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Abstract
One of the most popular clustering algorithms is
the celebrated Dα seeding algorithm (also know
as k-means++ when α = 2) by Arthur and
Vassilvitskii (2007), who showed that it guaran-
tees in expectation an O(22α · log k)-approximate
solution to the (k,α)-clustering cost (where dis-
tances are raised to the power α) for any α ≥ 1.
More recently, Balcan, Dick, and White (2018)
observed experimentally that using Dα seeding
with α > 2 can lead to a better solution with re-
spect to the standard k-means objective (i.e. the
(k, 2)-clustering cost). In this paper, we provide a
rigorous understanding of this phenomenon. For
any α > 2, we show that Dα seeding guarantees
in expectation an approximation factor of

Oα

((
σmax

σmin

)2−4/α

· (gα ·min{ℓ, log k})2/α
)

with respect to the standard k-means cost of any
underlying clustering; where gα is a parameter
capturing the concentration of the points in each
cluster, σmax and σmin are the maximum and min-
imum standard deviation of the clusters around
their center, and ℓ is the number of distinct mix-
ing weights in the underlying clustering (after
rounding them to the nearest power of 2). For
instance, if the underlying clustering is defined by
a mixture of k Gaussian distributions with equal
cluster variance (up to a constant-factor), then
our result implies that: (1) if there are a con-
stant number of mixing weights, any constant
α > 2 yields a constant-factor approximation; (2)
if the mixing weights are arbitrary, any constant
α > 2 yields an O

(
log2/α k

)
-approximation,

and α = Θ(log log k) yields an O(log log k)3-
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approximation. We complement these results by
some lower bounds showing that the dependency
on gα and σmax/σmin is tight. Finally, we pro-
vide an experimental validation of the effects of
the aforementioned parameters when using Dα

seeding.

1. Introduction
Clustering is a quintessential machine learning problem
with numerous practical applications in medicine (Alash-
wal et al., 2019), image segmentation (Shi & Malik, 2000;
Burney & Tariq, 2014), market analysis (Chiu et al., 2009)
and anomaly detection (Münz et al., 2007), to name a few.
One of the most popular formulations is the k-means prob-
lem that requires us to pick k centers such that the sum
of the squared distance from each data point to its closest
center is minimized. The k-means problem is NP-hard even
in 2 dimensions (Mahajan et al., 2009) and most research
is therefore focused on heuristics and approximation algo-
rithms. For a long time, a heavily used heuristic for this
problem has been the Lloyd’s algorithm, with Expectation
Maximization (EM) style updates for the centers after an
initial set of k centers are chosen uniformly at random from
the data. While this method finds a local optimum, it is
known not to have any approximation guarantees and it
could have an exponential run time in the worst case (Arthur
& Vassilvitskii, 2006).

The k-means++ method. (Arthur & Vassilvitskii, 2007)
came up with the elegant k-means++ method that care-
fully selects the initial centers (also called D2 seeding) such
that the next center is a data point that is chosen with proba-
bility that is proportional to its squared distance to its closest
center, selected thus far (see (Ostrovsky et al., 2013) for a
concurrent work on a similar algorithm as well). This in-
tuitively makes sense as this initialization is more likely to
discover new clusters (that are far away) than simply select-
ing centers uniformly at random. Indeed, they proved that
the initial choice of centers already forms a O(log k) ap-
proximation (in expectation) for this problem. They comple-
mented this upper bound with a family of instances where
the expected cost of the D2 seeding is a factor Ω(log k)
times the optimum cost, showing that their analysis is tight.

1



Seeding for k-means

Limitations on clusterable instances. While theD2 seed-
ing method provides clear improvements over uniformly at
random initialization in an elegant and efficient manner, the
family of instances that show the tightness of the analysis
indicates some of its limitations. The family of instances
presented in (Arthur & Vassilvitskii, 2007) is indeed highly
clusterable: k regular simplices of radius one (each of n/k
points) and the pairwise distance between the centers of two
simplices are ∆. As ∆ tends to ∞ (i.e., the instance be-
comes more and more clusterable), the expected approxima-
tion guarantee of the D2 seeding method tends to Θ(log k).

For such clusterable instances, the issue is that the D2 seed-
ing method does not put enough probability mass on discov-
ering new clusters. This phenomenon was already observed
in the original paper by (Arthur & Vassilvitskii, 2007), and
they proposed a greedy variant that takes several samples
at each iteration (increasing the probability that at least one
hits a new yet undiscovered cluster) and makes a greedy
choice among them. This greedy variant has worse guar-
antees in the worst case (see (Grunau et al., 2023b) for a
recent nearly tight analysis). However, the greedy variant
shows better experimental performance (after all, we usu-
ally look for k clusters when the data is clusterable), and
is currently the method implemented in the popular Scikit-
learn library (Pedregosa et al., 2011). Specifically, at each
iteration 2 + log(k) points are sampled, and, among them,
the point that decreases the objective the most is greedily
chosen.

Data-driven approach. More recently, Balcan et al. (Bal-
can et al., 2018) proposed a data-driven approach in order
to address the aforementioned limitation of the D2 seed-
ing method on clusterable data. Instead of always using
D2 seeding for the initial centers, they proposed to use Dα

seeding where α is now a parameter of the algorithm. In
Dα seeding, a point is selected as the next center with prob-
ability proportional to its α-powered distance to its closest
center, selected thus far1. One can observe that a large
choice of α > 2 increases the probability that a sampled
center will discover a new yet undiscovered cluster which
is advantageous. At the same time, a large α makes the
algorithm more sensitive to outliers (which is also the rea-
son why the greedy variant of k-means++ is worse in the
worst case). Hence the selection of α should depend on the
kind of instances one wants to solve, which motivates a data-
driven approach. One of the main results in (Balcan et al.,

1We remark that Dα seeding was already considered in (Arthur
& Vassilvitskii, 2007) but they studied it on a cost that was pro-
portional to the distances raised to the power α (i.e. the (k, α)-
clustering cost) instead of the standard k-means objective. They
showed that Dα seeding was O(22α log k)-approximate for this
cost function. The use of Dα on other objectives, including the
standard squared distance objective was first introduced in (Balcan
et al., 2018) in a data-driven approach.

2018) is that this is feasible. They showed that the parameter
α is learnable in the sense that if we assume the instance is
drawn from some unknown distribution D, then with only
polynomially many (in the instance size and other relevant
parameters) samples and a polynomial running time, one
can compute a parameter α̃ for the sampling that is almost
optimum for the given distribution D. This is especially in-
teresting as it shows that setting α to a good value on a given
distribution is in principle a task that is manageable. Addi-
tionally, Balcan et al. (Balcan et al., 2018) complemented
their theoretical results with an experimental analysis that
shows that setting α equal to 2 is not always the best choice.
For instance, on the MNIST dataset, they find that setting α
close to 4 is a significantly better choice than α = 2. This
is even more striking in the case where D is a mixture of
Gaussians, in which case setting α close to 20 seems the
best choice. This highlights the fact that in practice, one can
outperform the popular k-means++ algorithm of (Arthur
& Vassilvitskii, 2007) by tweaking the parameter α. Yet,
they do not provide any quantitative understanding of this
phenomenon nor provide any approximation guarantees on
these instances with different α. This is the main focus of
this paper.

Our contributions. Our main contribution is a theoreti-
cal analysis of the advantage of Dα seeding, proving that
it leads to constant-factor approximation guarantees for a
large class of instances, including a balanced mixture of k
Gaussians, where the standard k-means++ algorithm is
already no better than Ω(log k) (see Section 3). We remark
that a beyond worst-case analysis is essential as it is easy to
see that α = 2 is an optimal choice in the worst-case (just as
the greedy variant of k-means++ is worse in the worst-case).

In our beyond worst-case analysis, we identify natural data-
dependent parameters that measure (i) how concentrated
points are in clusters (the parameter gα), (ii) the ratio of the
maximum and minimum standard deviation of the optimal
clusters around their mean (σmax

σmin
), and (iii) how balanced

clusters are in terms of number of points (the parameter ℓ).
Using these parameters, we show that Dα seeding guaran-
tees for any α > 2 an

Oα

((
σmax

σmin

)2−4/α

· (gα ·min{ℓ, log k})2/α
)

approximation with respect to the standard k-means objec-
tive (the formal statement can be found in Section 2). We
further show that the dependence on the first two parameters
is necessary and tight (formal statement in Section 2), and
this dependence gives a theoretical explanation of the impor-
tance of selecting α as a function of the data (Section 2.2).
We leave it as an interesting open problem to understand the
necessity of the third parameter ℓ.

Finally, a more open-ended direction following our work is
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to give a beyond-worst-case analysis of the greedy variant
of k-means++. We take a first step in this direction by
proving a negative result: we give a family of instances
where the natural parameters (i)-(iii) are all constant (and
thus Dα seeding yields a constant-factor approximation
guarantee for any constant α > 2) but greedy k-means++
as implemented in the Scikit-learn library (with Θ(log k)
samples per iteration) has a super constant approximation
guarantee (see Section 2).

1.1. Further related works

Several variants have been studied since the original publi-
cation of the k-means++ method in (Arthur & Vassilvit-
skii, 2007; Ostrovsky et al., 2013). Aggarwal et al. (Ag-
garwal et al., 2009) obtained an O(1)-approximation with
constant probability by selecting O(k) centers, which was
improved later by (Wei, 2016; Makarychev et al., 2020).
Bahmani et al. (Bahmani et al., 2012) provided a scal-
able version k-means++ that is even more practical, and
(Bachem et al., 2017; Cohen-Addad et al., 2020) provided
faster ways for randomly selecting the centers. Recently,
Lattanzi and Sohler (Lattanzi & Sohler, 2019) obtained a
O(1)-approximation with additional O(k log log k) steps
of local search after using k-means++ to choose the initial
centers and this was improved by Choo et al. (Choo et al.,
2020) to obtain a 1030-approximation with ϵk steps of local
search. Our constant factor guarantees are arguably smaller
without any additional steps of local search but are appli-
cable to the appropriate family of instances, whilst their
method is applicable in the worst case across all instances.
Moreover, their local search methods can be augmented
on top of our guarantees of Dα-seeding, which may offer
significant improvements.

Another variant of k-means++ particularly relevant to our
setting is the noisy k-means++ algorithm, in which points
are sampled according to the standard D2 seeding, but an
adversary is allowed to perturb the sampling probabilities by
some multiplicative factor of (1± ε). For this case, (Bhat-
tacharya et al., 2020) showed an O(log2 k) upper-bound,
which was then improved to the classicO(log k) by (Grunau
et al., 2023a). In our case, the sampling probability of a
point can be completely different between D2 seeding and
Dα seeding. Since the analysis of noisy k-means++ is
substantially more difficult than the analysis of the classic
k-means++ algorithm, it might come as a surprise that it
is still possible to obtain non-trivial guarantees in our case.

Tangentially, one could study algorithms for learning the
cluster centers when the data is instantiated from a mixture
of Gaussians (Dasgupta, 1999; Arora & Kannan, 2005). Fur-
thermore, specific clustering algorithms are created under
specific assumptions on the instances with various cluster-
ability notions (Ackerman & Ben-David, 2009). However,

these clusterability notions are often (computationally) hard
to check and the algorithms are not as efficient and simple
as the seeding-based algorithms, which also work well in
practice (without any assumptions). Finally, the main inspi-
ration of this paper is from the idea of data-driven clustering
by Balcan et al. (Balcan et al., 2018).

1.2. Preliminaries and notations

To formally introduce the k-means problem and the seed-
ing algorithms, we will need to work with a metric space
(Rd, ∥·∥2). Since we always work with the Euclidean norm,
we will drop the subscript in the notation and write the Eu-
clidean norm of a vector x to be ∥x∥. If we are given some
data points X ⊂ Rd, the cost of our data X associated with
a given set of t centers Zt can be defined as follows:

cost(2)(X , Zt) :=
∑
x∈X

min
c∈Zt

∥x− c∥2. (1)

Now note that the centers Zt define a natural partition of the
data, in that: Cj = {x ∈ X : cj = argminc∈Zt∥x− c∥2}.
Then one can write the cost equivalently in the following
useful way:

cost(2)(X , Zt) =

t∑
j=1

∑
x∈Cj

∥x− cj∥2. (2)

Furthermore, if one has a candidate clustering C, then
each corresponding center can be computed as cj =
1

|Cj |
∑

x∈Cj
x, which are the centroids of the correspond-

ing clusters. We will denote the optimal centroids by
{µ1, µ2, . . . , µk}. By a slight abuse of notations, we might
drop the subscript to identify a cluster C ∈ C, and µC will
refer to the mean of that cluster. Let COPT be the optimal
clustering whose corresponding centers are ZOPT. By defini-
tion,

cost(2)(X , ZOPT) = min
Z⊂Rd:|Z|=k

cost(2)(X , Z). (3)

The k-means++ algorithm. We will now describe the
class of parameterized seeding algorithms as in (Arthur &
Vassilvitskii, 2007; Balcan et al., 2018) for the k-means
objective. For any α ∈ [0,∞], the general Dα seeding
procedure chooses k centers as follows:

1. The first center z1 ∈ X is chosen uniformly at random
from the data points.

2. Let Zt be the set of t centers chosen so far, such that
t < k. The next center, zt+1 ∈ X is chosen with
probability given by:

p
(α)
X (z) := P(z is sampled|Zt) =

minc∈Zt∥z − c∥α∑
z∈X minc∈Zt

∥z − c∥α
(4)
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The classic k-means++ algorithm is the special case ofD2

seeding. For any α ≥ 1, Arthur and Vassilvitskii (Arthur
& Vassilvitskii, 2007) show that Dα-seeding procedure is
an O(22α log k) approximation in expectation if the cost
function is given by:

cost(α)(X , Zk) :=
∑
x∈X

min
c∈Zk

∥x− c∥α . (5)

Our focus in this paper is to provide guarantees on the Dα

seeding algorithm with α > 2 for the standard k-means
objective (i.e. α = 2).

The greedy k-means++ algorithm. Although this is not
the main focus of the paper, it is helpful to define briefly
here the greedy variant of k-means++. The greedy variant
with m samples works as follows.

1. The first center z1 ∈ X is chosen uniformly at random
from the data points.

2. Let Zt be the set of t centers chosen so far, such
that t < k. We select a set of m candidate centers
z1, z2, . . . , zm where each candidate is sampled ac-
cording to the probability distribution

pX (z) := P(z is sampled|Zt) =

minc∈Zt∥z − c∥2∑
z∈X minc∈Zt

∥z − c∥2
(6)

The next added center zt+1 is selected to be the one
which decreases the cost the most, among all the can-
didate centers z1, z2, . . . , zm.

Usually m is selected to mildly increase with the input size.
For instance the standard scikit-learn library implements
the greedy version of k-means++ using m = Θ(log k)
candidates at each step (see (Pedregosa et al., 2011)).

2. Our Results
In this section, we define formally the natural parameters
that Dα seeding depends on and state formally our results.
Moreover, we will provide a short discussion on the neces-
sity of the dependence that will clarify our claims. The last
part of this section focuses on using our results to provide
recommendations on choosing α in different scenarios.

Before we move on to stating our results on the Dα seeding,
we need to define the following quantities with respect to
the optimal2 clustering COPT = {C1, C2, . . . , Ck}.

2Although we state our definitions and results with respect to
the optimal clusters, our results hold for any reference clustering
that satisfies the aforementioned properties.

1. We define σC as the standard deviation of the points
inside cluster C ∈ COPT. More precisely,

σC :=

√∑
x∈C∥x− µC∥2

|C|
. (7)

Following this, σmax is defined as the maximum
standard deviation of points inside a given cluster,
i.e. σmax := maxC∈COPT σC , and similarly σmin :=
minC∈COPT σC .

2. We need a parameter gα that measures the concentra-
tion of the distances of the points to the centroid µC in
a cluster C:

gα := max
C∈COPT

(1/|C|) · cost(α)(C, µC)

(cost(2)(C, µC)/|C|)α/2
(8)

= max
C∈COPT

(1/|C|) ·
∑

x∈C d
α(x, µC)(

(1/|C|) ·
∑

x∈C d
2(x, µC)

)α/2 . (9)

One can see that gα is equal to the αth absolute stan-
dardized moment of one cluster C (see Chapter 4 in
(Kenney, 1939) for a reference).

3. Finally, we need a parameter ℓ to control the number
of distinct weights of clusters (where the weight of a
cluster C is simply equal to the number of points |C|).
Formally, for any integer i ≥ 0 we let ki to be the
number of clusters of COPT whose weight lies in the
interval [2i, 2i+1). Then we define the following key
parameter:

ℓ := |{i ∈ N | ki > 0}| , (10)

which is the number of intervals of the form [2i, 2i+1)
containing the weight of at least one cluster. For in-
stance, if all clusters have the same weight then ℓ = 1.
If all the clusters have weights in some interval [m,M ]
then ℓ ≤ log2(M/m).

Remark 2.1. Note that we can express OPT(C) for some
optimal cluster C, in terms of its standard deviation by
OPT(C) = |C|σ2

C , and the total cost of the optimal cluster-
ing is OPT =

∑
C∈COPT |C|σ

2
C .

Given the aforementioned definitions, the main result that
we show in this paper is the following theorem, whose
formal proof appears in Section 3.
Theorem 2.2. For any clustering (C1, C2, . . . , Ck) of cost
OPT, and any α > 2, the Dα seeding procedure returns a
clustering of expected cost at most OPT times

O

(
f(α) ·

(
σmax

σmin

)2−4/α

· (gα ·min{ℓ, log k})2/α
)
,

where f(α) := α2

(α/2−1)2/α·(1−22/α−1)
. In particular,

f(α) = O(α/ε)2 if α ∈ [2 + ε,∞) for some small ε > 0.
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An immediate consequence of Theorem 2.2 is that Dα seed-
ing with α > 2 fixed yields a constant-factor approximation
guarantee for instances consisting of k regular simplices
(i.e. all points in a cluster are arranged in a regular simplex)
of the same radius (which implies σmax/σmin = 1) and
same size (which implies ℓ = 1); a case that includes the
described Ω(log k) lower bound instances for the standard
D2 seeding from (Arthur & Vassilvitskii, 2007). Indeed,
one can check that gα = 1 in that case. We remark that
the above stated guarantees do not require the clusters to
be separated (as they are e.g. in the described lower bound
instances of D2 seeding), which is a common assumption
is several other works (see e.g. (Ostrovsky et al., 2013;
Ackerman & Ben-David, 2009)).

We complement our results with the following lower bounds,
which are fairly intuitive to prove.
Theorem 2.3. There exists an instance with a clustering
of cost OPT such that ℓ = 1, σmax/σmin = 1, and the Dα

seeding procedure returns a clustering of expected cost at
least

Ω (gα)
2/α · OPT ,

and another instance instance with a clustering of cost OPT
such that ℓ = 1, (gα)2/α = O(1), and the Dα seeding
procedure returns a clustering of expected cost at least

Ω

(
σmax

σmin

)2−4/α

· OPT .

The formal proof of Theorem 2.3 can be found in Appendix
D.1 and Appendix D.2. Moreover, one can use the lower
bound instance in Appendix D.2 to obtain a single instance
with k = 2 and such that Dα seeding is no better than an
ω(1)-approximation for all α ≥ 2 + ε for some small fixed
ϵ > 03. Finally, as mentioned in introduction, we also prove
a lower bound on the greedy variant of k-means++.
Theorem 2.4. There exists an instance with k clusters for
which Dα seeding guarantees a constant factor approxi-
mation in expectation for any fixed α > 2, and such that
the greedy k-means++ algorithm with f(k) samples is not
better than an Ω(log log f(k))2 approximation in expecta-
tion.

This highlights that Dα seeding can be superior in theory
to the greedy variant. The proof of this last theorem can be
found in Appendix D.3.

2.1. Discussion on the parameters

As we see, the guarantee ofDα seeding as stated in Theorem
2.2 has a dependence on gα, σmax/σmin, and min{ℓ, log k}.
Here we discuss these dependencies.

3However, it would be interesting to see if one can obtain a
single instance which is Ω(log k) for all values of α ≥ 2 simulta-
neously.

The parameter gα. The moment condition can be seen as
a characterization of the concentration of a cluster of points.
For instance, one way that gα could be non-constant is when
the cluster has many outliers that are still part of the cluster.
On the contrary, if our clusters are generated by a Gaussian
mixture, then gα (for any constant α ≥ 2) is a constant (in
fact, it is not difficult to compute and see that gα ≤ αα for
Gaussian distributions). If we are in the infinite number
of samples limit, where each cluster becomes defined by a
density function f on some domain D, then gα is equal to∫

D∥x− µ∥αf(x)dx(∫
D∥x− µ∥2f(x)dx

)α/2 ,
To obtain a better understanding of our guarantees, we give
below the value of (gα)2/α for a few common distributions.
W.l.o.g. we re-normalize to assume unit variance of each dis-
tribution (i.e. the denominator is equal to 1 in the definition
of gα).

1. Perhaps the most classic distribution is the Gaus-
sian distribution with unit variance. In this case,
the standardized moment is equal to O((α/2)α/2)
thus (gα)

2/α is O(α). Furthermore, for multivari-
ate Gaussians, gα = O(ααdα/2d/2). Meaning, in
higher dimensions gα decreases rapidly and this is
well-supported by our understanding that a Gaussian
distribution tends to behave like “balls" in higher di-
mensions (see Section 3.3.3 in (Vershynin, 2020)). In
Remark 2.5, we detail how this gα can be used to obtain
the guarantees for mixture of Gaussians (as claimed in
the abstract).

2. For the exponential distribution, which has slightly
heavier tails than Gaussian, Exp(λ), the αth moment
is O(α!) and thus (gα)2/α is O(α2).

3. Now consider for instance, a univariate student-t dis-
tribution with degree of freedom ν > 0, has its den-

sity function given by, Γ((ν+1)/2)√
πνΓ(ν/2)

(
1 + x2

ν

)−((ν+1)/2)

(WikipediaT). It is well known that αth moment exists
only if α < ν. Thus lower the degree of freedom,
the heavier the tail gets, and gα is bounded only when
α < ν, in which case it is roughly O(να) and thus
(gα)

2/α = O(ν2).

Remark 2.5. The claims made in abstract for instances
drawn from a mixture of Gaussian distributions are now
easy to see. Suppose the mixture of k Gaussians X ∼∑k

i=1 wiN (µi,Σi), satisfies maxi,j∈[k] tr(Σi)/tr(Σj) =
O(1) so that σmax/σmin = O(1). Therefore, in that
case we obtain an approximation guarantee of O(α2g

2/α
α ·

min{ℓ, log k}2/α) = O(α3 ·min{ℓ, log k}2/α). If the mix-
ing weights wi are all equal, then ℓ = 1 and we obtain an
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approximation ratio of O(α3), which is constant for any
constant α > 2. If the mixing weights are arbitrary, our ap-
proximation ratio is at mostO(α3 min{ℓ, log k}2/α), which
isO(log log k)3 for α = Θ(log log k). Finally we show that
we can achieve this approximation even in the case of a fi-
nite number of samples taken from an arbitrary mixture of
Gaussians (see Appendix C.2).

We show in Appendix D.2 that the dependency on gα in
Theorem 2.2 is tight. As a simple example that highlights
the intuition, consider the instance given in Figure 1. The
red cluster is drawn from a standard 2-dimensional Gaus-
sian law. The blue cluster consists of many points highly
concentrated at distance δ from the mean of the red cluster,
and one single point at distance δ+∆ from the mean of the
red cluster. For this blue cluster, gα will be unbounded when
∆ tends to ∞ for any α > 2. Note that we can choose the
parameters in this instance so that (i) both clusters have the
same variance and (ii) both clusters have the same number
of points so the other parameters do not play a role here.
In this situation, there is still 1/2 probability that the first
center is selected in the red cluster (the first center is always
chosen uniformly at random), and conditioned on that fact,
the Dα seeding (for α > 2) will give way too much prob-
ability to the isolated point in the blue cluster, which is a
serious issue. Our lower bound construction in Appendix
D.2 is a simple formalization of this intuition.

The parameter σmax/σmin. The dependence on
σmax/σmin is necessary and in fact tight (see Appendix
D.1). The main issue in sampling with large α is that the
algorithm might sample repeatedly from a cluster with
large standard deviation more often, and thus it might fail
to discover some other clusters.

The parameter ℓ. The dependence on min{ℓ, log k} re-
mains an intriguing open problem, and it is unclear to us if
any dependency on ℓ or k is needed when α > 2. Note that
for α going to infinity, the parameter ℓ should matter less
and less since Dα seeding becomes equivalent to picking
the furthest point. This behavior is accurately reflected in
our bound.

2.2. On choosing α

Our theorem states that there is a trade-off in choosing α.
We already know that α = 2 may not be the best choice
and this is due to the well-clusterable instance of simplices
of equal sidelength that are sufficiently far apart. However,
Theorem 2.2 implies that any α > 2 is a constant factor
approximation in this case, and this is because Dα is more
aggressive in discovering new clusters. But is it in our best
interest to set α→ ∞? Interestingly, Balcan et al. (Balcan
et al., 2018) show that the bestα is learnable, hence selecting
the best α is a task that is manageable when there is a train-

ing set. Moreover, our theorem predicts a new phenomenon
that is not present in the experiments in (Balcan et al., 2018).
For a mixture of balanced Gaussians, (Balcan et al., 2018)
obtain experimental results whose pattern roughly matches
the one shown in left-hand side of Figure 2. This experiment
corresponds to a Gaussian mixture with the same covariance
matrix (namely identity). However, our theory indicates that
there is a dependence on the variances that is necessary and
it appears in the right-hand side of Figure 2, where one
of the Gaussians has much larger variance. Note that our
approximation factor has dependence (σmax/σmin)

2−4/α,
and to mitigate this effect one can choose some α that is not
too large but still greater than 2. In fact, our result suggests
a simple strategy. Using the training set, one can obtain
an estimate of the key parameters gα, σmax/σmin, ℓ, and
use these estimates to sufficiently narrow down the search
for the best α, hence speeding-up the data-driven approach
proposed by (Balcan et al., 2018).

Note that the experiments mentioned here do not use addi-
tional steps of Lloyd’s algorithm. Since it is quite common
to use this algorithm after the seeding, we run additional
experiments in Section B. Interestingly, we observe that the
general pattern does not change much even after running
Lloyd’s algorithm until convergence. This means that choos-
ing α > 2 has some significant benefits over α = 2, even if
we run Lloyd’s algorithm after the seeding.

As a final note, we mention that it is a common wisdom
among practitioners that k-means is a good objective, except
when the clusters might have varying sizes and density,
or when there are many outliers (Google; scikit). In this
context, “varying sizes and density” can be interpreted as
the parameters ℓ and σmax/σmin, while outliers correspond
to the parameter gα. If one believes this common wisdom,
then our result essentially implies that whenever k-means is
a good clustering objective, then choosing α > 2 should be
almost always better than α = 2.

3. Proof Sketch of Theorem 2.2
The proof of Theorem 2.2 is inspired by a very clean po-
tential function analysis of the D2 seeding algorithm by
(Dasgupta, 2013). In a similar fashion, it is useful to bound
the potential increase at each step. However, as we will
see later, the potential function that is used for the D2 seed-
ing analysis does not seem to work for Dα seeding, and
some additional ideas are required. While there are other
examples of potential-based analysis of seeding algorithms
for k-means in (Aggarwal et al., 2009), to the best of our
knowledge, the potential that we use is the first to be able to
obtain interesting guarantees when the sampling of a point
can be arbitrarily far from being proportional to its cost.
This is generally non-trivial as evidenced by recent results
in Grunau et al. (2023a); Bhattacharya et al. (2020). We de-
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Figure 1. An instance with k = 2.
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Figure 2. Performance of Dα seeding for two instances D1 (on the left) and D2 (on the right), from a balanced mixture of k Gaussians
with k = 4 and d = 2. The centers/means of the Gaussians for both instances are placed on the vertices of a square of side length 100.
However, the covariance matrices for D1 is {I, I, I, I}, whilst the covariance matrices for D2 is {800I, I, I, I}, where I is the identity
matrix in two dimensions.

fer a more detailed discussion of the novelty of our potential
function to Appendix C.1.

As in (Dasgupta, 2013), at every iteration t, it is useful
to keep track of the set of optimal clusters from which a
center has already been chosen (i.e. the hit clusters) and
the complement of this set which is the set of undiscovered
clusters. Formally, we define Ht to be the set of hit clusters
after selecting a set of t centers denoted by Zt, i.e.

Ht := {C ∈ COPT : C ∩ Zt ̸= ∅} ,

where we recall that COPT is the set of clusters in the op-
timum solution. Ut is defined to be the set of remaining
undiscovered clusters, i.e, Ut := COPT \Ht. Furthermore,
we define cost

(2)
t (C) as a shorthand to denote the cost in-

duced by the points in the cluster C, after the set Zt of t
centers are chosen. More formally,

cost
(2)
t (C) := cost(2)(C,Zt) =

∑
x∈C

min
z∈Zt

∥x− z∥2 .

Since we analyze the Dα seeding, we also need to work

with the α-cost:

cost
(α)
t (C) := cost

(α)
t (C,Zt) =

∑
x∈C

min
z∈Zt

∥x− z∥α .

For any set S of clusters, we define cost
(2)
t (S) :=∑

C∈S cost
(2)
t (C), and cost

(α)
t (S) :=

∑
C∈S cost

(α)
t (C).

Moreover we can talk about the cost of a single point at
iteration t as cost

(2)
t (x) := minz∈Zt∥x − z∥2. The main

challenge of the proof is to upperbound the expected cost of
undiscovered clusters after selecting our k centers. The cost
of hit clusters can be upperbounded fairly easily, in a similar
manner as in the analysis of the D2 seeding in (Arthur &
Vassilvitskii, 2007).

The potential function. Now we proceed to define our
potential function which will be used to upperbound the
cost of undiscovered clusters. For each i ≥ 0, we define Si

to be the set of clusters in C ∈ COPT such that |C| lies in the
interval [2i, 2i+1) (recall that we also defined ki := |Si|).
For each i ≥ 0, t ≥ 0, we define an integer τi(t) ≥ 0 which
will be a local counter, relevant only for the clusters in Si at

7
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iteration t. zt is defined to be the center selected at iteration
t, and U (i)

t := Ut ∩ Si the set of undiscovered clusters in
Si. For each i ≥ 0 and time t, we will define an integer
wi(t) ≥ 0 corresponding to the number of iterations that
are considered wasted by the clusters in Si at time t. We use
the word wasted to follow the intuition given in (Dasgupta,
2013) where an iteration t is wasted when the selected center
zt belongs to an already discovered center (in particular this
new center does not discover a new cluster).

Some intuition. In our potential function, the counter τi
will intuitively count how many iterations were relevant
to the set of clusters Si. Once τi reaches the value ki, we
will consider that the set Si was given enough tries to
cover its clusters. During the sampling, it might be that
some cluster is hit twice, which will increase the wasted
counter wj for all j ≥ 0 (and τj also increases for all
j ≥ 0). It might be counter intuitive that when a cluster
in Si is hit twice then this still counts as a try in other
sets Sj even if j ̸= i. Indeed, it might be much more
natural to simply count this try only for the set of clusters
Si. However, proceeding in this more intuitive way would
create a serious issue that some set Sj might get less than kj
tries, because some other set Sj′ gets more tries than needed.

Formally, we initialize t = 0, wi(0) = 0 for all i ∈ N, and
τi(0) = 0 for all i ∈ N. Then, we maintain these quantities
as follows. At time t ≥ 0, let C be the cluster the next
center zt is chosen from. Let i ≥ 0 be the integer such that
C ∈ Si. Then, there are two cases.

1. If C ∈ U
(i)
t , then we set (for all j ≥ 0)

τj(t+ 1) =

{
τj(t) + 1 if j = i and τj(t) < kj

τj(t) otherwise.

and wj(t+ 1) = wj(t) for all j ≥ 0.

2. Otherwise if C ∈ Ht, then we set (for all j ≥ 0)

τj(t+ 1) =

{
τj(t) + 1 if τj(t) < kj

τj(t) if τj(t) ≥ kj ,

and

wj(t+ 1) =

{
wj(t) + 1 if τj(t) < kj

wj(t) if τj(t) ≥ kj .

Based on these quantities, we define the potential function
as follows. First, we define

ϕi(t) :=
wi(t)

|U (i)
t |

·(2i)1−2/α ·
∑

C∈U
(i)
t

(cost
(α)
t (C))2/α . (11)

The final potential function can now be defined as

ϕ(t) :=
∑
i≥0

ϕi(t) . (12)

Remark 3.1. Note that we introduce the quantity

(2i)1−2/α ·
∑

C∈U
(i)
t

(cost
(α)
t (C))2/α .

It is not obvious that this is a good quantity to control, since
we are interested in upper-bounding the quantity∑

C∈U
(i)
t

cost
(2)
t (C) .

However, by a simple application of a standard convexity
inequality, one will notice that

(2i+1)1−2/α·
∑

C∈U
(i)
t

(cost
(α)
t (C))2/α ≥

∑
C∈U

(i)
t

cost
(2)
t (C) .

Using this potential, we are ready to proceed with the main
proof. Akin to Dasgupta’s analysis (Dasgupta, 2013), we
split the proof in three main parts. In Section A.1, we show
that ϕ(k) is indeed an upper bound on the final cost of
undiscovered clusters. In Section A.2, we upper bound the
cost of hit clusters using gα. In Section A.3 we upper-bound
the increase of the potential function. Finally, we complete
the proof in Section A.4.
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A. Proof of Theorem 2.2
In the whole proof of the main result, we will work with a slightly modified parameter gα. We define

ĝα := max
C∈COPT

(1/|C|2) ·
∑

z∈C cost(α)(C, z)

(cost(2)(C, µC)/|C|)α/2
. (13)

To see how this relates to the gα parameter we can write

(1/|C|2) ·
∑
z∈C

cost(α)(C, z) =
1

|C|2
∑
z∈C

∑
x∈C

dα(x, z)

≤ 1

|C|2
∑
z∈C

∑
x∈C

2α(dα(x, µC) + dα(z, µC))

=
2α

|C|2

|C|
∑
x∈C

dα(x, µC) + |C|
∑
y∈C

dα(y, µC)

 =
2α+1

|C|
·
∑
x∈C

dα(x, µC) ,

where the second line uses the triangle inequality and the standard inequality (x+ y)α ≤ 2α(xα + yα) for any x, y ≥ 0.

Hence we clearly have
ĝα ≤ 2α+1 · gα ,

and since all our guarantees will be involve the quantity (ĝα)
2/α, we can simply hide the factor (2α+1)2/α in the big O and

replace ĝα by gα.

Now we are ready to use the potential function defined in Section 3 for our proof.

A.1. Relating the potential function and the cost of undiscovered clusters

This part is fairly straightforward, using a few lemmas.

Lemma A.1. For all i ∈ N, we have that wi(k) ≥ |U (i)
k |.

Proof. Consider the quantity δi(t) := |U (i)
t | −wi(t). Clearly, we have that δi(0) = ki. Next, notice that for every time-step

t < k such that τi(t + 1) = τi(t) + 1, the quantity δi(t) decreases by 1. Indeed, either the algorithm discovers a new
cluster in |U (i)

t | (in which case |U (i)
t+1| = |U (i)

t | − 1), or the algorithm wastes an iteration in some cluster, in which case
wi(t+ 1) = wi(t) + 1.

Finally, we claim that there are at least ki such iterations. Note that if τi(t) < ki, then the only way we have that τi does not
increase is if the algorithm discovers a new cluster in |U (j)

t | for some j ̸= i. This can happen at most
∑

j ̸=i kj times. Hence
there must be at least k −

∑
j ̸=i kj = ki iterations where the counter τi increases. If we denote by ti the first time at which

τi(ti) = ki, this implies ti ≤ k and that that δi(ti) = 0 hence wi(ti) = |U (i)
ti |. Finally, note that for t > ti, wi(t) does not

change anymore, and |U (i)
t | can only decrease; which concludes the proof.

Lemma A.2. We have that ϕ(k) ≥
∑

i∈N cost(2)(U
(i)
k , Zk)/2 = cost

(2)
k (Uk)/2.

Proof. Using Lemma A.1, we have

ϕ(k) =
∑
i∈N

ϕi(k) ≥ (1/2) · (2i+1)1−2/α ·
∑

C∈U
(i)
k

(cost(α)(C,Zk))
2/α .

Using Jensen’s inequality (see Appendix C.3 for a reference) and the fact that |C| ≤ 2i+1 for all C ∈ U
(i)
k , we have that

(2i+1)1−2/α(cost(α)(C,Zk))
2/α ≥ cost

(2)
k (C)

for all C ∈ U
(i)
k , which concludes the proof.
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A.2. The cost of hit clusters

In this section, we give upper bounds on the expected cost of clusters that were hit during the seeding process. These proofs
are similar to the ones found in (Dasgupta, 2013; Arthur & Vassilvitskii, 2007). In fact, the first two lemmas are taken
directly from (Arthur & Vassilvitskii, 2007).
Lemma A.3 (From (Arthur & Vassilvitskii, 2007)). Assume some arbitrary set T of centers have already been selected, and
z ∈ C is added next using Dα-sampling. Then,

E
[
cost(α)(C, T ∪ {z}) | z ∈ C

]
≤ 22α · cost(α)(C, µC) .

Lemma A.4 (From (Arthur & Vassilvitskii, 2007)). Assume some point z is selected uniformly at random among the points
belonging to some cluster C. Then, for any α ≥ 2,

E
[
cost(α)(C, z)

]
≤ 2α · cost(α)(C, µC) .

The next lemma deals with the expected squared cost of the hit clusters during the seeding process.
Lemma A.5. Assume some arbitrary set T of centers have already been selected, and z ∈ C is added next using Dα

seeding. Then,
E
[
cost(2)(C, T ∪ {z}) | z ∈ C

]
≤ (4e+ (α+ 1)2 · (̂̂gα)2/α) · cost(2)(C, µC) .

Proof. We start by noting that if cost(2)(C, T ) ≤ (α + 1)2 · (ĝα)2/αcost(2)(C, µC) then the lemma already holds since
adding an additional center can only decrease the cost of C. Therefore, we assume this is not the case in the rest of the proof.
We can write

E
[
cost(2)(C, T ∪ {z}) | z ∈ C

]
=
∑
z∈C

cost(α)(z, T )

cost(α)(C, T )
·
∑
x∈C

min{cost(2)(x, T ), ∥x− z∥2} .

Let us upperbound the quantity cost(α)(z, T ). For this, let us fix any x ∈ C. Then, if we denote by tx the point in T which
is closest to x ∈ C, we have that

cost(α)(z, T ) ≤ ∥z − tx∥α ≤ (∥z − x∥+ ∥x− tx∥)α ≤ (α+ 1)α · ∥z − x∥α + (1 + 1/α)α · ∥x− tx∥α ,

using the triangle inequality and a case distinction whether ∥z − x∥ > (1/α)∥x− tx∥ or not. Averaging this upper bound
over all x ∈ C, we obtain that

cost(α)(z, T ) ≤ (α+ 1)α · cost(α)(C, z)
|C|

+
(1 + 1/α)α · cost(α)(C, T )

|C|

≤ (α+ 1)α · cost(α)(C, z)
|C|

+
e · cost(α)(C, T )

|C|
.

Hence we can rewrite

E
[
cost(2)(C, T ∪ {z}) | z ∈ C

]
≤
∑
z∈C

(α+1)α·cost(α)(C,z)
|C| + e·cost(α)(C,T )

|C|

cost(α)(C, T )
·
∑
x∈C

min{cost(2)(x, T ), ||x− z||2}

≤ (α+ 1)α

|C|
∑
z∈C

cost(α)(C, z)

cost(α)(C, T )
· cost(2)(C, T ) + e

|C|
∑
z∈C

cost(2)(C, z) .

To finish the argument, note that the second term in the last line corresponds to e times the expected cost of C if we pick
once center z ∈ C, uniformly at random. By Lemma A.4, this is at most (4e) · cost(2)(C, µC). For the second term, we use
Equation (13) to write

(α+ 1)α

|C|
∑
z∈C

cost(α)(C, z)

cost(α)(C, T )
· cost(2)(C, T ) ≤ ((α+ 1)αĝα) · (cost(2)(C, µC))

α/2 · cost(2)(C, T )

|C|α/2−1cost(α)(C, T )
.
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Using Jensen’s inequality, we obtain that |C|α/2−1cost(α)(C, T ) ≥ (cost(2)(C, T ))α/2. Hence we finally get that

(α+ 1)α

|C|
∑
z∈C

cost(α)(C, z)

cost(α)(C, T )
· cost(2)(C, T ) ≤ ((α+ 1)αĝα) ·

(cost(2)(C, µC))
α/2

(cost(2)(C, T ))α/2−1
.

Using our assumption that cost(2)(C, T ) ≥ (α+ 1)2 · (ĝα)2/αcost(2)(C, µC), we clearly get

(α+ 1)α

|C|
∑
z∈C

cost(α)(C, z)

cost(α)(C, T )
· cost(2)(C, T ) ≤ ((α+ 1)2 · (ĝα)2/α) · cost(2)(C, µC) ,

which finishes the proof.

The last lemma relates the squared cost and the α-powered cost of any cluster.
Lemma A.6. For any cluster C, we have

cost(α)(C, µC) ≤ ĝα · |C| · (σC)α .

Proof. We note that cost(α)(C, µC) ≤ 1
|C|
∑

z∈C cost(α)(C, z) (using Jensen’s inequality, and the convexity of the function
y 7→

∑
z∈C ||z − y||α). Hence, we obtain

cost(α)(C, µC) ≤

(
1

|C|
∑
z∈C

cost(α)(C, z)

)
≤ |C|1−α/2 · ĝα · (cost(2)(C, µC))

α/2 = ĝα · |C| · (σC)α ,

where the second inequality uses our definition of ĝα.

A.3. The increase of potential

In this section, we bound the final potential ϕ(k). First, we analyze the increase of local potential ϕi individually, then we
use these results to bound the final expected potential E[ϕ(k)].

A.3.1. THE INCREASE IN A WEIGHT CLASS

Lemma A.7. Let Bt be the event that the t-th center is selected from Ht. Then, for any t > 0, i ≥ 0, and any past choice of
centers Zt−1, we have that

E
[
ϕi(t)− ϕi(t− 1) | {Zt−1, Bt}

]
≤ (τi(t)− τi(t− 1)) · (2

i)1−2/α

|U (i)
t−1|

·
∑

C∈U
(i)
t−1

(cost
(α)
t−1(C))

2/α .

Proof. Fix some i ≥ 0. If τi(t− 1) = τi(t), we have by definition wi(t) = wi(t− 1) and clearly the potential ϕi cannot
increase. Otherwise, we simply note that wi(t) = wi(t− 1) + 1, and the result clearly follows. Note that in both cases, we
use the fact that (cost(α)t (C))2/α ≤ (cost

(α)
t−1(C))

2/α.

Lemma A.8. Let A(i)
t be the event that the t-th center is selected from and undiscovered cluster belonging to the weight

class i. Then, for any t > 0, i, j ≥ 0, any past choice of centers Zt−1, we have that

E
[
ϕj(t)− ϕj(t− 1) | {Zt−1, A

(i)
t }
]
≤ 0.

Proof. We first note that since zt /∈ Ht, by definition we have wj(t) = wj(t− 1) for all j ̸= i, hence ϕj(t) ≤ ϕj(t− 1) for
all j ̸= i. To bound the change of ϕi we notice that wi(t) = wi(t− 1), and that |U (i)

t | = |U (i)
t−1| − 1. Let Cz be the cluster

which is selected in U (i)
t−1. We claim that

E
[
(cost

(α)
t−1(Cz))

2/α | {Zt−1, A
(i)
t }
]
≥ 1

|U (i)
t−1|

·
∑

C∈U
(i)
t−1

(cost
(α)
t−1(C))

2/α . (14)

13
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Indeed, note that

E
[
(cost

(α)
t−1(Cz))

2/α | {Zt−1, A
(i)
t }
]
=

∑
C∈U

(i)
t−1

cost
(α)
t−1(C)∑

C∈U
(i)
t−1

cost
(α)
t−1(C)

·
(
cost

(α)
t−1(C)

)2/α

=
|U (i)

t−1|∑
C∈U

(i)
t−1

cost
(α)
t−1(C)

·
∑

C∈U
(i)
t−1

cost
(α)
t−1(C) ·

(
cost

(α)
t−1(C)

)2/α
|U (i)

t−1|

(1)

≥
|U (i)

t−1|∑
C∈U

(i)
t−1

cost
(α)
t−1(C)

·
∑

C∈U
(i)
t−1

cost
(α)
t−1(C)

|U (i)
t−1|

·
∑

C∈U
(i)
t−1

(cost
(α)
t−1(C))

2/α

|U (i)
t−1|

=
∑

C∈U
(i)
t−1

(cost
(α)
t−1(C))

2/α

|U (i)
t−1|

.

The inequality (1) can be obtained using Lemma C.2 (Chebyshev’s sum inequality) by considering the ordered sequence(
cost

(α)
t−1(C)

)
C∈U

(i)
t−1

and
(
(cost

(α)
t−1(C))

2/α
)
C∈U

(i)
t−1

. Thus we have:

E
[
ϕi(t) | {Zt−1, A

(i)
t }
]

≤ wi(t)

|U (i)
t−1| − 1

· (2i)1−2/α ·

 ∑
C∈U

(i)
t−1

(cost
(α)
t (C))2/α − E

[
(cost

(α)
t−1(Cz))

2/α | {Zt−1, A
(i)
t }
]

≤ wi(t)

|U (i)
t−1| − 1

· (2i)1−2/α ·

 |U (i)
t−1| − 1

|U (i)
t−1|

·
∑

C∈U
(i)
t−1

(cost
(α)
t−1(C))

2/α


= ϕi(t− 1).

The previous two lemmas upper-bound the increase of ϕj conditioned on events Bt or A(i)
t . Using this two bounds, the next

lemma upper-bounds the expected increase of the potential ϕj , removing the conditioning on the events Bt, A
(i)
t .

Lemma A.9. For every i ≥ 0, α > 2, t > 0, we have

E [ϕi(t)− ϕi(t− 1) | {τi(t) = τi(t− 1) + 1}] ≤ h(α)·
(
2i
)1−2/α·(ki−τi(t−1))−2/α·

(
(22αĝα)

∑
C∈COPT

|C|(σC)α
)2/α

,

where h(α) = (α/2−1)1−2/α

α/2 , and

E [ϕi(t)− ϕi(t− 1) | {τi(t) = τi(t− 1)}] ≤ 0 .

Proof. If τi(t) = τi(t− 1), then either we can apply Lemma A.7 or Lemma A.8, and in both cases the expected potential ϕi
can only decrease.

If τi(t) = τi(t− 1) + 1 then either zt belongs to U (i)
t−1, in which case the potential ϕi can only decrease in expectation (by

Lemma A.8 again). Therefore there remains only the case that zt ∈ Ht−1 (we denote this event by Bt). In this case, let us
denote by Zt−1 the current set of selected centers. Using Lemma A.7 and the previous cases we have that

14
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E [ϕi(t)− ϕi(t− 1) | {τi(t) = τi(t− 1) + 1, Zt−1}]

≤ (2i)1−2/α ·

∑
C∈U

(i)
t−1

(cost
(α)
t−1(C))

2/α

|U (i)
t−1|

· P[Bt | {τi(t) = τi(t− 1) + 1, Zt−1}]

≤ (2i)1−2/α ·

∑
C∈U

(i)
t−1

(cost
(α)
t−1(C))

2/α

|U (i)
t−1|

·
cost

(α)
t−1(Ht−1)

cost
(α)
t−1(Ht−1) + cost

(α)
t−1(U

(i)
t−1)

≤ (2i)1−2/α ·

∑
C∈U

(i)
t−1

(cost
(α)
t−1(C))

2/α

|U (i)
t−1|

·
cost

(α)
t−1(Ht−1)

cost
(α)
t−1(Ht−1) + |U (i)

t−1| ·

(∑
C∈U

(i)
t−1

(cost
(α)
t−1(C))2/α

|U(i)
t−1|

)α/2
,

where the last inequality uses Jensen’s inequality. If we consider the last expression as a function of X :=∑
C∈U

(i)
t−1

(cost
(α)
t−1(C))2/α

|U(i)
t−1|

(the other quantities being fixed), one can see that this expression attains a maximum value

for

X =

(
cost

(α)
t−1(Ht−1)

|U (i)
t−1| · (α/2− 1)

)2/α

.

Plugging in this value, we obtain that

E [ϕi(t)− ϕi(t− 1) | {τi(t) = τi(t− 1) + 1, Zt−1}]

≤ (α/2− 1)1−2/α

α/2
· (2i)1−2/α ·

(cost
(α)
t−1(Ht−1))

2/α

|U (i)
t−1|2/α

≤ (α/2− 1)1−2/α

α/2
· (2i)1−2/α · (ki − τi(t− 1))−2/α · (cost(α)t−1(Ht))

2/α ,

where the second inequality uses the fact that |U (i)
t−1| ≥ ki − τi(t− 1). By the law of total expectation, we have that

E [ϕi(t)− ϕi(t− 1) | {τi(t) = τi(t− 1) + 1}] = EZt−1 [E [ϕi(t)− ϕi(t− 1) | {τi(t) = τi(t− 1) + 1, Zt−1}]]

≤ (α/2− 1)1−2/α

α/2
· (2i)1−2/α · (ki − τi(t− 1))−2/α · EZt−1

[(
cost

(α)
t−1(Ht−1)

)2/α]
≤ (α/2− 1)1−2/α

α/2
· (2i)1−2/α · (ki − τi(t− 1))−2/α ·

(
EZt−1

[
cost

(α)
t−1(Ht−1)

])2/α
≤ (α/2− 1)1−2/α

α/2
· (2i)1−2/α · (ki − τi(t− 1))−2/α ·

(
(22αĝα)

∑
C∈COPT

|C|(σC)α
)2/α

,

where the second inequality uses Jensen’s inequality, and the last inequality uses Lemmas A.6, A.4, and Lemma A.3. Indeed,
we clearly have the expected α-powered cost of a hit cluster is at most its expected cost after the first time it is hit, which,
using Lemmas A.3 and A.4 is at most 22α times cost(α)(C, µC).

A.3.2. THE GLOBAL INCREASE

In this part, we are ready to bound the final expected value of ϕ(k) with the following lemma.

Lemma A.10. For any α > 2, we have that

E [ϕ(k)]

OPT
≤ f(α) · (ĝα)2/α ·

(
σmax

σmin

)2−4/α

·min{ℓ, log(k)}2/α ,

where f(α) = 16(α/2−1)1−2/α

α/2−1 · 2−22/α−1

1−22/α−1 .

15



Seeding for k-means

Proof. Using Lemma A.9, we obtain that

E [ϕi(k)] ≤ h(α) ·
(
2i
)1−2/α ·

(
(22αĝα)

∑
C∈COPT

|C|(σC)α
)2/α

·
ki−1∑
t=0

(ki − t)−2/α

≤ h(α) ·
(
2i
)1−2/α ·

(
(22αĝα)

∑
C∈COPT

|C|(σC)α
)2/α

·
∫ ki

0

(ki − u)−2/αdu

≤ h(α) ·
(
2i
)1−2/α ·

(
(22αĝα)

∑
C∈COPT

|C|(σC)α
)2/α

· (ki)
1−2/α

1− 2/α
.

Therefore, we obtain

E[ϕ(k)] =
∑
i≥0

E[ϕi(k)] ≤
h(α)

1− 2/α
·

(
(22αĝα)

∑
C∈COPT

|C|(σC)α
)2/α

·
∑
i≥0

(2iki)
1−2/α

=
8h(α)(ĝα)

2/α

1− 2/α
·

( ∑
C∈COPT

|C|(σC)α
)2/α

·
∑
i≥0

(2iki)
1−2/α .

Comparing this with optimum clustering, we get using basic algebraic manipulations

E[ϕ(k)]
OPT

=
8h(α)(ĝα)

2/α

1− 2/α
·
(
∑

C |C|(σC)α)2/α∑
C |C|(σC)2

·
∑
i≥0

(2iki)
1−2/α

=
8h(α)(ĝα)

2/α

1− 2/α
·

(∑
C |C|

(
σC

σmax

)α
σα
max

)2/α
∑

C |C|
(

σC

σmin

)2
· σ2

min

·
∑
i≥0

(2iki)
1−2/α

≤ 8h(α)(ĝα)
2/α

1− 2/α
·

(∑
C |C|

(
σC

σmax

)2)2/α

· σ2
max∑

C |C|
(

σC

σmin

)2
· σ2

min

·
∑
i≥0

(2iki)
1−2/α

≤ 8h(α)(ĝα)
2/α

1− 2/α
·

(∑
C |C| (σC)2

)2/α
· σ2−4/α

max∑
C |C|

(
σC

σmin

)2
· σ2

min

·
∑
i≥0

(2iki)
1−2/α

≤ 8h(α)(ĝα)
2/α

1− 2/α
·

(∑
C |C|

(
σC

σmin

)2)2/α

· (σmin)
4/α · σ2−4/α

max∑
C |C|

(
σC

σmin

)2
· σ2

min

·
∑
i≥0

(2iki)
1−2/α

≤ 8h(α)(ĝα)
2/α

1− 2/α
·
(
σmax

σmin

)2−4/α

·
∑

i≥0(2
iki)

1−2/α

(
∑

C |C|)1−2/α

≤ 16h(α)(ĝα)
2/α

1− 2/α
·
(
σmax

σmin

)2−4/α

·
∑

i≥0(2
iki)

1−2/α(∑
i≥0 2

iki

)1−2/α
,

where the fourth inequality is obtained using(∑
C

|C|
(
σC
σmin

)2
)2/α−1

≤

(∑
C

|C|

)2/α−1

.
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To conclude the proof, we need to upper bound the ratio∑
i≥0(2

iki)
1−2/α(∑

i≥0 2
iki

)1−2/α

for any integer sequence (ki)i≥0 satisfying the constraint
∑

i≥0 ki = k. Using Jensen’s inequality (note that x 7→ x1−2/α is
concave), we immediately obtain ∑

i≥0(2
iki)

1−2/α(∑
i≥0 2

iki

)1−2/α
≤ ℓ2/α . (15)

For the second upperbound, note that to have equality in Jensen’s inequality, we must have that 2iki = 2jkj for all i, j ≥ 0
such that ki ̸= 0, kj ̸= 0. Intuitively, this can only happen when ℓ = O(log k). Formally, let us denote by L the maximum
i ≥ 0 such that kL ̸= 0. We then build a decreasing sequence of indices as follows. We define i1 to be equal to L. Then,
assuming we defined the indices i1, i2, . . . ix, we define ix+1 to be the highest index 0 ≤ i < ix such that kix+1 ≥ 2kix . We
stop until it is not possible to find an index ix+1 fitting those conditions anymore. We denote by I the set of indices that
were selected, and J := N \ I its complement.

We notice that, by construction, |I| ≤ log k since
∑

i∈I ki ≤
∑

i≥0 ki = k. Then clearly we have that∑
i≥0(2

iki)
1−2/α(∑

i≥0 2
iki

)1−2/α
≤
∑

i∈I(2
iki)

1−2/α(∑
i∈I 2iki

)1−2/α
+

∑
i∈J (2iki)

1−2/α(∑
i∈I 2iki

)1−2/α
. (16)

The first term on the right-hand side can be upperbounded by |I|2/α ≤ (log k)2/α, using Jensen’s inequality again. As for
the second term, let us denote by i1, i2, . . . , i|I| the set of indices selected to be in I. Then, we write

∑
i∈J

(2iki)
1−2/α =

|I|∑
x=1

∑
j∈(ix+1,ix)

(2jkj)
1−2/α

≤
|I|∑
x=1

∑
j∈(ix+1,ix)

(2j2kix)
1−2/α

≤
|I|∑
x=1

∑
j∈(ix+1,ix)

(2ix2j−ix2kix)
1−2/α

≤
∑
i∈I

(2iki)
1−2/α ·

+∞∑
j=0

(
2−i
)1−2/α


=

∑
i∈I(2

iki)
1−2/α

1− 22/α−1
.

Therefore the second right-hand side term in Equation (16) can be upper bounded by

(log k)2/α

1− 22/α−1
,

which concludes the proof.

A.4. Wrapping it up

Using Lemma A.10 in combination with Lemma A.2, we obtain that the final expected cost of undiscovered clusters is at
most

h(α) · (ĝα)2/α ·
(
σmax

σmin

)2−4/α

·min{ℓ, log(k)}2/α · OPT ,
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where h(α) := 16(α/2−1)1−2/α

α/2−1 · 2−22/α−1

1−22/α−1 . Regarding the cost of hit clusters, we use Lemma A.5 and Lemma A.4 to see
that the expected cost of hit clusters is at most

(4e+ (α+ 1)2 · (ĝα)2/α) · OPT .

Therefore, if we define f(α) := (4e + (α + 1)2) · 16(α/2−1)1−2/α

α/2−1 · 2−22/α−1

1−22/α−1 = O
(

α2

(α/2−1)2/α·(1−22/α−1)

)
, we obtain

precisely the result of Theorem 2.2.

B. Additional Experiments
In this section, we provide additional experiments to further validate our claims. The code can be found in (Dα Seeding).
Particularly, we run the Dα-seeding on the following instances:

1. 1) D1: A mixture of 4 Gaussians with the centers/means of the Gaussians placed on the corners of a square with edge
length of 2∆ = 100 (default). All the covariances are identity matrices (in d = 2).

2. 2) D2: A mixture of 4 Gaussians with the centers/means of the Gaussians placed on the corners of a square with edge
length of 2∆ = 100 (default). All the covariances are identity matrices (in d = 2), except one that has a covariance
σ2I , with σ2 = 400.

3. 3) D3: A mixture of 8 Gaussians with the centers/means of the Gaussians placed on the corners of a cube with edge
length of 2∆ = 100 (default). All the covariances are identity matrices (in d = 3).

4. 4) D4: A mixture of 8 Gaussians with the centers/means of the Gaussians placed on the corners of a cube with edge
length of 2∆ = 100 (default). All the covariances are identity matrices (in d = 3), except one that has a covariance
σ2I , with σ2 = 800.

5. 5) D5: A mixture of 4 bivariate student-t distributions (see Figure 5), with different degrees of freedom, ν =
{1.6, 2, 5, 10}, where the location parameter is centered on the corners of a square with edge length of 2∆ = 100
(default).

We generate these instance with n = 1000 samples from the appropriate mixture distribution. Then we consider α =
{2, 6, 10, . . . , 38}, i.e, starting from 2 and increments of 4 for the Gaussian instances, i.e, D1 through D4.

In all experiments, we show the average performance over N = 5000 trial runs for each value of α. In some cases we also
run Lloyd’s algorithm until convergence after the seeding.

Figures 4 and 3, confirm our main claims that for Gaussians of the same/similar covariances, it is always best to choose
α that is much larger than 2. This can be seen in both the D1 and D3. Although, the costs seem to remain a constant for
α ≥ 6. However, the story is different when there is one Gaussian with a sufficiently different covariance, then one can see
from the figures of D2 and D4 that there is a trade-off. Moreover, we can see that even if we run Lloyd’s algorithm until
convergence the general pattern does not change much. A small exception here is Figure 3, on the instance D2, we observe
that our theoretical approximation of the seeding step with different variances must point to good values of α being smaller
in order to minimize the effect of (σmax

σmin
)2−4/α. However, the seeds planted by larger values of α are able hit more of the

optimum clusters, only that the chosen point could be sub-optimal and hence only a few steps of Lloyds is able to fix it. This
might explain why Lloyds might be able to fix the issue in some cases where α is big. In contrast, when α = 2 the seeding
likely misses some optimum clusters and additional Lloyds steps do not offer much help in that case because it gets stuck in
a local optimum.

Finally, with the experiments on student-t distribution, we intend to show the effect of gα on the performance of Dα seeding.
Here when the degrees of freedom (df ) are 1 < df ≤ 2, the variance is ∞ (see (WikipediaT)). As seen in Figure 6, when
df = 1.6, large values of α show a significant degradation in their performance. But when df = 2, α ≥ 4 performs better
than α = 2. In general, one might argue that if such a pattern is observed where α = 2 performs better than α > 2, it may be
that the distributions could have many outliers. In this case, it might be that the k-means objective is probably not appropriate
and one should consider more robust objectives such as k-medians. Now with df = 5, 10, where the distributions become
more “Gaussian” like, we see a similar pattern as the one observed in Gaussian mixtures, where a large α is preferred.
Crucially, we also notice that in this case, the number of Lloyd’s steps required for convergence it much lower for α > 2 in
comparison to the number needed when α = 2.
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Figure 3. Performance of Dα seeding for two instances D1 (on the left) and D2 (on the right).
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Figure 4. Performance of Dα seeding for two instances D3 (on the left) and D4 (on the right). The green curve indicates the cost right
after the seeding step and the blue curve indicates the cost if we additionally run Lloyd’s steps until convergence.
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Figure 5. The pdf of univariate student-t distributions with different degrees of freedom.
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Figure 6. Performance of Dα seeding for the instance D5. The figure on the left shows the performance, and on the right is the number of
Lloyd’s steps needed until convergence.

C. Additional Discussion and Useful Inequalities
C.1. On potential functions of previous works

Here, we discuss more in details why a new potential function is needed when dealing with Dα seeding. Many of the
previous works on k-means++ rely on a more natural potential function. For instance in (Dasgupta, 2013), the potential
function is defined as

ψ(t) =
Wt

|Ut|
· cost(2)(Ut, Zt) ,

where Ut is the number of undiscovered clusters, and Wt is the number of iterations where a center was selected in an
already discovered cluster. We notice two main differences with our potential function. The first one is that we partitioned
the clusters by weight classes, and the second is that replaced the expression

cost(2)(U
(i)
t , Zt)
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by a more involved
(2i)1−2/α ·

∑
C∈U

(i)
t

(cost(α)(C,Zt))
2/α .

Let us discuss the second difference first, and for the purpose of simplicity let us assume there is a unique weight class.
Then it is very tempting to use the same potential function as (Dasgupta, 2013). Unfortunately, we run into issues when the
next center is selected in an undiscovered cluster.

Indeed, in that case it is quite crucial in the proof that the potential should decrease in expectation, and an increase in
potential here seems like a quite fatal flaw. To show that the potential decreases in the case of D2 seeding, one simply
notices that if we had picked one of the undiscovered clusters uniformly at random and removed it from cost(2)(Ut, Zt),
then the potential would already decrease. Now, D2 seeding can only do better than that, since heavy clusters have even
more chance of being sampled. But what about Dα seeding? Unfortunately, this is not true anymore, as it can be that there
are two clusters C1, C2 such that cost(2)(C1, Zt) > cost(2)(C2, Zt), but cost(α)(C1, Zt) < cost(α)(C2, Zt), i.e. the orders
are reversed. And this can happen even if gα is fairly small.

Therefore, one needs a potential where the undiscovered clusters are ranked in the same order of importance as Dα seeding
weights them. Of course, this potential should also scale as a square of the euclidean distance. This is where our potential
comes in.

Now about the first difference, note that because of scaling issues we had to add an extra n1−2/α if all the clusters are of
weight n. If the clusters have different weight, the idea of partitioning them using geometric grouping comes naturally.

C.2. Guarantees for finite sample mixture of Gaussians

By assumption we have X ∼
∑k

i=1 wiN (µi,Σi), with maxi,j∈[k] tr(Σi)/tr(Σj) = O(1) and wi > 0 for all i ∈ [k]
(w.l.o.g.). In the infinite sample case (where the sums are replaced by expectations) we have that Ci = {x ∈ X : x ∼
N (µi,Σi)} is the optimal clustering (with infinite samples), i.e, the true centers of the Gaussians are the parameters that
maximize the (population) likelihood. Below we show for a mixture of gaussian distributions that gα = O(αα/2) which
implies that in the case of arbitrary weights the worst-case approximation is O(α2(gα)

2/α log2/α k), thus, when we set
α = Θ(log log(k)), we have an O(log log k)3-approximation. When ℓ = O(1), we get a O(α3) approximation which is
a constant for α being a constant. Hence in the infinite sample limit the result holds. Now we use the quantities that are
computed above (when considering infinite samples) and we show that these quantities do not change much with high
probability when sufficiently many samples are drawn from the Gaussian mixture.

Consider the reference clustering Ci = {x ∈ X : x ∼ N (µi,Σi)}, which is optimal in the case of infinite samples. We let
|X | = N and we consider first the case when all the covariances Σi are full rank. Now we have E [|Ci|] = Nwi and we let
wmin := mini∈[k] wi.

We can define the “sampled" version of centroids and the standard deviation of each cluster. That is, µ̂i :=
1

|Ci|
∑

x∈Ci
x,

and

r̂i :=

√∑
x∈Ci

∥x− µ̂i∥2

|Ci|
.

To ensure that the above definition makes sense, we will require sufficiently many samples w.r.t wmin. Also, we will
effectively replace µ̂i by µi in the above equation. Thus, we will condition on the following events being true.

1. E1 = {Each reference cluster i has Θ(Nwi) points}.

2. E2 = {∥Σ−1/2
i (µ̂i − µi)∥ < ε, for some arbitrary ε > 0, for each i ∈ [k]}.

We remark that if wi = Θ(1/k) for all i, then we have as result of E1, that ℓ = O(1) w.h.p, in which case we get O(α3)
approximation.

Continuing our proof, since we have a multivariate Gaussian distribution, it holds that, E
[
∥Xi − µi∥2

]
= tr(Σi), where

tr(.) represents the trace of a matrix.

tr(Σi) =

d∑
j=1

λij ,
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such that for each i ∈ [k], we have, λi1 ≥ λi2 ≥ . . . ≥ λid ≥ 0. Without loss of generality let λi1 be the largest eigenvalue
for Σi. Note that the covariance matrix is always positive semi-definite. Furthermore, when the covariance matrix is
full-rank, the eigenvalues are positive. Now, we have to characterize gα. Using the definition in (8), in the expected sense,
one has to compute:

g(i)(α) :=
EXi,Xj

[∥Xi −Xj∥α]
(E [∥Xi − µi∥2])α/2

.

We also note that,
2E [∥Xi − µi∥α] ≤ EXi,Xj

[∥Xi −Xj∥α] ≤ 2α+1E [∥Xi − µi∥α] (17)

Thus instead we can re-define,

g̃(i)(α) :=
E [∥Xi − µi∥α]

(E [∥Xi − µi∥2])α/2
.

Here, the denominator is (E
[
∥Xi − µi∥2

]
)α/2 = (tr(Σi))

α/2. Now consider the transformation, Yi := Σ
−1/2
i (Xi − µi).

Now Yi is a standard multivariate Gaussian, i.e, Yi ∼ N (0, Id), where is the Id is the identity matrix is d dimensions. Then,
EN (µi,Σi) [∥Xi − µi∥α] = EN (0,Id)

[
∥Σ1/2

i Yi∥α
]
≤ ∥Σ1/2

i ∥αEN (0,Id) [∥Yi∥α]. Here, we have:

EN (0,Id) [∥Yi∥
α] =

1

(2π)d/2

∫
Rd

∥y∥α exp

(
−∥y∥2

2

)
dy

=
Γ( (α+d)

2 )

2d/2Γ(d2 )
.

≤ (α/2)α/22α/2
(d/2)α/2

2d/2

≤ αα/2

2α/2
.

From this we can compute,

g̃(i)(α) ≤ ∥Σ1/2
i ∥ααα/2

4(tr(Σi))α/2

=
(λi1)

α/2

(tr(Σi))α/2
αα/2

4

≤ αα/2

2α/2

= O((α/2)α/2) .

Thus, the quantity gα as defined in (8) in its expected form is at most O((2α)α/2), by using the relation in (17). Now, we
move on to the concentration bounds for the following value:

r̂i =

√∑
x∈Ci

∥x− µi∥2

|Ci|
.

First, we have i.i.d samples from the mixture distribution. Consider the random variable ∥x − µi∥2, with x ∈ Ci, the
expectation of this random variable is E

[
∥Xi − µi∥2

]
. Then using Chebyshev’s inequality, we have

Pr
(
|r̂i2 − E

[
∥Xi − µi∥2

]
| ≥ ε

)
≤

Var
(
∥Xi − µi∥2

)
|Ci|ε2

. (18)

Now, we can set ε =
E[∥Xi−µi∥2]

2 , then the concentration bound becomes,

Pr

(∣∣∣r̂i2 − E
[
∥Xi − µi∥2

] ∣∣∣ ≥ E
[
∥Xi − µi∥2

]
2

)
≤

4g̃i(4)(E
[
∥Xi − µi∥2

]
)2 − 4E

[
∥Xi − µi∥2

]
)2

|Ci|(E [∥Xi − µi∥2])2

≤ O(1)

|Ci|
.
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Thus, we have w.h.p , r̂2i = Θ(r2i ) = Θ(tr(Σi)), for all i ∈ [k]. This holds when N = Ω(k2/w2
min), then the success

probability is 1−O(1/
√
N). Now, we can condition on this event, to get a bound on gα. Particularly, we must look at the α

moment, i.e, we must use the value of g̃(i)(α). Now the plan is to show that g̃α as defined is a constant w.h.p. For this, it
suffices to show that the following quantity

r̂i
(α) :=

∑
x∈Ci

∥x− µi∥α

|Ci|
,

is Θ(E [∥Xi − µi∥α]) w.h.p. Assuming this is true, then we have gα ≤ 2αr̂i
(α) ≤ Θ(E [∥Xi − µi∥α]) = O((2α)α/2). This

is also due to the fact that r̂2i = Θ(r2i ). Now, to see how the concentration holds, we again use Chebyshev’s inequality, when
the random variable is ∥x− µi∥α for x ∈ Ci, again with the expectation being E [∥x− µi∥α]. Repeating, the arguments,
from the previous case, i.e, using Equation (18) for the aforementioned random variable,

Pr

(∣∣∣r̂i(α) − E [∥Xi − µi∥α]
∣∣∣ ≥ E [∥Xi − µi∥α]

2

)
≤ 4g̃(i)(2α)(E [∥Xi − µi∥α])2

|Ci|(E [∥Xi − µi∥α])2

− 4E [∥Xi − µi∥α])2

|Ci|(E [∥Xi − µi∥α])2

≤ Oα(1)

|Ci|
.

Thus, we have that gα = Oα(1), w.h.p, when N = Θα(k
2/w2

min).

Events E1 and E2 occur with high probability: To end this proof, we show that events E1 and E2 occur with high
probability as well. When we have a mixture of distributions, we have the number of points sampled from each distribution
(|C1|, |C2|, . . . , |Ck|) is distributed as multinomial distribution with parameters (N, {wi}). When we have k balanced
distributions, pi = 1/k. Now, we can use the following concentration bound called the Bretagnolle-Huber-Carol inequality
(van der Vaart & Wellner, 1996) (Proposition A.6.6), which states that:

Pr(

k∑
i=1

||Ci| −Nwi|) ≥ 2
√
Nδ) ≤ 2k exp(−2δ2), δ > 0 (19)

By setting δ =
√

2N
Nk+1 , we have that for N = Ω(k), event E1 holds w.h.p.

Now, coming to E2, let us focus on each Gaussian separately and let us condition on event E1. For Gaussian i, we have
that with probability 1− δ, ∥Σ−1/2

i (µ̂i − µi)∥ < ε/k with N = Ω(k
3d
ε2 log2(1/δ)) samples. Hence, by choosing a small

enough (δ, ε), we can guarantee that with sufficiently many samples N = Ω̃(poly(k, d, 1
mini∈[k] λid

)) 4, E1, holds with high
probability. Now E2, also implies that the “reference" centers/clusters that we picked in the beginning are in fact close to
the optimal centers with high probability.

Degenerate Covariance: If the covariance matrix is not full rank, we can still define the Gaussian distribution in the
appropriate affine subspace Rd′

, where d′ ≤ d, and rank(Σi) = d′. We can repeat the previous analysis, as our analysis is
done for each cluster separately and obtain the same conclusion.

When we have N = Ω̃(poly(k, d, 1
mini∈[k] λid

, 1
wmin

)), we get the desired finite sample guarantee.

C.3. Useful inequalities

In our proof, we use several times the following inequalities, which we give here for completeness.
Lemma C.1 (Jensen’s inequality (Hardy et al., 1952)). For any set of non-negative real numbers {yi}ni=1 it holds that:

n∑
i=1

yγi ≥ n1−γ

(
n∑

i=1

yi

)γ

, (20)

if γ ≥ 1. If 0 ≤ γ < 1, the reversed inequality holds.
4Here, Ω̃ hides log factors
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Lemma C.2 (Chebyshev’s sum inequality (Hardy et al., 1952)). For any sequence of real numbers {yi}ni=1 and {wi}ni=1,
such that y1 ≥ y2 ≥ . . . ≥ yn and w1 ≥ w2 ≥ . . . ≥ wn, it holds that:

1

n

n∑
i=1

yiwi ≥

(
1

n

n∑
i=1

yi

)
·

(
1

n

n∑
i=1

wi

)
. (21)

D. Lower bounds
D.1. The dependence on σmax/σmin is tight

We consider an instance with one cluster of n points arranged on a regular simplex of side-length R, while the other k − 1
clusters contain n points arranged on a regular simplex of side-length 1. Note that for a cluster made of a regular simplex,
we have that gα ≤ 2α, hence (gα)

2/α = O(1), and the concentration of clusters will not play any role in this construction.

The clusters of radius 1 are pairwise separated by a distance δ, while the cluster of radius R is at infinite distance from all
the other clusters. We choose R and δ so that Rα = 10 · kδα. Then, at each iteration t ≥ 3, the probability of sampling
from the cluster of radius R is at least

nRα

nkδα + nRα
≥ 1/2.

Hence, the expected number of missed clusters is at least k/3, which implies that the expected cost of the returned solution
is at least (nk/3) · δ2 while OPT costs at most nR2 + nk. We select δ so that R2 = k which is satisfied for δ = k1/2−1/α.
In this case, the expected competitive ratio is at least Ω(k1−2/α), and one can check that σmax = R = k1/2, and σmin = 1.

D.2. The dependence on gα is tight

Consider the following instance. There are two clusters of n points each. The first clusters C1 consists of n points on a
regular simplex. All points in C1 are at distance 1 from each other, and at distance 1 from the centroid of C1. The second
cluster has 2 groups of points. There are n− 1 points at the origin, and 1 point at coordinates (∆, 0, . . . , 0). We place the
cluster C1 so that its centroid lies at coordinates (−δ, 0, . . . , 0), with δ = ∆/n1/α.

Second, we select ∆ so that σmax/σmin = 1. For this, we would simply need to set ∆ so that

(∆/n)2 · (n− 1) + ∆2(1− 1/n)2 = n

which gives ∆ = Θ(
√
n). The cost of the given clustering is equal to 2n.

However, we can see that gα for the second cluster is not a constant. Indeed we can compute that

gα =
(1/n) ·

∑
z∈C2

cost(α)(C1, z)

n1−α/2 · (cost(2)(C2, µC2
))α/2

(22)

=
(1/n) · (2(n− 1)∆α)

n
(23)

= Θ
(
nα/2−1

)
. (24)

To analyze the Dα seeding procedure on this instance, let us denote by B1 the event that the first sampled center belongs to
C1, and by B2 the event that the second sample belongs to C2 and lies at coordinate (∆, 0, . . . , 0).

Clearly we have that
P[B1] = 1/2 ,

and
P[B2 | B1] ≥

∆α

n+ (n− 1) · δα +∆α
≥ 1/3 ,

by our choice of δ. This implies that P[B1 ∩ B2] ≥ 1/6 and the expected cost of the output clustering is at least

1

6
· (n− 1) · δ2 = Θ(n1+1−2/α) = Ω(n1−2/α · OPT) = Ω((gα)

2/α) · OPT .
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A B

CD

M
a = log f(k)

b

Figure 7. A schematic view of a group of 4 clusters. The densest parts are at the vertices A,B,C,D. All the points in a cluster lie on the
segment from a vertex to the center of mass of the square.

D.3. A lower bound for greedy k-means++

In this section, we prove Theorem 2.4. In particular, it implies a super constant lower bound for the greedy variant which uses
f(k) samples, as long as f(k) is super constant. We emphasize that here we did not try to optimize the lower bound. The
main purpose of this section is to show that the greedy algorithm with a superconstant number of samples cannot guarantee
a constant factor in expectation. Consider the following construction against greedy k-means++ with f(k) samples. We
will place our points in the euclidean space. For ease of construction, we will take the distributional point of view in this
instance, i.e. we assume that each cluster Ci contains infinitely many points placed in Rd according to some distribution fi.
Moreover, we will assume that these clusters are balanced (i.e. they have the same weight) which means here that the global
distribution of all points in all the clusters has probability density f(x) = 1

k ·
∑

i∈[k] fi(x) for all x ∈ R2.

In our instance, we will create k/4 groups of 4 clusters as follows. First, we describe how to construct one group. We create
an square ABCD of side length a = log(f(k)) and we denote by M the centroid of this square, and by b = a/

√
2 the

length of half a diagonal in the square. In the cluster C1, the probability density will be a one-dimensional density on the
segment [AM ] defined as follows

f1(x) =

{
e−||x−A||2

1−e−b if x ∈ [AM ] and
0 otherwise.

We recall here that AM = b so the above function is indeed a probability density. The centroid of the first cluster will be
equal to the point µ1 ∈ [AM ] such that

Aµ1 =

∫ b

0
xe−xdx

1− e−b
= 1− b

eb − 1
.

We repeat the construction similarly for the clusters C2, C3, and C4, replacing A by B, C, and D respectively. Note that we
needed only 2 dimensions to construct our first group. We refer the reader to Figure 7 for an illustation of the construction.

Then, we add k/4 − 1 extra dimensions and we fix the point M to be the origin of Rk/4+1. Finally, we make k/4 − 1
additional copies T2, T3, . . . , Tk/4 of our first square and we arrange their centroids M1 = (0)k/4+1,M2, . . . ,Mk/4 in a
regular simplex of side-length ∆ = 100 · (f(k))3 · k. One should think of ∆ as a much bigger distance than a (essentially,
we have k/4 squares that are infinitely far from each other). Each group of 4 cluster will be denoted Gj for j ∈ [k/4].

We prove the following simple statements.
Claim D.1. For any cluster Ci, we have that

lim
a→∞

cost(2)(Ci) = 1.
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Proof. We can write

cost(2)(Ci) =

∫ b

0
(x−Aµi)

2e−xdx

1− e−b

=
eb + e−b − b2 − 2

(eb − 1) · (1− e−b)
,

which clearly tends to 1 as b goes to infinity.

Claim D.2. For any cluster Ci and any fixed α ≥ 2 and b > 10, we have that

gα =

∫ b

0

∫ b

0
|x− y|αfi(x)fi(y)dxdy(∫ b

0
(x−Aµi)2fi(x)dx

)α/2 ≤ 4 · Γ(α+ 1) , (25)

where Γ is the gamma function (Artin, 2015).

Proof. From Claim D.1, we already have that the denominator tends to 1 as a goes to infinity. Hence, we only need to upper
bound the numerator. We proceed with the simple change of variable u = (x+ y) and v = (x− y). Then we obtain∫ b

0

∫ b

0

|x− y|αfi(x)fi(y)dxdy =
1

2(1− e−b)2
·
∫ b

−b

∫ 2b−|v|

|v|
|v|αe−ududv

=
1

(1− e−b)2
·
∫ b

0

∫ 2b−v

v

vαe−ududv

=
1

(1− e−b)2
·
∫ b

0

vα(e−v − ev−2b)dudv

≤ 2

∫ ∞

0

vαe−vdv

= 2Γ(α+ 1) .

Using the fact that we consider b ≥ 10, we obtain the desired upperbound.

In light of Claim D.2, it is is clear that for any fixed α > 2, the Dα seeding algorithm will guarantee a constant factor
approximation in expectation.

However, we use the instances we build to prove Theorem 2.4. To this end, we will need to look at the cost of a group of 4
clusters after the greedy k-means++ algorithm selected exactly one center inside a group j. We distinguish two key cases:
(1) If the first center x in the cluster Ci ∈ Gj such that the distance between x and the centroid µi of the cluster is less than
log(b), and (2) if the first center is at distance at most b/100 from the centroid Mj of the corresponding square. Let us
denote by K1 and K2 the total cost of the 4 clusters in Gj after case (1) or (2) happened respectively.
Claim D.3. For k a big enough constant, we have that

K1 ≥ 11b2/2 ,

and
K2 ≤ 5b2 .

Proof. Assume w.l.o.g. that the first center belongs to center C1. In the first case then the total cost is lower bounded by the
cost of the other three clusters C2, C3, C4. Assume C3 is the center whose centroid µ3 is the furthest away from µ1. Then
the cost of this center is lower bounded by∫ b

0

(2b− log(b)− x)2e−xdx ≥ 4b2 +O(b log b) .
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For the other two clusters C2 and C4, we use Pythagore theorem. Since they lie on a perpendicular line to C1 and we are in
case (1), the distance of any point in C2 or C4 is at distance at least b− log b from the sampled center. Hence we can lower
bound the cost of each of the other two clusters with the following quantity∫ b

0

(b− log(b))2f(x)dx ≥ b2 +O(b log b) .

Hence the total cost is at least
6b2 +O(b log b)

which is more than 11b2/2 for b big enough.

In the second case, the cost of each cluster is upperbounded by∫ b

0

(1.01b− x)2f(x)dx ≤ 1.03b2 +O(b) .

Hence the total cost is upperbounded by
4.12b2 +O(b) ,

which is less than 5b2 for b big enough.

Next, we define as L the event that the greedy k-means++ algorithm samples one of its f(k) samples at distance at most
b/100 from the centroid Mj of some still undiscovered group Gj .
Claim D.4. Assume we are at iteration t < k/4. Then

P[L] ≥ 1/2.

Proof. At iteration t < k/4, it must be that one group Gj is still undiscovered. Then we have that (by triangle inequality)

cost(2)(Gj) ≥ 4(∆− 2a)2 > ∆2 ,

for k a big enough constant. The total cost of the discovered clusters is at most

k · (2a)2 ≤ k(2 log f(k))2 ≤ cost(2)(Gj)/(10f(k)) .

By union-bound we obtain that with probability at least 9/10, none of the sampled candidate centers belong to an already
discovered group. Conditionned on that event, we can simply compute by triangle inequality that the probability that a
specific sample is at distance at most b/100 from the centroid is at least (assuming b and f(k) are some big enough constant)

9

10
·

(∫ b

99b/100

e−x

1− e−b
dx

)
≥ 9

10
· (e−99b/100 − e−b) ≥ 9

10
e−99b/100 ≥ 9

10(f(k))1/
√
2
≥ 1

f(k)
.

Therefore, with probability at most (1− 1/f(k))f(k) ≤ 1/e, we have that none of the sampled candidate centers are close
the centroid Mj of a square. Therefore with probability 1/2 at least one of them is close to a centroid Mj of an undiscovered
group.

When the event L happens, it must be (by Claim D.3) that the selected center is at distance at least log b from the center it
belongs to. By Claim D.4, this happens in expectation at least k/8 times. This means that the expected cost of the output
clustering is at least

(k/8) ·
∫ log b

0

(x− log b)2e−xdx ≥ (k/8) · ((log b)2 +O(log b)) = Ω((k/8) · (log log(f(k)))2 .

Since by Claim D.1 we have that the optimum cost is equivalent to k (for k growing to infinity), this concludes the proof of
Theorem 2.4.

27


