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Abstract

Large language models (LLMs) have excelled
in various text generation tasks, including tab-
ular data. However, inherent historical biases
in tabular datasets often cause LLMs to propa-
gate fairness issues, particularly when multiple
advantaged and protected features are involved.
In this work, we introduce a universal debiasing
framework that minimizes dependencies at the
group level by reducing the mutual information
between advantaged and protected attributes si-
multaneously. By leveraging the autoregressive
structure and analytic sampling distributions
of LLM-based tabular data generators, our ap-
proach efficiently computes mutual information
without resorting to cumbersome numerical es-
timations. Building on this foundation, we
propose two complementary methods: a direct
preference optimization (DPO)-based strategy,
namely UDF-DPO, that integrates seamlessly
with existing models, and a targeted debiasing
technique, namely UDF-MIX, that achieves de-
biasing without tuning the parameters of LLMs.
Extensive experiments demonstrate that our
framework effectively balances fairness and
utility, offering a scalable and practical solu-
tion for debiasing in high-stakes applications.

1 Introduction

Large Language Models (LLMs) (Lewis, 2019;
Brown et al., 2020; Kojima et al., 2022; Achiam
et al., 2023) demonstrate extraordinary ability to
understand (Jiang et al., 2020), reason (Chang et al.,
2024), and generate text (Ji et al., 2023). These ad-
vancements have pushed new boundaries across
a wide range of domains (Yin et al., 2023; Yang
et al., 2024). As one of the most common data
forms (Borisov et al., 2022), there has been a grow-
ing trend to leverage LLMs for tabular data tasks
understanding (Sui et al., 2024), prediction (Ruan
et al., 2024), and generation (Borisov et al., 2023;
Zhao et al., 2023; Gulati and Roysdon, 2024).
Despite their powerful capabilities, LLMs suffer

from fairness issues when acting on tabular data,
i.e., advantaged features (e.g. income) are often
correlated with protected attributes (e.g. gender).
Such biases widely exist in the tabular data due to
historical reasons (Mehrabi et al., 2021). Conse-
quently, when LLMs are trained on this data, they
will inherit existing biases (Schick et al., 2021).
Moreover, because the generated data is often used
to train downstream prediction tasks for high stake
domains such as job applications, the inherited bias
raises fairness concerns for the downstream models
as well (Borisov et al., 2022).

To address fairness concerns in LLMs, one ap-
proach is to adapt debiasing methods from non-
LLM tabular data generators to ensure fairness in
LLM-based generation. However, existing debias-
ing methods target bias between only one pair of
advantaged features and protected attributes (e.g.,
income and gender) that will be used in down-
stream tasks (Calmon et al., 2017; Xu et al., 2018;
Van Breugel et al., 2021; Abroshan et al., 2024).
When users require a downstream task different
from the one used during training, the model must
be retrained. Yet, tabular datasets typically contain
multiple advantaged features (e.g., income, edu-
cation, occupation) and protected attributes (e.g.,
age, gender, race), making retraining for every pos-
sible pair computationally prohibitive. Another
approach is to adapt the debiasing methods from
LLM for text generation. Most existing methods
focus on debiasing a single protected attribute (Liu
et al., 2021a; Yang et al., 2023; Liu et al., 2024a).
Therefore, these methods still cannot address the
multiple protected attributes settings.

Rather than relying on pairwise debiasing meth-
ods, we propose a group-wise debiasing approach
that eliminates all dependencies between advan-
taged features and protected attributes. Thus, our
formulation partitions features into advantaged fea-
tures (e.g., income, education, occupation), pro-
tected attributes (e.g., race, gender), and remaining



features, and minimizes the group level Mutual In-
formation between the advantaged and protected
features. Notably, pairwise debiasing is a special
case of this broader framework, where the protected
attribute and advantaged feature groups each con-
tain only one feature. However, breaking these
dependencies alters the learned distribution, so re-
ducing bias can cause the generated data to deviate
from the original. To balance bias mitigation and
utility, we impose an additional constraint to the
trade-off. This universal debiasing framework for
tabular data generator is our first key contribution.
However, MI lacks closed-form expression, mak-
ing its computation challenging, let along mini-
mization for debiasing. This difficulty is exacer-
bated in high dimension space, where tabular data
often lie in (Liu et al., 2024b). While this chal-
lenge cannot be solved in general, the unique auto-
regressive nature of LLM-based tabular data gener-
ators allow us to derive efficient solutions for them.
Specifically, LLMs generate different features of
a tabular data sample one by one in a sequential
manner, and each feature is drawn from an ana-
lytic-form distribution. Taking advantage of these
analytic sampling distributions that are accessible,
we propose a fine-tuning based solution for debias-
ing that gets us rid of the numeric estimation of MI.
This solution can be readily implemented with di-
rect preference optimization (DPO) (Rafailov et al.,
2024), making our debiasing task no more difficult
than than standard fine-tuning. In addition, the de-
biased model maintains all applicability of the base
LLM and can seamlessly replace the latter in all
cases — Notably, the fairness guarantee generalizes
to diverse scenarios beyond data generation, such
as data imputation. This strong one-for-all guaran-
tee makes our solution highly valuable. We refer to
this DPO-based debiasing method as UDF-DPO.
Built upon UDF-DPO, we derive UDF-MIX, a
more efficient debiasing solution specialized for
data generation. UDF-MIX not only leverages the
analytic sampling distribution, but also exploits the
sequential nature of the generation process. Specif-
ically, UDF-MIX identifies a few generation steps
that result in the bias, and precisely alters these
steps without changing others. This design leads
to two remarkable efficiency improvements. First,
as UDF-MIX only needs to debias a few genera-
tion steps, it relies on far fewer less parameters,
thereby achieving much better parameter efficiency.
Second, through an innovative parameterization,
we bring the factor to balance fairness and util-

ity, which is usually treated as a hyper-parameter
to tune, into UDF-MIX training. Consequently,
UDF-MIX by design can handle the balance of
conflicting fairness and utility without retraining,
thereby substantially reducing the human burden
and computation costs for tuning hyper-parameters
for different tasks. These two effective and efficient
debiasing methods are also key contributions of
our work.

Our paper is organized as follows. Sec 2 details
our new universal debiasing framework and two
effective solutions. Sec 3 presents extensive ex-
periments to demonstrate the effectiveness of our
methods. In the remaining part of this paper, we
review related works in Sec 4 , and conclude the
paper in Sec 5.

2 Proposed Method

2.1 Preliminary

Tabular Data. Tabular data is structured in a table
format, where each row corresponds to a sample
and each column represents a feature, which can be
of mixed types (Fang et al., 2024; Borisov et al.,
2022). Mathematically, a tabular dataset can be
expressed as D = {d}N |, where each sample
d is a K -dimensional array. Each feature dg) can
be continuous, discrete, or unstructured, such as
text descriptions'. Modeling tabular data is partic-
ularly challenging due to its heterogeneous feature
types (Sahakyan et al., 2021; Wang et al., 2024a;
Fang et al., 2024). Traditional deep learning mod-
els are typically designed for a single data type,
such as continuous-valued images or discrete tex-
tual data, and thus struggle to effectively handle
tabular datasets (Gorishniy et al., 2021; Borisov
et al., 2022; Grinsztajn et al., 2022).

Textual encoding of tabular data. Recent works
(Borisov et al., 2023; Zhang et al., 2023) have
demonstrated that the ability of LL.Ms to process
diverse data types opens new avenues for model-
ing tabular data through the technique of textual
encoding. Specifically, given a feature dj, with the
name f, it can be represented as a short text in
the form of “f is di” (e.g., “age is 20”). By con-
catenating all these texts into a single paragraph,
a tabular dataset can be transformed into a textual
representation, enabling standard LLMs to model
it effectively. For simplicity, we refer to such text-
encoded data as D.

"For brevity, the sample index i will be ignored unless
explicitly mentioned from now on.



2.2 Bias in Tabular Data and Limitations of
Pairwise debiasing

Real world tabular data often consists of a cer-
tain amount of social bias due to historical reasons.
For example, in credit application datasets, advan-
taged features such as income and occupation are
often associated with genders (Caton and Haas,
2024). As a result, machine learning-based deci-
sion makers trained on such biased datasets tend to
discriminate female applicants by predicting them
as low income, leading to fairness concerns (Zemel
et al., 2013; Hardt et al., 2016; Liu et al., 2023).
In response, existing works have been proposed
to impose some independence between ML meth-
ods’ action on the so-called advantaged feature
(income in our example), and the demographic
group gender as a protected feature (Caton and
Haas, 2024). Representative independence formu-
lation (requirements) include Demographic Dispar-
ity (DP) (Zemel et al., 2013) and Equalized Odds
(EO) (Hardt et al., 2016).

Recent works showed that when generative mod-
els such as LLMs trained on biased datasets repro-
duce or even amplify such bias (Sui et al., 2024).
Consequently, when sharing such a data generator,
the bias will be spread as well. This raised great
concern for tabular data that are common in high-
stakes domains such as the job applications, banks,
and so on (Dastin, 2018). To prevent the bias in the
generated data from propagating to downstream
tasks, previous works impose fairness constraints
when training the generative model. These con-
straints are specific to the advantaged feature (e.g.,
income) and protected attribute (e.g., gender) that
will be used for downstream tasks.

However, if a downstream user is interested in a
different pair of advantaged features and protected
attributes (e.g., occupation and race) other than the
ones used during training the generative model, the
model must be retrained to address that new com-
bination. Therefore, we refer to such methods as
Pairwise debiasing to highlight that their fairness
can only be guaranteed on a specific pair of advan-
taged features and protected attributes. However,
the tabular data contains multiple advantaged fea-
tures (e.g., income and occupation) and protected
attributes (e.g., race and gender). Such retraining
for every possible pair of advantaged features and
protected attributes is computationally infeasible
for LLMs.

2.3 A Universal Debiasing Formulation

Given that existing debiasing methods for tabular
data generation are constrained by their specialized
pairwise debiasing design, it is necessary to em-
ploy a groupwise debiasing approach in the sense
that simultaneously debiases all advantaged fea-
tures and protected attributes. In this light, we refer
to such debiasing as universal debiasing. Our for-
mulation starts with a key common sense based
on the practical meaning of social bias: Given the
interpretable nature of tabular dataset, the advan-
taged features and protected attributes are easy to
identify.

Based on this common sense, we split K features
dy.x into three groups. First, s is the collection of
all protected features (e.g., gender and race). Sec-
ond, d,s is the collection of features that cannot be
associated with s, and will raise fairness concerns
otherwise (e.g., income level, education level, job
eligibility). Finally, ds; denotes the remaining fea-
tures that can freely vary across different s. Note
that our categorization is a generalization of ex-
isting works, and reduces to the latter if d, and
s consist of only one feature respectively, where
the single d,s instantiates a label to predict in a
downstream task to be debiased.

Given tuple (s, dgs, ds), we define a group-level
mutual information-based debiasing formulation.
Suppose py is a pre-trained data generator (such as
an LLM), we quantify the bias carried by py as

Po(s; das) } ’

Io(s,dys) = E [10
o )= B, ® po(5)po(das)

and propose to cast it into a fairer generator g, by
solving:

ming I4(s,das) + BDrr(pellgg)- ey

Intuitively speaking, enforcing the first term MI
is breaking the dependencies between two groups.
Specifically, the benefits of using MI lie in two
folds. First, mutual information as a bias measure
is closely connected to the existing fairness notion
demographic parity (DP) (Zemel et al., 2013), and
implies the latter when I4(s, dqs) = 0. Second, Eq
(1) extends debiasing from a single feature-level
to a feature set-level, thereby imposing a stronger
fairness guarantee for downstream applications.
Specifically, any possible label y € d,s will be
fair with respect to every protected feature a € S
thanks to the data processing inequality (Cover,



1999)
I(s,das) > 1(s,y) > I(a,y).

The second term KL penalty restricts g to stay
close to base pg, so that the data generated by
qe have high quality (Kingma, 2013). Hyper-
parameter 3 balances the two terms and controls
the fairness-utility trade-off.

Eq (1) provides a general debiasing framework
that can be imposed on any data generators. How-
ever, this optimization is nontrivial to solve, due
to the lack of a closed-form expression for mutual
information that involves the high dimensional dis-
tribution q.

However, the auto-regressive nature of LLM al-
lows one to freely control the feature generating
orders. This flexibility offers us more effective
ways to reduce the computational complexity of
debiasing, as detailed below.

2.4 Debiasing Through Finetuning

As mentioned above, the special generating pro-
cess from LL.Ms enables effective debiasing. This
section details a finetuning-based formulation and
its solution.

Specifically, we reformulate the bias as a (neg-
ative) reward that the LLM should minimize, and
cast debiasing from Eq (1) into a preference opti-
mization problem, wherefore perform direct pref-
erence optimization (DPO) and its variants can be
applied (Ethayarajh et al., 2024; Azar et al., 2024;
Guo et al., 2024). Mathematically speaking, we
have

das
Iy(s, das) = E,, [log (Jﬁb(‘g’)}

6(5)q6(das)
_ o q¢(das | 5)
= Fas [l g qp(das) }

£ B, [—7(s, das)]- (2)

Here the negative reward —7(s, d,s) measures fo
what extent knowing protected features s helps pre-
dict dgs. A high reward indicates that s and dgs
are essentially independent, thus the generated data
are fair. Built upon this, Eq (1) can be written as
a standard preference optimization objective with
forward KL ?

maxg B, [r(s, das)] — BDrr(pellgs), (3)

Note that we flip the minimization to maximization.

This objective can be optimized in either on-policy
or off-policy way, and we conduct an approxi-
mately on-policy learning with DPO. In specific,
after several DPO finetuning steps, we recollect a
new dataset from current g4. Next, we compute
each sample a reward based on Eq (2). Finally, we
randomly construct pairs of samples whose rewards
gap exceeds a pre-specified threshold. The sample
achieves a higher reward is treated as the preferred
one. The next round of DPO finetuning are con-
ducted on the new dataset. We dub our method
NAME.

We end up this section with two remarks. First,
dqs and s are symmetric in I4(s, dqs), therefore,
one can also define the reward as the log ratio be-
tween gy (s | das) and g4 (s) without violating the
validity of our framework. Second, the key flexibil-
ity that auto-regressive LLMs offers is that we can
directly compute all required probabilities (and the
reward) analytically. While for other generators,
these quantities have to be estimated numerically.

2.5 Adaptive Inference Time Debiasing

Computing Eq. (3) analytically offers an additional
benefit: it preserves the flexibility of the LLM by
maintaining the free control of feature generating
orders. However, this flexibility is mostly benefi-
cial to tasks beyond generation tasks such as data
imputation.

In this section, we show that by sacrificing some
of this flexibility, we can further reduce the com-
putational complexity in two means. First, we can
further reduce the complexity in computing the de-
biasing object by focusing on an intermediate part
of the generation process. Second, we can enhance
the LLM’s generation process with a lightweight
module that accommodates to different hyperpa-
rameter settings for 5 without requiring retraining,
thus achieving inference-time debiasing.

Specifically, an autoregressive LLM allows us to
generate data according to the decomposed order?

p@(sadasyds) = pe(S)pe(das | 5)p9(ds | Sadas)-

Note that only the second term py(d,s | s) affects
the fairness, and d by definition can be generated
freely. Therefore, instead of altering the complete
generating process of LLM pg, we solve Eq (1) by
only replacing the intermediate pg(d,s | s) with a
one that minimizes the debiasing objective. This

3We abuse the notation a bit by expressing different distri-
butions as the function of the same parameters.



leads to

m1n¢ I¢(5,da5) ‘I—ﬁDKL(pGHQ(b)
S.t. Q¢(S, das> ds) S pg(s) X
q¢(das | 5) pQ(dS ‘ S,das)- “4)
N———

learnable

Training a gy (dqs | s) from scratch can be expen-
sive especially when d,s and s are of high dimen-
sions. To avoid this computational burden, we pro-
pose a reparameterized form based on the following
proposition, with its proof deferred to App A.

Proposition 2.1. Consider the optimization prob-
lem given in Eq (5). Then py(das) and pg(das | $)
achieve the optimal utility under strict or no fair-
ness constraints, respectively. Specifically, we have

po(das) = argming, a,.|s) {Dxrlpollgs]}
S.1. I¢(S,da5) = O,

and

Po(das | s) = argming, D r.[pol|gs]-

Given the optimal solutions from Prop 2.1, it
is viable to strike a balance between fairness
and utility at efficiency by combining them lin-
early (Chuang and Mroueh, 2021; Zhou et al.,
2024). To this end, we parameterize g, in Eq (4)
as a convex combination of them

¢ (das | 5) = A(s, B)po(das)+
(1= X(s,8))po(das | 8), (5)

and learn the mixing weight A(s, §) € [0, 1] only,
which is a function of both s and 3. Notably, its
dependency on s allows different protected features
benefiting from different values. At the same time,
A as a function of hyper-parameter 5 gives flex-
ibility to balance between fairness and utility at
inference time by varying (. In practice, we pa-
rameterize A(-, -) with a lightweight MLP. The ob-
jective is again trained with DPO loss as presented
before. The complete algorithm is summarized in
Algorithm 1.

While the fairness-utility trade-off is widely ob-
served in general, our mixing-typed solution strike
an effective balance as revealed by the following
theorem. See its proof in Appendix A.

Theorem 2.2. When using Eq (5), the fairness-
utility total loss is upper bounded. Specifically

I¢(S, daS) + DKL(]MH‘M) < Ie(da& 3)-

Notably, Thm 2.2 shows that while increasing
fairness may lead to the utility drop and vice versa,
this trade-off is efficient in the sense that their total
degradation is bounded.

3 Experiments

In this section, we experiment with our methods
with two tabular data tasks. Our methods achieved
debiasing between multiple potential target vari-
ables and protected attributes while preserving high
data utility. Notably, the tabular data generator in-
herits or even amplifies the biases existed in the
dataset, highlighting the necessity of debiasing.

3.1 Experiment Setup

Backbone Tabular Data Generator. We use
GReaT (Borisov et al., 2023) as the backbone LLM-
based tabular generator. We follow the choice of
using GPT-2 (Radford et al., 2019) as the base LLM
in the GReaT.

Datasets. We evaluate our model using two bench-
marks from UCI repository. The Adult dataset
(Becker and Kohavi, 1996) contains over 48,842
samples and has 11 attributes. We choose race and
gender as potential protected attributes s, and in-
come and education as d,s. The Credit Approval
dataset (Quinlan, 1987) contains 15 features. The
potential protected attributes s include gender and
race. For potential target variables, we include
approval and employment status as dgs

Tabular Tasks.  From actual usage of LLM-
based data generator, we consider the following
two tasks:

* Tabular Data Generation for Predictive
Downstream Tasks: Since the generated data
should be able to replace the real dataset, we
train a downstream model on the generated
data and test the performance using the real
data.

Tabular Data Missing Value Imputation:
Since the LLM-based generator can also
achieve conditional generation, i.e. generating
features based on observed features, it is used
as filling missing values in the tabular dataset.
We follow the Missing Complete At Random
(MCAR) (Little, 1988) setting, where each
feature has a certain probability being marked
as missing for each row in the real data. We
set the missing probability to 0.4 in our exper-
iments.



Evaluations. The performance is evaluated from
two dimensions: fairness and data utility.

In the Tabular Data Generation for Predictive
Downstream Tasks, given a specific target vari-
able Y and protected attribute A, for fairness, we
estimate the MI between A and Y in the generated
data and measure downstream model with the De-
mographic Parity (DP) (Van Breugel et al., 2021)
in terms of total variation, i.e. > .y [p(9]4 =
0)—p(y|A = 1)|, and Equalized Odds (EO) (Hardt
et al., 2016) as the maximum of difference between
True Positive Rate and False Positive Rate among
all the groups, i.e. max (]p(f’ =1y =1,A =
0) ~p(Y = 1Y = 1,4 = D], [p(¥ = 1Y =
0,A =0)—p(Y =1|Y = 0,A = 1)|). For
data utility, we measure the performance of the
downstream model with Accuracy and AUROC.

In the Tabular Data Missing Value Imputation,
for fairness, we estimate the MI between d,s and s
in the generated data. For data utility, we measure
averaged RMSE over all missing continuous fea-
tures and averaged Accuracy over all categorical
features. However, in some rows, d,s and s might
not be marked as missing, which means the bias
already exists and cannot be reduced.

We further evaluate the Efficiency for our meth-
ods. We measure the training time and generation
time with different generation sizes in seconds.
Baselines. For tabular data generation, we
compare our debiasing methods with four base-
lines: GReaT (our backbone generator), DECAF-
DP—a variant of DECAF (Van Breugel et al.,
2021) focusing on demographic disparity—and two
GAN-based generators, TabFairGAN (Rajabi and
Garibay, 2022) and FairGAN (Xu et al., 2018).
We refer to the downstream model trained on real
data as “Original.” For tabular data imputation, we
benchmark our approach against GReaT using vary-
ing data utility drop penalties (/3).

3.2 Results Comparison

3.2.1 Tabular Data Generation for Predictive
Downstream Tasks.

After the data is generated using each benchmark
method, a separate MLP is trained on each dataset
for computing the metrics. We run this experiment
10 times for each benchmark method and report the
average and the standard deviation. Table 1 reports
the results with different downstream tasks in the
Adult dataset. Specifically, for task 1 in Table 1,
the target variable is income (whether a person

earns over 50K or not) and the protected attribute
is gender. For task 2, target variable is education
level (whether a person earns a degree higher than
high school or not) and the protected attribute is
race. Notably, for debiasing benchmarks, DECAF-
DP, TabFairGAN, and FairGAN can only guarantee
fairness under one downstream task but not both.
For the Adult dataset, we train the baseline and
generate data focusing on the income-gender pair
(task 1) and also test the generated data for the
education level-race pair, for which they may lose
the fairness guarantee. The results of the Credit
Approval dataset are referred to in the App B.
Debiasing and Utility trade-off. In both sections
of Table 1, our methods achieve bias reduction
while maintaining high data utility when compared
to GReaT. Specifically, for UDF-MIX debiasing
method, when 8 = (.1, it reduces the bias signif-
icantly compared with GReaT while maintaining
similar predictive performance. For UDF-DPO de-
biasing, similar phenomenon is achieved when 5 =
1. However, when compared with task-specific de-
biasing methods in task 2, the DECAF-DP achieves
the best data utility comparing with similar debi-
asing scores. This is because the DECAF-DP is
given the specific information that the downstream
task will predict income and, the corresponding
protected attribute is gender. However, the DECAF-
DP, as well as other benchmarks, cannot guarantee
fairness performance when the generated data is
used for other prediction tasks, demonstrated by
task 1. We will discuss this phenomenon in the
next section.

Universal Debiasing performance. By com-
paring task 1 and task 2 in Table 1, our methods
demonstrate the universal debiasing ability over
multiple downstream tasks. Specifically, when
B = 0.1, the UDF-MIX debiasing achieves sig-
nificant bias reduction for downstream tasks that
have different prediction targets and protected vari-
ables. The UDF-DPO debiasing achieves similar
performance for 5 = 1.

However, when the task specific benchmarks are
applied to different downstream tasks, as shown in
task 1 and task 2, the fairness and even data util-
ity cannot be guaranteed. In terms of fairness, the
baselines’ performance drops significantly when
adapting from predicting income to predicting edu-
cation level. The DECAF-DP, whose DP score is
the best in task 2, has the lowest DP score in task
1. This essentially is because the DECAF-DP only
focuses on the fairness between income and gen-



Table 1: Performance on the Adult dataset for two downstream tasks that involve different advantaged-protected
feature pairs. Best results are in bold and second-best results are underlined. Baselines methods trained to debias

Task 1 remain unfair on Task 2.

Task 1: Income-Gender (Training)

Utility 1 Bias |
Accuracy AUROC MI DP EO
Real Data 84.12 90.46 2.52 19.78 11.17
GReaT 8432+0.15 89374030 7.01+0.12 1729+ 183 19.76 +3.44
DECAF-DP  7595+0.10 8679+ 032 0.04+142 112+023 2.40+0.51
TabFairGAN  80.59 +0.30 83.44 +026 0.01 £0.01 4.22+1.03 19.28+1.56
FairGAN 7570 +£1.77 7437 +1.89 0.02+0.01 6.28+3.02 10.27 +£7.59
UDF-DPO
B=01 7644+0.21 81.69+038 030+0.03 139+0.28 2.64 +0.87
B=1 8171+£0.38 86.04+043 120£0.03 9.02+196 5.73+2.13
f=10 82.01 £0.30 87.01 +0.19 145+0.07 921+1.03 578+0.97
UDF-MIX
B=01 82.08+023 8639+037 0.02+0.02 599+122 11.84+4.94
B=1 8196+041 86.35+0.17 0.10£0.03 554+1.08 10.90+2.54
B=10 81.94+047 86.95+031 029+0.09 7484253 7.56+2.32
Task 2: Education Level-Race (Testing)
Utility 1 Bias |
Accuracy AUROC MI DP EO
Real Data 69.79 76.87 0.93 7.31 6.17
GReaT 67.63+£0.04 74144009 0.60+0.08 7.12+0.68 9.03+071
DECAF-DP 5747 +0.55 5850+1.08 080+091 934+190 10.93+1.94
TabFairGAN  68.40 + 0.23 75.03 +0.20 1.60+0.07 8.14+091 7.57+1.21
FairGAN 4439 +0.85 4834 4+3.57 1.12+0.32 22914392 25.02+4.56
UDE-DPO
B=01 6634+0.14 68.19+042 029+0.11 197+0.31 3.14+049
B=1 6533+053 71.824+062 043+£0.06 538+£2.63 6271242
B=10 6643 +0.75 73.83+1.72 054+0.07 825+0.56 8.33+0.64
UDF-MIX
5=01 6629+046 7229+035 037+£0.02 335+170 4.46+0093
B=1 6567+029 72.10+0.19 038+0.01 799+ 1.44 7.49 +1.39
B=10 66.63 £0.24 72.31+0.16 040+0.04 3.47+251 6.04+1.83

der. Notably, the data utility of DECAF-DP drops
significantly as well. Although the TabFairGAN
achieves better predictive performance in task 1,
it loses all its fairness guarantees compared to our
method.

Bias in the original dataset. As shown in Table 1,
when the downstream model is trained on the origi-
nal dataset, it often makes biased but most accurate
predictions. Specifically, as per task 1, the model
trained with the real dataset has the highest DP
score, which indicates it makes more biased pre-
dictions than all other benchmarks in terms of DP.
But it also achieves the highest AUROC score. The
similar phenomenon happens in task 2 of Table 1.

Bias in the LLM based tabular generator. Both
sections in Table 1 demonstrate that the data gen-
erated by GReaT often has a similar or greater
amount of bias compared with the real data. Specif-
ically, the estimated MI in the generated data by

GReaT is almost tripled than the estimated MI in
the real data, shown in task 1 of Table 1. This might
be the reason that the EO of the downstream model
trained on the generated data by GReaT is higher
than the EO of the model trained on the real data.

Table 2: Data imputation performance.

Utility Bias |
Accuracy RMSE MI
Original — - 2391
GReaT 60.08 +0.42 15.12+0.08 1856+ 040
UDFDPO
f=01 5645+028 16.67+0.13 1544 +0.61
B=1 6263+0.60 1641+007 1531+1.01
B=10 61.50+0.32 1694+022 15.30=+0.70
Mix
B=0.1 47444022 39.87+41.29 1538+ 0.70
B=1 4728+0.65 1591 +0.09 14.89 +0.64
B=10 47.68 £0.16 16.08+0.13 1533 £0.58




3.2.2 Data Imputation

For each benchmark for the data imputation task,
we impute the missing values 5 times with dif-
ferent random seeds and report the average and
standard deviation in Table 5. Table 5 demon-
strates that the debiasing method is better at the
imputation task in the sense that, under the similar
fairness metric, UDF-DPO achieves better perfor-
mance. Specifically, the estimated MI indicates
the amount of bias within the dataset itself. Under
the similar j3, the estimated MI of UDF-DPO and
UDF-MIX are both lower than GReaT, meaning
that they will maintain their debaising ability when
filling the missing values. However, the accuracy
UDF-DPO is higher for the UDF-MIX debiasing
methods. Notably, sometimes the UDF-DPO could
even achieve higher accuracy performance than
GReaT; this could be the reason that the UDF-DPO
further fine-tunes the LLMs. This demonstrates
that the generation order imposed in the UDF-MIX
debaising methods prevents its ability in data im-
putation tasks.

3.2.3 Efficiency

We measure both training and generation efficiency
(in seconds) for each method in Table 3 and Fig-
ure 1. Because [ is a hyperparameter in UDF-DPO
but does not affect training or generation effi-
ciency, we fix § = 1 and run UDF-DPO for
five epochs—its typical convergence point. For
UDF-MIX, we sample 1000 different 3 values to
train the adapter, yet only a lightweight MLP is
fine-tuned, which results in faster training shown
in Table 3. However, during generation, UDF-MIX
is slightly slower than UDF-DPO and GReaT due
to the extra layer of randomness it introduces, as
shown in Figure 1. The UDF-DPO and GReaT are
similar in generation efficiency since their genera-
tion process is the same.

Table 3: Finetuning time (s) of our methods.

UDF-DPO
399.56 + 3.85

UDF-MIX
65.32 £1.72

Time

4 Related Work

LLM based Tabular data Generation. Besides
GReaT(Borisov et al., 2023), Zhao et al. (2023)
further shortens the textual encoding in the GReaT.
Zhang et al. (2023) finetunes the LLM from tabular
data generation to classification. Instead, Wang
et al. (2024b) combines the tabular data with cluster

| —#— GReaT
—#— UFT-MIX
| —&— UFD-DPO

2500 5000 7500 1000012500150001750020000
Num Samples

Figure 1: Running time of base and debiased models.
Our methods add marginal computation overhead to
data generation.

algorithms. However, all these LLM-based tabular
data generators share the same fairness concern
when generating tabular data.

Debiasing for Tabular data Generation. Gen-
erative Adversarial Networks (GAN) (Goodfellow
et al., 2020) are a popular choice for fair tabular
data generation. Xu et al. (2018) propose that, after
training the GAN for tabular data generation, the
generator can be further trained for fairness. Ra-
jabi and Garibay (2022); Abroshan et al. (2024)
further utilize the discriminator to add the fairness
constraint. Van Breugel et al. (2021) propose an in-
ference time debiasing method. However, all these
methods are formulated and designed to debias for
specific protected attributes and target variables.
Debiasing for Text Generation in LLMs. De-
coding time debiasing is more related to tabular
data generation, Liu et al. (2021b); Yang et al.
(2023) propose decoding time debiasing. Liu et al.
(2024a) proposes a debiasing methods that targets
on balancing the trade-off between fluency and
bias mitigation. Li et al. (2023) uses prompt based
method to guide the LLMs. However, most of the
methods are also formulated and designed to debias
for protected attribute.

5 Conclusion

We propose a universal debiasing framework for
LLM-based tabular data that balances fairness-
utility trade-off for mutliple advantaged features
and protected attributes. Our DPO-based method,
UDEF-DPO, and the efficient adaptive approach,
UDF-MIX, mitigate bias while preserving high
data quality. Mathematical insightsand experi-
ments confirm that our approach outperforms exist-
ing pairwise methods, offering robust and scalable
debiasing for high-stakes applications.
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Limitations

Our method UDF-Mix has additional computa-
tional overhead by requiring multiple of 5 values
to be sampled and fit. However, our experiments
show that restricting /3 to the range [0, 50] s suffi-
cient to achieve universal debiasing, which helps
mitigate the impact of this overhead.
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A Omitted Proof

In this section we present the proof of theorems omitted in the main body.

Proposition A.1. Consider the optimization problem given in Eq (5). pg(d,s) achieves the optimal
fairness, and pg(d,s | s) achieves the optimal utility. Specifically, we have

p@(das) = arg minq¢(das|s) {DKL[p9(37 das; ds)”th(sv das; ds)] : I¢(57 das) = 0} ) (6)

and
po(das | ) = argming, D 1[pe(s, das, ds)||qs(8, das, ds)]- (N
Proof. Eq (7) can be verified directly by definition. To prove Eq (6), first note that when
tols,4u) = [ als,dor, ) A,
= /pH(S)pH(das)pO(ds | 5, das) dds
= p(s)poldac) [ polde | 5.d) dd,

= pH(S)pH (das)'

Namely, we have that s and d, are independent, therefore, 1, ¢(s, dqs) = 0. In addition, for any fair qe>

Drr(pollay) = Ep,

(
o () ()
< (das)

) e (242

Step (a) holds from the strict fairness constraint, i.e., /4(dqs, s) = 0, which makes q¢(das | 5) = qg(das)-
In addition, the second term Iy(dqs, s) is constant in ¢. Therefore, D 1,(po(das)||qe(das)), is minimized
when gy (das) = po(das). This completes our proof.

=E,, |log

O

Theorem A.2. When using Eq (5), the fairness-utility total loss is upper bounded. Specifically

I4(s,das) + Drr(pollas) < Ig(das, 5).

Proof. For brevity, we denote A = A(s, ). By definition

Q¢>(S> das; ds) = p9(8> ()‘p9(das) + (1 - )\)pO(das ’ 5))p9(ds ‘ dys, 5)7
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Algorithm 1 Adaptive Inference-Time Debiasing

Require: Pre-trained LLM py; lightweight MLP A, -) with parameters ; number of iterations 7'; a set of
different hyperparameters {3, } ]]\i 1
1. fort=1,...,Tdo
2:  For each 3;, compute

q¢(das | 5) = )‘Bja 5) p@(das) + (1 - )‘ijs))pH(daS | 3)'

3:  Evaluate the debiasing objective in Eq. (1) for each f3;, average the resulting objectives over all
B;’s, and update using the averaged objective.

4: end for

5: return Trained A, -).

we have
Dict rollag) = By |log (20200 )]
N [ — LA SR
o o () 5 e

po(ds | das, s
Fre [1°g< polds [ dons ) ﬂ
=Drcr, (po(das | 8)|Apo(das) + (1 = Npo(das | 5))

(a)
< ADkr, (po(das | s)|lpe(das))
= Mpy(dgys, S).

Step (a) holds from the convexity of KL divergence (Cover, 1999). On the other hand,

I(s,das) = Dir(qg(das | s) | po(s))
= DKL(APG(das) + (1 - )‘)pﬁ(das ‘ 8) | pg(s))

L \Drcr(pols) | p6() + (1~ N Dicr(poldas | 5) | po(s))

= ( - )‘)DKL(pG( as | 5) |p9(3))
= (1 = A)Ip(das, 9),

where step (a) again applies the convexity. Put together,
DKL(pG | Q(b) + IQ¢> (da87 8) < Ipe (dam S)'

This completes our proof.

B Additional Experiment Results and Details

We use NVIDIA RTX A6000 for all the experiments and utilize the TRL - Transformer Reinforcement
Learning to implment DPO.
The follow demonstrates additional experiments on the credit dataset.
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Table 4: Performance on the Credit dataset for two downstream tasks that involve different advantaged-protected
feature pairs. Best results are in bold and second-best results are underlined. Baselines methods trained to debias
Task 1 remain unfair on Task 2.

Task 1: Approval-Race

Utility 1 Bias |
Accuracy AUROC Estimated MI DP EO
Original 86.134+0.31 88.93 +£1.18 5.03 2590 £1.55 50.90 +4.35
Great 87.37+0.36 87.05 £ 0.62 3.86 £ 0.47 23.37+£1.61 42.16 +4.80
DECAF-DP 8591+ 123 87.51+1.08 0.08+0.91 224+190 493+1.94
FairTabGAN 82.31 +2.94 84.23 +1.56 0.14 £ 0.07 4.23 +1.54 2048 £3.75
FairGAN 84.23+2.34 88.42+1.29 0.23 +£0.24 3.42 +1.28 32.61
UDFE-MIX
8=0.1 88.82 £ 0.80 89.54 + 0.66 1.12+£0.05 17.69+1.41 47.70 £ 3.90
s=1 81.96 +0.41 86.35+0.17 0.10 £0.03 5.54 +1.08 10.90 + 2.54
6=10 81.94 +0.47 86.95 + 0.31 0.29 +0.09 7.48 +2.53  7.56 +2.32
UDF-DPO
8=0.1 70.44+£1.29 7878 4+0.77 0.12+0.03 5.47+2.38 26.93 +5.02
s=1 80.05 +1.77 86.24+1.27  0.20+£ 0.06 17.06 +3.32 26.43 +4.97
B8 =10 73.19+£0.85 81.95+1.11 0.17+£0.11 10.29 £2.33 28.11 £4.89
Task 2: Employment Status-Gender
Utility 1 Bias |
Accuracy AUROC Estimated MI DP EO
Original 96.79 +0.47 96.87 £+ 0.57 3.93 30.31 +£1.06 66.17+8.14
Great 95.96 +0.36  97.90 4+ 0.29 2.65 +0.07 28.98 £ 0.51 64.53 £ 7.86
DECAF-DP  83.79+0.01 70.96+0.01 1.70£1.09 1537 +4.74 21.774+9.90
FairTabGAN 83.65 +1.09 73.68 £1.47 1.58 £ 1.87 18.32 £4.97 20.67 £1.48
FairGAN 73.57 £ 1.37 63.49 £ 2.68 0.92+4.21 19.57£1.70 22.124+1.24
UDE-MIX
£8=0.1 89.23 +0.39 91.60 = 0.30 0.42+0.12 1297+ 1.15 34.98 +3.11
=1 71.14 +£0.52 84.29 £ 0.26 0.68 £ 0.05 7.88 £0.88 8.44+1.08
=10 89.23+0.60 91.21 +0.41 0.82£0.10 17.65 +1.64 32.75+£5.39
UDF-DPO
£=0.1 85.16 £0.14 71.21 £0.98 0.01 £0.01 8.524+0.31 19.154+0.49
g=1 85.36 +£0.88 83.99+0.69  0.05+0.06 9.40+£0.99 11.184+4.90
B8 =10 80.17+£2.37 84.83 £0.25 0.54 £ 0.07 1478 £1.98 14.74 +£4.24

Table 5: Data imputation performance.

Utility 1 Bias |
Accuracy RMSE MI
Original - - 18.56
GReaT 60.08 +0.42 15124008 18.56 4 0.40
UDF-DPO
B=01 5645+028 16.67+0.13 1544+0.61
=1 6263+060 1641+0.07 1531+ 1.01
B=10 61.50+0.32 1694+0.22 15.30+0.70
UDF-MIX
6=0.1 47444022 39.87+41.29 1538 +£0.70
B=1 4728+0.65 1591+0.09 14.89+ 0.64
f=10 47.68+0.16 16.08+0.13 1529+ 0.58

14



	Introduction
	Proposed Method
	Preliminary
	Bias in Tabular Data and Limitations of Pairwise debiasing
	A Universal Debiasing Formulation
	Debiasing Through Finetuning
	Adaptive Inference Time Debiasing

	Experiments
	Experiment Setup
	Results Comparison
	Tabular Data Generation for Predictive Downstream Tasks. 
	Data Imputation
	Efficiency


	Related Work
	Conclusion
	Omitted Proof
	Additional Experiment Results and Details

