Under review as a conference paper at ICLR 2025

EQUIVARIANT SCORE-BASED GENERATIVE MODELS
PROVABLY LEARN DISTRIBUTIONS WITH SYMMETRIES
EFFICIENTLY

Anonymous authors
Paper under double-blind review

ABSTRACT

Symmetry is ubiquitous in many real-world phenomena and tasks, such as physics,
images, and molecular simulations. Empirical studies have demonstrated that
incorporating symmetries into generative models can provide better generalization
and sampling efficiency when the underlying data distribution has group symmetry.
In this work, we provide the first theoretical analysis and guarantees of score-based
generative models (SGMs) for learning distributions that are invariant with respect
to some group symmetry and offer the first quantitative comparison between data
augmentation and adding equivariant inductive bias. First, building on recent
works on the Wasserstein-1 (d;) guarantees of SGMs and empirical estimations
of probability divergences under group symmetry, we provide an improved d;
generalization bound when the data distribution is group-invariant. Second, we
rigorously demonstrate that one can learn the score of a symmetrized distribution
using equivariant vector fields without data augmentations through the analysis of
the optimality and equivalence of score-matching objectives. This also provides
practical guidance that one does not have to augment the dataset as long as the
vector field or the neural network parametrization is equivariant. Then we quantify
the impact of not incorporating equivariant structure into the score parametrization,
by showing that non-equivariant vector fields can yield worse generalization bounds.
This can be viewed as a type of model-form error that describes the missing
structure of non-equivariant vector fields. Third, we describe the inductive bias of
equivariant SGMs using Hamilton-Jacobi-Bellman theory. Numerical simulations
corroborate our analysis and highlight that data augmentations cannot replace the
role of equivariant vector fields.

1 INTRODUCTION

Improving data efficiency and reducing computational costs are central concerns in generative
modeling. In the case when the target data distribution has intrinsic structure, such as group symmetry,
the task of distribution learning can be made more efficient and stable by leveraging the structure
of the data. Various empirical studies such as structure-preserving GANs (Birrell et al., [2022]),
equivariant normalizing flows (Kohler et al., 2020; (Garcia Satorras et al., 2021) and equivariant
and structure-preserving diffusion models (Hoogeboom et al., 2022} [Lu et al., 2024) have shown
that symmetry-respecting generative models can effectively learn a group-invariant distribution even
with limited data. However, theoretical understanding of these improvements is still limited. To our
knowledge, the only work that provides theoretical performance guarantees is Chen et al.| (2023c) for
group-invariant GANs. In this work, we present new rigorous analysis explaining why score-based
generative models (SGMs), or diffusion models (Song & Ermon, [2019; Ho et al.| [2020; |Song et al.|
2020bj Song et al.), can more efficiently learn group-invariant distributions by incorporating the
underlying symmetry into the score approximation, as empirically observed in|Lu et al.| (2024).

Our contributions. We provide the first rigorous error analysis for SGMs with symmetry as well
as the first quantitative comparison between data augmentations and incorporating inductive bias of
symmetries into generative models. First, by combining recent results relating to the robustness of
SGMs with respect to the Wasserstein-1 (d;) distance (Mimikos-Stamatopoulos et al.,[2024) and
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the sample complexity of empirical estimations of d; for distributions with group symmetry (Chen
et al.,|2023bj Tahmasebi & Jegelka, [2024), we derive a generalization bound for SGMs with group
symmetry to explain the sample efficiency gained when using the symmetry during training. (See
Theorem|[I]and Theorem [2)

Second, we show that performing standard score-matching, a crucial step in SGM, with respect to
any distribution by a G-equivariant vector field is equivalent to score-matching with respect to the
symmetrized distribution, and that the optimal vector field is exactly the score of the symmetrized
distribution (See Theorem [3| and Proposition [T)). This provides insights into how to avoid poten-
tially expensive data augmentation by embedding symmetries directly into the score approximation,
typically achieved through a G-equivariant neural network. Moreover, we compare the impact of
non-equivariant score matching via symmetrically augmented datasets with the use of equivariant
score matching via the non-augmented datasets using both theory and numerical simulations.

Moreover, we demonstrate the inductive bias of equivariant SGMs using Hamilton-Jacobi-Bellman
theory (see Theorem ).

We adopt a model-form uncertainty quantification (UQ) perspective, attributing errors in equivariant
SGMs to the following four sources: e; — Measurement of the non-equivariance of the learned score
function; ex — Score-matching error with symmetrized vector field; es — Sample complexity bound of
d; with group symmetry; ey — Error due to early stopping and time horizon.

We show that the generalization error as measured by the expected Wasserstein-1 distance between
the generated and target data distributions is bounded by a combination of these four errors above.
A particular novelty of our UQ analysis is the quantification of the model-form error e; of the
equivariant structure. This type of UQ perspective was introduced recently for SGMs without
structure (Mimikos-Stamatopoulos et al.| [2024). Detailed description and discussion of the derived
bounds are found in Theorem 2|and Eq. (18).

Related work. Various symmetry-preserving generative models have been proposed such as
structure-preserving GANs (Birrell et al., [2022), equivariant normalizing flows (Kohler et al.| |2020;
Garcia Satorras et al., 2021), equivariant flow matching (Klein et al., 2024), and equivariant diffusion
models for molecule generation (Hoogeboom et al., |2022). Theoretical analysis of performance
guarantees for such models, to our knowledge, has only been conducted for group-invariant GANs
(Chen et al.,|2023c). In the context of SGMs, the convergence and generalization of SGMs without
group symmetry have been well-studied. The quality of a generated distribution for approximating a
target distribution is typically measured by probability divergences and distances. For example, (Chen
et al.; Lee et al., 2022; |Chen et al., [2023a}; |Conforti et al.,|2023}; |Oko et al., 2023) prove generalization
bounds for TV, x4, and d; by bounding the KL divergence, which is a stronger divergence. Our
results, however, cannot be derived from bounding the KL divergence. The direct d; generalization
bounds have been derived in (De Bortoli, 2022} Mimikos-Stamatopoulos et al., 2024]), but (De Bortoli,
2022) relies on a particular discretization of SGMs. In (Chen et al.,|2023b), empirical estimates of the
d; distance on compact domains of R? are shown to obtain a faster convergence assuming the group
is finite. Subsequently, (Tahmasebi & Jegelkal, |2024) extended the d; bound to closed Riemannian
manifolds with infinite groups. Our generalization bound for SGM with symmetry is built on the d;
bounds and UQ perspective for SGMs without structure (Mimikos-Stamatopoulos et al.,2024) and
the convergence of the empirical estimations of d; distance with group symmetry (Chen et al., | 2023b;
Tahmaseb: & Jegelkal |2024). Recent work (Lu et al., 2024) empirically studies diffusion models with
equivariance and proposes various implementations. However, it only provides some guarantees to
ensure the generated distribution is G-invariant, but no further theory is shown beyond numerical
experiments to demonstrate the data efficiency.

The rest of the paper is organized as follows. In Section[2] we review score-based generative models,
score-matching objectives, and the notion of group symmetry. We present our theoretical results
of generalization bounds in Section [3] Properties of score-matching with equivariant vector fields
are presented in Sectiond} In Section |5} we discuss the importance of equivariant parametrizations
for obtaining a better generalization bound and related insights for practical implementations. We
study the inductive bias of equivariant SGMs from the mean-field game perspective in Section[6] In
Section[/} we provide numerical experiments that corroborate our theory and insights. We conclude
our paper with a discussion in Section |8 All the proofs can be found in the Appendix.
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2 BACKGROUND

In this section, we introduce group actions and symmetrization operators, and review the score-
matching objectives for score-based generative modeling.

2.1 GROUP ACTIONS AND SYMMETRIZATION OPERATORS

Let €2 be the domain, P(£2) the space of probability measures on 2, and M, (€2) be the space of
bounded measurable functions on 2. A group is a set GG equipped with a group product satisfying the
axioms of associativity, identity, and invertibility. Given a group G and aset 2, amap 6 : G x Q — Q)
is called a group action on Qif 6, == 6(g,-) : @ — Q is an automorphism on 2 for all g € G, and
g, ©0g, = 84,.9,, V91,92 € G. By convention, we will abbreviate 6(g, x) as gz throughout the

paper.

A function v :  — R is called G-invariant if v o 8, = v,¥g € G. On the other hand, a probability
measure P € P(Q) is called G-invariant if P = (0,),.P,Vg € G, where (0,).P == Po ()" is
the push-forward measure of P under 6,. We denote the set of all G-invariant distributions on 2 as
Pa() = {P € P(Q) : P is G-invariant}.

In this paper, the domain {2 is bounded; in particular, we focus on the torus {2 = RT? with radius
R, which is equivalent to a bounded domain with periodic boundary conditions, as considered in
(Mimikos-Stamatopoulos et al., 2024). We make the following assumption on G .

Assumption 1. G is a group such that the mapping g : Q@ — $Q can be written as g(x) — Agx for
some unitary matrix A, € R™4 forany g € G,z € . That is, any g € G is a linear isometry.

Next, we introduce two symmetrization operators from (Birrell et al.,[2022), that are useful for our
theoretical analysis.

Symmetrization of functions: S : M (Q) — M, (),

Sallle) = [ slanc(ds) = Byolyoglo)], 1)
where v € M,,(Q2) and p¢ is the unique Haar probability measure of G.

Symmetrization of probability measures (dual operator): S¢ : P(Q) — P(2), defined for
v € My(£2) by

Beirr = | SahldP(@) = EnSabl @

It is shown in (Birrell et al., 2022) that both S and .S G define projections. We also abuse the notation
that if P evolves with time, then S[P] means the symmetrization of P at each time.

We say a vector field s : Q x [0, 7] — R? is G-equivariant if

S(gﬂ?, t) = Ag : S(ﬂ?, t) 3)
forany z € Q, g € G. It can be easily verified that if p € Pg (), then its score Vlog p is
G-equivariant. In addition to S and S, we propose

Symmetrization of vector fields: SE : (Q x [0,7] — R?) — (Q x [0,T] — R?),

SE[s)(x, 1) = /G AT -s(gz, tuc(dg) 4

for any vector field s, which is an extension of formula (12) in (Lu et al.| 2024) for finite groups. It can
be shown that S£[s] is G-equivariant for any vector field s. The proof can be found in Appendix
By the definition of equivariance, we immediately have S5[s] = s if s is G-equivariant.

The operators S, S¢, and SE are special types of the Reynolds operator (Rotal [1964).

2.2 SCORE-BASED GENERATIVE MODELING

Given a drift term or a vector field f(z, t), we consider the following forward and backward diffusion
processes

des = —f(xs, T — s)ds+ o(T — s)dW,, x¢ ~m; 5)



Under review as a conference paper at ICLR 2025

dy = (£ 1) + 0 (02 log ™ (3, T = )) dt + o) AW, o ~ o, ©)

where x5 ~ 1™ (-, s). Here, V1ogn™(z, 1) is called the score function. It is known from (Anderson,
1982) that if mg = 5™ (-, T), then y; ~ 1™ (-, T — t). In this work, we consider f = 0 and o'(t) = /2,
and the target distribution 7 € Pg(Q).

Score functions are typically approximated by optimizing parametrized vector fields with respect to
the discretization of one of several score-matching objective functions. The denoising score matching
(DSM) (Vincent, 2011)) objective is defined as:

T /12 7
JIp(n™,0) :/ / / ‘se —Vliogn® | dn® (s)dn(z")ds, @)
o JalJa

where 7*'(s) denotes the conditional probability from ' at time 0 to z of Eq. at time s. In
addition, we also introduce two other types of score-matching objectives.

The explicit score matching (ESM) objective (Song et al., 2020b), is defined as:

T
Te(p.0) = [ [ Is0— Viogpl* dp(s) ds. ®)
0 Q

and it is obvious that Jg(p,0) = Jp(p,0).
The implicit score matching (ISM) objective (Song et al.,|2020a), is defined as:

T
Ji(p,0) = / / (|s(;|2 +2V- se) dp(s)ds, 9
o Jo

which is more practical for score-matching. By an expansion of the square of the norm, it is easy to

verify that 7p(p,0) = Te(p,0) = Ji(p,0) + 4||V\/ﬁH§ for any p € P(Q). This suggests that the
optimal solutions to the DSM, ESM and ISM coincide for the same p. We also abuse the notation
using J (p, s) for a generic vector field s with an additional subscript on J when referring to a
specific score-matching objective.

3 EQUIVARIANT SGMS HAVE IMPROVED d; GENERALIZATION BOUNDS

The probability distance we use to measure the generalization error is the Wasserstein-1 distance
(dy), defined as:

dy(my,m2) = sup {Ex, [7] — Ex, [7]} (10)
yel

for any 71, 2 € P(Q2), where I' = Lip, (2) is the set of 1-Lipschitz function on €.

In this section, we derive a generalization bound with improved sample complexity in d; for learning
a G-invariant target distribution.

Let 7 be the target data distribution that is G-invariant. In SGMs, the generated distribution is m/(7T),
where m(t) follows the denoising diffusion process Eq. @ with V log p replaced by sy through
score-matching. That is,

1

8tm = Am + 2dlv(mb9) in Q X (O,T], m(O) = W in Q, (11)

where by (z,t) = sg(x, T — t).

In practice, we only have access to finite samples drawn from 7, denoted by {z; })¥,. Thus, the score-
matching or the DSM objective Eq. (7)) is often approximated when 1™ (t) is replaced by its kernel

density estimate 7™ (t), where ™ (0) = 7 := L 5™V 5. Since the kernel estimate does not have

a well-defined score at s = 0, the DSM objective is often integrated only for s € [¢, T'], an example
of early-stopping in SGM (Song et al., 2020b)). More specifically, this is equivalent to score-matching
for the mollified distribution 77:¢ = 7 % I'., where I, is the heat kernel with time ¢ and the
symbol x denotes the convolution. In the symmetry-preserving SGM, we consider the symmetrized

N,e
measure Wg ¢, defined as (Tahmasebi & Jegelka, [2024): dzg = > 120 exp(—e\) ¢, where dz
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indicates the uniform measure of €2, and (\;, ¢;) is the pair of the eigenvalues and eigenfunctions of
the Laplace-Beltrami operator of €2, 1 = + Zf;l 1¢(1)¢i(X;), and 15 (1) = 1 if and only if ¢; is
G-invariant. In particular, we have 7 == 70 = SG[xN]. It is evident that 7y = SE[xN] % T.

In summary, in the context of SGMs, 7€ = 7V x T, corresponds to early stopping; 75 = S [7]
refers to data augmentations; wg = SC[rN]«T is the early stopping version of the data-augmented
empirical distribution.

Here, we extend the d; generalization bound as presented in (Mimikos-Stamatopoulos et al., 2024)
to the case when the target distribution is G-invariant.

Let ey : Q x [0,T] — [0, 00) be the solution to

p(0) = 75 in Q,

We first prove the finite-sample generalization bound for dy (7, m(T)).

Theorem 1. Assume Jp (ng “.80) < enn. Then for € < 1 and up to a dimensional constant
C=C(d) >0,

/A — wT 1
) < R3/2 v Re™ RrZ /
dl(ﬂ-7 L( )) ~ \/g (1 || S9||oo) ( € R dl(ﬂ-’ VOI(R’]Td)) enn) I’

where

log(e) 1 2 N
P Senn+ [ 1— + —+1 ; di(mq,m
Enn ~ € ( Ve VT ”SQHCZ(QX[OJ]) 1(mg,m),

and Tl'g is the symmetrization of non-symmetric empirical distribution ™| i.e., Wg = SC[rN].

Remark 1. The assumption that Jp (ng " 89) < enn implies that the score approximation is trained
via DSM with augmented samples. This suggests that equivariant SGMs can be implemented through
data augmentations. As we shall see in Sections [ and[7] a better implementation of equivariant
SGMs should rely on equivariant parametrizations of the score function.

Similar to (Mimikos-Stamatopoulos et al.,[2024), we derive the following averaged generalization
bound by taking the expectation with respect to the empirical distributions and subsequently applying
Jensen’s inequality. However, the G-invariance of the target distribution 7 provides a significant
improvement in the data efficiency in the bounds.

Theorem 2 (Average bound). Let ey, A > 0 and assume that for each empirical measure N

consisting of N samples from T there exists sg such that

JD(ng)E7SG) < énn,
with
Isollc2(xo,m) < A-

Let m(T) be the generated distribution. Then for sufficiently large T, up to a dimensional constant
C that only depends on R and d and is independent of random samples or N, we have

E [di(m,m(T))] < Ve+ R¥?(1+VA) <Re—?§dl(ﬁ, W) + \/Z) ,

where

log(e) 1
L <enmt [1— +—=+TA*|E |di(&,7)|.
€nn ~ € < \ﬁ ﬁ ) [ 1(7TG ) 77):|

On the importance of d;. The use of d; distance on both sides of our generalization bounds has
two key implications:
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(1) We can take advantage of the G-invariance of 7 and improve data efficiency since d; allows gains
on E[d; (7 &, 7)]. First, it is shown in (Chen et al., 2023b) that on bounded domains of R¢, we have

1/d
(‘Gﬁ) ifd> 3,
N 1/2
]E[dl(WG )] S ﬁ log N ifd=2, (13)
gD S ifd =1,

if G is finite. Later, (Tahmasebi & Jegelkal [2024) extend it to closed Riemannian manifolds with

1/d*
possibly infinite G such that E[d; (75, 7)] < (&ﬁ) , where vol(£2/G) is the volume of the

~

quotient space 2/G and d* = dim(2/G) > 3. This sample complexity gain cannot be derived for
the KL or other f-divergences without additional regularization.

(2) The d; bounds in Theorem and Theoremremain well-defined and meaningful even when the
target probability distribution does not have a density. In particular, Theorem [2 has the following
corollary when the target distribution is supported on a smooth submanifold M C Q.

Corollary 1. Follow the same assumption and quantities as in Theorem 2] and assume that 7 is
supported on a closed submanifold M C ), and G admits a unitary representation in ) as in
Assumption[I} Then up to a dimensional constant C > 0 that also depends on M, such that

1

E [d(r (D)) $ Vet B4 VA) (ReHd(r, ) + Vet ).

where

log(e) 1 5\ [vol(M/G) 1
< _ = MasdSASY Rl
€mN6nn+(1 Ve —&-\/»—i—TA ,

where vol(M /G) is the volume of the quotient space M /G and d* = dim(M/G) > 3, and d; here

denotes the Wasserstein-1 distance on ).

Corollary [T]illustrates that the convergence rate in terms of the number of samples N in the general-
ization bound can be improved from d~! to d*~! in the exponent, which depends on the dimension
of the quotient space M /G.

4 EQUIVARIANT PARAMETRIZATIONS RESTORE INTRINSIC EQUIVARIANCE OF
SGMs

Theorem 1| and Theorem [2|do not explicitly convey the significance of equivariant vector fields in
score matching. First, we illustrate the importance of equivariance from a Hamilton-Jacobi-Bellman
(HJB) perspective in Section [6] by showing that SGMs are intrinsically equivariant. Second, we
highlight the role of G-equivariant vector fields (typically parameterized by neural networks) in score
matching, an aspect that has only been addressed experimentally in previous studies. Our rigorous
results indicate that it is sufficient to perform score matching with G-equivariant vector fields in
relation to an unsymmetrized distribution. This approach will be particularly beneficial when we only
have a finite set of unaugmented samples (i.e., a non-symmetric empirical distribution drawn from
an invariant distribution). This latter aspect will be discussed in detail in Section[4.T] Section [5and
tested in Section 7]

4.1 PROPERTIES OF SCORE-MATCHING WITH EQUIVARIANT VECTOR FIELDS

First, we show that for any distribution p, the ISM objective when restricted to G-equivariant vector
fields, is equivalent to the ISM objective with respect to its symmetrized counterpart. Second, we
prove that using equivariant vector fields can reduce the DSM error for G-invariant distributions.

Theorem 3. Consider the ISM problem in Eq. ), in which p is not necessarily G-invariant. Then
for any G-equivariant vector field s, we have

Ji(p,s) = T1(5%(p). s).
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Remark 2. Theorem|3|is important for practical implementations, in the sense that the optimal
equivariant vector field can be obtained by score-matching for raw data without data augmentation.
We will demonstrate this point in our numerical simulations in Section[7}

Moreover, for the ESM (or equivalently, the DSM) problem of a generic probability measure, the
G-equivariant minimizer is exactly the score of the symmetrized probability measure, namely:

Proposition 1. Consider the ESM problem in Eq. (8), in which p is not necessarily G-invariant.
Denote by Vg C Q x [0, T] — RY, the subspace of G-equivariant vector fields. Then we have

argmin Jg(p,s) = V, [log (SG[,O])] .

seVg

We propose the following definition as an error quantification for the non-equivariance of a vector
field with respect to a G-invariant measure p € Pg(€2) x [0, 7).

Definition 1 (Deviation from equivariance). The deviation from equivariance (DFE) of a vector field
s with respect to p € P () x [0,T) is defined as

T
DFE(p,s) = /0 /Q’s - SE [s]’2 dp(s) ds. (14)

It is evident that DF E(p,s) = 0 if s is G-equivariant. Given this definition, we obtain the following
decomposition of the ESM and DSM objectives.

Theorem 4. For any p € P (2) x [0, T] and any vector field s, we have

Je(p,s) = DFE(p,s) + T (p, SG[s))- (15)
As DSM and ESM are equivalent objectives, we readily have
jD(P, S) = DFE(p, S) + jD(P, Sg[SD , forany p € PG(Q) 2 [OvT] : (16)

Finally, the following proposition indicates that for any learned distribution 7, its symmetrized
counterpart S%[n] is always closer to the G-invariant target distribution 7 in the d; sense. The
G-invariance of the generated distribution is guaranteed by the G-equivariant vector field sy (see
Corollary [2).

Proposition 2. For any n, 7 € P(R2), and 7 is G-invariant, we have

di(n,m) = di(S°[n], 7).

5 THE SIGNIFICANCE OF EQUIVARIANT VECTOR FIELDS IN SGMS

With the theoretical results established in Section [3]and Section[d] we can now focus on providing
quantitative comparisons between equivariant vector fields and data augmentations. Our strategy
relies on making the generalization bound in Theorem [2|as small as possible. In particular, we take a
closer look at the terms e,,, and E[d; (7, )], which can be improved by selecting an appropriate
structure for the vector field or by implementing data augmentations.

The assumption 7, D(ng “ 89) < enn in Theorem 2| refers to the error of DSM with augmented
data. Technically, this assumption ensures the same generalization bounds derived in Theorem [I]and
Theorem [2] regardless of whether the vector field sy is G-equivariant or not. Note also that the gain

in E[d; (75, )] (see the paragraph after Theorem [2|for the sample complexity gain) is not affected

no matter whether we use equivariant vector fields. However, Jp (ng "“,8g) OF €y, does depend on
the structure of vector fields and can be improved accordingly as we see next.

* Data augmentation without equivariant structure: If we perform data augmentations without
using equivariant vector fields, then we have to pay the cost of data augmentations. Moreover, by
Theorem [}

ean = Jp (11", 0) = DFE(ng“,80) + T (05, SEls0]) (17

therefore e,,,, has a lower bound of DFE(ng " sg) that measures the distortion of vector fields
from equivariance, which can be large if the vector fields are highly “non-equivariant”.
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* Equivariant structure without data augmentation: On the contrary, if we simply use equivariant
vector fields without data augmentations, by Theorem 3] we can automatically obtain the score

approximations of ng *“ by simply solving the ISM objective of unaugmented samples n™N>¢. Thus,

the assumption Jp (ng “,0) < eny, is valid in practice. The main difference with the simple data
augmentation case discussed above is that here, due to restricting the SGM on equivariant vector
fields, we have DFE(ng € sg) = 0. Therefore, the term e,,,, in the generalization bounds can be
made as small as possible, assuming the equivariant NN can be parametrized efficiently and has
sufficient expressive power, which has been verified empirically in, e.g.,|Cohen & Welling| (2016);
Lu et al.|(2024).

To summarize, the generalization bound in Theorem [2]can be re-written as
E [di(m,m(T))] S DFE(1g,80) + Tp(ng;"", SEse]) + Eldi (n . m)] + C(e, ), (18)

where C'(e,T") accounts for the error from early stopping and time horizon, and is independent of
the equivariance structure or data augmentations we are studying. This suggests that while data
augmentations can provide gains in E[d; (5, )], in order to further minimize the generalization

error, one should make DFE(ng ¢ sg) = 0; that is, applying G-equivariant vector fields.

To be more specific, when the group is finite, we can always augment the data, and we can also design
equivariant NN, at least using the symmetrization operator S&. Based on our theory, equivariant
models produce smaller generalization errors as they have precisely zero DFE. For infinite groups, we
can not perform a complete and exact data augmentation. However, it is possible to design equivariant
NNs for continuous groups, though the problem is still open to our knowledge. Moreover, once we
have such architectures, we can obtain data augmentation for free by Theorem

6 HJB DESCRIBES THE INDUCTIVE BIAS OF EQUIVARIANT SGMS

We use the connections between SGMs and PDE theory to provably show that score-based generative
models are intrinsically equivariant under relatively mild assumptions. Score-based generative models
have been shown to be well-posed through their connections with stochastic optimal control and
mean-field games (MFGs) (Berner et al., 2022; Zhang & Katsoulakis, [2023; [Zhang et al., 2024). In
Zhang & Katsoulakis|(2023)); Zhang et al.|(2024)), it was shown that score-based generative models
are solutions of a mean-field game, more specifically, one that corresponds with the Wasserstein
proximal of the cross-entropy. The peculiar structure of cross-entropy is why SGMs can be trained
by score-matching alone. The MFG is an infinite-dimensional optimization problem

T
min < — 1 .
v.p { /S2 logw(a:)P(x,T)dx+/o /Q {2|v|| v f] p(a:,t)da:dt} (19)

2
st.Oyp+ V- ((f +ov)p) = %Ap, p(z,0) = n(z,T).

The density of particles evolve according to the controlled Fokker-Planck equation. The terminal cost
is equivalent to the cross entropy of 7 with respect to the terminal density p(z, T'). The running cost
is, via the Benamou-Brenier formulation of optimal transport, the Wasserstein-2 distance with a state
cost —V - f.

The solution of the MFG optimization problem is characterized by its optimality conditions, which
are a pair of nonlinear partial differential equations.

0.2

1
—0,U — fTVU + 5|aVU\2 +V-f =AU

2
Oup+V - (plf — *VU) = T-Ap (20)

Uz, T) = —logn(z), p(z,0) = e~ V@0,

This first equation is a Hamilton-Jacobi-Bellman equation, which determines the optimal velocity
field v*(x,t) = —o VU for the second equation, a controlled Fokker-Planck. By a Hopf-Cole
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(logarithmic) transformation, this pair of PDEs is equivalent to the noising-denoising SDE system.
Let U(x,t) = —logn(x, T —t), then for s = T — ¢, we have

on o?

9s = Vo (fn)+ A

o 2
o0 ==V (p(f + 0*VIogn(a, T~ 1)) + T-Ap

77(%0) = W(I), p(:L’,O) = n(x’T)'

We can then see that the optimal velocity field has the form v*(z,t) = —o(t)VU(z,t) = o(T —
t)Vlogn(x, T — t), which is precisely related linearly with respect to the score function of the
forward noising process.

Theorem 5. Consider the score-based generative model given by the equivalent MFG Eq. (19)
and let U be the solution to the HIB equation in Eq. 20). Assume the target data distribution ™
is G-invariant and that the drift in the noising dynamics is G-equivariant. Then we have that the
corresponding score function is G-equivariant, namely

s*(x,t) = =VU(z,t) = argmin Jg(p,s) € Vo, (21
seQx[0,T]—R4

where we denote by Vg C Q0 x [0, T] — R, the subspace of G-equivariant vector fields.

The MFG perspective is useful as the proof for this theorem immediately follows from basic unique-
ness results from PDE theory. This theorem states that, mathematically, SGMs are symmetry-
preserving for invariant target measures when the drift function also preserves the same symmetry.
This result holds for any group GG. The most trivial case is when f = 0.

Remark 3 (Equivariant inductive bias). In the SGM algorithm the optimal vector field s*(z,t) is the
score and is learned as part of the algorithm. Therefore, this theorem shows that the corresponding
neural network for the approximation of s*(x,t) should be parameterized in a way that is also
G-equivariant, thus incorporating in the algorithm the inherent equivariant (structural) inductive
bias of Theorem

7 NUMERICAL EXAMPLE

We provide a simple numerical experiment to validate the basic results of our theory. The primary
purpose is to emphasize minimizing the score-matching objective with respect to a non-symmetric
sample of G-invariant distribution 7= within a class of GG-equivariant vector fields is better than
just augmenting the data through group actions, as is indicated by our analysis encapsulated in the
generalization bound Eq. (T8).

We consider a mixture of 4 Gaussians centered at [+£5, 5] in R2. The group is generated by the action
of moving from one center to the next. We report the d; distance between the generated distribution
and the target distribution. We consider four experimental setups: the first case (Equivariant, not
augmented) is where the score network is parametrized to be G-equivariant by parametrizing it as

Z Also(Ag,t), (22)

geqG

1

s§(x,t) = —

6 ( ) ) | G|
where |G| = 4 is the order of the group. The score is trained on /V; samples that are not augmented.
The second case (Equivariant, augmented) is where the score network is parametrized as in Eq. ,
and is trained on data that is augmented by applying each group action on each training sample
(hence effectively 4 x N; samples). The third case (Non-equivariant, augmented) is where the
network sy is trained directly but on augmented training data. The fourth case (Non-equivariant, not
augmented) is where the network sy is trained directly and the training data is not augmented. For
each case, the function sy is parametrized via a fully-connected neural network with 3 hidden layers
and 32 nodes per layer. It is trained over 10000 iterations via stochastic gradient descent, where the
batch size is Npgtcn = 32. For N = 10, we sample with replacement in the SGD. We compute the
Wasserstein-1 distance using its dual form d; (n,7) = sup {E,[/] — Ex[¢] : ) € Lip,()}. The
function 1) is parametrized by a fully-connected neural network with two hidden layers with 64 nodes
per layer. Spectral normalization (Miyato et al.,[2018)) is applied to enforce the Lipschitzness of .

9



Under review as a conference paper at ICLR 2025

Wasserstein Distance vs. Sample Size For each value of N; we perform 25 runs of

L eIN e rence each method. The mean and standard deviation

g 3.0 T3 Eoutviriont thlth sugmenaHom of the 25 runs are reported in Table [I] and in

£825 Equivariant (no augmentation) Figure[I] Notice that the equivariant case consis-
n —+#— Non-equivariant (with augmentation)

B850 I Non-equivariant (no augmentation) tently performs better than the data-augmented

.% case, which corroborates our theoretical analysis.

w 15 Moreover, the results suggest that training a non-

§ 1.0 equivariant score network on augmented data

Sos may not necessarily produce a superior model

i to the case when the data is not augmented.
R 102 10° 10°  In Figure[2} we show the generated samples of

Training Sample Size N each case when N; = 40. Observe that the only

way to consistently produce an invariant gener-
ated distribution is to have use an equivariant
score approximation. Moreover, note that the
reduction of d; becomes marginal for large /Vy
as other errors in the Theorem [2]are independent

Figure 1: Wasserstein distance as a function of
training sample size.

of the number of training samples.

(a) Truth (b) Eq + Aug (c) Eq only (d) Aug only (e) Standard SGM

Figure 2: Score-based generative modeling for a simple 2D mixture of Gaussians. Training dataset is
of size N; = 40.

Table 1: d; value for a 2d Gaussian mixture

Equivariant, = Equivariant, = Non-equivariant, Non-equivariant,

N augmented not augmented augmented not augmented
10 1.36 £0.06 1.82£0.08 1.93 £0.49 2.64 + 0.65
100 0.70 £ 0.09 0.88 £0.10 1.26 £ 0.45 1.43 £0.35
1000 0.51 +0.12 0.70 £0.11 1.14 £0.32 1.04 +£0.33
10000  0.52+£0.10 0.57+0.12 1.02£0.20 1.02£0.23

8 CONCLUSION AND FUTURE WORK

We rigorously show that SGMs can learn distributions with symmetries efficiently with equivariant
score approximations. Compared to data augmentations, using equivariant vector fields for score-
matching has the additional gain of reducing the score approximation error without the need to
augment the dataset. Numerical experiments further verify this theoretical result. Certain directions
are still unexplored in the present work. For instance, it would be valuable to explore the architecture
of equivariant neural networks to ensure they possess sufficient expressive power while maintaining a
manageable number of parameters with reduced training cost, as in the group equivariant convolutional
neural networks proposed in (Cohen & Welling, |2016)) for discrete groups or even continuous groups,
which remains an open problem. Furthermore, our analysis does not account for the time discretization
of SGMs, and it could be interesting to incorporate this aspect or explore symmetry-preserving
numerical integrators within the theoretical framework. Another extension of our work would be to
consider the domain as R, with the forward process being, for instance, an Ornstein—Uhlenbeck
process or other nonlinear processes (Birrell et al., [2024; [Singhal et al., 2024)).

10
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A PROOF OF THEOREMI]

We also define the G-regularized Wasserstein-1 distance (d{) as:

d?(ﬂlﬂm) = sup {]Eﬂ'1 [’7] - ]Eﬂ'z [’Y]} ’ (23)

yerg”

where ['2"* is the subset of I that consists of all G-invariant 1-Lipschitz functions.
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The following theorem is adapted from Theorem 3.1 in (Mimikos-Stamatopoulos et al.,|2024). Here
we prove a version with group symmetry. The main difference is that the test function is now restricted
to the class of G-invariant 1-Lipschitz functions, which is guaranteed by the equivariance of b*.

Theorem 6 (Wasserstein Uncertainty Propagation). Let Q = RT?. Let G-equivariant vector fields
bhb% 1 Q x [0,T] — R? be given withHVblHoo < 0o and my, ma € Pg(Q). If m® fori = 1,2 are
given by _ _ o _

om’ — Am' — div(m'd’) =0, m*(0) = m;. (24)

Then up to a universal constant C' > 0, we have

df (m*(T),m" (1)) = di(m*(T),m"(T)) < CR3 (14 /| Vb! | )(df (maz, m1) + 1),

L2 ,mz) (/ /‘ ’Zmz(t,x) da:dt) < €.

Proof. The measure A\ = m' — m? satisfies the PDE
O\ — AN — div(A\b' +m2(b" — b)) =01in Q x (0,T), A(0) = my —my in Q. (25)

N

v

Let ¢ : Q x [0, T] — R be a test function in space and time. We integrate in space and time against
the PDE Eq. and apply integration by parts to obtain

T
/ Mz, T)o(z,T) — A(z,0)¢(x,0)dz + / / M=0ip — Ap + b -Ve)dzdt  (26)
Q

/ /m2V¢ b?)dxdt =0

Notice that if we choose the test function ¢ to satisfy the Kolmogorov backward equation (KBE)
—Op— AP+ b -Vop=0in Qx[0,T), ¢(x,T)=1(zx)in Q (27)
with terminal condition ¢ € F, then from Eq. @, we have

T
= X T X m2 X . 2* 1 X .
[ 2w 10 s = [ 2@ 0ot 0+ [ [ mieToe.n ¢ - dedr. @8)

Let F be the set of G-invariant 1-Lipschitz functions on (2. Taking the supremum over F we have

af (m*(T),m"(T)) < sup
PYeF

Mz, 0)¢(x,0)dz| + sup

YeF

/ m?Ve - (b —bY)dxdt|. (29)
Q

Also recall that ¢ is related to v via the KBE Eq. . We first show that ¢(z,t) is always G-
invariant for any ¢ € [0,T) as long as ¢ is G-invariant. Indeed, if we perform a Hopf-Cole transform
u = —2log ¢, then Eq. is equivalent to the Hamilton-Jacobi-Bellman (HJB) equation for u

—du — Au + 1|vu\2 +V -V =0, u(z,T) = —2log(s(z)). (30)

On the other hand, it can easily be verified that h(z,t) = u(gz,t) also satisfies Eq. (30) for any
g € G since A, is unitary and b! is G-equivariant. The existence and uniqueness of the solution
to Eq. (30) (Evans 2022)) guarantees that h(x,t) = wu(z,t) is G-invariant for any ¢ € [0, T) and
therefore we have ¢(z,t) = ¢(gz,t) forany g € G and ¢ € [0,T). The rest of the proof, i.c., the
gradient estimate of ¢ is exactly the same as that of Theorem 3.1 in (Mimikos-Stamatopoulos et al)
2024) since any 1 € F is 1-Lipschitz. O

Corollary 2. Suppose a probability measure m(x,t) evolves according to the KBE Eq. . That is,
—Om—Am+V -Vm=0in Qx[0,T), m(z,T)=mginQ 31
where the vector field V is G-equivariant and the terminal measure myq is G-invariant. Then m(z,t)

is G-invariant for all t € [0,T).
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Proof. By a change of variable ¢ — —t in the KBE Eq. (27), the statement follows the proof after

Eq. (30). O

The following proposition shows that for empirical measures, the action of diffusion and symmetriza-
tion are commutable.

Proposition 3. SY[rV:¢] = S [7N] x T..

Proof. For any v € M,(2), we have
ESG[T{.N,e]’y = Eﬂ.N,eSG [’}/]

:/WN*FeSg['y]dx

Q

= / / / N (y)Te(z — y) dyy(g92) e (dg) de
alaJa

:///WN(y)l"e(g_lm—y)dy’y(x)/ig(dg)dx (since the Jacobian of g is unitary)
alalta

=///WN(g‘ly)Fe(g‘lw—g‘ly)dyv(x)uc(dg)dx
alaJa

:///ﬂN(g_ly)Fe(x—y)dyv(x)ug(dg)da: (due to the property of the heat kernel)
oJa o

:LA/(;WN(Q‘ly)MG(d9>Fe(x—y)d?ﬂ(f@)dx

= Esc[xnur.7-

We decompose d; (7, m(T")) as follows
dy(m,m(T)) < dy(m,n) +dy(7¢,m(T)). (32)

For the early stopping error, by the proof of Theorem 3.3 in (Mimikos-Stamatopoulos et al., [2024)),
we have d; (7, 7€) < C'v/¢, where C only depends on the dimension d. To bound the second term in
Eq. , we define n™¢ : [0, T] x RT? — R given by

By™¢ — Ap™€ = 0 in RT? x (0,T), 33
n™<(0) = ¢ in RT%.
Moreover, we define the drift
b™¢(z,t) = Vlog(n™)(z,T — t)
and let m¢(xz,t) = n™(x, T — t) which satisfies
atzn = ATS + 2div(mcb™*), (34)
me(0) = 7 (T).

Then by applying Theorem [f] we have
dy (7%, m(T)) = dy (m*(T), m(T))

3 € 1 €
S R+ yIonll0) (0 0) o) 167 = bl )

where we use the symbol "<’ to absorb the universal universal constant C' defined in Theorem@
By proposition A.3 in (Mimikos-Stamatopoulos et al., 2024), we have
1

1 wT
€ )= TET), — ) < — 2 €
dl (m (0)7 VOl(RTd)) dl (n ( )7 VOI(R’]Td)) — CRe dl(ﬂ- ?

1

vol(RT¢9) )
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It remains to show the following bound

€ 2 T.€ 10g€ 1 2
™ = g2 ey = T (1™, 0) < €nn = Ennt+C (1 e + T + Tllsellc2oxo,17) ‘(i;s(jgvﬁ)-

In the rest part of this section, we prove Eq. (35). The proof is based on the structure of Section 8 in
(Mimikos-Stamatopoulos et al.} 2024).

We denote by p™° : Q x [0,T] — [0, c0) the solution to

{atpmo —Ap™e =0in Q x (0,77, (36)

P (0) = mg in Q.

Lemma 1 (Proposition 8.1 in (Mimikos-Stamatopoulos et al.,[2024))). Let mq be a probability density
in €, such that mglog(mg) € L1(Q) and p : Q x [0, T] — R be given by Eq. . Then we have

4Vl = [ mologtme) = (1) og(p()) d

Lemma 2 (Proposition 8.2 in (Mimikos-Stamatopoulos et al., 2024)). Let 7 (i = 1,2) denote
two probability measures in ) such that||7* log(*)||, < 0o and p* the corresponding solutions to
Eq. (36). Then there exists a dimensional constant C' > 0 such that

916%.0) = 16", 0)] < OT smp. a0 (0.7 O)soesaniomy < CTa 7)ol En iy
€10,

Lemma 3 (Lemma 8.3 in (Mimikos-Stamatopoulos et al., 2024)). Let 7¢ = 7 x ', and Fg € be as
in Theoremwith € < 1. There exists a dimensional constant C' = C(d) > 0 such that

dl(ﬂ'g’g, 7€) < dl(ﬂg, ), 37)
N,e € dl(’era 7T)
|r& == SO (38)
and
d dy (7Y
‘ 7€ log(n€) — 7y log(my™) ) <C <1 ~3 log(e)) m:ﬁs’ﬂ) (39)

y€

Moreover, let ng’e and n° be solutions to Eq. with initial conditions wg and 7€ respectively.
Then for large enough T that depends on R and the dimension d but is independent of random
samples or N, we have

/Q log(n (1)) (T) — log(s™(T))n™(T) da: < de1<w,w£ ). (40)

Proof. Inequalities — follow directly from the proof of Lemma 8.3 in (Mimikos+
Stamatopoulos et al., 2024). For the bound in Eq. @0), by the convexity of the function
f(x) = zlog x, we have

/log(ng’e(T))ng‘(T) — (1) log(n™*(T)) dz < / (1 + log(ng’g(T))) d(ng(T) = n™(T))

<[+ rogmy | |l =@ -

From the proof of Lemma 8.3 in (Mimikos-Stamatopoulos et al.,[2024), we have

€ T, € O € € C
@) =] < iy m) < diwd ),

where C' > 0 is a dimensional constant. It remains to bound Hl + 1og(17g’€(T)) H . Indeed, by

the property of the heat kernel on RT?, n™:¢(t) <qp 1+ (¢ + T)~%2, and it is lower bounded
by n™V¢(t) 2ar (e + T)~%2. By Proposition [3, we have inf,cqn™¢(z,t) < ng’e(:v,t) <
sup,cq n™¢(z,t) for any t. This finishes the proof. O
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Proof of Eq. (33). Note that Jp(n™¢,0) = Jr(n™*,0) + 4HV./7)“»5||; We have

2
Ip (™, 0) = Tp(ny <, 0) + 4 (Hv\/nw”; Hv o ) + (Jf(n’“ie) - Jf(ng’ie)) )
2

By assumption we have jD(ng’e7 0) < enn. By Lemmalﬂ, we have

2
vVl - o y/ug

= /Q 7 log(n) — m*“ log(my) da + /Q WV (T) log(n“(T)) — 0™ (T) log (™ (T')) da.

From Eq. (39) in Lemma[3] we can bound the first integral; while the second integral can be bound
by Eq. (#0). Combining with Lemma[2] we finish the proof. O

Proof of Corollary[l] Note that M is compact and can be covered by finitely many charts, where the
map in each chart is Lipschitz (though with possibly different Lipschitz constant within each chart),
so M has a Riemannian metric that is equivalent to the Euclidean metric in the ambient space. Hence
we can apply the result in (Tahmasebi & Jegelka, 2024) to E[d; (7, 7)]. O

B PROOF THAT SCORE-BASED GENERATIVE MODELS ARE INTRINSICALLY
EQUIVARIANT

Proof of Theorem From (Zhang & Katsoulakis| [2023), it is known that score-based generative
models are the solution of a mean-field game

2
Oip+V - (p(f = o*VU)) = T=-Ap

1 2
U~ fTVU + 5 |oVUP +V - f = AU “D
U(xa T) = logﬂ'(x), p(l‘, 0) = e_U($7O)'

Let G be some group, g € G be an element of the group, and A, be the group action corresponding
with g. Assume data distribution 7 is G-invariant Then it is clear that U (z, T') is also G-invariant as

U(gz,T) = —logm(gx,T) = —logn(z,t) = U(x,T). (42)
Furthermore, since f is assumed to be G-equivariant, the corresponding Hamilton-Jacobi-Bellman
equations are identical for all g € G. Therefore, by the uniqueness of the solution to the Hamilton-
Jacobi-Bellman equation, U(gx,t) = U(z,t) for all t € [0, T]. For the existence and uniqueness of
smooth solutions of the HIB equation and their properties we refer to (Tran,2021) (Section 1.7 and
references therein), see also (Fleming & Soner, 2006)). Therefore, the solution of the HIB equation
U(z,t) is invariant, and therefore the score function s = —VU must be G-equivariant. Moreover, it
is shown in (Zhang & Katsoulakis} 2023)) that the minimizer of the implicit score matching objective,
and therefore the ESM, is equivalent to the solution of @ Therefore, this shows that the neural net

must be parameterized in a way that is G-equivariant, thus incorporating an induced, equivariant
(structural) inductive bias. O]

C PROOF OF PROPOSITIONS OF VECTOR FIELDS

G-equivariance of SZ[s]. Forany g € G, we have

SE[s)(ge, 1) = /G AT - s(gge, e (dg)
= /G AGATAL - s(ggz,t)uc(dg)

= AAgA;og S(gngt):u’G(dg)

= A;SE[s](x,1).
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Proof of Theorem[3] Tt is sufficient to look at the integration of x over 2. We have
/ <|s|2 +2V- s) SYp)(x) dx = / Sa US|2 +2V. s] p(x)dz
Q Q
— [ I8 o) do+2 [ (V5] pla) da.
Q Q

where the last equality is due to that the module|s| is G-invariant since s is G-equivariant. For the
second integral, we have

/SG[VS d:cf//z
//Z 8x, z)d(z) dpc(g)
:/ / Zaagz)<x>f’<9’1w>d<g*1x>dm<g>

= // T(AyVpl,~1,)d(g " 2) duc(g) (use integration by parts)

- // T (Vplg-12) A9~ 2) duc(g)

[ [ sla™ )7 (9l-12) o) o) by the cquivariance of
-, /
/

— [ (V- 9)@)p(x) da.
Q

(9)p(x) dx

(z)) dz dpa(g)

(V-s) z)dedug(g)

Therefore, we have

/Q(Is|2 +2v.s) S%p)(z) dz = /Q (|S|2+2V~s) p(z) da.

To prove Proposition[I} we need the following lemma.

Lemma 4. For a generic p € P(2), which may not be G-invariant, the score formula of its
symmetrized measure S€|p), is given by

o G ) = fG A;— ) (vzp)|g:r duc(g)
Ve {1 g(s M)] (=)= Jorlgz)duc(g)

where (V)| gz is the gradient of p evaluated at gz.

Ve [log (SG[/)])} (z) =V, |log ( /G plgz) duc(g))]

V[ plgr) dpc(g)
— Jor(gr) duc(y)
o Vap(gz) duc(g)
— Jor(gz)duc(g)

Proof of Lemma
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fG g Vap |qa:dMG( )
pr gr) duc(g)

O

Proof of Proposition[l] It suffices to prove the result for each time ¢, so we omit the time parameter.
Let /G be the quotient space of 2 by G. By the definition in Eq. . denoting by V log p|y, the
score V log p evaluated at gz, up to a multiplicative constant Ci the depends on G (Cg = 1 if
dim(Q2/G) < d and Ce =|G| if G is finite), we have

Ti(p.s) = Co /Q . /G I8(g2) — ¥ 10g plya | plg) duic o) de

=Cgq /Q/G/G}Ag -s(z) — Vlog plya|” plga) duc (g) do

2
:CG/ /)s(a:)—AgT-Vlogpbga
Q/¢Ja

where the last equality is due to the group actions in G are isometries. For each = € §2/G, regardless
of C¢, we have

2
Vs [/ ’s(x) - A;— - Vlog plga
G

Then the stationary point of the above equation is given by

fGAT Vlog/ﬂg»z) (gl')d,UG(g)
Je r(gz) duc(g)

plgz) duc(g) dz,

p(gz) dua(g)] =2 /G s(z) — A, - (Vlog plga)p(gz) duc(g).

s"(x) =

Note that V log p| g, = Ti‘)w This combined with LemmaHproves the claim. O

Proof of TheoremH} 1t suffices to prove the equality for each time ¢, thus we will omit the time
parameter. Expanding the square, it is equivalent to show that

/(STVIOg p)p(z) dz :/ < TSEs) ‘SG ’ + Sg[S]TVIng> p(x) dz.
Q Q
First, we show that [s" SE[s]p(z) dz = ’Sg s ‘2 p(x) dz. We have

LHS—// - Ay s(gx) dug(g)p(x) da

by the definition of the operator SG; while

RHS—/// glx Ay A s(gzx)duG(gl)dMG(g2)P($)d$

S(glfv)TAgT 2001

-18(92%) dpc(91) dpc(g2)p(x) dz

s(e) A} s(g22)p(x) dz dpc(g1) duc(g2)

I

n

(2)" Ay, o,18(92 0 g7 ') p(w) do dpc (91) dpc (92)

Q\Q\Q\Q\
:\@\:o\m\

s(z) " Ay s(gz)p(x) dz dpc(g) dpc(g2)

//s(x )T ATs(g)p(x) dz dpcs(g) = LHS

where the fourth equality is due to the G-invariance of p and A, is unitary for any g € G, and the fifth
equality is due to that G is unimodular so the Haar measure d,, is left-, right- and inverse-invariant.
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Then it remains to show that [ (s Vlog p)p(z)dz = [(SE[s] "V log p)p(x) dx. Indeed, we have
[ 86TV 0z o) = [ [ (ATs(g2) T dnclo)(Vlog pla)ole) do
Q QJG
= [ [ st92)7 4,(9 105 pla)p(e) dr (9

(97) T (V10g plga)p(x) dz dpc(g)

I
S
S—

_ / / s(2) " (V log p())p(x) dz duc(g)

where the 3-rd equality is due to that V log p is G-equivariant, and the 4-th equality is by a change of
variable and p is G-invariant.

Proof of Proposition[2] Let ' = Lip, (), and I'Z}" be the subspace of I" that consists of G-invariant
functions. By Assumption [I} actions in G are 1-Lipschitz. Thus, S¢[I'] € T. First note that
S%[r] =  since 7 is G-invariant. Then we have

di (S [n), ) = di (SC[n], S [])

= sup {Esc[n] (V] — Escn M}

yel’
= sup {E,[7] — E-[1]}
< sup {E,[7] — Ex[7]} = du(n, ),

where the second equality is by the definition of d; metric, and the third equality is due to Theorem
4.6 in (Birrell et al. [2022). O
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