modeling

D.1.1. CROSS EVALUATION OF ASSISTANTS AND HUMAN MODELS

Hum
an

mod
el

alo
ne

PPO

Alph
aZ

ero

BC-al
on

e

BC-w
ith

-as
st.

BC-co
mbin

ed

piK
L-al

on
e

piK
L-w

ith
-as

st.

piK
L-co

mbin
ed

Human model during training

PPO

AlphaZero

BC-alone

BC-with-asst.

BC-combined

piKL-alone

piKL-with-asst.

piKL-combined

MedianH
um

an
m

od
el

du
ri

ng
ev

al
ua

tio
n 100 99 99 98 99 98 99 99 99

99 100 100 100 100 99 100 100 100

59 61 56 75 66 70 72 66 70

71 68 73 73 76 78 78 80 79

71 71 70 75 79 80 76 78 78

82 85 77 83 80 84 87 84 85

92 93 91 91 91 93 92 91 94

91 93 90 91 90 92 92 94 91

87 89 84 87 85 88 89 87 88

Goal percentage (↑)

Hum
an

mod
el

alo
ne

PPO

Alph
aZ

ero

BC-al
on

e

BC-w
ith

-as
st.

BC-co
mbin

ed

piK
L-al

on
e

piK
L-w

ith
-as

st.

piK
L-co

mbin
ed

Human model during training

389 401 434 537 507 529 444 429 450

519 368 346 462 358 357 319 316 352

175 184 172 167 163 161 170 156 158

191 187 186 168 156 159 177 156 168

200 191 192 164 163 166 171 166 159

237 229 209 200 192 199 181 183 182

246 225 218 214 187 213 182 169 182

250 230 215 208 204 204 192 187 183

241 227 212 204 190 201 181 176 182

Human actions (↓)

-5

0

+5

+10

+15

-200

-150

-100

-50

0

+50

+100

Figure 9: We train AssistanceZero assistant policies with each of our eight human models and evaluate the assistants with
all human models. Here, we show the mean goal percentage achieved by each assistant-human pair as well as the mean
number of place and break actions taken by the human. Colors indicate the difference in each metric compared to the human
model building alone.

Figure 9 shows the full results of training AssistanceZero assistant policies with all of our human models and evaluating them
with every other human model. We find that training the assistant with the piKL human models yields the best performance,
increasing the percentage of the goal structure that is built while reducing the number of actions taken by the human model.
Assistant policies trained with PPO- and AlphaZero-based human models performed the worst, demonstrating the issue with
modeling humans as rational or Boltzmann-rational.

D.1.2. BEHAVIOR CLONING ABLATIONS

We perform several ablations of our best behavior cloning model, BC-combined. The results are shown below using the
same metrics as in Table 2:

Cross entropy Goal % after X min
Ablation Alone w/ asst. 3 5 10 20

None 1.89 1.99 9 17 41 71
No data augmentation 2.41 2.36 10 18 35 62
No dropout 2.56 2.44 8 14 30 49
No LSTM 2.13 2.12 12 21 43 70
No previous action input 2.40 2.36 12 22 44 71

Humans subjs. — — 25 42 80 95

Table 4: Ablations of key components of our BC human models. See Appendix E for the full meaning of all ablations.

18

AssistanceZero: Scalably Solving Assistance Games

The ablation study shows that data augmentation, dropout, using a recurrent network, and using the previous action as
input are all important to achieving low cross entropy with BC. Furthermore, removing data augmentation or dropout also
considerably lowers the performance of the BC model playing alone.

D.1.3. PIKL ABLATIONS

As described in Appendix E.3.1, the most important hyperparameter for our piKL human models is cPUCT, which trades off
between policies that achieve higher reward versus ones that are closer to the BC model. Below, we show variations of our
piKL-combined human model with various values of cPUCT.

Cross entropy Goal % after X min
cPUCT Alone w/ asst. 3 5 10 20

10 2.28 2.61 39 60 82 92
30 1.98 2.20 26 44 75 91
50 1.91 2.08 21 36 65 88

Humans subjs. — — 25 42 80 95

Table 5: Ablations of the cPUCT parameter for the piKL-combined human model. We find that using cPUCT = 50 achieves the
lowest cross entropy, but builds houses much slower than real humans. cPUCT = 10 builds houses faster than real humans
and has much higher cross entropy. We decided to use cPUCT = 30 for our main experiments because it achieves relatively
low cross entropy and closely matches human performance at building houses alone.

D.2. PPO assistant training

We conduct extensive ablation experiments to train a PPO-based assistant policy with an imitation-learning based human
model, as shown in Table 6. First, we experimented with interleaving convolutional and LSTM layers or removing the
LSTM layers. Next, we tried reward engineering by only providing reward based on the assistant’s own actions, rather
than the shared reward that also depends on the human model’s actions. We also included auxiliary losses to encourage
correct block placement (“block-placing loss”) and predict the goal structure (“goal prediction loss”). Finally, we ablated
the standard PPO entropy bonus and value function loss. The best overall policy does not include LSTM layers, utilizes
reward engineering, and adds the block-placing loss in addition to the standard PPO losses. See Appendix E.3.2 for more
information about PPO assistant training and the final set of hyperparameters.

19

AssistanceZero: Scalably Solving Assistance Games

LSTM Reward Block-placing Goal prediction Entropy VF Overall Human Assistant
engineering loss loss coefficient loss goal % actions goal %

✓ ✓ ✓ ✓ ✓ ✓ 71.1 ± 0.9 201 ± 3 -1.1 ± 1.0
✓ ✓ ✓ ✓ ✓ 71.2 ± 1.0 200 ± 4 -0.0 ± 0.0
✓ ✓ ✓ ✓ ✓ 70.9 ± 1.0 200 ± 4 -0.0 ± 0.1
✓ ✓ ✓ ✓ ✓ 71.0 ± 1.0 199 ± 3 0.3 ± 0.6
✓ ✓ ✓ ✓ ✓ 70.6 ± 1.0 194 ± 3 0.8 ± 1.0

✓ ✓ ✓ ✓ ✓ 71.5 ± 0.9 191 ± 3 2.8 ± 1.0
✓ ✓ ✓ ✓ 62.4 ± 1.2 206 ± 3 -14.4 ± 1.6
✓ ✓ ✓ ✓ 74.1 ± 0.9 191 ± 3 7.2 ± 1.0
✓ ✓ ✓ 71.6 ± 0.9 201 ± 3 0.0 ± 0.0
✓ ✓ ✓ ✓ 70.8 ± 0.9 196 ± 3 0.6 ± 0.9
✓ ✓ ✓ ✓ 70.5 ± 1.0 193 ± 3 -0.0 ± 1.3

✓ ✓ ✓ ✓ ✓ 71.1 ± 1.0 201 ± 4 -0.3 ± 0.1
✓ ✓ ✓ ✓ 71.4 ± 1.0 201 ± 3 -0.0 ± 0.2
✓ ✓ ✓ ✓ 70.5 ± 1.0 200 ± 3 -0.6 ± 0.2
✓ ✓ ✓ ✓ 72.9 ± 0.9 203 ± 3 0.1 ± 0.5
✓ ✓ ✓ ✓ 69.9 ± 0.9 207 ± 3 -4.2 ± 0.8

✓ ✓ ✓ ✓ 67.9 ± 1.0 195 ± 3 -3.0 ± 0.9
✓ ✓ ✓ 72.0 ± 1.0 207 ± 3 -2.6 ± 0.8
✓ ✓ ✓ 70.9 ± 1.0 200 ± 3 0.3 ± 0.3

✓ ✓ ✓ 68.2 ± 1.0 194 ± 3 -1.0 ± 0.9
✓ ✓ ✓ 71.5 ± 0.9 204 ± 3 -1.6 ± 0.8

Table 6: Full ablation results of evaluating how well PPO-based assistant policies trained with an imitation learning-based
human model build goal structures not seen during training. Overall goal % is the total percentage of the goal completed;
human actions refers to the number of place and break actions taken by the human model; and assistant goal % is the
percentage of the goal completed by the assistant. The first six ablation columns correspond to whether LSTM layers are
used; reward engineering by only providing reward for the assistant’s own actions; an auxiliary loss to encourage correct
block placement; a goal prediction loss; the PPO entropy bonus; and the PPO value function loss.

D.3. AssistanceZero ablations

We present two ablations of AssistanceZero in MBAG:

Ablation Overall goal % Human actions Assistant goal %

None 77.5 ± 3.2 154 ± 9 25.2 ± 4.6
No LSTM 69.0 ± 3.6 192 ± 11 -0.6 ± 5.2
λprev-rew = 0 76.8 ± 2.6 167 ± 10 18.1 ± 5.1

Table 7: Ablations of AssistanceZero.

As expected, because AssistanceZero is solving a POMDP, a recurrent policy performs much better. We also validate the
inclusion of the KL penalty between the previous and current reward parameter prediction distributions (which is scaled by
λprev-rew).

20

AssistanceZero: Scalably Solving Assistance Games

E. Experiment details
Here, we provide further details about our data collection and training procedures.

E.1. Data collection

To train the BC human models, we collect 18 episodes of 5 human subjects building goal structures. For half of the total
episodes, the subject is given a goal structure and is instructed to build it quickly and efficiently without assistance. For the
other half, a single experienced human Minecraft player acts as the assistant to help build the house. The human assistant is
instructed to help the human subjects build their goal structures, but they are not shown the goal structure themselves. While
the human agent and assistant can observe each other’s actions, there is otherwise no communication between them.

Out of the five human subjects we collected data from, four were male and one was female; four had previous Minecraft
experience and one did not.

E.2. Network architecture

For both the human models and AI assistant policies, we use a convolutional neural network architecture with six residual
blocks and (optionally) two LSTM blocks:

Embedded observations

1× 1× 1 convolution

Residual block

Residual block

Residual block

LSTM block

Residual block

Residual block

Residual block

LSTM block

1× 1× 1 convolution

Leaky ReLU

1× 1× 1 convolution

Policy head

Average pool

Fully connected

Leaky ReLU

Fully connected

Value head

1× 1× 1 convolution

Leaky ReLU

1× 1× 1 convolution

Reward parameter
prediction head

1× 1× 1 convolution

Leaky ReLU

1× 1× 1 convolution

Human action
prediction head

5× 5× 5 convolution

Batch norm

ReLU

Dropout

5× 5× 5 convolution

Batch norm

+

ReLU

Residual block

LSTM

+

LSTM block

21

AssistanceZero: Scalably Solving Assistance Games

The network takes in observations as a tensor of shape W ×H ×D ×N for an environment of size W ×H ×D, where
each location includes the following features:

• an embedding representing the current block type present at that location,

• an embedding representing the goal block type at that location (if the goal is visible to the agent),

• an embedding representing which player, if any, is standing at that location,

• an embedding representing which player, if any, was the last to place or break a block at that location (this allows the
agents’ actions to be visible to each other),

• the counts of each type of block in each players’ inventories divided by 64,

• and the current timestep divided by 1,000.

The observation embeddings are transformed via a 1× 1× 1 convolutional layer (i.e., a fully connected layer at each spatial
location) before being passed through the backbone.

The backbone consists of six or eight layers depending on whether the network is recurrent. The residual layers follow the
ResNet architecture (He et al., 2016) but with 3D 5× 5× 5 convolutions and optional dropout. An LSTM block consists of
a standard LSTM layer with a skip connection, where the LSTM is applied separately at every spatial location in the input.
The residual and LSTM blocks use 64 channels throughout the network.

The output of the backbone is a tensor of size W ×H ×D× 64. It is passed through the four heads described in Section 4.2:

1. The action head consists of two 1× 1× 1 convolutional layers with a Leaky ReLU activation function in between.
The output of the action head is a W × H × D × (2B + 8) for a environment of size W × H × D with B block
types (B = 10 in our experiments). The action head is passed through a softmax function to produce a distribution
over actions. Each element of the output corresponds to a possible action, with some actions represented by multiple
elements. Seven of the output channels correspond to the no-op and movement actions; the probabilities are summed
across all spatial locations to produce a distribution over these actions. One channel corresponds to the break block
action at each spatial location. B channels correspond to the place block action at each spatial location, with each
channel representing a different block type. Finally, the last B channels correspond to the give block action at each
spatial location, with each channel representing a different block type; give block actions are only valid for locations
with another player that is near by. We mask invalid actions by setting their probabilities to 0 and renormalize the
distribution.

2. For the value head, the backbone outputs are averaged over all spatial locations to produce a single vector of dimension
64. This is then passed through two fully connected layers with a Leaky ReLU activation function in between. The
output of the value head is a scalar.

3. For the reward parameter prediction head, the backbone outputs are passed through two 1× 1× 1 convolutional layers
with a Leaky ReLU activation function in between. The output of the goal head is a tensor of size W ×H ×D ×B,
where B is the number of block types. At each spatial location a softmax is applied; this produces a predicted
distribution over the block types in the goal structure at that location.

4. The human action prediction head has an identical architecture to the policy head. The output of the human action
prediction head is a distribution over actions that the human is likely to take, with the outputs interpreted the same way
as the policy head.

E.3. Training details

We implement all RL and imitation learning algorithms in RLlib (Liang et al., 2018) and PyTorch (Paszke et al., 2019).
During RL training, we randomize the starting location of the human policy to improve generalization. Since some RL
algorithms sample experience in fragments shorter than a full episode, we also randomize the length of the first episode in
the environment. This avoids a situation where in one iteration of PPO all fragments are from the beginning of episodes and
in the next they are all from the end.

22

AssistanceZero: Scalably Solving Assistance Games

E.3.1. IMITATION LEARNING

We use behavior cloning for our BC human models as well as the pretraining and SFT assistants.

Data augmentation We use data augmentation during behavior cloning for some experiments. The data augmentation
consists of choosing a random permutation of block types for each state and applying it to the current blocks in the world,
the block types in the goal structure, the players’ inventories, and any place or give actions. We found that data augmentation
helped in some cases; see the BC ablations in Appendix D.1.2 and the details of the SFT assistant training in Appendix E.3.1.

Behavior cloning human models As described in the main text, we train human models with behavior cloning on three
datasets: 9 episodes of humans playing alone, 9 episodes of humans playing with an assistant, and the full dataset of 18
episodes (see Appendix E.1). We use the network architecture described in Appendix E.2 for our BC models, but with an
additional input of the previous action taken by the human model. We found that this substantially improved human action
prediction (see ablations in Appendix D.1.2). We use the following hyperparameters:

Hyperparameter Value
BC-alone BC-with-assistant BC-combined

Epochs 30 80 40

Data augmentation yes
LSTM yes
Dropout 0.7
SGD batch size 128
Optimizer Adam
Learning rate 10−3 decayed linearly to 10−4 over first half of training

Table 8: Hyperparameters for BC human models.

The only difference between the models trained on different splits was the number of epochs. See Appendix D.1.2 for
ablations of these hyperparameters.

piKL human models piKL (Jacob et al., 2022) is a human model that combines a BC-trained policy with MCTS. In
particular, piKL selects actions by running MCTS with the prior policy given by the BC network’s output. Grill et al.
(2020) show that this is approximately equivalent to solving a regularized optimization problem that finds the policy which
maximizes reward minus a KL constraint to the BC policy.

We carefully tune the parameter cPUCT in MCTS which effectively interpolates between purely maximizing reward and
purely following the BC policy (see Appendix D.1.3). We find a value of 30 balances prediction error and performance.

A drawback of using piKL as a human model is that it does assign positive probability to all actions, only those visited by
MCTS. This means that the cross entropy of piKL on human data is infinite if there is a single action taken by the human
that MCTS does not visit. To fix this, we define a distribution with full support over all actions based on the asymptotic
approximation given in Grill et al. (2020) of the policy MCTS would reach after infinitely many simulations. We use this
full-support policy for calculating the cross entropy of piKL, for evaluating piKL human models in MBAG, and while
training assistants with piKL human models.

We do not use a value function for piKL, although Jacob et al. (2022) experiment with this. When running piKL in MBAG
with another agent, we plan in MCTS as though the other agent only takes no-ops.

Pretrained assistant To train the pretrained assistant described in Section 5, we sample 10,000 episodes from the BC-
combined model. We remove information about the goal structures, segment each episode into fragments of length 64, and
train a recurrent policy with the following hyperparameters:

23

AssistanceZero: Scalably Solving Assistance Games

Hyperparameter Value

SGD batch size 256
Total training batches 96,000
Data augmentation no
LSTM yes
Dropout 0.5
Optimizer Adam
Learning rate 10−3

Table 9: Hyperparameters for the pretrained assistant.

When evaluating the policy, we sample from it with temperature 0.3. That is, we scale the output logits by 1/0.3 before
applying softmax to obtain action probabilities.

SFT assistant The SFT assistant is fine-tuned from the pretrained assistant using BC on expert human assistant data from
our data collection sessions (Appendix E.1). We carefully tuned the hyperparameters of the SFT assistant using grid search
over 540 parameter combinations. We trained an SFT assistant with each set of parameters and then evaluated it with the
BC-combined human model for 100 episodes. We ranked the parameter combinations based on the percentage of the goal
built on the assistant. Then, we re-evaluated the top 20 hyperparameter combinations for 1,000 episodes to reduce variance.
We selected our final hyperparameter settings based on the best-performing assistant from these evaluations according to
goal percentage built by the assistant.

The table below shows the final parameters as well as those considered in the grid search:

Hyperparameter Value Values considered in grid search

Initialization Pretrained assistant w/o action head { Random, pretrained assistant w/ or w/o action head }
Training epochs 100 {10, 20, 30, 50, 100}
Data augmentation yes {yes, no}
LSTM yes —
Dropout 0 {0, 0.5}
Optimizer Adam —
SGD batch size 256 —
Learning rate 10−4 {10−3, 3× 10−4, 10−4}
Sampling temperature 0.3 {1, 0.5, 0.5}

Table 10: Hyperparameters for the SFT assistant. We tune the hyperparameters via grid search over the values in the right
column, if given. We consider initialization of the policy network from either random weights or from the weights of the
pretrained assistant. Initialization w/o the action head means we initialize all weights from the pretrained assistant except for
those in the action head.

E.3.2. REINFORCEMENT LEARNING

PPO human model (single-agent) We use the following hyperparameters to train the PPO human model, which we
trained to build houses alone:

24

AssistanceZero: Scalably Solving Assistance Games

Hyperparameter Value

Training iterations 100
Rollout length 500
Number of environments 640
SGD batch size 512
SGD epochs per iteration 3
Optimizer Adam
Learning rate 3× 10−4

Discount factor (γ) 0.95
GAE coefficient (λ) 0.95
Entropy coefficient 0.03
Clipping parameter 0.2
Gradient clipping 10
LSTM No
Dropout 0
KL target 0.01
Initial KL coeff. 0.2
Value function loss coeff. 0.01

Table 11: Hyperparameters for PPO human model training.

PPO assistant To effectively train an assistant with PPO, we modified the reward function and added an auxiliary loss
term. For the former, we only give reward that is directly attributable to the place/break actions of the assistant and disregard
any place/break actions taken by the human. This means that PPO’s goal is not actually aligned with the assistance game
objective. However, without this modification, we found that the PPO assistant did not make meaningful contributions to
building the goal structure—it either took no-op and movement actions or repeatedly placed and broke the same block.

For the auxiliary loss, which we call the “block-placing loss,” we use the cross-entropy between the block type placed by the
assistant and the goal block type at that location, if there is one. This loss provides some training signal when the assistant
places a block in a location that is part of the goal structure, even if the block type is incorrect. Without this loss, placing an
incorrect block type would simply result in a reward of 0, making it more challenging for the assistant to learn to place
blocks at all. We linearly decay this loss coefficient from 1 to 0 over the first 2× 106 timesteps.

We also experimented with adding a second auxiliary loss term to predict the goal structure. This involved adding a goal
prediction head similar to that used in AssistanceZero and training with the same loss function. However, we did not find
that this loss produced the best PPO assistant.

Finally, we observed that removing the LSTM blocks from the baseline network architecture described in Appendix E.2
improved the assistant’s performance.

All the hyperparameters for the PPO assistant are shown in Table 12. See Appendix D.2 for a full list of ablation experiments
and results.

25

AssistanceZero: Scalably Solving Assistance Games

Hyperparameter Assistant

Training iterations 300
Rollout length 64
Number of environments 256
SGD minibatch size 256
SGD epochs per iteration 3
Optimizer Adam
Learning rate 3× 10−4

Discount factor (γ) 0.95
GAE coefficient (λ) 0.95
Entropy coefficient (horizon) 3 → 0.01 (2× 106)
Clipping parameter 0.2
Grad clip norm threshold 10
Recurrent network (LSTM) No
KL target 10
KL coeff. 0.2
Value function coeff. 0.01
Goal loss coeff. 0
Place block loss coeff. (horizon) 1 → 0 (2× 106)

Table 12: Hyperparameters for PPO assistant training.

MCTS Actions in MBAG consist of a high-level action type (no-op, break block, place block, move up, etc.) and
parameters for the location (used by break/place) and block type (used by place). Because of this structure, we found it
helpful to separate the action selection step of MCTS into two stages, which we refer to as bi-level action selection. First,
MCTS chooses the high-level action type by using aggregated prior policy probabilities, Q-values, and visit counts that are
summed over all actions with that action type. Then, if the action type requires additional parameters (i.e., place and break
actions), we repeat the action selection process among all actions of that type.

Similarly to AlphaZero, we add Dirichlet noise to the action selection step. We use separate noise levels for the two
stages—0.25 for the first action type stage, and 10 divided by the number of valid actions for the second stage.

AlphaZero human model (single-agent) We use the following hyperparameters to train the AlphaZero human model to
build houses alone:

26

AssistanceZero: Scalably Solving Assistance Games

Hyperparameter Value

Training iterations 125
Rollout length per iteration per environment 64
Number of environments 256
Replay buffer size 65,536
Timesteps sampled from replay buffer per iteration 65,536
SGD batch size 256
SGD epochs per iteration 1
Optimizer Adam
Learning rate 10−3

Discount factor (γ) 0.95
Gradient clipping 10
LSTM no
Dropout 0
Value function loss coeff. 0.01
No-op reward -0.2
Number of MCTS simulations 100
Inverse temperature for MCTS 1.5
cPUCT 1

Table 13: AlphaZero hyperparameters for the human model (single-agent) and assistant training.

We used two additional tricks to improve single-agent AlphaZero training. First, we terminate episodes if a new minimum
goal distance is not achieved for 100 timesteps. Second, we add a penalty to the reward function of −0.2 for no-op actions
to encourage the policy to act and explore.

AssistanceZero assistant We use the following hyperparameters for training assistants with AssistanceZero:

Hyperparameter Value

Training iterations 500
Rollout length per iteration per environment 64
Number of environments 256
Replay buffer size 262,144
Timesteps sampled from replay buffer per iteration 65,536
SGD batch size 256
SGD epochs per iteration 1
Optimizer Adam
Learning rate 10−3

Discount factor (γ) 0.95
Gradient clipping 10
LSTM yes
Dropout 0
Number of MCTS simulations 100
Inverse temperature for MCTS 1.5
cPUCT 1
λpolicy 1
λvalue 0.01
λreward 3
λprev-rew linear increase from 0 to 30 over training
λaction 1

Table 14: AssistanceZero hyperparameters for MBAG.

27

AssistanceZero: Scalably Solving Assistance Games

E.4. Evaluation

When evaluating AssistanceZero assistants, we use only 20 simulations of MCTS, which is roughly the number that can run
in real-time with Minecraft on an NVIDIA GeForce 1080 Ti GPU. All evaluations use randomly sampled houses from the
test set Dtest, while all training uses houses from the train set Dtrain; thus, we always test human models and assistants on
unseen goal structures.

28

