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Abstract001

Large language models (LLMs) have excelled002
in various text generation tasks, including tab-003
ular data. However, inherent historical biases004
in tabular datasets often cause LLMs to propa-005
gate fairness issues, particularly when multiple006
advantaged and protected features are involved.007
In this work, we introduce a universal debiasing008
framework that minimizes dependencies at the009
group level by reducing the mutual information010
between advantaged and protected attributes si-011
multaneously. By leveraging the autoregressive012
structure and analytic sampling distributions013
of LLM-based tabular data generators, our ap-014
proach efficiently computes mutual information015
without resorting to cumbersome numerical es-016
timations. Building on this foundation, we017
propose two complementary methods: a direct018
preference optimization (DPO)-based strategy,019
namely UDF-DPO, that integrates seamlessly020
with existing models, and a targeted debiasing021
technique, namely UDF-MIX, that achieves de-022
biasing without tuning the parameters of LLMs.023
Extensive experiments demonstrate that our024
framework effectively balances fairness and025
utility, offering a scalable and practical solu-026
tion for debiasing in high-stakes applications.027

1 Introduction028

Large Language Models (LLMs) (Lewis, 2019;029

Brown et al., 2020; Kojima et al., 2022; Achiam030

et al., 2023) demonstrate extraordinary ability to031

understand (Jiang et al., 2020), reason (Chang et al.,032

2024), and generate text (Ji et al., 2023). These ad-033

vancements have pushed new boundaries across034

a wide range of domains (Yin et al., 2023; Yang035

et al., 2024). As one of the most common data036

forms (Borisov et al., 2022), there has been a grow-037

ing trend to leverage LLMs for tabular data tasks038

understanding (Sui et al., 2024), prediction (Ruan039

et al., 2024), and generation (Borisov et al., 2023;040

Zhao et al., 2023; Gulati and Roysdon, 2024).041

Despite their powerful capabilities, LLMs suffer042

from fairness issues when acting on tabular data, 043

i.e., advantaged features (e.g. income) are often 044

correlated with protected attributes (e.g. gender). 045

Such biases widely exist in the tabular data due to 046

historical reasons (Mehrabi et al., 2021). Conse- 047

quently, when LLMs are trained on this data, they 048

will inherit existing biases (Schick et al., 2021). 049

Moreover, because the generated data is often used 050

to train downstream prediction tasks for high stake 051

domains such as job applications, the inherited bias 052

raises fairness concerns for the downstream models 053

as well (Borisov et al., 2022). 054

To address fairness concerns in LLMs, one ap- 055

proach is to adapt debiasing methods from non- 056

LLM tabular data generators to ensure fairness in 057

LLM-based generation. However, existing debias- 058

ing methods target bias between only one pair of 059

advantaged features and protected attributes (e.g., 060

income and gender) that will be used in down- 061

stream tasks (Calmon et al., 2017; Xu et al., 2018; 062

Van Breugel et al., 2021; Abroshan et al., 2024). 063

When users require a downstream task different 064

from the one used during training, the model must 065

be retrained. Yet, tabular datasets typically contain 066

multiple advantaged features (e.g., income, edu- 067

cation, occupation) and protected attributes (e.g., 068

age, gender, race), making retraining for every pos- 069

sible pair computationally prohibitive. Another 070

approach is to adapt the debiasing methods from 071

LLM for text generation. Most existing methods 072

focus on debiasing a single protected attribute (Liu 073

et al., 2021a; Yang et al., 2023; Liu et al., 2024a). 074

Therefore, these methods still cannot address the 075

multiple protected attributes settings. 076

Rather than relying on pairwise debiasing meth- 077

ods, we propose a group-wise debiasing approach 078

that eliminates all dependencies between advan- 079

taged features and protected attributes. Thus, our 080

formulation partitions features into advantaged fea- 081

tures (e.g., income, education, occupation), pro- 082

tected attributes (e.g., race, gender), and remaining 083
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features, and minimizes the group level Mutual In-084

formation between the advantaged and protected085

features. Notably, pairwise debiasing is a special086

case of this broader framework, where the protected087

attribute and advantaged feature groups each con-088

tain only one feature. However, breaking these089

dependencies alters the learned distribution, so re-090

ducing bias can cause the generated data to deviate091

from the original. To balance bias mitigation and092

utility, we impose an additional constraint to the093

trade-off. This universal debiasing framework for094

tabular data generator is our first key contribution.095

However, MI lacks closed-form expression, mak-096

ing its computation challenging, let along mini-097

mization for debiasing. This difficulty is exacer-098

bated in high dimension space, where tabular data099

often lie in (Liu et al., 2024b). While this chal-100

lenge cannot be solved in general, the unique auto-101

regressive nature of LLM-based tabular data gener-102

ators allow us to derive efficient solutions for them.103

Specifically, LLMs generate different features of104

a tabular data sample one by one in a sequential105

manner, and each feature is drawn from an ana-106

lytic-form distribution. Taking advantage of these107

analytic sampling distributions that are accessible,108

we propose a fine-tuning based solution for debias-109

ing that gets us rid of the numeric estimation of MI.110

This solution can be readily implemented with di-111

rect preference optimization (DPO) (Rafailov et al.,112

2024), making our debiasing task no more difficult113

than than standard fine-tuning. In addition, the de-114

biased model maintains all applicability of the base115

LLM and can seamlessly replace the latter in all116

cases — Notably, the fairness guarantee generalizes117

to diverse scenarios beyond data generation, such118

as data imputation. This strong one-for-all guaran-119

tee makes our solution highly valuable. We refer to120

this DPO-based debiasing method as UDF-DPO.121

Built upon UDF-DPO, we derive UDF-MIX, a122

more efficient debiasing solution specialized for123

data generation. UDF-MIX not only leverages the124

analytic sampling distribution, but also exploits the125

sequential nature of the generation process. Specif-126

ically, UDF-MIX identifies a few generation steps127

that result in the bias, and precisely alters these128

steps without changing others. This design leads129

to two remarkable efficiency improvements. First,130

as UDF-MIX only needs to debias a few genera-131

tion steps, it relies on far fewer less parameters,132

thereby achieving much better parameter efficiency.133

Second, through an innovative parameterization,134

we bring the factor to balance fairness and util-135

ity, which is usually treated as a hyper-parameter 136

to tune, into UDF-MIX training. Consequently, 137

UDF-MIX by design can handle the balance of 138

conflicting fairness and utility without retraining, 139

thereby substantially reducing the human burden 140

and computation costs for tuning hyper-parameters 141

for different tasks. These two effective and efficient 142

debiasing methods are also key contributions of 143

our work. 144

Our paper is organized as follows. Sec 2 details 145

our new universal debiasing framework and two 146

effective solutions. Sec 3 presents extensive ex- 147

periments to demonstrate the effectiveness of our 148

methods. In the remaining part of this paper, we 149

review related works in Sec 4 , and conclude the 150

paper in Sec 5. 151

2 Proposed Method 152

2.1 Preliminary 153

Tabular Data. Tabular data is structured in a table 154

format, where each row corresponds to a sample 155

and each column represents a feature, which can be 156

of mixed types (Fang et al., 2024; Borisov et al., 157

2022). Mathematically, a tabular dataset can be 158

expressed as D = {d(i)}Ni=1, where each sample 159

d(i) is a K-dimensional array. Each feature d(i)k can 160

be continuous, discrete, or unstructured, such as 161

text descriptions1. Modeling tabular data is partic- 162

ularly challenging due to its heterogeneous feature 163

types (Sahakyan et al., 2021; Wang et al., 2024a; 164

Fang et al., 2024). Traditional deep learning mod- 165

els are typically designed for a single data type, 166

such as continuous-valued images or discrete tex- 167

tual data, and thus struggle to effectively handle 168

tabular datasets (Gorishniy et al., 2021; Borisov 169

et al., 2022; Grinsztajn et al., 2022). 170

Textual encoding of tabular data. Recent works 171

(Borisov et al., 2023; Zhang et al., 2023) have 172

demonstrated that the ability of LLMs to process 173

diverse data types opens new avenues for model- 174

ing tabular data through the technique of textual 175

encoding. Specifically, given a feature dk with the 176

name fk, it can be represented as a short text in 177

the form of “fk is dk” (e.g., “age is 20”). By con- 178

catenating all these texts into a single paragraph, 179

a tabular dataset can be transformed into a textual 180

representation, enabling standard LLMs to model 181

it effectively. For simplicity, we refer to such text- 182

encoded data as D. 183

1For brevity, the sample index i will be ignored unless
explicitly mentioned from now on.
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2.2 Bias in Tabular Data and Limitations of184

Pairwise debiasing185

Real world tabular data often consists of a cer-186

tain amount of social bias due to historical reasons.187

For example, in credit application datasets, advan-188

taged features such as income and occupation are189

often associated with genders (Caton and Haas,190

2024). As a result, machine learning-based deci-191

sion makers trained on such biased datasets tend to192

discriminate female applicants by predicting them193

as low income, leading to fairness concerns (Zemel194

et al., 2013; Hardt et al., 2016; Liu et al., 2023).195

In response, existing works have been proposed196

to impose some independence between ML meth-197

ods’ action on the so-called advantaged feature198

(income in our example), and the demographic199

group gender as a protected feature (Caton and200

Haas, 2024). Representative independence formu-201

lation (requirements) include Demographic Dispar-202

ity (DP) (Zemel et al., 2013) and Equalized Odds203

(EO) (Hardt et al., 2016).204

Recent works showed that when generative mod-205

els such as LLMs trained on biased datasets repro-206

duce or even amplify such bias (Sui et al., 2024).207

Consequently, when sharing such a data generator,208

the bias will be spread as well. This raised great209

concern for tabular data that are common in high-210

stakes domains such as the job applications, banks,211

and so on (Dastin, 2018). To prevent the bias in the212

generated data from propagating to downstream213

tasks, previous works impose fairness constraints214

when training the generative model. These con-215

straints are specific to the advantaged feature (e.g.,216

income) and protected attribute (e.g., gender) that217

will be used for downstream tasks.218

However, if a downstream user is interested in a219

different pair of advantaged features and protected220

attributes (e.g., occupation and race) other than the221

ones used during training the generative model, the222

model must be retrained to address that new com-223

bination. Therefore, we refer to such methods as224

Pairwise debiasing to highlight that their fairness225

can only be guaranteed on a specific pair of advan-226

taged features and protected attributes. However,227

the tabular data contains multiple advantaged fea-228

tures (e.g., income and occupation) and protected229

attributes (e.g., race and gender). Such retraining230

for every possible pair of advantaged features and231

protected attributes is computationally infeasible232

for LLMs.233

2.3 A Universal Debiasing Formulation 234

Given that existing debiasing methods for tabular 235

data generation are constrained by their specialized 236

pairwise debiasing design, it is necessary to em- 237

ploy a groupwise debiasing approach in the sense 238

that simultaneously debiases all advantaged fea- 239

tures and protected attributes. In this light, we refer 240

to such debiasing as universal debiasing. Our for- 241

mulation starts with a key common sense based 242

on the practical meaning of social bias: Given the 243

interpretable nature of tabular dataset, the advan- 244

taged features and protected attributes are easy to 245

identify. 246

Based on this common sense, we split K features 247

d1:K into three groups. First, s is the collection of 248

all protected features (e.g., gender and race). Sec- 249

ond, das is the collection of features that cannot be 250

associated with s, and will raise fairness concerns 251

otherwise (e.g., income level, education level, job 252

eligibility). Finally, ds denotes the remaining fea- 253

tures that can freely vary across different s. Note 254

that our categorization is a generalization of ex- 255

isting works, and reduces to the latter if das and 256

s consist of only one feature respectively, where 257

the single das instantiates a label to predict in a 258

downstream task to be debiased. 259

Given tuple (s, das, ds), we define a group-level 260

mutual information-based debiasing formulation. 261

Suppose pθ is a pre-trained data generator (such as 262

an LLM), we quantify the bias carried by pθ as 263

Iθ(s, das) ≜ Epθ

[
log

pθ(s, das)

pθ(s)pθ(das)

]
, 264

and propose to cast it into a fairer generator qϕ by 265

solving: 266

minϕ Iϕ(s, das) + βDKL(pθ∥qϕ). (1) 267

Intuitively speaking, enforcing the first term MI 268

is breaking the dependencies between two groups. 269

Specifically, the benefits of using MI lie in two 270

folds. First, mutual information as a bias measure 271

is closely connected to the existing fairness notion 272

demographic parity (DP) (Zemel et al., 2013), and 273

implies the latter when Iϕ(s, das) = 0. Second, Eq 274

(1) extends debiasing from a single feature-level 275

to a feature set-level, thereby imposing a stronger 276

fairness guarantee for downstream applications. 277

Specifically, any possible label y ∈ das will be 278

fair with respect to every protected feature a ∈ S 279

thanks to the data processing inequality (Cover, 280
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1999)281

I(s, das) ≥ I(s, y) ≥ I(a, y).282

The second term KL penalty restricts qϕ to stay283

close to base pθ, so that the data generated by284

qϕ have high quality (Kingma, 2013). Hyper-285

parameter β balances the two terms and controls286

the fairness-utility trade-off.287

Eq (1) provides a general debiasing framework288

that can be imposed on any data generators. How-289

ever, this optimization is nontrivial to solve, due290

to the lack of a closed-form expression for mutual291

information that involves the high dimensional dis-292

tribution qϕ.293

However, the auto-regressive nature of LLM al-294

lows one to freely control the feature generating295

orders. This flexibility offers us more effective296

ways to reduce the computational complexity of297

debiasing, as detailed below.298

2.4 Debiasing Through Finetuning299

As mentioned above, the special generating pro-300

cess from LLMs enables effective debiasing. This301

section details a finetuning-based formulation and302

its solution.303

Specifically, we reformulate the bias as a (neg-304

ative) reward that the LLM should minimize, and305

cast debiasing from Eq (1) into a preference opti-306

mization problem, wherefore perform direct pref-307

erence optimization (DPO) and its variants can be308

applied (Ethayarajh et al., 2024; Azar et al., 2024;309

Guo et al., 2024). Mathematically speaking, we310

have311

Iϕ(s, das) = Eqϕ

[
log

qϕ(s, das)

qϕ(s)qϕ(das)

]
312

= Eqϕ

[
log

qϕ(das | s)
qϕ(das)

]
313

≜ Eqϕ [−r(s, das)]. (2)314

Here the negative reward −r(s, das) measures to315

what extent knowing protected features s helps pre-316

dict das. A high reward indicates that s and das317

are essentially independent, thus the generated data318

are fair. Built upon this, Eq (1) can be written as319

a standard preference optimization objective with320

forward KL 2321

maxϕ Eqϕ [r(s, das)]− βDKL(pθ∥qϕ), (3)322

2Note that we flip the minimization to maximization.

This objective can be optimized in either on-policy 323

or off-policy way, and we conduct an approxi- 324

mately on-policy learning with DPO. In specific, 325

after several DPO finetuning steps, we recollect a 326

new dataset from current qϕ. Next, we compute 327

each sample a reward based on Eq (2). Finally, we 328

randomly construct pairs of samples whose rewards 329

gap exceeds a pre-specified threshold. The sample 330

achieves a higher reward is treated as the preferred 331

one. The next round of DPO finetuning are con- 332

ducted on the new dataset. We dub our method 333

NAME. 334

We end up this section with two remarks. First, 335

das and s are symmetric in Iϕ(s, das), therefore, 336

one can also define the reward as the log ratio be- 337

tween qϕ(s | das) and qϕ(s) without violating the 338

validity of our framework. Second, the key flexibil- 339

ity that auto-regressive LLMs offers is that we can 340

directly compute all required probabilities (and the 341

reward) analytically. While for other generators, 342

these quantities have to be estimated numerically. 343

2.5 Adaptive Inference Time Debiasing 344

Computing Eq. (3) analytically offers an additional 345

benefit: it preserves the flexibility of the LLM by 346

maintaining the free control of feature generating 347

orders. However, this flexibility is mostly benefi- 348

cial to tasks beyond generation tasks such as data 349

imputation. 350

In this section, we show that by sacrificing some 351

of this flexibility, we can further reduce the com- 352

putational complexity in two means. First, we can 353

further reduce the complexity in computing the de- 354

biasing object by focusing on an intermediate part 355

of the generation process. Second, we can enhance 356

the LLM’s generation process with a lightweight 357

module that accommodates to different hyperpa- 358

rameter settings for β without requiring retraining, 359

thus achieving inference-time debiasing. 360

Specifically, an autoregressive LLM allows us to 361

generate data according to the decomposed order3 362

pθ(s, das, ds) = pθ(s)pθ(das | s)pθ(ds | s, das). 363

Note that only the second term pθ(das | s) affects 364

the fairness, and ds by definition can be generated 365

freely. Therefore, instead of altering the complete 366

generating process of LLM pθ, we solve Eq (1) by 367

only replacing the intermediate pθ(das | s) with a 368

one that minimizes the debiasing objective. This 369

3We abuse the notation a bit by expressing different distri-
butions as the function of the same parameters.
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leads to370

minϕ Iϕ(s, das) + βDKL(pθ∥qϕ)371

s.t. qϕ(s, das, ds) ≜ pθ(s)×372

qϕ(das | s)︸ ︷︷ ︸
learnable

pθ(ds | s, das). (4)373

Training a qϕ(das | s) from scratch can be expen-374

sive especially when das and s are of high dimen-375

sions. To avoid this computational burden, we pro-376

pose a reparameterized form based on the following377

proposition, with its proof deferred to App A.378

Proposition 2.1. Consider the optimization prob-379

lem given in Eq (5). Then pθ(das) and pθ(das | s)380

achieve the optimal utility under strict or no fair-381

ness constraints, respectively. Specifically, we have382

pθ(das) = argminqϕ(das|s) {DKL[pθ∥qϕ]}383

s.t. Iϕ(s, das) = 0,384

and385

pθ(das | s) = argminqϕ DKL[pθ∥qϕ].386

Given the optimal solutions from Prop 2.1, it387

is viable to strike a balance between fairness388

and utility at efficiency by combining them lin-389

early (Chuang and Mroueh, 2021; Zhou et al.,390

2024). To this end, we parameterize qϕ in Eq (4)391

as a convex combination of them392

qϕ(das | s) = λ(s, β)pθ(das)+393

(1− λ(s, β))pθ(das | s), (5)394

and learn the mixing weight λ(s, β) ∈ [0, 1] only,395

which is a function of both s and β. Notably, its396

dependency on s allows different protected features397

benefiting from different values. At the same time,398

λ as a function of hyper-parameter β gives flex-399

ibility to balance between fairness and utility at400

inference time by varying β. In practice, we pa-401

rameterize λ(·, ·) with a lightweight MLP. The ob-402

jective is again trained with DPO loss as presented403

before. The complete algorithm is summarized in404

Algorithm 1.405

While the fairness-utility trade-off is widely ob-406

served in general, our mixing-typed solution strike407

an effective balance as revealed by the following408

theorem. See its proof in Appendix A.409

Theorem 2.2. When using Eq (5), the fairness-410

utility total loss is upper bounded. Specifically411

Iϕ(s, das) +DKL(pθ∥qϕ) ≤ Iθ(das, s).412

Notably, Thm 2.2 shows that while increasing 413

fairness may lead to the utility drop and vice versa, 414

this trade-off is efficient in the sense that their total 415

degradation is bounded. 416

3 Experiments 417

In this section, we experiment with our methods 418

with two tabular data tasks. Our methods achieved 419

debiasing between multiple potential target vari- 420

ables and protected attributes while preserving high 421

data utility. Notably, the tabular data generator in- 422

herits or even amplifies the biases existed in the 423

dataset, highlighting the necessity of debiasing. 424

3.1 Experiment Setup 425

Backbone Tabular Data Generator. We use 426

GReaT (Borisov et al., 2023) as the backbone LLM- 427

based tabular generator. We follow the choice of 428

using GPT-2 (Radford et al., 2019) as the base LLM 429

in the GReaT. 430

Datasets. We evaluate our model using two bench- 431

marks from UCI repository. The Adult dataset 432

(Becker and Kohavi, 1996) contains over 48,842 433

samples and has 11 attributes. We choose race and 434

gender as potential protected attributes s, and in- 435

come and education as das. The Credit Approval 436

dataset (Quinlan, 1987) contains 15 features. The 437

potential protected attributes s include gender and 438

race. For potential target variables, we include 439

approval and employment status as das 440

Tabular Tasks. From actual usage of LLM- 441

based data generator, we consider the following 442

two tasks: 443

• Tabular Data Generation for Predictive 444

Downstream Tasks: Since the generated data 445

should be able to replace the real dataset, we 446

train a downstream model on the generated 447

data and test the performance using the real 448

data. 449

• Tabular Data Missing Value Imputation: 450

Since the LLM-based generator can also 451

achieve conditional generation, i.e. generating 452

features based on observed features, it is used 453

as filling missing values in the tabular dataset. 454

We follow the Missing Complete At Random 455

(MCAR) (Little, 1988) setting, where each 456

feature has a certain probability being marked 457

as missing for each row in the real data. We 458

set the missing probability to 0.4 in our exper- 459

iments. 460
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Evaluations. The performance is evaluated from461

two dimensions: fairness and data utility.462

In the Tabular Data Generation for Predictive463

Downstream Tasks, given a specific target vari-464

able Y and protected attribute A, for fairness, we465

estimate the MI between A and Y in the generated466

data and measure downstream model with the De-467

mographic Parity (DP) (Van Breugel et al., 2021)468

in terms of total variation, i.e.
∑

ŷ∈Ŷ |p(ŷ|A =469

0)−p(ŷ|A = 1)|, and Equalized Odds (EO) (Hardt470

et al., 2016) as the maximum of difference between471

True Positive Rate and False Positive Rate among472

all the groups, i.e. max
(
|p(Ŷ = 1|Y = 1, A =473

0) − p(Ŷ = 1|Y = 1, A = 1)|, |p(Ŷ = 1|Y =474

0, A = 0) − p(Ŷ = 1|Y = 0, A = 1)|
)
. For475

data utility, we measure the performance of the476

downstream model with Accuracy and AUROC.477

In the Tabular Data Missing Value Imputation,478

for fairness, we estimate the MI between das and s479

in the generated data. For data utility, we measure480

averaged RMSE over all missing continuous fea-481

tures and averaged Accuracy over all categorical482

features. However, in some rows, das and s might483

not be marked as missing, which means the bias484

already exists and cannot be reduced.485

We further evaluate the Efficiency for our meth-486

ods. We measure the training time and generation487

time with different generation sizes in seconds.488

Baselines. For tabular data generation, we489

compare our debiasing methods with four base-490

lines: GReaT (our backbone generator), DECAF-491

DP—a variant of DECAF (Van Breugel et al.,492

2021) focusing on demographic disparity—and two493

GAN-based generators, TabFairGAN (Rajabi and494

Garibay, 2022) and FairGAN (Xu et al., 2018).495

We refer to the downstream model trained on real496

data as “Original.” For tabular data imputation, we497

benchmark our approach against GReaT using vary-498

ing data utility drop penalties (β).499

3.2 Results Comparison500

3.2.1 Tabular Data Generation for Predictive501

Downstream Tasks.502

After the data is generated using each benchmark503

method, a separate MLP is trained on each dataset504

for computing the metrics. We run this experiment505

10 times for each benchmark method and report the506

average and the standard deviation. Table 1 reports507

the results with different downstream tasks in the508

Adult dataset. Specifically, for task 1 in Table 1,509

the target variable is income (whether a person510

earns over 50K or not) and the protected attribute 511

is gender. For task 2, target variable is education 512

level (whether a person earns a degree higher than 513

high school or not) and the protected attribute is 514

race. Notably, for debiasing benchmarks, DECAF- 515

DP, TabFairGAN, and FairGAN can only guarantee 516

fairness under one downstream task but not both. 517

For the Adult dataset, we train the baseline and 518

generate data focusing on the income-gender pair 519

(task 1) and also test the generated data for the 520

education level-race pair, for which they may lose 521

the fairness guarantee. The results of the Credit 522

Approval dataset are referred to in the App B. 523

Debiasing and Utility trade-off. In both sections 524

of Table 1, our methods achieve bias reduction 525

while maintaining high data utility when compared 526

to GReaT. Specifically, for UDF-MIX debiasing 527

method, when β = 0.1, it reduces the bias signif- 528

icantly compared with GReaT while maintaining 529

similar predictive performance. For UDF-DPO de- 530

biasing, similar phenomenon is achieved when β = 531

1. However, when compared with task-specific de- 532

biasing methods in task 2, the DECAF-DP achieves 533

the best data utility comparing with similar debi- 534

asing scores. This is because the DECAF-DP is 535

given the specific information that the downstream 536

task will predict income and, the corresponding 537

protected attribute is gender. However, the DECAF- 538

DP, as well as other benchmarks, cannot guarantee 539

fairness performance when the generated data is 540

used for other prediction tasks, demonstrated by 541

task 1. We will discuss this phenomenon in the 542

next section. 543

Universal Debiasing performance. By com- 544

paring task 1 and task 2 in Table 1, our methods 545

demonstrate the universal debiasing ability over 546

multiple downstream tasks. Specifically, when 547

β = 0.1, the UDF-MIX debiasing achieves sig- 548

nificant bias reduction for downstream tasks that 549

have different prediction targets and protected vari- 550

ables. The UDF-DPO debiasing achieves similar 551

performance for β = 1. 552

However, when the task specific benchmarks are 553

applied to different downstream tasks, as shown in 554

task 1 and task 2, the fairness and even data util- 555

ity cannot be guaranteed. In terms of fairness, the 556

baselines’ performance drops significantly when 557

adapting from predicting income to predicting edu- 558

cation level. The DECAF-DP, whose DP score is 559

the best in task 2, has the lowest DP score in task 560

1. This essentially is because the DECAF-DP only 561

focuses on the fairness between income and gen- 562
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Table 1: Performance on the Adult dataset for two downstream tasks that involve different advantaged-protected
feature pairs. Best results are in bold and second-best results are underlined. Baselines methods trained to debias
Task 1 remain unfair on Task 2.

Task 1: Income-Gender (Training)

Utility ↑ Bias ↓

Accuracy AUROC MI DP EO

Real Data 84.12 90.46 2.52 19.78 11.17
GReaT 84.32 ± 0.15 89.37 ± 0.30 7.01 ± 0.12 17.29 ± 1.83 19.76 ± 3.44

DECAF-DP 75.95 ± 0.10 86.79 ± 0.32 0.04 ± 1.42 1.12 ± 0.23 2.40 ± 0.51
TabFairGAN 80.59 ± 0.30 83.44 ± 0.26 0.01 ± 0.01 4.22 ± 1.03 19.28 ± 1.56

FairGAN 75.70 ± 1.77 74.37 ± 1.89 0.02 ± 0.01 6.28 ± 3.02 10.27 ± 7.59
UDF-DPO

β = 0.1 76.44 ± 0.21 81.69 ± 0.38 0.30 ± 0.03 1.39 ± 0.28 2.64 ± 0.87
β = 1 81.71 ± 0.38 86.04 ± 0.43 1.20 ± 0.03 9.02 ± 1.96 5.73 ± 2.13
β = 10 82.01 ± 0.30 87.01 ± 0.19 1.45 ± 0.07 9.21 ± 1.03 5.78 ± 0.97

UDF-MIX
β = 0.1 82.08 ± 0.23 86.39 ± 0.37 0.02 ± 0.02 5.99 ± 1.22 11.84 ± 4.94
β = 1 81.96 ± 0.41 86.35 ± 0.17 0.10 ± 0.03 5.54 ± 1.08 10.90 ± 2.54
β = 10 81.94 ± 0.47 86.95 ± 0.31 0.29 ± 0.09 7.48 ± 2.53 7.56 ± 2.32

Task 2: Education Level-Race (Testing)

Utility ↑ Bias ↓

Accuracy AUROC MI DP EO

Real Data 69.79 76.87 0.93 7.31 6.17
GReaT 67.63 ± 0.04 74.14 ± 0.09 0.60 ± 0.08 7.12 ± 0.68 9.03 ± 0.71

DECAF-DP 57.47 ± 0.55 58.50 ± 1.08 0.80 ± 0.91 9.34 ± 1.90 10.93 ± 1.94
TabFairGAN 68.40 ± 0.23 75.03 ± 0.20 1.60 ± 0.07 8.14 ± 0.91 7.57 ± 1.21

FairGAN 44.39 ± 0.85 48.34 ± 3.57 1.12 ± 0.32 22.91 ± 3.92 25.02 ± 4.56
UDF-DPO

β = 0.1 66.34 ± 0.14 68.19 ± 0.42 0.29 ± 0.11 1.97 ± 0.31 3.14 ± 0.49
β = 1 65.33 ± 0.53 71.82 ± 0.62 0.43 ± 0.06 5.38 ± 2.63 6.27 ± 2.42
β = 10 66.43 ± 0.75 73.83 ± 1.72 0.54 ± 0.07 8.25 ± 0.56 8.33 ± 0.64

UDF-MIX
β = 0.1 66.29 ± 0.46 72.29 ± 0.35 0.37 ± 0.02 3.35 ± 1.70 4.46 ± 0.93
β = 1 65.67 ± 0.29 72.10 ± 0.19 0.38 ± 0.01 7.99 ± 1.44 7.49 ± 1.39
β = 10 66.63 ± 0.24 72.31 ± 0.16 0.40 ± 0.04 3.47 ± 2.51 6.04 ± 1.83

der. Notably, the data utility of DECAF-DP drops563

significantly as well. Although the TabFairGAN564

achieves better predictive performance in task 1,565

it loses all its fairness guarantees compared to our566

method.567

Bias in the original dataset. As shown in Table 1,568

when the downstream model is trained on the origi-569

nal dataset, it often makes biased but most accurate570

predictions. Specifically, as per task 1, the model571

trained with the real dataset has the highest DP572

score, which indicates it makes more biased pre-573

dictions than all other benchmarks in terms of DP.574

But it also achieves the highest AUROC score. The575

similar phenomenon happens in task 2 of Table 1.576

Bias in the LLM based tabular generator. Both577

sections in Table 1 demonstrate that the data gen-578

erated by GReaT often has a similar or greater579

amount of bias compared with the real data. Specif-580

ically, the estimated MI in the generated data by581

GReaT is almost tripled than the estimated MI in 582

the real data, shown in task 1 of Table 1. This might 583

be the reason that the EO of the downstream model 584

trained on the generated data by GReaT is higher 585

than the EO of the model trained on the real data. 586

Table 2: Data imputation performance.

Utility ↑ Bias ↓

Accuracy RMSE MI

Original − − 23.91
GReaT 60.08 ± 0.42 15.12 ± 0.08 18.56 ± 0.40

UDF-DPO
β = 0.1 56.45 ± 0.28 16.67 ± 0.13 15.44 ± 0.61
β = 1 62.63 ± 0.60 16.41 ± 0.07 15.31 ± 1.01

β = 10 61.50 ± 0.32 16.94 ± 0.22 15.30 ± 0.70
Mix

β = 0.1 47.44 ± 0.22 39.87 ± 41.29 15.38 ± 0.70
β = 1 47.28 ± 0.65 15.91 ± 0.09 14.89 ± 0.64

β = 10 47.68 ± 0.16 16.08 ± 0.13 15.33 ± 0.58
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3.2.2 Data Imputation587

For each benchmark for the data imputation task,588

we impute the missing values 5 times with dif-589

ferent random seeds and report the average and590

standard deviation in Table 5. Table 5 demon-591

strates that the debiasing method is better at the592

imputation task in the sense that, under the similar593

fairness metric, UDF-DPO achieves better perfor-594

mance. Specifically, the estimated MI indicates595

the amount of bias within the dataset itself. Under596

the similar β, the estimated MI of UDF-DPO and597

UDF-MIX are both lower than GReaT, meaning598

that they will maintain their debaising ability when599

filling the missing values. However, the accuracy600

UDF-DPO is higher for the UDF-MIX debiasing601

methods. Notably, sometimes the UDF-DPO could602

even achieve higher accuracy performance than603

GReaT; this could be the reason that the UDF-DPO604

further fine-tunes the LLMs. This demonstrates605

that the generation order imposed in the UDF-MIX606

debaising methods prevents its ability in data im-607

putation tasks.608

3.2.3 Efficiency609

We measure both training and generation efficiency610

(in seconds) for each method in Table 3 and Fig-611

ure 1. Because β is a hyperparameter in UDF-DPO612

but does not affect training or generation effi-613

ciency, we fix β = 1 and run UDF-DPO for614

five epochs—its typical convergence point. For615

UDF-MIX, we sample 1000 different β values to616

train the adapter, yet only a lightweight MLP is617

fine-tuned, which results in faster training shown618

in Table 3. However, during generation, UDF-MIX619

is slightly slower than UDF-DPO and GReaT due620

to the extra layer of randomness it introduces, as621

shown in Figure 1. The UDF-DPO and GReaT are622

similar in generation efficiency since their genera-623

tion process is the same.624

Table 3: Finetuning time (s) of our methods.

UDF-DPO UDF-MIX

Time 399.56± 3.85 65.32± 1.72

4 Related Work625

LLM based Tabular data Generation. Besides626

GReaT(Borisov et al., 2023), Zhao et al. (2023)627

further shortens the textual encoding in the GReaT.628

Zhang et al. (2023) finetunes the LLM from tabular629

data generation to classification. Instead, Wang630

et al. (2024b) combines the tabular data with cluster631
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Figure 1: Running time of base and debiased models.
Our methods add marginal computation overhead to
data generation.

algorithms. However, all these LLM-based tabular 632

data generators share the same fairness concern 633

when generating tabular data. 634

Debiasing for Tabular data Generation. Gen- 635

erative Adversarial Networks (GAN) (Goodfellow 636

et al., 2020) are a popular choice for fair tabular 637

data generation. Xu et al. (2018) propose that, after 638

training the GAN for tabular data generation, the 639

generator can be further trained for fairness. Ra- 640

jabi and Garibay (2022); Abroshan et al. (2024) 641

further utilize the discriminator to add the fairness 642

constraint. Van Breugel et al. (2021) propose an in- 643

ference time debiasing method. However, all these 644

methods are formulated and designed to debias for 645

specific protected attributes and target variables. 646

Debiasing for Text Generation in LLMs. De- 647

coding time debiasing is more related to tabular 648

data generation, Liu et al. (2021b); Yang et al. 649

(2023) propose decoding time debiasing. Liu et al. 650

(2024a) proposes a debiasing methods that targets 651

on balancing the trade-off between fluency and 652

bias mitigation. Li et al. (2023) uses prompt based 653

method to guide the LLMs. However, most of the 654

methods are also formulated and designed to debias 655

for protected attribute. 656

5 Conclusion 657

We propose a universal debiasing framework for 658

LLM-based tabular data that balances fairness- 659

utility trade-off for mutliple advantaged features 660

and protected attributes. Our DPO-based method, 661

UDF-DPO, and the efficient adaptive approach, 662

UDF-MIX, mitigate bias while preserving high 663

data quality. Mathematical insightsand experi- 664

ments confirm that our approach outperforms exist- 665

ing pairwise methods, offering robust and scalable 666

debiasing for high-stakes applications. 667
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A Omitted Proof904

In this section we present the proof of theorems omitted in the main body.905

Proposition A.1. Consider the optimization problem given in Eq (5). pθ(das) achieves the optimal906

fairness, and pθ(das | s) achieves the optimal utility. Specifically, we have907

pθ(das) = argminqϕ(das|s) {DKL[pθ(s, das, ds)∥qϕ(s, das, ds)] : Iϕ(s, das) = 0} , (6)908

and909

pθ(das | s) = argminqϕ DKL[pθ(s, das, ds)∥qϕ(s, das, ds)]. (7)910

Proof. Eq (7) can be verified directly by definition. To prove Eq (6), first note that when911

qϕ(s, das) =

∫
q(s, das, ds) dds912

=

∫
pθ(s)pθ(das)pθ(ds | s, das) dds913

= pθ(s)pθ(das)

∫
pθ(ds | s, das) dds914

= pθ(s)pθ(das).915

Namely, we have that s and das are independent, therefore, Iϕ(s, das) = 0. In addition, for any fair qϕ,916

DKL(pθ∥qϕ) = Epθ

[
log

(
pθ(s)pθ(das | s)pθ(ds | s, das)
pθ(s)qϕ(das | s)pθ(ds | s, das)

)]
917

= Epθ

[
log

(
pθ(s)

pθ(s)

)
+ log

(
pθ(das | s)
qϕ(das | s)

)
+ log

(
pθ(ds | s, das)
pθ(ds | s, das)

)]
918

= Epθ

[
log

(
pθ(das | s)
qϕ(das | s)

)]
919

(a)
= Epθ

[
log

(
pθ(das | s)
qϕ(das)

)]
920

= Epθ

[
log

(
pθ(das)pθ(das | s)

qϕ(das)pθ(s)

)]
921

= Epθ

[
log

(
pθ(das)

qϕ(das)

)
+ log

(
pθ(das | s)

pθ(s)

)]
922

= Epθ

[
log

(
pθ(das)

qϕ(das)

)]
+ Epθ

[
log

(
pθ(das | s)

pθ(s)

)]
923

= DKL(pθ(das)∥qϕ(das)) + Iθ(das, s).924

Step (a) holds from the strict fairness constraint, i.e., Iϕ(das, s) = 0, which makes qϕ(das | s) = qϕ(das).925

In addition, the second term Iθ(das, s) is constant in q. Therefore, DKL(pθ(das)∥qϕ(das)), is minimized926

when qϕ(das) = pθ(das). This completes our proof.927

928

Theorem A.2. When using Eq (5), the fairness-utility total loss is upper bounded. Specifically929

Iϕ(s, das) +DKL(pθ∥qϕ) ≤ Iθ(das, s).930

Proof. For brevity, we denote λ = λ(s, β). By definition931

qϕ(s, das, ds) = pθ(s)
(
λpθ(das) + (1− λ)pθ(das | s)

)
pθ(ds | das, s),932
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Algorithm 1 Adaptive Inference-Time Debiasing

Require: Pre-trained LLM pθ; lightweight MLP λ·, ·) with parameters ; number of iterations T ; a set of
different hyperparameters {βj}Mj=1.

1: for t = 1, . . . , T do
2: For each βj , compute

qϕ(das | s) = λβj , s) pθ(das) +
(
1− λβj , s)

)
pθ(das | s).

3: Evaluate the debiasing objective in Eq. (1) for each βj , average the resulting objectives over all
βj’s, and update using the averaged objective.

4: end for
5: return Trained λ·, ·).

we have 933

DKL(pθ∥qϕ) = Epθ

[
log

(
pθ(das, s, ds)

qϕ(das, s, ds)

)]
934

= Epθ

[
log

(
pθ(s)pθ(das | s)pθ(ds | das, s)

pθ(s) (λpθ(das) + (1− λ)pθ(das | s)) pθ(ds | das, s)

)]
935

= Epθ

[
log

(
pθ(s)

pθ(s)

)]
+ Epθ

[
log

(
pθ(das | s)

λpθ(das) + (1− λ)pθ(das | s)

)]
+ 936

Epθ

[
log

(
pθ(ds | das, s)
pθ(ds | das, s)

)]
937

=DKL (pθ(das | s)∥λpθ(das) + (1− λ)pθ(das | s)) 938

(a)

≤ λDKL (pθ(das | s)∥pθ(das)) 939

= λIθ(das, s). 940

Step (a) holds from the convexity of KL divergence (Cover, 1999). On the other hand, 941

Iϕ(s, das) = DKL(qϕ(das | s) | pθ(s)) 942

= DKL(λpθ(das) + (1− λ)pθ(das | s) | pθ(s)) 943

(a)

≤ λDKL(pθ(s) | pθ(s)) + (1− λ)DKL(pθ(das | s) | pθ(s)) 944

= (1− λ)DKL(pθ(das | s) | pθ(s)) 945

= (1− λ)Iθ(das, s), 946

where step (a) again applies the convexity. Put together, 947

DKL(pθ | qϕ) + Iqϕ(das, s) ≤ Ipθ(das, s). 948

This completes our proof. 949

950

B Additional Experiment Results and Details 951

We use NVIDIA RTX A6000 for all the experiments and utilize the TRL - Transformer Reinforcement 952

Learning to implment DPO. 953

The follow demonstrates additional experiments on the credit dataset. 954
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Table 4: Performance on the Credit dataset for two downstream tasks that involve different advantaged-protected
feature pairs. Best results are in bold and second-best results are underlined. Baselines methods trained to debias
Task 1 remain unfair on Task 2.

Task 1: Approval-Race

Utility ↑ Bias ↓

Accuracy AUROC Estimated MI DP EO

Original 86.13± 0.31 88.93± 1.18 5.03 25.90± 1.55 50.90± 4.35
Great 87.37± 0.36 87.05± 0.62 3.86± 0.47 23.37± 1.61 42.16± 4.80

DECAF-DP 85.91± 1.23 87.51± 1.08 0.08 ± 0.91 2.24 ± 1.90 4.93 ± 1.94
FairTabGAN 82.31± 2.94 84.23± 1.56 0.14± 0.07 4.23± 1.54 20.48± 3.75
FairGAN 84.23± 2.34 88.42± 1.29 0.23± 0.24 3.42± 1.28 32.61

UDF-MIX
β = 0.1 88.82 ± 0.80 89.54 ± 0.66 1.12± 0.05 17.69± 1.41 47.70± 3.90
β = 1 81.96± 0.41 86.35± 0.17 0.10± 0.03 5.54± 1.08 10.90± 2.54
β = 10 81.94± 0.47 86.95± 0.31 0.29± 0.09 7.48± 2.53 7.56± 2.32
UDF-DPO
β = 0.1 70.44± 1.29 78.78± 0.77 0.12± 0.03 5.47± 2.38 26.93± 5.02
β = 1 80.05± 1.77 86.24± 1.27 0.20± 0.06 17.06± 3.32 26.43± 4.97
β = 10 73.19± 0.85 81.95± 1.11 0.17± 0.11 10.29± 2.33 28.11± 4.89

Task 2: Employment Status-Gender

Utility ↑ Bias ↓

Accuracy AUROC Estimated MI DP EO

Original 96.79± 0.47 96.87± 0.57 3.93 30.31± 1.06 66.17± 8.14
Great 95.96± 0.36 97.90± 0.29 2.65± 0.07 28.98± 0.51 64.53± 7.86

DECAF-DP 83.79± 0.01 70.96± 0.01 1.70± 1.09 15.37± 4.74 21.77± 9.90
FairTabGAN 83.65± 1.09 73.68± 1.47 1.58± 1.87 18.32± 4.97 20.67± 1.48
FairGAN 73.57± 1.37 63.49± 2.68 0.92± 4.21 19.57± 1.70 22.12± 1.24

UDF-MIX
β = 0.1 89.23 ± 0.39 91.60 ± 0.30 0.42± 0.12 12.97± 1.15 34.98± 3.11
β = 1 71.14± 0.52 84.29± 0.26 0.68± 0.05 7.88 ± 0.88 8.44 ± 1.08
β = 10 89.23 ± 0.60 91.21± 0.41 0.82± 0.10 17.65± 1.64 32.75± 5.39
UDF-DPO
β = 0.1 85.16± 0.14 71.21± 0.98 0.01 ± 0.01 8.52± 0.31 19.15± 0.49
β = 1 85.36± 0.88 83.99± 0.69 0.05± 0.06 9.40± 0.99 11.18± 4.90
β = 10 80.17± 2.37 84.83± 0.25 0.54± 0.07 14.78± 1.98 14.74± 4.24

Table 5: Data imputation performance.

Utility ↑ Bias ↓

Accuracy RMSE MI

Original − − 18.56

GReaT 60.08 ± 0.42 15.12 ± 0.08 18.56 ± 0.40

UDF-DPO
β = 0.1 56.45 ± 0.28 16.67 ± 0.13 15.44 ± 0.61
β = 1 62.63 ± 0.60 16.41 ± 0.07 15.31 ± 1.01

β = 10 61.50 ± 0.32 16.94 ± 0.22 15.30 ± 0.70
UDF-MIX

β = 0.1 47.44 ± 0.22 39.87 ± 41.29 15.38 ± 0.70
β = 1 47.28 ± 0.65 15.91 ± 0.09 14.89 ± 0.64

β = 10 47.68 ± 0.16 16.08 ± 0.13 15.29 ± 0.58
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