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Abstract
We propose a method for evaluating the robust-
ness of a widely used LLM ranking system—the
Bradley–Terry ranking system—to dropping a
worst-case very small fraction of evaluation data.
Our approach is computationally fast and easy to
adopt. When we apply our method to matchups
from two popular human-preference platforms,
Chatbot Arena and MT-Bench, we find that the
Bradley–Terry rankings of top-performing mod-
els are remarkably sensitive to the removal of
a small fraction of evaluations. Our framework
also identifies the specific evaluations most re-
sponsible for such ranking flips, allowing for in-
spections of these influential preferences. We
observe that the rankings derived from MT-Bench
preferences are notably more robust than those
from Chatbot Arena, likely due to MT-bench’s
use of expert annotators and carefully constructed
prompts. Finally, we find that rankings based on
crowdsourced human-evaluated systems are just
as sensitive as those based on LLM-as-a-judge
evaluations, where in both, dropping as little as
0.02% of the total evaluations in the dataset can
change the top-ranked model.

1. Introduction
Open evaluation platforms like Chatbot Arena have, in large
part due to their openness, become a gold standard for as-
sessing the capabilities of leading LLMs via human pref-
erence. These open platforms are now widely used by top
LLM developers and companies to evaluate and design new
models and benchmarks (Chiang et al., 2024a; Singh et al.,
2025; Grattafiori et al., 2024; Hui et al., 2024; White et al.,
2024).
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Such platforms rely on crowdsourced pairwise battles and
human votes to compute model rankings (Lee et al., 2023;
Bai et al., 2022). At the heart of these preference-based eval-
uation and alignment pipelines is the Bradley–Terry (BT)
model (Bradley & Terry, 1952; Sun et al., 2025), which is
widely used to rank LLMs based on human feedback (Chi-
ang et al., 2024a), train reward models for RLHF (Ouyang
et al., 2022; Touvron et al., 2023; Xu et al., 2024), and
route incoming queries to the most appropriate LLM or
inference-time scaling strategy (Damani et al., 2024).

Recent controversies, however, have raised concerns about
the trustworthiness of popular LLM evaluation platforms
like Chatbot Arena (Chiang et al., 2024a). For instance, Min
et al. (2025) demonstrate that Chatbot Arena is vulnerable
to vote-rigging: by injecting just a few hundred manipulated
votes (out of 1.7 million), attackers can significantly change
the top model rankings. Singh et al. (2025) further identify
issues such as data leakage and private testing practices
that allow large, proprietary model developers to selectively
report the best-performing versions of their models.

We study a slightly different type of untrustworthiness of
LLM-based ranking systems in this work. That is: “Will the
top rankings from LLM-evaluation platforms change upon
dropping a very small fraction of the human (or AI) prefer-
ence evaluations?” If it turns out that the answer is yes, this
raises concerns about the generalizability and stability of the
rankings produced by such systems. One might worry about
whether these rankings, the learned human preferences from
these systems, actually generalize (Broderick et al., 2020).

This question motivates the need for a systematic way to
assess the robustness of top rankings in BT-based evaluation
systems to worst-case data dropping. However, no such
method currently exists (beyond a brute-force combinatorial
search over all possible small subsets of data) to test whether
the model rankings on LLM evaluations systems are robust
to the removal of a very small fraction of adversarially-
chosen evaluations.1

In order to avoid this computationally intractable combina-
torial search, we turn to a recent line of works from statistics

1This combinatorial search procedure is computationally infea-
sible for large-scale platforms like Chatbot Arena.
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and theoretical computer science that design algorithms for
assessing whether data analyses are robust to dropping a
small, worst-case fraction of data points (Broderick et al.,
2020; Kuschnig et al., 2021; Moitra & Rohatgi, 2022; Fre-
und & Hopkins, 2023; Shiffman et al., 2023; Nguyen et al.,
2024; Huang et al., 2024; Rubinstein & Hopkins, 2025).
One such method, the Approximate Maximum Influence
Perturbation (AMIP), estimates how much a statistic of in-
terest could change if a worst-case subset of the data were
dropped (Broderick et al., 2020). We extend these ideas
to develop a fast approximation method for assessing the
robustness of rankings from LLM evaluation systems to
worst-case data-dropping. We apply our method to two
widely used sets of human preference matchups: Chatbot
Arena and MT-Bench (Chiang et al., 2024a; Zheng et al.,
2023). Although our methods are largely based on the rank-
ing system used in Chatbot Arena and MT-Bench, there are a
few differences (including tie-handling and post-processing)
between the raw BT scores we analyze and the scores im-
plemented on these platforms; see Section 3.1 for more
details. We note that a previous work in computational
biology (Shiffman et al., 2023) studies the sensitivity of
gene set enrichment analyses to dropping just a few cells
and that, importantly, this work studies the same form of
worst-case data-dropping robustness of rankings. However,
while this previous work studies robustness in the ranking
of p-values (specifically, p-values derived using the hyperge-
ometric test), our work studies the robustness the rankings
derived from the BT model (which can be thought of as
elements in the coefficient vector of a logistic regression
model).

In Section 2, we formalize the setup for assessing worst-
case data-dropping robustness in BT-based ranking systems,
and in Section 3 we introduce a computationally efficient
method for assessing this form of robustness in practice. In
Section 4, we apply our robustness assessment method to
investigate the robustness of LLM preference data.

Our code is publicly available at https://github.
com/JennyHuang19/IsRankingRobust, including
all scripts required to run our robustness assessing method
and to reproduce the results presented in this paper.

2. Setup
Human preference data. We consider a preference-based
ranking system akin to Chatbot Arena (Chiang et al., 2024a).
There are in total M language models. Any user can submit
a prompt to be answered by a pair of language models,
say model i and j for i, j ∈ [M ] with i ̸= j. The user then
determines if the response from model i is better than that of
model j. Suppose there are in total N such comparisons; the
data can be seen as a collection of tuples {(in, jn, yn)}Nn=1,
with yn ∈ {0, 1} being an indicator for whether in the

nth match, model in is preferred over model jn. From a
collection of preference data, the goal is to rank the language
models.

Ranking with the Bradley–Terry model. The Bradley–
Terry (BT) model is a classical statistical model used to rank
players from binary preference data that is used by Chatbot
Arena. In this model, each player (e.g., language model),
i, is associated with a BT score, θi, and the preferences are
assumed to be generated as

yn ∼ Bernoulli(σ(θin − θjn)). (1)

Note, since the “winning” probability depends on the differ-
ence between two players rather than on their raw scores,
the scores are identified only up to a constant additive term.
There are different ways to avoid this identifiability prob-
lem (Wu et al., 2022). We adopted the method of setting
up the first player’s score to be 0. We can cast this model
as a logistic regression with a specially-structured design
matrix. We denote the corresponding “design” vector of
the nth comparison, xn ∈ {−1, 0, 1}M , a vector encoding
which two players are being compared. That is, if the game
is between players i and j, then xn has a 1 in the ith ele-
ment, a −1 in the jth element, and 0 otherwise. Using this
structure, we can rewrite the model as a logistic regression
model with M − 1 parameters corresponding to the scores
of the players, θ = (θ1, . . . , θM ) ∈ RM with θ1 = 0,

yn ∼ Bernoulli(σ(x⊤
n θ)). (2)

We fit the BT-model (i.e., estimate θ) by maximum likeli-
hood,

θ̂ := argmin
θ:θ1=0

N∑
n=1

(
− yn log σ(x

⊤
n θ)

− (1− yn) log(1− σ(x⊤
n θ))

)
.

(3)

Finally, we define the rank of a model as its position in
the sorted list of models, (θ̂(1), . . . , θ̂(M)), ordered by their
scores in descending order, so that θ̂(1) corresponds to the
top-ranked model.

In the rest of this section, we turn to the goal of determining
whether there exists a small fraction of data (e.g., matchups)
that we can drop to change the ordering of the estimated BT
scores.

Setup for Data-Dropping. We study whether dropping
a small fraction α ∈ (0, 1) (e.g., α = 0.01) of the pref-
erence data can change the ordering of the estimated BT
scores. Broderick et al. (2020) define the Maximum Influ-
ence Perturbation as the largest possible change induced
in a quantity of interest by removing at most 100α% of the
data.
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Let wn denote a weight on the nth data point, and collect
these into a vector w := (w1, ..., wN ). Define the weighted
estimator as

θ̂(w) := argmin
θ(w):θ1(w)=0

N∑
n=1

wn

(
− yn log σ(x

⊤
n θ)

− (1− yn) log(1− σ(x⊤
n θ))

)
.

(4)

Setting w = 1N (the all-ones vector) recovers the BT scores
computed on the full data (e.g., the original arena), while
setting wn = 0 corresponds to dropping the nth data point
(e.g., a matchup). We define the set of all weight vectors
corresponding to dropping at most an α-fraction of the data
as follows:

Definition 2.1 (Feasible Drop Set). Let Wα := {w ∈
{0, 1}N :

∑N
n=1(1 − wn) ≤ αN} be the set of all binary

weight vectors indicating subsets where at most 100α% of
the data has been dropped.

Two-Player Arena. We begin by analyzing the robustness
of an arena involving just two players (e.g., LLMs): player
i and player j. Without loss of generality, we assume2 that
player i has the higher estimated BT score on the full data:

θ̂i(1N ) ≥ θ̂j(1N ).

We are interested in whether this ordering can be reversed
by dropping at most an α-fraction of the data.

Definition 2.2 (Top-1 Data-Dropping Robustness in Two–
Player Arenas). An arena consisting of players i and j is
said to be top-1 robust at level α if there does not exist a
data weighting w ∈ Wα such that the BT scores reverse
under reweighting:{

w ∈ Wα : θ̂i(w) < θ̂j(w)
}
= ∅. (5)

To generalize this setup beyond a two-player arena, we
introduce more notation.

M -Player Arena. We now extend this notion to arenas
with M players, for any M ≥ 2. Let T (w) := {θ̂i(w)}Mi=1

denote the set of BT scores under weighting w.

Definition 2.3 (Top-k Set). The top-k set under full data is
defined as the set of players whose scores rank among the
top k:

KT (1N ) :=
{
θ̂i(1N ) : rank

[
θ̂i(1N ); T (1N )

]
≤ k

}
. (6)

Definition 2.4 (Top-k Data-Dropping Robustness in
M -Player Arenas). An arena is top-k robust at level α if

2If this assumption does not hold, the identities of i and j can
be swapped.

no α-fraction subset of data can be dropped to change the
top-k set. That is,{

w ∈ Wα : KT (1N ) ̸= KT (w)

}
= ∅. (7)

Equation (7) is nontrivial to directly verify; to directly check,
we have to perform two combinatorial operations, namely
(1) recalculate these sets and (2) test out dropping all possi-
ble small-fraction subsets of the arena.

In Section 3, we show that verifying whether Equation (7)
holds can be reduced to checking the robustness of a se-
ries of pairwise comparisons. Specifically, top-k robustness
as defined in Definition 2.4 can be checked by checking
whether there exists a reweighting w ∈ Wα such that the
ranking of any pair (i, j) such that i is inside and j is out-
side the top-k set flips. We then can test if such flipping
can happen by a continuous approximation of the discrete
weight w. We detail this procedure in Section 3.

3. Proposed method
Recall that our goal is to evaluate the robustness of the
rankings induced by a BT-model {θ̂(1), ..., θ̂(M)} when a
small fraction of matches (e.g., evaluations) is removed
from the arena. To this end, we introduce a method based
on checking the robustness of pairwise BT score differences.

We begin by showing that a top-k set can be characterized by
considering a set of pairwise comparisons in Proposition 3.1.

Proposition 3.1. Suppose we have M distinct real numbers,
T (w) := {θ̂i(w)}Mi=1. Suppose a set S ⊂ T (w) satisfies
|S| = k. Suppose it is the case that ∀ θ̂i(w) ∈ S and
∀ θ̂j(w) ∈ T (w) \ S, we have that θ̂i(w) > θ̂j(w). Then,
it must be that S is the top-k set, or S = KT (w).

Proof. We first show that S ⊂ KT (w). Suppose that
θ̂i(w) ∈ S. By assumption, we have that ∀ θ̂j(w) ∈
T (w)\S , θ̂i(w) > θ̂j(w). Since |T (w)\S| = M−k, there
must exist at least (M − k) values in T (w) that are smaller
than θ̂i(w). This must mean that rank(θ̂i(w); T (w)) ≤ k,
so θ̂i(w) ∈ KT (w) as needed.

We next show that KT (w) ⊂ S by contradiction. Suppose
there exist a θ̂j(w) such that θ̂j(w) ∈ KT (w) but θ̂j(w) /∈ S .
Since θ̂j(w) /∈ S , then θ̂j(w) ∈ T (w) \ S . This means that
∀θ̂i(w) ∈ S we have θ̂i(w) > θ̂j(w), and since |S| = k,
this implies that rank(θ̂j(w); T (w)) > k, contradicting the
assumption θ̂j(w) ∈ KT (w).

Using the result from Proposition 3.1, we come up with a
greedy algorithm to test whether the top-k set is robust to
worst-case data-dropping.
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The idea here is to test the data-dropping robustness of all
players in the top-k set against all players outside of the
top-k set. If any one of these pairwise comparisons is non-
robust, then the top-k set is non-robust.

Before that, we describe what it means for a given pair of
player scores, (θ̂i(w), θ̂j(w)), to be data-dropping robust.

Pairwise Robust. Given a pair of teams, (i, j), we say
that the scores for this pair, (θ̂i(w), θ̂j(w)), are robust to
small-fraction data-dropping at level-α if

{w ∈ Wα : θ̂i(w) ≤ θ̂j(w)} = ∅. (8)

Top-k Robust. Recall that an arena is top-k robust at level-
α if there does not exist a reweighting, w ∈ Wα, such that
KT (1N ) ̸= KT (w) (see Equation (7)). Using the line of logic
in Proposition 3.1, this is equivalent to showing that, ∀ (i, j)

where i ∈ KT (w) and j /∈ KT (w), the pair (θ̂i(w), θ̂j(w))
is robust. Namely, if every comparison (i, j) in this set of
pairwise comparisons stays the same (after reweighting),
then the top-k set also stays the same (see Proposition 3.1
for a detailed proof).

We now provide a method for checking the robustness of
pairwise comparisons.3

Method for Checking Pairwise Robustness. In Equa-
tion (8), we are interested in checking whether there exists a
small fraction of evaluations, w ∈ Wα, that can be dropped
to change the sign of a difference in BT scores. Without
loss of generality, we will assume that the sign of the dif-
ference of BT scores fit to the full data is positive (e.g.,
[θ̂i(1N )− θ̂j(1N )] > 0, meaning that model i has a higher
score than model j).

To evaluate the robustness of the sign of [θ̂i(1N )− θ̂j(1N )]
to dropping a small fraction of matches, we adopt a recently-
developed method from the statistics literature known as the
Approximate Maximum Influence Perturbation (Broderick
et al., 2020) (see Appendix A for a more detailed discussion
on how we adapt this method to our problem setup). This
method approximates the maximal directional change in
a statistic, e.g., [θ̂i(1N ) − θ̂j(1N )], that can result from
dropping a worst-case subset of data points (in our case,
evaluations) of size at most ⌊αN⌋. This method allows us
to sidestep running an expensive combinatorial search over
all data-subsets for the worst-case subset of matches to drop,
a procedure that is computationally prohibitive for large
LLM evaluation platforms like Chatbot Arena.

As the name suggests, AMIP approximates the Maximum
Influence Perturbation, or the maximal change to a quantity-
of-interest (e.g., [θ̂i(1N )− θ̂j(1N )]) that can be induced by

3The code implementation of our method can be found at
https://github.com/JennyHuang19/IsRankingRobust.

dropping a small fraction of data points from a dataset (i.e.,
by performing the data analysis using a reweighting of the
data in which the weight of a small subset of points is set to
0, w ∈ Wα).

The optimization problem implied by the Maximum Influ-
ence Perturbation problem in our particular case is shown
below

max
w∈Wα

([
θ̂i(1N )− θ̂j(1N )

]
−
[
θ̂i(w)− θ̂j(w)

])
. (9)

The key that makes the AMIP method fast for solving Equa-
tion (9) is that it approximates the impact of dropping a data
point4 by using a first-order approximation (e.g., influence
functions and variants). In our case, this approximation
amounts to replacing Equation (9) with

max
w∈Wα

∑N

n=1
(1− wn)

(
∂θ̂i(w)

∂wn

∣∣∣
w=1N

− ∂θ̂j(w)

∂wn

∣∣∣
w=1N

)
.

(10)

Let ej denote the jth standard basis vector and X ∈ RN×P

denote the design matrix. Let p̂n = σ(θ̂⊤xn) and V =
diag({p̂n(1− p̂n)}n). For logistic regression with an effect-
size quantity of interest, θj , the formula for the influence
score for the nth data point (Pregibon, 1981) is given by

∂θ̂j(w)

∂wn

∣∣∣
w=1N

= e⊤j (X
⊤V X)−1xnp̂n(1− p̂n)

(
yn + 1

2
− p̂n

)
.

(11)

Using these influence score approximations for dropping out
single evaluations, we then find the ⌊αN⌋-sized subset of
evaluations that correspond to the largest influence scores.5

We denote the approximate solution to Equation (9) that is
returned by AMIP as w̃ ∈ Wα (i.e., the set of data weights
that are 0 at indices of data points that AMIP chooses to
drop and 1 elsewhere).

For a candidate pair of players, (i, j), we check whether
[θ̂i(w̃) − θ̂j(w̃)] < 0. In other words, we refit the BT-
model upon leaving out the subset of impactful evaluations
identified by AMIP and check whether leaving out this
subset induces a sign change in the difference of BT scores
for the pair, (i, j). We say that the BT scores for a pair of
players, (i, j), are non-robust if the sign of the difference
in scores becomes negative upon refitting under w̃, (i.e., if
[θ̂i(w̃)− θ̂j(w̃)] < 0).

4By “impact” here, we mean the impact of data-dropping on
some statistical quantity-of-interest, such as a regression coeffi-
cient, or a parameter, or a test prediction.

5In addition to the influence score approximation, our method
allows for the use of another type of data-dropping approximation
known as the Additive one-step Newton approximation (Park et al.,
2023; Huang et al., 2024). For more details on data-dropping
approximations, see Appendix A.
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Method for Checking Top-k Robustness. We now de-
scribe how we can fold our check for pairwise robustness
into an overall routine for checking for top-k robustness.

Recall from Section 3 that we can check Top-k robustness
by checking pairwise robustness for every comparison (i, j)

where i ∈ KT (w) and j /∈ KT (w), the pair (θ̂i(w), θ̂j(w))
is robust. This amounts to checking the pairwise robustness
for k(M − k) pairs.

We do this by iterating over pairs of players. Not all pairs
need to be checked since we only need to find one non-
robust pair to render the set non-robust. To save on compute,
we take a greedy approach and start with comparing the
most closely-ranked pairs between the top-k ranked players
and the remaining M − k players, where “closeness” is
quantified using the absolute difference in BT scores fit on
the full data.6 This is because the closest pairs are the most
likely to exhibit data-dropping non-robustness. Upon find-
ing any single pair that is pairwise non-robust at an α-level,
the procedure terminates early and returns the correspond-
ing players and the indices of the dropped evaluations. We
say that an arena is α-level top-k robust if there does not ex-
ist a pair of players (i, j), where i ∈ KT (w) and j /∈ KT (w),
that are α-level pairwise non-robust.

Runtime. We provide a fast procedure for assessing the
robustness of preference-based ranking systems. For exam-
ple, we tested our method on historical preference datasets
released by the Chatbot Arena project and hosted on Hug-
ging Face (Chiang et al., 2024a). Specifically, we ran top-1
and top-k robustness on a dataset of size around 50,000 eval-
uations in under 3 minutes on a personal computer equipped
with an Apple M1 Pro CPU at 3200 MHz and 16 GB of
RAM.

3.1. Deviations from LLM-Arena Computations in
Practice

While our methods are based largely on the ranking sys-
tem used in Chatbot Arena and MT-Bench, there are a few
differences between the raw BT scores we analyze and the
scores implemented on the platform. The first difference,
which concerns the filtering of ties, may affect the resulting
rankings, whereas the second difference, an affine transfor-
mation, does not. We provide more information on these
differences next.

The primary difference is that our analysis is conducted
on tie-free data (we discard any matchups that were anno-
tated as ties). In contrast, the Chatbot Arena leaderboard
calculation (Bradley–Terry model) (Chiang et al., 2024b)
incorporates ties using a weighted BT model. Specifically,
in this weighted version, each pairwise comparison between

6The robustness of the relative ranking of two players is corre-
lated with the proximity of their BT scores as seen in Figure 6.

models i and j contributes a row to the estimation proce-
dure, with the weight on each row corresponding to the
number of times that matchup occurred. Ties are treated by
splitting their weight evenly across both directions. While
our tie-free rankings differ from those used in practice by
Chatbot Arena, omitting ties is fairly common in practice
for analyses done on the platform; for example, many of the
plots on the Chatbot Arena Overview Page (Chiang et al.,
2024c) are based on tie-free data, and the primary BT model
analyzed in the original Chatbot Arena paper also omits ties
(Chiang et al., 2024a).7

A second difference lies in postprocessing. Chatbot Arena
applies a linear transformation to the learned BT scores.
They use SCALE = 400, INIT RATING = 1,000, and
a further shift ANCHOR SHIFT to produce the displayed
scores:

ELOn = SCALE·θ̂n+INIT RATING+ANCHOR SHIFT.

The final constant (ANCHOR SHIFT) shifts all the ELOn

scores relative to a specific reference model. Chatbot Arena
uses mixtral-8x7b-instruct-v0.1 as the anchor,
assigning it a fixed score of 1,114 and adjusting all other
scores accordingly. We note that the affine transformation
does not affect model rankings because it is a strictly mono-
tonic transformation.

4. Experiments
Our analysis reveals that dropping as little as 0.02% of
the evaluation data can flip the top-ranked model in popu-
lar LLM evaluation platforms, that crowdsourced human-
evaluated systems are about as non-robust as AI-evaluated
systems, and that the responses of dropped evaluations ap-
pear similar in content. Henceforth, for convenience, we
use “robustness” as shorthand for robustness of a system’s
top-k ranking to dropping a small fraction, α, of the data.

4.1. Data and Setup.
Chatbot Arena. Chatbot Arena is a crowdsourced platform
where users engage in conversations with two chatbots at
the same time and rate their responses based on personal
preferences (Zheng et al., 2023). This benchmark contains
a total number of 57,477 evaluations.8 Figure 1 presents
the Bradley–Terry scores of the top-20 models on Chatbot
Arena.

MT-Bench. MT-Bench is a benchmark composed of open-
ended questions designed to assess a chatbot’s ability to

7Chiang et al. (2024a) introduce variations of the original
model that does handle ties.

8We conduct our analysis on historical datasets released by the
Chatbot Arena project (Chiang et al., 2024a) and hosted on Hug-
ging Face; specifically, we use the arena-human-preference-55k
dataset, the chatbot-arena-llm-judges dataset, and the mt-bench-
human-judgments dataset.
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Figure 1. The top-20 model rankings in Chatbot Arena.

engage in multi-turn conversation and follow instructions
(Zheng et al., 2023). It is also constructed to distinguish be-
tween models based on reasoning and mathematics (Zheng
et al., 2023). This benchmark is much smaller because it
is handcrafted using 58 expert-level human labelers; it con-
tains 3,355 total evaluations. In contrast to Chatbot Arena,
these labelers are mostly graduate students, so they are con-
sidered more skilled than average crowd workers. Figure 5
presents the BT scores of the models in the arena.

Experimental Setup. Using historical data from each plat-
form, publicly available on Hugging Face, we construct a
design matrix based on model-vs-model comparisons, treat-
ing each evaluation as a binary outcome.

Using this design (for more details on this setup, see Sec-
tion 2), we compute the model rankings based on full-data
BT scores (see Figure 3a for the top-10 ranked models).
We then run our method to check for top-k robustness, for
k ∈ {1, 3, 5, 10, 20} (see Section 3 for more details on this
procedure).

4.2. Sensitivity of Chatbot Arena and MT-Bench
Dropping less than 0.05% of the evaluation data is sufficient
to change the top-1 and top-5 model rankings in Chatbot
Arena. MT-Bench, however, requires over 3% of the data
to be removed in order to change the top ranked model and
over 4% to change one of the models in the top-5.

We find Chatbot Arena to be incredibly sensitive to data-
dropping. In particular, we find that dropping only around
0.02% of the evaluations changes the top-ranked model
(GPT-4-0125) to GPT-4-1106. We then find that dropping
20 (0.035% of) evaluations can change one of the models in
the top-5 rankings (the 5th and 6th-ranked models changed).
Surprisingly, GPT-4-0125 and GPT-4-1106 participated in
the most matchups across the entire arena, as shown in
Figure 4, suggesting that data-dropping sensitivity cannot

Figure 2. Each bar shows the percentage of data points in Chatbot
Arena that are sufficient to be dropped in order to demote the BT
score of a model inside the top-k to outside of the top-k. Results
are shown for k ∈ {1, 3, 5, 10, 20}. The black bars denote results
for human evaluators while the blue bar indicates results for LLM-
as-a-judge evaluators.

be attributed to a small sample size alone.

We find MT-Bench Arena to be more robust than Chat-
bot Arena (see Table 1). Here, dropping 83 out of 2,575
(3.22% of) evaluations changes the top model from GPT-
4 to Claude-v1. We then find that dropping 110 (4.27%
of) matchups can change one of the models in the top-5
rankings (again, the 5th and 6th ranked models changed).

There are several reasons that may lead MT-Bench to be
much more robust than Chatbot Arena, such as the use of
expert annotators and the higher quality of prompts (Zheng
et al., 2023).

4.3. Humans vs. LLM-as-a-Judge
Within both arenas (Chatbot Arena and MT-Bench), we
find the sensitivity of the BT-based top-k rankings to worst-
case data-dropping to be similar between human- and LLM-
judged evaluations (see Table 1 and Figure 2).

When asked what percentage of evaluations were required
to change the top-k model rankings, we find that the human-
evaluated data were more sensitive (required dropping fewer
evaluations) for k ∈ {5, 20} while the LLM-evaluated plat-
form was more sensitive for k ∈ {1, 3, 10, 20} (see Fig-
ure 2). This finding agrees with previous work showing
that strong LLMs, such as GPT-4, can closely approximate
human preferences in model evaluation tasks. In particu-
lar, Zheng et al. (2023) demonstrate that GPT-4 achieves
over 80% agreement with expert human annotators on MT-
Bench.

4.4. Player Involvement in Dropped Matches
For every instance where the top-k leaderboard changes due
to dropped evaluations, we find that the affected matches
always involve at least one of the models whose rank is al-
tered (see Figure 3). This holds true for both human-judged
and LLM-judged Chatbot Arenas. While Min et al. (2025)
find that adding in a small fraction of rigged votes can influ-
ence a target model’s ranking even when the target model is
not directly involved in the matchup, we are unable to find
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Arena Evaluator (Judge) Number of Points Dropped Fraction of Points Dropped Win Percent
Chatbot Arena Human 9 out of 39716 0.000226 55.17%
Chatbot Arena LLM 4 out of 34297 0.000116 53.73%
MT-Bench Human 83 out of 2575 0.0322 62.75%
MT-Bench LLM 27 out of 2180 0.0124 51.72%

Table 1. Results of checking top-1 robustness of BT-scores on each of the two arenas (Chatbot Arena and MT-Bench). The “Number of
Points Dropped” column reports on the number of matches that are sufficient to flip the first and second-place models. The “Fraction of
Points Dropped” column shows this number as a fraction of the number of total matches in the full arena. The “Win Percent” column
shows the proportion of head-to-head matchups won by the first-place model in matchups against the second-place model. Small BT score
differences and win margins indicate that the two models have similar performance, so even minor perturbations in data may easily flip
their ranking.

instances where removing a small fraction of evaluations
where neither of the affected models were involved flips the
rankings.

Also, notice in Figure 3 that there are no partial bars or
mixed compositions. We investigate why this homogeneous
pattern appears consistently across bars. Inspecting dropped
matchups manually (see Appendix B), we find that the rea-
son the involvement is always entirely either one or both
flipped players is because the dropped matchups always
consists of games between a central model and a specific
competitor (or group of competitors) whose outcomes all
favor or disfavor that specific model, a structure that leads
to homogeneous bars. This finding reveals something about
how non-robustness appears in our analyses: small, con-
sistent sets of matchups are sufficient to push a model just
above or below another on the leaderboard.

4.5. Inspecting Dropped Matches
We demonstrate that our method can be used to investigate
the dropped prompts and responses, and we find the dropped
responses to be similar in content.

Setup. To investigate the dropped prompt-response pairs,
we compare the response similarity of just five human eval-
uations that were enough to flip the rankings of mistral-
medium (the 5th ranked model) with qwen1.5-72b-chat (the
6th ranked model) on Chatbot Arena.

These five influential evaluations are those where qwen1.5-
72b-chat performed exceedingly well, winning against gpt-
4-1106-preview (the second-place model). Dropping these
five matchups was enough to demote qwen1.5-72b-chat’s
ranking from out of the top 5, to below that of the 6th place
mistral-medium. These five prompts spanned a diverse
range of tasks (e.g., technical instruction, legal reasoning,
opinion clarification) and lengths.

Given the influence of this small set of responses in de-
termining the top-5 rankings on the arena, we display the
prompts and responses involved in Table 2. Upon visual
inspection of these and other dropped matchups, we find
that the paired responses are similar in both content and

(a) Chatbot Arena (Human-Judge)

(b) Chatbot Arena (LLM-Judge)

Figure 3. Player involvement in the most influential matches whose
removal caused a model to drop out of the top-k positions. Each bar
represents the composition of matches dropped in order to demote
a model from the top-k set. The proportions indicate whether none
(green), one (orange), or both (blue) of the affected models were
involved in each dropped matchup. For Chatbot Arena (Human-
Judge) (top), the number of matches dropped for each of the top-k
is (9, 24, 5, 3, 2), respectively. For Chatbot Arena (LLM-Judge)
(bottom), the number of matches dropped for each of the top-k
is (4, 15, 10, 2, 2). Across all k, we find that 100% of flipped
rankings involved matches containing at least one of the players
whose ranking changed.

style. This similarity—despite leading to ranking reversals—
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Table 2. Side-by-side comparison of LLM responses to five influential prompts that were dropped. Lengthy prompts and answers are
truncated here (indicated by “...”) to ensure readability.

Prompt Response A Response B

“Read this content. Do not change the
content written. Add 5 more tips in
the same tone of voice and style. One
be use AI. Hey freelance writers:
Let’s talk about writer’s block...”

Use AI Writing Tools. Incorporating
AI writing tools can occasionally help
break the creative gridlock...

Use AI to Your Advantage. In this age
of technology, leverage the power of
AI to overcome writer’s block....

“Which is the newest model that also
contain data of 2023?”

I’m sorry, but your question isn’t clear.
When you ask about the newest model
that also contains data of 2023, I need
more context to provide you with an
accurate answer....

As an AI, I don’t have real-time
access to updates or the ability to
browse the internet for the most
recent information....

“Please answer this questions in 8
sentences and do not use wording
indicative of AI. You are provided
with a legal description that seems to
make sense when you initially read
but once you arrive at the site it no
longer does...”

When a legal description appears
clear initially but becomes confusing
at the site, it indicates an issue of
latent ambiguity...

The type of ambiguity encountered is
likely a latent ambiguity, where the
description seems clear on paper but
is problematic when applied to the
physical location....

“Is it possible to give a transformer
custom embeddings?”

Yes, it is possible to give a
transformer model custom
embeddings...

Yes, it is possible to give a
transformer model custom
embeddings...

”How to use Poetry to install
packages in python?”

Poetry is a tool for dependency
management and packaging in
Python...

Poetry is a dependency manager for
Python that makes it easy to manage
project dependencies and create
self-contained virtual environments...

underscores the fragility of the ranking system and raises
concerns about its sensitivity to subtle variations in language
model responses.

5. Discussion
Crowdsourced LLM evaluation platforms like Chatbot
Arena offer a way to rank LLMs by aggregating prefer-
ences over responses to open-ended prompts. There is good
reason that this setup has been widely-adopted: it is easy
to scale, doesn’t require expert annotators, and enables the
aggregation of many prompts and judgments across a wide
range of users (Zheng et al., 2023; Don-Yehiya et al., 2024).

In theory, this aggregation helps average out individual an-
notator variability and yields a signal that is generalizable.
However, in practice, we find that model rankings can de-
pend on just a small handful of human (or LLM) evaluations.
Thus, we encourage users of leaderboards and benchmark
contests to run our method to investigate the fragility of
crowdsourced LLM evaluation platforms before publishing
results.

We find that rankings based on MT-Bench matchups are
more robust than those from Chatbot Arena to the removal of
a small number of evaluations, likely due to higher-quality
data; unlike Chatbot Arena, which relies on noisy, user-
generated prompts and crowdsourced votes from anony-
mous users, MT-Bench uses carefully constructed, multi-
turn questions evaluated by expert annotators, such as grad-
uate students (Zheng et al., 2023). Additionally, MT-Bench
prompts are specifically designed for reasoning, math, and
instruction-following, which may lead to more decisive
win/loss outcomes (we observed many fewer ties in MT-
Bench). Together, these factors result in MT-Bench rank-
ings being less sensitive to worst-case small-fraction data-
dropping, indicating that using carefully-constructed queries
and expert evaluators may result in more robust benchmarks
for evaluating chat model performance.

For researchers in the field of human-AI alignment, more
rigorous and nuanced evaluation strategies are needed. To
this end, we highlight several promising directions for the
future of open human feedback. These include eliciting not
only binary preference but also evaluators’ confidence levels
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(Méndez et al., 2022),9 creating tools to identify prompts
requiring specialized knowledge in order to route them to ap-
propriate evaluators (Don-Yehiya et al., 2024), using media-
tors to perform fine-grained assessments of crowdsourced re-
sponses (Don-Yehiya et al., 2024), and categorizing prompts
by instruction type (e.g., factual recall, creative generation)
to promote more fine-grained model comparisons within
categories (Chia et al., 2023).

Impact Statement
We introduce a fast method to audit the robustness of LLM
ranking systems—such as Chatbot Arena and MT-Bench—
to the removal of a very small fraction of evaluation data.
Our findings show that leaderboard rankings can be over-
turned by dropping as little as 0.02% of evaluations, raising
concerns about the generalizability of human preference-
based evaluations. By identifying specific evaluations that
flip rankings, our method provides a diagnostic tool for
investigating potentially outlying prompts and responses
in LLM evaluation platforms. This work inspires action-
able insights and provides a concrete tool for improving the
trusworthiness and credibility of leaderboard-based evalua-
tion of generative AI systems.
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A. The AMIP Method
In principle, one might solve

max
w∈Wα

(
[θ̂i(1N )− θ̂j(1N )]− [θ̂i(w)− θ̂j(w)]

)
(12)

by computing [θ̂i(w) − θ̂j(w)] for each of the
(

N
⌊αN⌋

)
values of w ∈ Wα. However, this brute force approach can be

computationally prohibitive even for moderately-sized N .

Approximate Maximum Influence Perturbation (AMIP). Broderick et al. (2020) propose relaxing w to allow continuous
values and replacing the w-specific quantity of interest with a first-order Taylor series expansion with respect to w around
1N . This first-order Taylor series expansion is known as the influence function (IF) approximation (Hampel et al., 2011), a
classic technique from robust statistics that approximates the affect of upweighting (or dropping) a data point on model
parameters using a first-order Taylor series approximation in data-weight space. Influence functions have become popular
tools for approximating resampling methods (Giordano et al., 2019) and assigning value to data that a model was trained on
(Koh & Liang, 2017; Park et al., 2023). This approximation applies to more general data analyses and quantities of interest.
In our case, this approximation amounts to replacing Equation (12) with

max
w∈Wα

∑N

n=1
(1− wn)

(
∂θ̂i(w)

∂wn

∣∣∣
w=1N

− ∂θ̂j(w)

∂wn

∣∣∣
w=1N

)
. (13)

Let ej denote the jth standard basis vector and X ∈ RN×P denote the design matrix. Let p̂n = σ(θ̂⊤xn) and V =
diag({p̂n(1− p̂n)}n). For logistic regression with an effect-size quantity of interest, θj , the formula for the influence score
for the nth data point (Pregibon, 1981) is given by

∂θ̂j(w)

∂wn

∣∣∣
w=1N

= e⊤j (X
⊤V X)−1xnp̂n(1− p̂n)

(
yn + 1

2
− p̂n

)
, (14)

In addition to influence functions, our framework enables a second data-dropping approximation known as the One-
step Newton (1sN) approximation, which approximates the effect of dropping a data point on model parameters using a
second-order Taylor expansion in parameter space. This Newton-style update has become popular for approximating the
deletion of data in recent works on approximate cross validation (Ghosh et al., 2020; Wilson et al., 2020) and machine
unlearning (Sekhari et al., 2021; Suriyakumar & Wilson, 2022). The 1sN is slightly more expensive to compute than the IF
approximation (as it corrects the IF with a multiplicative correction term) but is more accurate when the to-be-dropped data
point has high a leverage score (because the correction term involves the leverage score of a data point). Previous works
have proposed approximating the removal of a group of data points by the sum of leave-one-out 1sN scores, in an algorithm
known as the Additive one-step Newton approximation (Huang et al., 2024; Park et al., 2023).

To run the AMIP and Additive one-step Newton algorithm, we:

1. Fit a BT model on the entire arena.

2. Compute the influence scores (Equation (11)) (one-step Newton scores for the Additive one-step Newton algorithm) for
all matches in the arena.

3. Identify the ⌊αN⌋ matches with the largest influence scores.

4. Approximate impact of dropping the top-scoring ⌊αN⌋ matches by the sum of the scores of the top ⌊αN⌋ matches.

5. If the approximation predicts a change in ranking, then refit the model leaving out the identified subgroup.10

These data-dropping algorithms replace a computationally intractable combinatorial search with an algorithm that costs only

O(Analysis+N log(αN) +NP 2 + P 3),

where Analysis represents the cost of fitting the initial Bradley–Terry model on the original arena to compute scores.
Data-dropping approximations make identifying candidate subsets of the arena that may induce top-k non-robustness very
fast because they eliminate the need to retrain the BT model repeatedly on every candidate subset. Once a candidate subset
is identified, however, our method always performs a refitting of the BT model with the identified subset removed to verify
whether the non-robustness is true. This final verification step ensures that our method does not return false positives.

10Our algorithm gives users the option to refit the BT model for all matchups, regardless of whether a predicted ranking change occurs.
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B. Player Involvement, Homogeneous Bars
Across all top-k robustness experiments, 100% of dropped matches involved either one or both of the models whose rankings
were flipped, with 100% belonging to one of these two cases within a given k (see Figure 3). There are no partial bars or
mixed compositions. Readers may ask: Why does this homogeneous pattern consistently appear? Could this be a property
of the arena data?

We investigate this by manually inspecting the dropped matchups returned by our robustness assessing algorithm for each
value of k. Specifically, in each case, we identified the dropped matchups and inspected which players appeared in these
matchups. We summarize the findings here:

• k = 1: 9 games were dropped to flip GPT-4-0125-preview (originally 1st) and GPT-4-1106-preview (2nd). All were
matches where GPT-4-0125-preview beat GPT-4-1106-preview.

• k = 3: 24 games were dropped to flip GPT-4-0314 (3rd) and Qwen1.5-72B-Chat (5th). All dropped matches featured
Qwen1.5-72B-Chat losing out to various other models.

• k = 5: 5 games were dropped to flip Qwen1.5-72B-Chat (5th) and Mistral-Medium (6th). All matches were between
Qwen1.5-72B-Chat and GPT-4-1106-preview (the 2nd place model), with Qwen1.5-72B-Chat winning.

• k = 10: 3 games were dropped to flip Yi-34B-Chat (10th) and Gemini-Pro (11th). All were matches where Yi-34B-Chat
beat Gemini-Pro.

• k = 20: 2 games were dropped to flip Nous-Hermes-2-Mixtral-8x7B-DPO (20th) and Vicuna-33B (21st). Both were
matches where Nous-Hermes-2 beat GPT-4-1106-preview (the 2nd place model).

The reason the involvement is always entirely either one or both affected players is because all of the dropped matchups
consist of games played between a central model and a specific competitor (or group of competitors) whose outcomes
all favor or disfavor the specific model. This structure then leads the dropped matchups to consist entirely of evaluations
that involved one or both ranking-flipped models. This finding reveals something interesting about the nature of the
non-robustness in our analysis: small, consistent sets of matchups are sufficient to push a model just above or below another
on the leaderboard.

C. Additional Supporting Figures
The figures in this section provide additional insights related to our analysis. Figure 4 shows the distribution of model
appearances in Chatbot Arena, respectively, revealing differences in evaluation density and coverage across platforms.
Figure 5 presents the BT scores of top-performing models on MT-Bench, highlighting the competitiveness of high-ranked
models. Figure 6 illustrates the relationship between the robustness of model rankings and the BT score gap between
adjacent models, confirming that small score differences tend to coincide with greater sensitivity to worst-case data-dropping.
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Figure 4. The number of times each model appears in a match in Chatbot Arena. The horizontal bar chart shows how frequently each
model appeared in any match, with GPT-4 and GPT-3.5 variants being the most represented.

13



Dropping Just a Handful of Preferences Can Change Top Large Language Model Rankings

Figure 5. The model rankings in MT-Bench.
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Figure 6. Robustness of results is correlated with the proximity of the BT scores. Each point represents a pair of models whose relative
rankings flipped after dropping a small fraction of matchups. In every case, the flip causes one model to enter the top-k rankings (for some
k ∈ {1, 3, 5, 10, 20}) while the other is demoted. These points are taken from both human and LLM-as-a-judge evaluation platforms.
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