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ABSTRACT

Video-based pose estimation plays a critical role in understanding human actions
and enabling effective human-computer interaction. By exploiting temporal infor-
mation from video frames, it enhances the localization of human keypoints. Previ-
ous feature-fusion methods often rely on a frozen single-frame backbone trained
on individual frames, followed by a network to learn temporal information from
video sequences. Consequently, these approaches fail to capture the temporal
continuity between frames at the backbone network level, thereby restricting the
network’s capacity to effectively learn and leverage sequential information. In this
paper, we introduce a novel approach to supervise continuity in the whole video
pose estimation model from two perspectives: semantic continuity and pixel-wise
keypoint distribution continuity. To this end, we propose a Semantic Alignment
Space, where a semantic alignment encodes feature maps from different frames
into this space, ensuring continuous supervision of the encoded representations.
To further maintain pixel-wise keypoint distribution continuity, we introduce the
Trajectory Probability Difference Integration method, which minimizes the trajec-
tory difference expectation across frames. Additionally, to better capture temporal
dependencies, we present a Multi-frame Heatmap Fusion structure that aggregates
heatmaps from adjacent frames for a more refined output. Extensive experiments
on the PoseTrack17, PoseTrack18, and PoseTrack21 datasets demonstrate the ef-
fectiveness of our approach, consistently achieving state-of-the-art results.

1 INTRODUCTION

Figure 1: Overview of the continuity-driven pose estimation method.

Human pose estimation, a fundamental task in computer vision, aims to accurately predict the co-
ordinates of keypoints corresponding to different parts of an individual’s body. This technique has
garnered significant attention in recent years due to its diverse applications, including action recog-
nition, human-computer interaction, and motion analysis.

The task of video pose estimation focuses on predicting the human keypoint coordinates within a se-
quence of video frames. Capturing temporal information embedded in the video frames is therefore
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crucial for precise pose estimation over time. To address this, existing approaches utilize Recur-
rent Neural Networks (RNNs) or 3D convolutional networks to process video sequences Luo et al.
(2018); Wang et al. (2020). However, these methods are often computationally expensive and yield
suboptimal performance. Alternatively, techniques such as optical flow Pfister et al. (2015); Song
et al. (2017) have been employed to compute additional flow data, but they tend to be inaccurate,
especially in the presence of motion blur. More recent methods Feng et al. (2023a); Liu et al. (2022;
2021) lean towards multi-frame feature fusion. In this approach, a pre-trained backbone network
extracts features from individual frames, and a dedicated fusion network subsequently integrates
the temporal context. However, this method has a significant limitation: the backbone, trained on
isolated frames, is unable to exploit the temporal consistency inherent in video sequences. Conse-
quently, the feature fusion process is disconnected from the backbone, which hampers the model’s
ability to fully capture and utilize the temporal dynamics of human motion. Additionally, due to
the lack of supervision regarding frame-to-frame continuity, these techniques often result in pose
discontinuities, reducing the model’s overall performance.

To overcome these limitations, as shown in figure 1, we propose a novel framework that enforces
temporal continuity for the whole video-based pose estimation models from two complementary
perspectives: semantic continuity and pixel-wise keypoint distribution continuity. These aspects are
critical for ensuring smooth pose transitions and preventing abrupt, unrealistic changes in keypoint
locations between frames. Unlike previous approaches that only supervise the feature fusion process
after freezing the backbone, we supervise the entire video pose estimation network by leveraging
the inherent temporal continuity in the video sequence. This allows the backbone to learn temporal
information alongside the feature fusion network.

More specifically, semantic continuity refers to the smooth, consistent representation of human poses
despite changes in viewpoint, body configuration, or camera motion. While keypoint locations may
shift dramatically across frames, the underlying semantic meaning of human actions remains con-
sistent. For example, in figure 1 (c), due to viewpoint transformations and human motion, the
coordinates of actions 1, 2, and 3 in consecutive frames are not continuous. The position of action 2
occurs before that of action 1, while the position of action 3 occurs after action 1. However, seman-
tically, actions 1, 2, and 3 form a continuous sequence. To capture this, we introduce the Semantic
Alignment Space, which encodes feature representations from different frames into a shared, pose-
invariant latent space. This space ensures that semantically similar frames remain close in represen-
tation, even if keypoint positions vary. We apply contrastive loss to pull together the representations
of adjacent frames while pushing apart those of distant frames, thereby preserving semantic continu-
ity throughout the sequence. To ensure position invariance in this space, we apply transformations
such as rotation and scaling and supervise the model to produce consistent results before and af-
ter the transformation. Since the semantic space is pose-invariant, we also use another encoder to
capture positional transformations explicitly. A decoder then combines the semantic and positional
encodings to generate keypoint probability heatmaps for the video sequence.

Beyond semantic continuity, we also supervise the continuity of keypoint probability distributions
by the pixel continuity of frames, because it is noticed that the pixel differences for the same key-
point between consecutive frames can be considered approximately invariant, given that lighting
conditions are typically stable over short periods. To this end, we introduce the Trajectory Probabil-
ity Difference Integration method. As shown in figure 1 (c), since the model generates probability
distributions for keypoints, we can calculate the expected difference for each keypoint across frames
using keypoint distributions. By minimizing the integral of the keypoint trajectory probability differ-
ences of frame sequence, we ensure smoother and more accurate keypoint predictions across video.
Notably, while optical flow methods Pfister et al. (2015); Song et al. (2017) also calculate pixel
differences between adjacent frames, they compute the optical flow field as input to the network to
capture temporal information. In contrast, our approach incorporates pixel differences into the loss
function to supervise the keypoint distribution in the video pose estimation network. Rather than
computing the difference for every pixel, we focus on positions with higher keypoint probability
distributions. Furthermore, our method is only applied during training and does not require extra
computation during inference, making it more efficient than optical flow-based approaches.

To further enhance the temporal modeling, we propose a Multi-frame Heatmap Fusion module.
This mechanism aggregates heatmaps from adjacent frames by alternately using spatial attention
and temporal self-attention, creating a refined output that incorporates temporal context. By fusing
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information across multiple frames, the model generates more stable and accurate keypoint predic-
tions, improving overall pose estimation performance.

Extensive experiments on benchmark datasets, including PoseTrack17, PoseTrack18, and Pose-
Track21, demonstrate the effectiveness of our approach. Our method consistently outperforms
state-of-the-art models, showcasing its ability to better capture temporal dependencies and deliver
coherent pose estimations across video frames.

In summary, our main contributions are outlined as follows:

• We identify two critical types of continuity for video pose estimation: semantic space con-
tinuity and pixel-wise keypoint distribution continuity. To address these, we design a novel
approach that supervises both aspects within the pose estimation model. To ensure seman-
tic continuity across frames, we introduce the Semantic Alignment Space. Furthermore,
we propose the Trajectory Probability Difference Integration method to enforce smooth
pixel-wise keypoint distribution continuity throughout the video sequence.

• We propose a Multi-frame Heatmap Fusion module, which merges pose heatmap sequences
to generate a new fusion heatmap, enhancing the model’s performance.

2 RELATED WORKS

2.1 IMAGE-BASED HUMAN POSE ESTIMATION.

Image-based human pose estimation seeks to precisely infer the coordinates of key points on in-
dividuals within images. With the evolution of artificial neural networks, various deep-learning
approaches are employed for image-based human pose estimation. These methodologies can be
broadly categorized into two paradigms: bottom-up methods and top-down approaches.

The bottom-up approach is proposed in Deepcut Pishchulin et al. (2016) and significantly improved
in OpenPose Cao et al. (2017). These methods detect all human keypoints in an image at once and
cluster them into persons. Most bottom-up methods Cao et al. (2017); Newell et al. (2017); Cheng
et al. (2020); Jin et al. (2022); Cai (2021) are based on the heatmap, and use Part Affinity Fields
for keypoint clustering. Alternatively, the top-down approaches Li et al. (2023); Xiao et al. (2018);
Chen et al. (2018); Newell et al. (2016); Sun et al. (2019); He et al. (2017); Kamel et al. (2020)
decompose multi-person pose estimation into two distinct stages. Initially, a human detector is
utilized to detect each individual within the image. Following this, the patches within the bounding
boxes produced by the human detector are cropped and sequentially input into the single-person
pose estimation network. Although this method introduces an additional processing step, compared
to the bottom-up approach, it typically exhibits a noticeable advantage in terms of performance.

2.2 VIDEO-BASED HUMAN POSE ESTIMATION.

Regarding video-based human pose estimation, early methods primarily relied on image-based ap-
proaches, which, unfortunately, fell short due to their inability to account for temporal dependencies
between frames. Lately, optical flow-based strategies Song et al. (2017); Pfister et al. (2015) gen-
erate optical flow between successive frames, leveraging these optical flows as motion indicators to
enhance predicted pose heatmaps. However, such flow generation is computationally expensive and
demonstrates vulnerability under significant image quality deterioration. Luo et al. (2018) uses RNN
to capture temporal and spatial information, directly predicting the keypoint heatmap sequences for
videos. A noteworthy alternative approach is the utilization of 3D Convolutional Neural Networks
(3DCNNs) Wang et al. (2020) or deformable convolution Liu et al. (2022) to integrate heatmaps
across frames, leading to improved heatmap quality. Some techniques Liu et al. (2022); Feng et al.
(2023a) also incorporate multi-frame feature fusion, thereby bolstering video pose estimation ac-
curacy. Recent advanced method Feng et al. (2023b) integrates transformer-based designs with
diffusion models, evidencing substantial enhancements in pose estimation results.
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3 METHODOLOGY

In this section, we provide an overview of our proposed methodology. First, we describe our ap-
proach for enforcing continuity in video-based pose estimation through two complementary mecha-
nisms: semantic alignment and pixel-wise keypoint distribution continuity. We introduce the Seman-
tic Alignment Space to maintain semantic consistency across frames and the Trajectory Probability
Difference Integration method to enforce temporal continuity in the keypoint distribution heatmaps.

After introducing the Trajectory Probability Difference Integration, we discuss the overall network
architecture, including the Multi-frame Heatmap Fusion module, which effectively fuses informa-
tion across frames to improve pose estimation.

Finally, we explain the training and loss function for our video pose estimation network.

3.1 PROBLEM SETTING

The challenge in video-based pose estimation lies in capturing temporal information embedded in
sequential frames, which can be used to enhance pose estimation accuracy over time. In contrast
to image-based pose estimation, which processes isolated frames, video-based methods utilize a
sequence of frames to model temporal dynamics.

We denote a sequence of consecutive frames around a target frame It as x = {It−T , . . . , It+T },
where T is the temporal window size. Our goal is to leverage these temporal dynamics to improve
the keypoint predictions at keyframe It. Following a Top-Down approach, we first apply a human
detector to each frame to extract bounding boxes for each detected person. These bounding boxes
are used to form a personalized input sequence xp = {Ipt−T , . . . , I

p
t+T } for each individual. This

personalized sequence is then passed into our model to predict the keypoint coordinates in Ipt .

3.2 SEMANTIC ALIGNMENT SPACE

To model the semantic continuity of human body poses across video frames, we introduce the
Semantic Alignment Space, a position-invariant latent space that preserves pose semantics across
frames. The core idea is that while keypoint positions may vary due to motion or changes in view-
point, the overall human action should remain semantically consistent. By aligning frame features
in this space, we ensure that poses in consecutive frames are semantically coherent.

To encode features into this space, we use a Semantic Alignment Encoder EZ , which consists of
Multi-Head Self-Attention (MHSA) and MLP-Mixer blocks. Given a feature map F ∈ Rh×w×c,
where h, w, and c denote the height, width, and number of channels, respectively, the encoder
outputs an M -dimensional semantic embedding Z:

Z = EZ(F ). (1)

We employ a contrastive loss to enforce semantic continuity in this space. The loss function ensures
that the embeddings of temporally close frames are more similar than those of distant frames:

Lc = max(0, ∥Zt−δ−Zt+δ∥2−∥Zt−δ−Zt∥2+α)+max(0, ∥Zt−δ−Zt+δ∥2−∥Zt−Zt+δ∥2+α),
(2)

where δ is the frame interval and α is a margin parameter. This loss encourages semantic embeddings
of neighboring frames to be closer while keeping distant frames apart.

To achieve position invariance, we apply spatial transformations T (e.g., scaling or rotation) to the
input frames during training and ensure that the embeddings of the original and transformed frames
remain consistent. The spatial consistency loss is defined as:

Ls = ∥Z − Z ′∥2, (3)

where Z and Z ′ are the embeddings of the original and transformed frames, respectively.
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While the Semantic Alignment Encoder discards position-transformation information, we introduce
a separate Transformation Encoder ES to capture the positional variations (such as translation or
scaling) as S. The Semantic Alignment Decoder D reconstructs the aligned pose heatmap from the
semantic encoding Z, and an affine transformation A, derived from the transformation encoding S,
is applied to produce the final pose heatmap H .

H = A(D(Z), S). (4)

3.3 TRAJECTORY PROBABILITY DIFFERENCE INTEGRATION

In addition to enforcing semantic continuity, we propose the Trajectory Probability Difference Inte-
gration method to ensure temporal continuity in the keypoint distributions. This approach supervises
the smooth transition of keypoints across frames by analyzing pixel-level changes in keypoint loca-
tions.

For two consecutive frames It and It+∆t, we define the pixel difference around two keypoint posi-
tions, (xt, yt) and (xt+∆t, yt+∆t), as:

PD((xt, yt), (xt+∆t, yt+∆t)) =

2∑
i=−2

2∑
j=−2

|I1(xt + i, yt + j)− I2(xt+∆t + i, yt+∆t + j)|. (5)

This equation calculates pixel differences in a 5x5 neighborhood around the keypoints to capture
local variations. Given the relative stability of lighting and appearance over short periods, the pixel
difference PD should remain small for the same keypoint between consecutive frames.

To enforce this, we compute the expected difference in keypoint positions by integrating the keypoint
probability heatmaps Ht and Ht+∆t:

E =

∫∫
PD((xt, yt), (xt+∆t, yt+∆t)) ·Ht(xt, yt) ·Ht+∆t(xt+∆t, yt+∆t) dxt dyt dxt+∆t dyt+∆t.

(6)

We minimize the cumulative difference expectation over the trajectory formed by keypoints across
frames:

Lt =

∫ tb

ta

∣∣∣∣E(t, t+∆t)

dt

∣∣∣∣ dt. (7)

By minimizing Lt, we ensure that keypoints transition smoothly across video frames, promoting
temporal coherence in keypoint predictions.

Figure 2: Network architecture of continuity-driven pose estimation model.

3.4 NETWORK ARCHITECTURE

In this subsection, we introduce the architecture of our video pose estimation network.
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As depicted in Figure 2, the network begins by applying a single-frame backbone to extract features
from each individual frame in the video sequence. These features are then encoded into the pro-
posed Semantic Alignment Space. To effectively capture temporal information, a Heatmap Fusion
module is employed, which fuses the temporal context from multiple frames to produce the final
pose estimation.

Given the success of transformer-based architectures in various computer vision tasks, we adopt the
Vision Transformer (ViT) Dosovitskiy et al. (2020) as the backbone of our network. When process-
ing an input image of a human X = It, it is initially transformed into tokens via a Patch Embedding
layer(PE). These tokens are subsequently passed through several transformer layers, each composed
of a multi-head self-attention (MHSA) mechanism followed by a feed-forward network (FFN):

F0 = PE(X), F
′

n+1 = Fn +MHSA(LN(Fn)). (8)

We input a sequence of video frames It−i to It+i into the single-frame pose estimation network,
obtaining the corresponding feature maps Ft−i to Ft+i. These feature maps are then passed into
the semantic alignment encoder EZ , resulting in the semantic alignment encoding sequence Zt−i to
Zt+i, and the transformation position encodings St−i to St+i. Finally, these two components are
passed through the heatmap decoder to generate the keypoint probability heatmaps Ht−i to Ht+i

for each frame in the sequence.

To refine the pose estimation at the keyframe t, we introduce a Heatmap Fusion module, depicted in
Figure 2. This module alternates between two types of self-attention layers: a temporal self-attention
layer that fuses information across multiple frames, and a spatial self-attention layer that captures
spatial dependencies within each frame. The resulting fused representation is passed through a
convolutional layer (the heatmap head), which produces the final keyframe heatmap H∗

t .

3.5 TRAINING OF VIDEO POSE ESTIMATION MODEL

For training, we utilize contrastive learning losses Ls and Lc to ensure a robust learning of the
Semantic Alignment Space. To supervise the predicted pose heatmap sequence H , we apply a mean
squared error (MSE) loss between the predicted heatmaps and the ground truth.

Lh1 =

t+T∑
i=t−T

∥Gi −Hi∥22, (9)

where t is the keyframe, G represents the ground truth heatmaps, and T defines the temporal window.

Additionally, we introduce a temporal loss Lt to supervise the pose heatmap sequence, encouraging
the continuity of keypoint probability distributions by the pixel continuity of frames. For the final
keyframe heatmap H∗, we apply an MSE loss after the Heatmap Fusion module to further refine the
output:

Lh2 = ∥G−H∗
t ∥22. (10)

The overall loss function is formulated as follows:

L = λsLs + λcLc + λh1Lh1 + λh2Lh2, (11)

where λs, λc, λh1, and λh2 are weights balancing the different loss components.
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Table 1: Quantitative results on the PoseTrack17 validation set.

Method Backbone Head Shoulder Elbow Wrist Hip Knee Ankle Mean
PoseTracker Girdhar et al. (2018) 3D ResNet 67.5 70.2 62.0 51.7 60.7 58.7 49.8 60.6
PoseFlow Xiu et al. (2018) ResNet-152 66.7 73.3 68.3 61.1 67.5 67.0 61.3 66.5
FastPose Zhang et al. (2019) ResNet-101 80.0 80.3 69.5 59.1 71.4 67.5 59.4 70.3
Simple (R-50) Xiao et al. (2018) ResNet-50 79.1 80.5 75.5 66.0 70.8 70.0 61.7 72.4
Simple (R-152) Xiao et al. (2018) ResNet-152 81.7 83.4 80.0 72.4 75.3 74.8 67.1 76.7
STEmbedding Jin et al. (2019) Hourglass 83.8 81.6 77.1 70.0 77.4 74.5 70.8 77.0
HRNet Sun et al. (2019) HRNet 82.1 83.6 80.4 73.3 75.5 75.3 68.5 77.3
MDPN Guo et al. (2018) ResNet-152 85.2 88.5 83.9 77.5 79.0 77.0 71.4 80.7
CorrTrack Rafi et al. (2020) GoogleNet 86.1 87.0 83.4 76.4 77.3 79.2 73.3 80.8
Dynamic-GNN Yang et al. (2021) HRNet 88.4 88.4 82.0 74.5 79.1 78.3 73.1 81.1
PoseWarper Bertasius et al. (2019) HRNet-W48 81.4 88.3 83.9 78.0 82.4 80.5 73.6 81.2
DCPose Liu et al. (2021) HRNet-W48 88.0 88.7 84.1 78.4 83.0 81.4 74.2 82.8
DetTrack Wang et al. (2020) 3D HRNet 89.4 89.7 85.5 79.5 82.4 80.8 76.4 83.8
FAMI-Pose Liu et al. (2022) HRNet-W48 89.6 90.1 86.3 80.0 84.6 83.4 77.0 84.8
TDMI-ST Feng et al. (2023a) HRNet-W48 90.6 91.0 87.2 81.5 85.2 84.5 78.7 85.9
DiffPose Feng et al. (2023b) VIT 89.0 91.2 87.4 83.5 85.5 87.3 80.2 86.4
DSTA He & Yang (2024) VIT-H 89.3 90.6 87.3 82.6 84.5 85.1 77.8 85.6
ours HRNet-W48 87.1 90.3 87.5 83.7 84.4 86.7 84.2 86.1
ours VIT-B 87.8 91.3 88.1 84.5 84.8 87.2 85.1 87.2

Table 2: Quantitative results on the PoseTrack18 validation set.

Method Head Shoulder Elbow Wrist Hip Knee Ankle Mean
STAF Raaj et al. (2019) - - - 64.7 - - 62.0 70.4
AlphaPose Fang et al. (2017) 63.9 78.7 77.4 71.0 73.7 73.0 69.7 71.9
TML++ Hwang et al. (2019) - - - - - - - 74.6
MDPN Guo et al. (2018) 75.4 81.2 79.0 74.1 72.4 73.0 69.9 75.0
PGPT Bao et al. (2020) - - - 72.3 - - 72.2 76.8
Dynamic-GNN Yang et al. (2021) 80.6 84.5 80.6 74.4 75.0 76.7 71.8 77.9
PoseWarper Bertasius et al. (2019) 79.9 86.3 82.4 77.5 79.8 78.8 73.2 79.7
PT-CPN++ Yu et al. (2018) 82.4 88.8 86.2 79.4 72.0 80.6 76.2 80.9
DCPose Liu et al. (2021) 84.0 86.6 82.7 78.0 80.4 79.3 73.8 80.9
DetTrack Wang et al. (2020) 84.9 87.4 84.8 79.2 77.6 79.7 75.3 81.5
FAMI-Pose Liu et al. (2022) 85.5 87.7 84.2 79.2 81.4 81.1 74.9 82.2
DiffPose Feng et al. (2023b) 85.0 87.7 84.3 81.5 81.4 82.9 77.6 83.0
TDMI-ST Feng et al. (2023a) 86.7 88.9 85.4 80.6 82.4 82.1 77.6 83.6
ours 88.1 89.5 84.9 79.9 79.8 82.9 80.9 84.1

Table 3: Quantitative results on the PoseTrack21 validation set.

Method Head Shoulder Elbow Wrist Hip Knee Ankle Mean
Tracktor++ w. poses Bergmann et al. (2019); Doering et al. (2022a) - - - - - - - 71.4
CorrTrack Rafi et al. (2020); Doering et al. (2022a) - - - - - - - 72.3
CorrTrack w. ReID Rafi et al. (2020); Doering et al. (2022a) - - - - - - - 72.7
Tracktor++ w. corr. Bergmann et al. (2019); Doering et al. (2022a) - - - - - - - 73.6
DCPose Liu et al. (2021) 83.2 84.7 82.3 78.1 80.3 79.2 73.5 80.5
FAMI-Pose Liu et al. (2022) 83.3 85.4 82.9 78.6 81.3 80.5 75.3 81.2
DiffPoseFeng et al. (2023b) 84.7 85.6 83.6 80.8 81.4 83.5 80.0 82.9
TDMI-STFeng et al. (2023a) 86.8 87.4 85.1 81.4 83.8 82.7 78.0 83.8
ours 87.4 87.3 85.1 81.8 84.0 83.4 82.0 84.7
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4 EXPERIMENTS

4.1 EXPERIMENTAL SETTINGS

4.1.1 DATASETS

The PoseTrack benchmark has played a pivotal role in advancing video-based human pose estima-
tion. PoseTrack17 Andriluka et al. (2018) comprises 250 training video sequences and 50 validation
sequences, yielding a total of 80, 144 pose annotations following the standard protocol. This dataset
includes 15 keypoints for each annotation, complemented by a joint visibility flag. The subsequent
release, PoseTrack18 Andriluka et al. (2018), significantly expands the dataset, featuring 593 train-
ing and 170 validation sequences with 153, 615 pose annotations. The latest iteration, PoseTrack21
Doering et al. (2022b), builds on the prior version by enhancing the pose annotations, particularly
for smaller individuals and those in crowded scenes, resulting in 177, 164 total pose annotations.
Notably, PoseTrack21 refines the joint visibility flag, incorporating more detailed occlusion infor-
mation to improve pose estimation accuracy.

4.1.2 EVALUATION METRIC

We utilize mean Average Precision (mAP) as the primary evaluation metric for pose estimation. The
AP is computed for each keypoint, followed by averaging over all keypoints to derive the final mAP
score.

4.1.3 IMPLEMENTATION DETAILS

In alignment with previous top-down pose estimation methods Xiao et al. (2018); Wei et al. (2016),
each individual is first cropped based on their bounding box during preprocessing. Consistent with
common practice Liu et al. (2021; 2022), the cropping area is expanded by 25% beyond the bounding
box to include contextual information.

For data augmentation, we apply Random Flip, Half Body Transform, and Random Scale Rotation
during training. The AdamW optimizer is used, initialized with a learning rate of 5× 10−4.

During training, we employ the ViT-B architecture as the backbone for single-frame feature extrac-
tion, using an input resolution of 256× 192. Optimization is conducted with AdamW, starting with
a learning rate of 1 × 10−3. The temporal span T for the input frame sequence is set to 2. We
initialize the backbone with pre-trained weights from the MS-COCO dataset and train the network
for 100 epochs.

For comparison with non-transformer-based approaches, we train an additional version of our model
using the HRNetW48 backbone, a well-established architecture for pose estimation. Like the ViT-B
backbone, HRNetW48 is initialized with MS-COCO pre-trained weights, and we ensure consistent
training settings to enable a fair comparison between the two backbones.

4.2 COMPARISON WITH STATE-OF-THE-ART APPROACHES

Evaluation on PoseTrack2017 Dataset: On the PoseTrack2017 dataset, our method is assessed
against a gamut of other methods, with performance metrics delineated in Table 1. Our model
achieves an mAP of 87.2. When compared against the previous TDMI-ST model Feng et al. (2023a),
our approach showcases a 0.8 mAP increment. We also compare our method with the latest DiffPose
Feng et al. (2023b) and DSTA He & Yang (2024) which also use the Vision Transformer as the
backbone network, and the experimental results proved our advantage.

Evaluation on PoseTrack2018 Dataset: On progressing to the PoseTrack2018 dataset, the results,
collated in Table 2, underscore our model’s supremacy. Setting new state-of-the-art results, our
model procures an overall mAP of 84.1, surpassing TDMI-ST Feng et al. (2023a) by 0.5 mAP.

Evaluation on the PoseTrack21 Dataset: We also conduct a comprehensive evaluation on the
PoseTrack21 dataset, with results compiled in Table 3. Baseline performance metrics from exist-
ing works Bergmann et al. (2019); Rafi et al. (2020); Doering et al. (2022a) are referenced from
the official dataset Doering et al. (2022a). Additionally, we replicate several prominent methods,
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Table 4: Complexity comparison with HRNet-W48 backbone.

Method Params reuslt(mAP)
PoseWarper Bertasius et al. (2019) 71.1M 81.0
DCPose Liu et al. (2021) 65.2M 82.8
DSTA He & Yang (2024) 63.9M 84.6
ours 64.3M 86.1

Table 5: Ablation study of different combinations of our network.

Baseline Semantic Space Trajectory Probability Difference Fusion reuslt(mAP)
✓ 85.5
✓ ✓ 85.8
✓ ✓ ✓ 86.7
✓ ✓ ✓ ✓ 87.2
✓ ✓ ✓ 86.3

including DCPose Liu et al. (2021), FAMI-Pose Liu et al. (2022), DiffPose Feng et al. (2023b), and
TDMI-ST Feng et al. (2023a), and reevaluate them on this dataset for a more thorough comparison.
Our method achieves an mAP of 84.7, outperforming FAMI-Pose Liu et al. (2022) (81.2 mAP) and
TDMI-ST Feng et al. (2023a) (83.8 mAP), reinforcing its robustness and establishing its leading
performance in this challenging benchmark.

Complexity comparison with HRNet-W48 backbone: We conduct experiments to evaluate the
computational complexity on the PoseTrack2017 validation set, with the results shown in Table 4.
To ensure a fair comparison, we use the same HRNet-W48 backbone. As indicated in Table 4,
our method outperforms the latest DSTA approach, achieving superior performance with a similar
number of parameters.

4.3 ABLATION STUDY

In this section, we first undertake ablation studies to evaluate the contributions of each module within
our proposed framework. Additionally, we investigate the different components of the semantic
alignment space. Furthermore, we evaluate the impact of different frame intervals in video pose
estimation training.

4.3.1 ABLATION STUDY OF DIFFERENT COMPONENTS OF NETWORK

In this section, we validate the effectiveness of different network components by assessing their
impact on the overall performance. First, we establish our Baseline method, which consists solely
of the single-frame pose estimation network.

Next, we incorporate the Semantic Alignment Space for continuity perception, training the pose
estimation network with this added component. We also introduce the Trajectory Probability Dif-
ference method to supervise the temporal coherence of the keypoint probability distributions in the
video pose estimation network.

Subsequently, we apply the multi-frame heatmap fusion module, which merges heatmaps from mul-
tiple frames to generate the final heatmaps. Additionally, we evaluate the network’s performance
when trained without the Trajectory Probability Difference method to assess its contribution to the
model’s overall effectiveness.

From the experimental results presented in Table 5, it is evident that the introduction of the pose
alignment latent space results in a performance improvement over the Baseline.

Furthermore, the Trajectory Probability Difference method leads to an even more significant en-
hancement, achieving a 0.9 mAP increase.

Additionally, the integration of the multi-frame heatmap fusion module further boosts the overall
performance of the network, with a 0.5 mAP improvement compared to the Baseline.
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Table 6: Ablation study of different components of the semantic alignment space.

Lc Ls reuslt(mAP) Z S reuslt(mAP)
86.3 ✓ 12.7

✓ 86.9 ✓ ✓ 87.2
✓ 86.4

✓ ✓ 87.2

These experimental results validate the effectiveness of each component in our video pose estimation
network.

4.3.2 ABLATION STUDY OF DIFFERENT COMPONENTS OF THE SEMANTIC ALIGNMENT SPACE

In this section, we conduct a series of ablation experiments to analyze the contribution of various
components within the Semantic Alignment Space, as shown in Table 6. Specifically, we evaluate
the importance of the semantic continuity loss Lc, which enforces temporal consistency, and the
spatial consistency loss Ls, which promotes position invariance. Additionally, we assess the impact
of using both the semantic encoding Z and the transformation encoding S on overall performance.

The results show that both Lc and Ls positively contribute to the network’s performance. How-
ever, when applied individually, their impact is limited, or they even negatively affect the network’s
stability and accuracy.

Moreover, the combination of semantic encoding Z and transformation encoding S is crucial. The
network fails to train effectively without the transformation encoding S, emphasizing the essential
role of encoding positional transformations for proper model convergence and accurate pose estima-
tion.

Figure 3: visualization of video pose estimation. (a) shows the predictions of our model, (b) shows
the predictions of DCPose.

4.4 VISUALIZATION OF VIDEO POSE ESTIAMTION

In this section, we present the visualization of our method’s prediction results on the PoseTrack2017
dataset, comparing them with those of the DCpose Liu et al. (2021) method. As illustrated in Fig-
ure 3, our model consistently achieves smooth and accurate predictions in sequential scenes. This
performance can be attributed to the advantage of incorporating both semantic continuity and distri-
bution continuity supervision in our approach, which ensures temporally coherent pose estimation
across frames.

5 CONCLUSION

In this paper, we have presented a continuity-driven approach for video-based human pose estima-
tion that improves temporal coherence in keypoint detection across frames. Unlike previous meth-
ods, our approach supervises the entire pipeline to ensure both semantic and pixel-wise keypoint
continuity. We proposed the Semantic Alignment Space for aligning semantic information across
frames and the Trajectory Probability Difference Integration method to ensure smoother keypoint
transitions. Our Multi-frame Heatmap Fusion further refines predictions by leveraging informa-
tion from adjacent frames. Experiments on PoseTrack datasets show that our method consistently
outperforms state-of-the-art techniques, enhancing pose estimation accuracy and robustness.
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