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ABSTRACT

Neural Processes (NPs) are deep probabilistic models that represent stochastic
processes by conditioning their prior distributions on a set of context points. De-
spite their obvious advantages in uncertainty estimation for complex distributions,
NPs enforce parameterization coupling between the conditional prior model and
the posterior model, thereby risking introducing a misspecified prior distribution.
We hereby revisit the NP objectives and propose Rényi Neural Processes (RNP)
to ameliorate the impacts of prior misspecification by optimizing an alternative
posterior that achieves better marginal likelihood. More specifically, by replacing
the standard KL divergence with the Rényi divergence between the model posterior
and the true posterior, we scale the density ratio p

q by the power of (1-α) in the
divergence gradients with respect to the posterior. This hyper parameter α allows
us to dampen the effects of the misspecified prior for the posterior update, which
has been shown to effectively avoid oversmoothed predictions and improve the
expressiveness of the posterior model. Our extensive experiments show consistent
log-likelihood improvements over state-of-the-art NP family models which adopt
both the variational inference or maximum likelihood estimation objectives. We
validate the effectiveness of our approach across multiple benchmarks including
regression and image inpainting tasks, and show significant performance improve-
ments of RNPs in real-world regression problems where the underlying prior model
is misspecifed.

1 INTRODUCTION

Neural processes (NPs) (Garnelo et al., 2018b) strive to represent stochastic processes via deep
neural networks with desirable properties in uncertainty estimation and flexible feature representation.
The vanilla NP (Garnelo et al., 2018b) predicts the distribution for unlabelled data given any set
of observational data as context. The main advantage of NPs is to learn a set-dependent prior
distribution, where the KL divergence is minimized between a posterior distribution conditioned
on a target set with new data and the prior distribution conditioned on the context set (Kim et al.,
2019; Jha et al., 2022; Bruinsma et al., 2023). However, as the parameters of such conditional
prior are unknown, NP proposes a coupling scheme where the prior model that parameterizes the
distribution is forced to share its parameters with an approximate posterior model. As the model
parameter space induced by neural networks is usually large, enforcing coupling on such a space could
lead to prior misspecification which could consequently produce a biased estimate of the posterior
variance and deteriorate predictive performance (Cannon et al., 2022; Knoblauch et al., 2019). Such
misspecification can be worsened under noisy context set (Jung et al., 2024; Liu et al., 2024). Other
cases of prior misspecification encompass domain shifts (Xiao et al., 2021), out-of-distribution
predictions (Malinin & Gales, 2018) and adversarial samples (Stutz et al., 2019).

To address the prior misspecification caused by parameterization coupling in vanilla NPs, several
studies have been proposed to relax the constraint (Wang et al., 2023; Wang & Van Hoof, 2022;
Wu et al., 2018; Wicker et al., 2021). For instance, the prior and the posterior models can share
partial parameters instead of the entire network (Rybkin et al., 2021; Liu et al., 2022); hierarchical
latent variable models are also utilized where both models share the same global latent variable and
induce prior or posterior-specific distribution parameterization (Shen et al., 2023; Requeima et al.,
2019; Kim et al., 2021; Lin et al., 2021). In this paper, we offer a new insight of handling prior
misspecification in NPs through the lens of robust divergence (Futami et al., 2018), which seeks to
learn an alternative posterior without changing the parameters of interests. Instead of minimizing
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the standard KL divergence between the prior and posterior distributions, robust divergences are
theoretically guaranteed to produce better posterior estimates under prior misspecification (Verine
et al., 2024; Regli & Silva, 2018). The Rényi divergence (Li & Turner, 2016; Van Erven & Harremos,
2014b), for instance, introduces an additional parameter α to control how the prior distribution can
regularize the posterior during the posterior updates. By scaling the density ratio p

q by the power
of (1-α) in the divergence gradients with respect to the posterior, this hyper parameter α allows
us to reduce the regularization effects of the misspecified prior (Knoblauch et al., 2019), thereby
mitigating the biased estimates of the posterior variance, avoiding oversmoothed predictions (Alemi
et al., 2018; Higgins et al., 2017), and achieving performance improvements. Due to the constraint of
parameterization coupling in NPs, such settings can give rise to a potentially critical case of prior
misspecification and the need for more robust divergences in NP learning.

In light of this, we propose Rényi Neural Processes (RNPs) that focus on improving neural processes
with a more robust objective. RNP minimizes the Rényi divergence between the posterior distribution
defined on the target set and the true posterior distribution given the context and target sets. We prove
that RNP connects the common variational inference and maximum likelihood estimation objectives
for training vanilla NPs via the hyperparameter α, through which RNP provides the flexibility to
dampen the effect of the misspecified prior and empower the posterior model for better expressiveness.
Our main contributions are summarized as:

1. We introduce a new objective for neural processes that unifies the variational inference and
maximum likelihood estimation objectives via the Rényi divergence.

2. We show that Rényi neural processes can be applied to several state-of-the-art neural process family
models in a simple yet effective manner without changing the model. We validate the effectiveness of
Rényi neural processes on comprehensive experiments including regression, image inpainting, and
prior misspecification.

2 PRELIMINARIES
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Figure 1: Graphical Model.

Neural Processes: Neural processes are a family of deep probabilistic
models that represent stochastic processes (Wang & Van Hoof, 2020;
Lee et al., 2020). Let fτ : X → Y be a function sampled from a stochas-
tic process p(f) where each fτ maps some input features x to an output
y and Dtrain and Dtest are meta-tasks induced by different ftrain and ftest
during meta-training and meta-testing. For a specific task Dτ , we split
the data further into a context set C : (XC , YC) := {(xm,ym)Mm=1}
and a target set T : (XT , YT ) := {(xn,yn)

N
n=1} = Dτ\C. Our goal is

to predict the target labels given the target inputs and the observable
context set: p(YT |XT , XC , YC). NPs (Garnelo et al., 2018b) intro-
duce a latent variable z to parameterize the conditional distribution
p(f |C) and define the model (see Fig 1) as p(YT |XT , XC , YC) =∫
pθ(YT |XT , z)pφ(z|XC , YC)dz where θ and φ are network parame-

ters of the likelihood and prior (also known as recognition) models, respectively. Due to the intractable
likelihood, two types of objectives including the variational inference (VI) and maximum likelihood
(ML) estimation have been proposed to optimize the parameters (Foong et al., 2020; Nguyen &
Grover, 2022; Bruinsma et al., 2023; Guo et al., 2023):

− LV I(θ, ϕ, φ) = EDtrain

[
Eqϕ(z) log pθ(YT |XT , z)−DKL (qϕ(z)∥pφ(z|XC , YC))

]
(1)

− LML(θ, φ) = EDtrain

[
Epφ(z|XC ,YC) log pθ(YT |XT , z)

]
(2)

The approximate posterior distribution for VI-based methods is usually chosen as qϕ(z) =
qϕ(z|XT , YT , XC , YC). As the parameters of the conditional prior pφ(z|XC , YC) are unknown,
NPs couple its parameters with the approximate posterior pφ(z|XC , YC) ≈ qϕ(z|XC , YC). We now
replace the notation of the approximate posterior with φ for ML consistency:
−LV I(θ, φ) ≈ EDtrain

[
Eqφ(z) log pθ(YT |XT , z)−DKL (qφ(z|XT , YT , XC , YC)∥qφ(z|XC , YC))

]
(3)

The KL term in Eq 3 is sometimes referred to as the consistency regularizer (Wang et al., 2023;
Foong et al., 2020), which encourages the target set to be subsumed into the context set. This
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assumption, as will show later, is the source of the inference suboptimality of vanilla NPs in the
existence of finite capacity/data.

Rényi Divergences: The Rényi divergence (RD) (Van Erven & Harremos, 2014a) is defined on two
distributions with a hyperparamter α ∈ (0,+∞) and α ̸= 1:

Dα(q(z)∥p(z)) =
1

α− 1
log

∫
q(z)αp(z)1−αdz =

1

α− 1
logEq(z)

[
p(z)

q(z)

]1−α

. (4)

Note that the RD is closely related to the KL divergence in that if α → 1 then Dα(q∥p) →
DKL(q||p) (Van Erven & Harremos, 2014a). In other words, choosing α close to 1 would result in
a posterior as close to the standard VIs. Changing the KL divergence to RD can induce a robust
posterior via the hyperparameter α. To see this, consider the gradients of the RD wrt the posterior
parameters:

∂

∂φ
Dα (qφ(z)∥p(z)) =

α

α− 1

∫ [ p(z)
qφ(z)

]1−α
∂qφ(z)
∂φ dz

Eqφ(z)

[
p(z)
qφ(z)

]1−α (5)

where the influence of the density ratio p
q on the gradient is scaled by the power of (1− α) as opposed

to the unscaled ratio p
q of the standard KL divergence (Regli & Silva, 2018). This ratio determines

how much we can penalize the posterior with the prior. With the flexibility of choosing α, the model
can adjust the degree of prior penalization. Note that when α ∈ (0, 1), (pq )

1−α < p
q when p

q > 1 and
(pq )

1−α > p
q when p

q < 1, which means less penalty will be applied to the overestimated region of
the prior where p

q > 1. When the prior is misspecified, choosing the RD can lead to a more robust
posterior that focuses more on improving the likelihood and less on reducing the divergence (Futami
et al., 2018; Regli & Silva, 2018).

3 RÉNYI NEURAL PROCESSES

In this section we describe our Rényi Neural Process (RNP) framework, a simple yet effective strategy
which provides a more robust way to learn neural processes without changing the model. We start
by analyzing the main limitation of the standard neural process objective and present a motivating
example. We illustrate a case where the prior is misspecified and describe our new objective with the
RD to mitigate this.

3.1 MOTIVATION: STANDARD NEURAL PROCESSES AND PRIOR MISSPECIFICATION

We first consider a formal definition of prior misspecification.
Definition 3.1. (Prior misspecification (Huang et al., 2024)) Let η#Qφ be a pushforward of a
probability measure Qφ parameterized by φ under the map η: X × Y → Z . Then, {η#Qφ : φ ∈ Φ}
defines a set of distributions on the space Z induced by the model, and η#P is the pushforward of the
ground truth measure P. The prior model is misspecified if ∀φ ∈ Φ, η#Qφ ̸= η#P

The definition suggests that when the prior model η#Qφ is misspecified, there exists no optimal
parameter φ∗ that can represent the true prior η#P. This translate to NPs as the approximate
prior model qφ(z|XC , YC) in Eq 3 can not recover the ground truth prior p(z|XC , YC) for any
parameterization of φ . We now show how this definition can assist us to analyze how a misspecified
prior model can hinder neural processes learning.
Proposition 3.2. Due to the prior approximation in Eq 3, if the prior model is misspecified, meaning
that ∀φ ∈ Φ, η#Qφ(XC , YC) ̸= η#P(XC , YC), the resulting LV I is no longer a valid bound for
the marginal likelihood p(YT |XT , XC , YC).

Detailed proof can be found in Supp A.2. Proposition 3.2 challenges the common assumption
p(z|XC , YC) ≈ q(z|XC , YC) that most NPs make. Such assumption, as we will show next, may
result in a biased estimate of the posterior variance which hinders NP training.

Illustrative example: Fig 2 provides an example of a misspecified prior for neural processes. The
objective of this example is to compare how the vanilla NP and our proposed RNP behave when
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(a) Dtrain, Dtest (b) Testing posterior

(c) ANP LV I (d) ANP LRNP

Figure 2: An illustrative example of prior misspecification. (a) Dtrain ∼ GP(0,KRBF), Dtest ∼
GP(0,KMatern) are generated with different kernels to simulate prior misspecification. (b) Two
Gaussian posteriors with dz = 2 conditioned on the context set Ctest of Dtest ∼ GP(0,KMatern):
q(z|Ctest, φNPDtrain

) and q(z|Ctest, φRNPDtrain
). The RNP predicts lower variance estimates by re-

stricting the impacts of consistency regularization caused by the prior misspecification to avoid
oversmoothed predictions. (c) Predictive results with Attentive neural processes (ANP) (Kim et al.,
2019) on Dtest ∼ GP(0,Kperiodic) using the VI objective. The predictive mean underfits the data
due to the consistency regularizer of prior misspecification in standard KL optimization. (d) ANP
trained with our RNP objective dampens the consistency regularizer via the RD and explores the
expressiveness of posterior to better fit the context points and provide better uncertainty estimate.

the prior is misspecified. We delay the introduction of the formulation of LRNP in the next section,
which is unnecessary for the illustration.

Let Dtrain and Dtest denote datasets (meta-tasks) generated by two Gaussian Processes (GPs) with
different kernels. We first train an NP model on Dtrain using the vanilla NP objective: φNPDtrain

, θ∗ =

minφ,θ LV I(φ, θ;Dtrain). With that, we then fix the likelihood parameter θ∗ in order to isolate the
effect of the likelihood model on the predictive performance from the prior model and obtain another
posterior model using the RNP objective: φRNPDtrain

= minφ LRNP (φ, θ
∗;Dtrain). Now consider

evaluating both models using Dtest by conditioning on these parameters and the test context set
Ctest, then q(z|Ctest, φNPDtrain

) and q(z|Ctest, φRNPDtrain
) can be viewed as misspecified prior models

since their parameters were optimized on Dtrain which looks quite different from Dtest. The resulting
posteriors in Fig 2(b) show that RNPs obtaine a much smaller variance estimate, suggesting that the
consistency regularizer DKL (qφ(z|T,C)∥qφ(z|C)) is too strong in the vanilla NPs that it forces the
posterior to produce a higher variance. As a result, vanilla NPs produce oversmoothed predictions
that underfit the data as shown in Fig 2(c). In contrast, our RNP dampens the impacts of prior
misspecification via the RD divergence and our predictive model respect the expressiveness of the
posterior model better and produce superior predictive means as well as uncertainty estimate shown
in Fig 2(d).

Hence, we argue that using RNP is beneficial when existing NP models have only limited capacity/data
which could induce prior misspecification. We will now introduce our new neural process learning
method, which can be generally applied to NPs using either VI or ML objectives.

3.2 PROPOSED METHOD: NEURAL PROCESSES WITH THE NEW OBJECTIVES

New objective for VI-based NPs. The main issue of NPs is the prior approximation qφ(z|XC , YC)
wrt the true prior p(z|XC , YC). In this case, the posterior variance may be critically overestimated

4
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in some regions and underestimated in others. We therefore seek to obtain an alternative posterior
distribution to alleviate this prior misspecification. Depending on whether the original NP framework
is trained using the VI or the ML objective, we can revise the objective by minimizing the RD
instead of KLD on two distributions. More specifically, in the case of VI-NPs where the inference
of the latent variable q(z) is of interest, the RD between the the approximated posterior distribution
qφ(z|XT , YT , XC , YC) and the true posterior p(z|XT , YT , XC , YC) is minimized.

min
θ,φ

Dα (qφ(z|XT , YT , XC , YC)∥p(z|XT , YT , XC , YC)) (6a)

≈ max
θ,φ

1

1− α
logEqφ(z|XT ,YT ,XC ,YC)

[
pθ(YT |XT , z)qφ(z|XC , YC)

qφ(z|XT , YT , XC , YC)

]1−α

(6b)

where details can be found in A.4. Eq 6b is an approximation obtained by replacing p(z|XC , YC)
with qφ(z|XC , YC). We can approximate the intractable expectation with Monte Carlo:

−LRNP (θ, φ) =
1

1− α
EDtrain

[
log

1

K

K∑
k=1

[
pθ(YT |XT , zk)qφ(zk|XC , YC)

qφ(zk|XT , YT , XC , YC)

]1−α
]
, zk ∼ qφ(z|XT , YT , XC , YC).

(7)

Prior, posterior and likelihood models. One main advantage of RNP is we do not need to change the
parameters of interests of the original NP models. Therefore, for the likelihood model pθ(YT |XT , z)
we can adopt simple model architectures like NPs (Garnelo et al., 2018b) which assume independence
between target points pθ(YT |XT , z) =

∏N
n=1 pθ(yn|xn, z). The distribution of each target point

is then modelled as Gaussian pθ(yn|xn, z) = N (hµ(xn, z),Diag (hσ(xn, z))), and the decoder
networks hµ and hσ map the concatenation of the input feature xn and z to the distribution parameters.

The prior model qφ(z|XC , YC) is more interesting as it is a set-conditional distribution and we are
supposed to sample from it and evaluate the density of the samples. One feasible solution is to
define a parametric distribution on a DeepSet (Zaheer et al., 2017). For instance, qφ(z|XC , YC) =

N (gµ(h(C)),Diag(gσ(h(C))) where h(C) = 1
|C|
∑|C|

m=1 h(xm,ym) is a DeepSet function on the
context set C. In practice diagonal Gaussian distributions worked well with high dimensional latent
variables z. ANPs (Kim et al., 2019) incorporate dependencies between context points qφ(z|C) =
qφ(z|x1:m,y1:m) using self-attention networks. But one can consider more flexible distributions such
as conditional normalising flows (Luo et al., 2023) for sample and density estimation. As previously
stated, the posterior distribution is defined by coupling its parameters with the prior. Therefore the
posterior qφ(z|XT , YT , XC , YC) in the DeepSet case can be represented as qφ(z|XT , YT , XC , YC) =
N (gµ(h(C,T)),Diag(gσ(h(C,T))). To apply stochastic gradient descent over the parameters of

the posterior, we applied the reparameterization trick to obtain samples zk = g
1
2
σ (h(C,T)) ∗ ϵ +

gµ (h(C,T)) , ϵ ∼ N (0, I).

New objective for ML-based NPs. As the goal of NPs is to maximize predictive likelihood instead
of inferring the latent distribution, another type of NPs directly parameterize the likelihood model
without explicitly defining the latent variable z. Following Futami et al. (2018), we can rewrite the
maximum likelihood estimation as minimizing the KLD between the empirical distribution p̂(y|x,C)
and the model distribution p(y|x,C, θ):

− LML(θ) = max
θ

EDtrain log pθ(YT |XT ,C) (8)

≡ max
θ

EDtrain

[
1

N

N∑
n=1

log pθ(yn|xn,C)

]
≈ min

θ
EDtrain [DKL(p̂(y|x,C)∥pθ(y|x,C))] (9)

where p̂(y|x,C) is the empirical distribution defined as 1
N

∑N
n=1 δ(y,yn) where yn are samples

from the unknown distribution p∗(y|x,C). Replacing the KLD with RD we get:

min
θ

EDtrainDα (p̂(y|x,C)||pθ(y|x,C)) ≈ min
θ

EDtrain

1

N

N∑
n=1

1

α− 1
log p1−α

θ (yn|xn,C) + Const (10)

LRNPML(θ) = EDtrain

1

(α− 1)N

N∑
n=1

log p1−α
θ (yn|xn,C) =

1

(α− 1)N

N∑
n=1

log

(∫
pθ(yn, z|xn,C)dz

)1−α

(11)
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where details can be found in A.5. Note α = 0 corresponds to maximizing likelihood estimation
and the new RNP objective essentially reweights samples based on their likelihood. We define
pθ(yn, z|xn,C) = pθ(yn, z|xn)p(z|C) and use pφ(z|XC , YC) ≈ p(z|C) . Then Eq 10 can be
approximated with Monte Carlo:

LRNPML(θ, φ) ≈ EDtrain

1

(α− 1)N

N∑
n=1

log

(
1

K

K∑
k=1

pθ(yn|zk,xn)

)1−α

, zk ∼ pφ(z|XC , YC)

(12)
One advantage of ML-based method is that we do not need to estimate the density of the samples
from the prior model. Therefore, reparameterization tricks (Kingma et al., 2015) can be applied to
obtain samples from flexible prior models: zk = sφ(XC , YC , ϵk), ϵk ∼ N (0, I) where sφ is a neural
network.

4 PROPERTIES OF RNPS

We generalize the theorem from Rényi variational inference (Li & Turner, 2016) to RNPs:
Theorem 4.1. (Monotonicity (Li & Turner, 2016))

LRNP is continuous and non-increasing with respect to the hyper-parameter α.
Proposition 4.2. (Unification of the objectives)

LML = LRNP,α=0 ≥ LRNP,α∈(0,1) ≥ LRNP,α→1 = LV I .

Theorem 4.1 and Proposition 4.2 (Proof see Supp A.6) suggest that these objectives are bounded by
log
∫
p(YT |XT , z)q(z|XC , YC). However, it is not the marginal likelihood due to the approximation

q(z|XC , YC) ≈ p(z|XC , YC), and the training of NPs using these objectives does not guarantee the
validity of the approximation. Therefore, the optimal α that achieves the best likelihood might not
always correspond to 0, i.e., the maximum likelihood objective does not always guarantees the best
marginal likelihood, and we can still improve the test likelihood using our RNP objective. We show
in our experiment that benefits can be readily obtained by tuning α on a validation set.

Tuning α ∈ (0, 1) can mitigate prior misspecification in RNPs. We have shown that prior
misspecification can be handled by improving the mass-covering ability in NPs. We will present how
RNP can achieve this objective through the gradients of the parameters of the encoder networks φ
(more details can be found in Supp A.7):

∇φLRNP = Eqφ(z|C,T)

[
wα(z, XT , YT ,C)∇φ log

pθ(YT |XT , z)qφ(z|C)
qφ(z|C,T)

]
(13a)

with wα(z, XT , YT ,C) =
(
pθ(YT |XT , z)qφ(z|C)

qφ(z|C,T)

)1−α
/

Eq(z|C,T)

[
pθ(YT |XT , z)qφ(z|C)

qφ(z|C,T)

]1−α

(13b)

The influence of the density ratio q(z|T,C)
q(z|C) on the gradients is now scaled by [ q(z|C)

q(z|T,C) ]
1−α and

[ q(z|T,C)q(z|C) ]α respectively. Tuning α ∈ (0, 1) offers the flexibility of how much we intend to penalize
the gradients on the different regions of the posterior q(z|T,C) and q(z|C).

5 INFERENCE WITH RÉNYI NEURAL PROCESSES

During inference time, as we cannot access the ground truth for the target outputs YT , we use the
approximate prior q(z|XC , YC) instead of the posterior distribution q(z|XT , YT , XC , YC) to estimate
the marginal distribution:

p(YT |XT , XC , YC) =

∫
pθ(YT |XT , z)qφ(z|XC , YC)dz ≈ 1

K

K∑
k=1

pθ(YT |XT , zk), zk ∼ qφ(z|XC , YC).

(14)

We now provide the pseudo code for Rényi Neural Processes in Supp Algorithm 1. In addition to
vanilla neural processes, our framework can also be generalized to other neural process variants as
shown in the experiments section.
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6 RELATED WORK

Neural processes family. Neural processes (Garnelo et al., 2018b) and conditional neural pro-
cesses (Garnelo et al., 2018a) were initially proposed for the meta learning scheme where they make
predictions given a few observations as context. Both of them use deepset models (Zaheer et al.,
2017) to map a finite number of data points to a high dimensional vector and their likelihood models
assume independencies among data points. The main difference is whether estimating likelihood
maximization directly or introducing the latent variable and adopting variational inference framework.
Under the existing NP setting, more members were introduced with different inductive biases in the
model (Jha et al., 2022; Bruinsma et al., 2023; Dutordoir et al., 2023; Jung et al., 2024; Vadeboncoeur
et al., 2023). For instance, attentive neural processes (Kim et al., 2019) incorporated dependencies
between observations with attention neural works. Convolutional neural processes (Foong et al., 2020;
Huang et al., 2023) assume translation equivariance among data points. These two methods explicitly
defined the latent variable which requires density estimation. Recent works such as transformer neural
processes (Nguyen & Grover, 2022) and neural diffusion processes (Dutordoir et al., 2023) turn to
marginal likelihood maximization and do not have the latent distribution. More neural processes
which claim to provide exact (Markou et al., 2022) or tractable inference (Lee et al., 2023; Wang
et al., 2023) are introduced. Stable neural processes (Liu et al., 2024) argued that NPs are prone
to noisy context points and proposed a weighted likelihood model that focuses on subsets that are
difficult to predict, but do not focus regularizing the posterior distribution. Compared to variational
inference based methods, non-VI predictions can be less robust to noisy inputs in the data (Futami
et al., 2018). It is also challenging to incorporate prior knowledge (Zhang et al., 2018) into these
neural processes, which could be beneficial when no data is observed for the task.

Robust divergences. Divergences in variational inference can be viewed as an regularization on
the posterior distribution via the prior distribution. The commonly adopted KL divergence which
minimizes the expected density ratio between the posterior is infamous for underestimating the true
variance of the target distribution (Regli & Silva, 2018). Several other divergences have since been
proposed to focus on obtaining a robust posterior when the input and output features are noisy or the
existence of outliers. Examples of robust divergences include Rényi divergence (Lee & Shin, 2022),
beta and alpha divergences (Futami et al., 2018; Regli & Silva, 2018) and f-divergences (Cheng et al.,
2021). They provide the extra parameters or flexible functions to control the density ratio so that
the posterior can focus more on mass covering, mode seeking abilities or is robust against outliers.
Generalized variational inference (Knoblauch et al., 2019) suggested that any form of divergence can
be used to replace the KL objective when the model is misspecified. As neural processes facilitate
a posterior to approximate the prior distribution, we are able to control the density ratios of two
posterior distributions with robust divergences for better predictions.

7 EXPERIMENTS

Datasets and training details. We evaluate the proposed method on multiple regression tasks: 1D
regression (Garnelo et al., 2018a; Gordon et al., 2019; Kim et al., 2019; Nguyen & Grover, 2022),
image inpainting (Gordon et al., 2019; Nguyen & Grover, 2022). 1D regression includes three
Gaussian Process (GP) regression tasks with different kernels: RBF, Matern 5/2 and Periodic. Given
a function f sampled from a GP prior with varying scale and length and a context set generated by
such function, our goal is to predict the target distribution. The number of context points is randomly
sampled M ∼ U(3, 50), and the number of target points is N ∼ U(3, 50−M) (Nguyen & Grover,
2022). We choose 100,000 functions for training, and sample another 3,000 functions for testing. The
input features were normalized to [−2, 2]. Image inpainting involves 2D regression on three image
datasets: MNIST, SVHN and CelebA. Given some pixel coordinates x and intensities y as context,
the goal is to predict the pixel value for the rest of image. The number of context points for inpainting
tasks is M ∼ U(3, 200) and the target point count is N ∼ U(3, 200 −M). The input coordinates
were normalized to [−1, 1] and pixel intensities were rescaled to [−0.5, 0.5]. All the models can be
trained using a single GPU with 16GB memory.

Baselines. We first validate our approach on state-of-the-art NP families: neural processes (NP) (Gar-
nelo et al., 2018b), attentive neural processes (ANP) (Kim et al., 2019), Bayesian aggregation neural
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processes (BA-NP) (Volpp et al., 2021)1, transformer neural processes with diagonal covariances
(TNP-D) (Nguyen & Grover, 2022)2, and versatile neural processes (VNP) (Guo et al., 2023)3. For
VNPs, they chose different parameterizations for the prior and posterior models, which can be used
to validate if our objective is superior than simply decoupling the two models. We generalize the
NP objective to RNP using Eq 12 or Eq 7 depending on whether the baseline model infer the latent
distribution p(z). The methods are considered as a special case of α = 1 of RNP if the baseline
model uses the VI objective or α = 0 if the baseline model uses the ML-objective. The number
of samples K for the Monte Carlo is 32 for training and 50 for inference. Our experiments aim to
answer the following research questions: (1) Can RNPs achieve better performance over existing NP
frameworks? (2) How does the model perform under prior misspecifications? (3) How to select the
optimal α values? We also carry out ablation studies investigating how to select the optimal α values,
the number of MC samples and the number of context points for our RNP framework.

7.1 PREDICTIVE PERFORMANCE

We compare the test log-likelihood on both the context and target sets across different datasets.
Specifically, we adopted the VI-based RNP objective to train NPs, ANPs and VNPs as their model
designs include the prior models. We used the ML-based RNP objective to train TNP and BANP
because the TNP objective was originally defined using ML only and the ML objective significantly
outperformed the VI objective for BANPs. We set α = 0.7 to train for VI-based RNPs and analogously
α = 0.3 for ML-based baselines. However, we show in section 7.3 that, in fact, these values can be
set optimally via cross-validation. To put the baseline models in the spectrum, α = 1 corresponds
to the standard VI solutions (using the KLD), and α = 0 corresponds to the maximum likelihood
solutions.

Table 1 shows the mean test log-likelihood ± one standard deviation using 5 different random seeds
for each method. We see that RNP consistently improved log-likelihood over the other two objectives
and ranked the highest for all the baselines. RNP also consistently achieved better likelihood on
TNP-D and VNP which generally outperform other baseline models across datasets. Some prominent
improvements were achieved in harder tasks in 1D regression such as ANP Periodic and BA-NP
Periodic where the vanilla NP objectives underperform. As previously illustrated in Fig 2(c) and
Fig 2(d), RNP improves predictive performance by mitigating the oversmoothed predictions on
periodic data. This could suggest that a misspecified prior model in the vanilla NP objective imposes
an unjustifiable regularization on the posterior and hinder the expressiveness of the posterior and
consequently predictive performance. RNP also significantly improved test likelihood of BA-NP and
VNP on image inpainting tasks, demonstrating the superiority of RNPs on higher dimensional data.

7.2 PRIOR MISSPECIFICATION

In order to isolate the impacts of data and paramertization on the prior models q(z|C, φ), we designed
two sets of experiments for validation: q(z|Cbad, φ) which is conditioned on poor context data and
q(z|C, φbad) where the paramerization does not fit with the clean context data (Section 7.1 belongs
to this category). We corrupt the context data with random noise for the former and domain shift
datasets for the latter scenario (more detailed settings can found in section A.8). Table 2 shows the
test log-likelihood for the high-performing baseline TNP-D on two misspecified cases where tasks
are generated from different distributions during the meta training and meta testing phase and Supp
Table 4 shows test log-likelihood under noisy context. For the 1D regression task, the model is trained
using the Lotka-Volterra dataset which is generally used for prey-predator simulations. The dynamics
is controlled by a two-variable ordinary differential equations: ẋ = θ1x− θ2xy, ẏ = −θ3y + θ4xy
where x and y correspond to the populations of the prey and predator respectively. The parameters
are chosen as θ1 = 1, θ2 = 0.01, θ3 = 0.5, θ4 = 0.01 following (Gordon et al., 2019). The
number of context points is randomly sampled M ∼ U(15, 100), and the number of target points
is N ∼ U(15, 100 − M). We choose 20,000 functions for training, and sample another 1,000
functions for evaluation. We then test the model on a real-world Hare-Lynx dataset which tracks the
two species populations over 90 years. The input and output features were normalized via z-score

1https://github.com/boschresearch/bayesian-context-aggregation
2https://github.com/tung-nd/TNP-pytorch/tree/master/regression
3https://github.com/ZongyuGuo/Versatile-NP
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Table 1: Test set log-likelihood ↑. The best performance results for each dataset are in bold.

Model Set Objective RBF Matern 5/2 Periodic MNIST SVHN CelebA Avg rank

NP
(Garnelo et al., 2018b)

context
LV I 0.69±0.01 0.56±0.02 -0.49±0.01 0.99±0.01 3.24±0.02 1.71±0.04 2.3
LML 0.68±0.02 0.55±0.02 -0.48±0.03 1.00±0.01 3.22±0.03 1.70±0.03 2.5

LRNP (α) 0.78±0.01 0.66±0.01 -0.49±0.00 1.01±0.02 3.26±0.01 1.72±0.05 1.2

target
LV I 0.26±0.01 0.09±0.02 -0.61±0.00 0.90±0.01 3.08±0.01 1.45±0.03 2.3
LML 0.28±0.02 0.11±0.02 -0.61±0.01 0.92±0.01 3.07±0.02 1.47±0.02 1.8

LRNP (α) 0.33±0.01 0.16±0.01 -0.62±0.00 0.91±0.01 3.09±0.01 1.45±0.03 1.7

ANP
(Kim et al., 2019)

context
LV I 1.38±0.00 1.38±0.00 0.65±0.04 1.38±0.00 4.14±0.00 3.92±0.07 1.3
LML 1.38±0.00 1.38±0.00 0.63±0.03 1.38±0.00 4.14±0.01 3.86±0.07 1.7

LRNP (α) 1.38±0.00 1.38±0.00 1.22±0.02 1.38±0.00 4.14±0.00 3.97±0.03 1.0

target
LV I 0.81±0.00 0.64±0.00 -0.91±0.02 1.06±0.01 3.65±0.01 2.24±0.03 1.7
LML 0.80±0.00 0.64±0.00 -0.89±0.02 1.04±0.01 3.65±0.01 2.23±0.03 2.2

LRNP (α) 0.84±0.00 0.67±0.00 -0.57±0.01 1.05±0.01 3.61±0.02 2.24±0.02 1.3

BA-NP
(Volpp et al., 2021)

context
LV I 1.43±0.03 1.04±0.08 -0.65±0.02 0.81±0.84 2.76±0.59 1.65±0.01 2.3
LML 1.30±0.09 0.69±0.05 -0.70±0.07 3.62±0.06 4.87±0.05 2.02±0.02 2.3

LRNP (α) 1.45±0.04 1.01±0.04 -0.41±0.02 3.85±0.09 4.88±0.05 2.00±0.02 1.3

target
LV I 1.19±0.03 0.79±0.09 -0.89±0.01 0.24±0.64 2.60±0.50 1.30±0.01 2.5
LML 1.12±0.08 0.53±0.04 -0.91±0.05 3.56±0.06 4.29±0.04 1.63±0.01 2.3

LRNP (α) 1.22±0.04 0.79±0.03 -0.72±0.02 3.79±0.09 4.31±0.02 1.61±0.02 1.2

TNP-D
(Nguyen & Grover, 2022)

context LML 2.58±0.01 2.57±0.01 -0.52±0.00 1.73±0.11 10.63±0.12 4.61±0.27 1.8
LRNP (α) 2.59±0.00 2.59±0.00 -0.52±0.00 1.81±0.12 10.72±0.08 4.66±0.23 1.0

target LML 1.38±0.01 1.03±0.00 -0.59±0.00 1.63±0.07 6.69±0.04 2.45±0.05 1.8
LRNP (α) 1.41±0.00 1.04±0.00 -0.59±0.00 1.67±0.07 6.71±0.04 2.46±0.06 1.0

VNP
(Guo et al., 2023)

context LV I 1.37±0.00 1.37±0.00 1.23±0.03 1.60±0.10 0.80±0.00 0.08±0.03 2.0
LRNP (α) 1.38±0.00 1.38±0.00 1.32±0.01 3.63±0.39 4.00±0.06 2.65±0.06 1.0

target LV I 0.90±0.02 0.70±0.03 -0.49±0.00 1.59±0.10 0.80±0.00 0.08±0.03 2.0
LRNP (α) 0.92±0.01 0.71±0.03 -0.48±0.00 3.62±0.37 3.89±0.06 2.49±0.06 1.0

(a) ANP LV I (b) ANP LRNP

(c) TNP-D LML (d) TNP-D LRNP

Figure 3: Prior misspecification experiment. Both
models are trained on simulated Lotka-Volterra data
and tested on the real-world Hare-Lynx dataset.

(a) α on RBF

(b) α on MNIST

Figure 4: Hyperparameter(α) tuning.

normalization. Our method in table 4 shows outperformance across multiple datasets as the impact
of misspecified contexts is alleviated via the divergence. The results in table 2 show that RNP
significantly outperformed the ML objective on both the training and testing data, highlighting the
robustness of our objective. Fig 3 shows the prediction results on the Lynx dataset, where the RNP
achieves better uncertainty estimate and tracks the seasonality of the data more efficiently than the
ML objective. We also tested TND-D on the Extended MNIST dataset with 47 classes that include
letters and digits. We use classes 0-10 for meta training and hold out classes 11-46 for meta testing
under prior misspecification. Table 2 shows that RNP performed slightly worse on the EMNIST
training task but significantly outperformed the ML objective on the test set (last column), which
demonstrates the superior robustness of the new objective under misspecification.

7.3 HYPER-PARAMETER TUNING

How to select the optimal α values? We have already shown choosing some α can obtain better
log-likelihood across different datasets. We now demonstrate that one can find the optimal task-
specific α value to further improve the performance. Following (Futami et al., 2018), we use cross
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Table 2: Loglikelihood ↑ under prior misspecification using TNP-D.

Objective
Dtrain

(Lotka-Volterra)
Misspec Dtest
(Hare-Lynx)

Dtrain EMNIST
(class 0-10)

Misspec Dtest
(class 11-46)

context target context target context target context target

LML 3.09±0.22 1.98±0.11 -0.59±0.47 -4.44±0.41 1.54±0.05 1.56±0.07 0.03±0.97 -0.20±0.57
LRNP 3.32±0.15 2.12±0.06 -0.17±0.31 -3.63±0.09 1.52±0.08 1.47±0.12 0.96±0.18 0.70±0.15

validation for α selection. We hyper-searched the α values from 0 to 2 with an interval of 0.1. For
α = 1, we use the vanilla NP objective. As shown in Fig 4(a) and Fig 4(b), the optimal solutions
are data-specific and model specific, but α ∈ (0, 1) generally improves the NP objective more than
α > 1. Empirically, we found α = 0.7 for the VI objectives and α = 0.3 for the ML objectives
keep a good balance between performance improvement and prior regularization. We also provide
a heuristic strategy to effecienctly train the RNP framework by annealing α from close to 1 and
decreasing it to 0 (details can be found A.9).

7.4 ABLATION STUDIES

(a) MC samples (b) Number of context points

Figure 5: Ablation study.

Effects of Monte Carlo samples on likeli-
hood. As both RNP (Eq 7) and RNP-ML
(Eq 12) require MC approximations, we in-
vestigate the effects of the number of MC
samples K on predictive likelihood. We
set K ∈ {1, 8, 16, 32, 50} for optimizing
the RNP objective during training and use
K = 50 for inference. Note that K = 1
corresponds to the deterministic NPs (condi-
tional NPs). Fig 5(a) shows both the context
and target log-likelihood for three methods:
NP, ANP and TNP-D on the RBF dataset.
As expected, increasing the number of MC
samples improves the LL mean and also re-
duces the variance for all the methods with

K = 50 achieving the highest LL and the smallest variance. In practice, we set K = 32 to balance
performance and memory efficiency.

Effects of the number of context points on likelihood. We study the effect of the context points on
the target likelihood. During training the number of context points is sampled from U(3, 50) and we
vary the number of context points from 5 to 95 at an interval of 10 for evaluation. The results of RBF
in Fig 5(b) shows that increasing the context set size leads to improved LL for all the methods. Most
methods (e.g., NP, ABP, VNP) plateaued after the number of contexts increases to more than 45,
whereas TNP-D still shows unsaturated performance improvement with the increased context size.

8 CONCLUSION

In this paper, we propose the Rényi Neural Process (RNP), a new NP framework designed to mitigate
prior misspecification in neural processes. We bridge the commonly adopted variational inference
and maximum likelihood estimation objectives in vanilla NPs through the use of Rényi divergence
and demonstrate the superiority of our generalized objective in improving predictive performance
by selecting optimal α values. We apply the framework to multiple state-of-the-art NP models and
observe consistent log-likelihood improvements across benchmarks, including 1D regression, image
inpainting, and real-world regression tasks. Our framework can be further extended to improve the
robustness of contextual inferences, such as prompt design in large language models. Limitations of
our framework lie in drawing multiple samples with Monte-Carlo which scarifies the computational
efficiency in exchange for better performance and infeasibility to compute analytical solutions on the
divergence.
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A APPENDIX

A.1 PSEUDOCODE

Algorithm 1 Rényi Neural Processes

Input: Context inputs XC and outputs YC . Target inputs XT , and target outputs YT during training
Output: Target distribution p(YT |XT , XC , YC)
Training:
for epoch=1 to max_epoch do

Sample a context set (XC , YC) and a target set (XT , YT )
Obtain the posterior distribution with the encoding network: qφ(z|XT , YT , XC , YC)
Obtain the approximated prior distribution with the encoding network: qφ(z|XC , YC)
Sample z1, ..., zK ∼ qφ(z|XT , YT , XC , YC)
Construct the likelihood model with the decoding network: pθ(YT |XT , zk)
Compute the objective LRNP using Eq 7 or Eq 12
Update the encoder parameters with ∇φL (Eq 13b) and the decoder parameters with ∇θL

end for
Inference:
Construct the approximated prior qφ(z|XC , YC)
Sample z1, ..., zK ∼ qφ(z|XC , YC)
Predict the target distribution pθ(YT |XT , zk)
Estimate the log-likelihood of the target outputs using Eq 14.

Table 3: Notation

Name Description

f function sample from a stochastic process
X input space
Y output space
Z latent space
x input features
y output features
z latent variable representing stochasticity of the functional sample f
XC RM×D context inputs
YC RM×1 context outputs
XT RN×D target inputs
YT RN×1 target outputs
M number of samples in the context set, indexed by m
N number of samples in the target set, indexed by n
Dx dimension of input features
Dy dimension of input features
C,T notation for Context and Target
φ parameters in the posterior model q(z|X,Y )
θ parameters in the likelihood model p(Y |z, X)
η pushward of a measure P : X × Y → Z
K number of z samples for Monte Carlo approximation
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A.2 PROOF OF PROPOSITION 3.2

The true ELBO of neural processes without prior approximation can be written as:

ELBO = Eqφ(z|XT ,YT ,XC ,YC) log pθ(YT |XT , z)−DKL (qφ(z|XT , YT , XC , YC)∥p(z|XC , YC))

(15a)
= Eqφ(z|C,T)[log pθ(YT |XT , z) + log p(z|C)− log qφ(z|C,T) + log qφ(z|C)− log qφ(z|C)]

(15b)

= Eqφ(z|C,T)

[
log

pθ(YT |XT , z)qφ(z|C)
qφ(z|C,T)

+ log
p(z|C)
qφ(z|C)

]
(15c)

= Eqφ(z|C,T)

[
log

pθ(YT |XT , z)qφ(z|C)
qφ(z|C,T)

]
+ Eqφ(z|C,T)

[
log

p(z|C)
qφ(z|C)

]
(15d)

= −LV I + Eqφ(z|XT ,YT ,XC ,YC) log
p(z|XC , YC)

qφ(z|XC , YC)
(15e)

A.3 GRADIENTS OF THE DIVERGENCE IN NEURAL PROCESSES

We derive the gradients of the KL divergence term in the NP loss. As the the prior model couples its
parameters with the posterior model, the result is different from the standard VI.

∇φLV I = ∇φ

(
Eqφ(z|C,T)

[
log

pθ(YT |XT , z)qφ(z|C)
qφ(z|C,T)

])
(16a)

=

∫ (
qφ(z|C,T)∇φ log

pθ(YT |XT , z)qφ(z|C)
qφ(z|C,T)

+∇φqφ(z|C,T)
[
log

pθ(YT |XT , z)qφ(z|C)
qφ(z|C,T)

])
dz

(16b)

=

∫
qφ(z|C,T) [−∇φ log qφ(z|C,T) +∇φ log qφ(z|C)] +∇φqφ(z|C,T)

[
log

pθ(YT |XT , z)qφ(z|C)
qφ(z|C,T)

]
dz

(16c)

=

∫
qφ(z|C,T)
qφ(z|C)

∇φqφ(z|C)−∇φqφ(z|C,T) +∇φqφ(z|C, T )
[
log

pθ(YT |XT , z)qφ(z|C)

qφ(z|C, T )

]
dz (16d)

=

∫ (
qφ(z|C,T)
qφ(z|C)

∇φqφ(z|C) +
[
log

pθ(YT |XT , z)qφ(z|C)

qφ(z|C, T )
− 1

]
∇φqφ(z|C,T)

)
dz (16e)

A.4 DERIVATION OF LRNP (EQ 7)

min
θ,φ

Dα (qφ(z|XT , YT , XC , YC)∥p(z|XT , YT , XC , YC)) (17)

= min
θ,φ

1

α− 1
logEqφ(z|XT ,YT ,XC ,YC)

[
p(z|XT , YT , XC , YC)

qφ(z|XT , YT , XC , YC)

]1−α

(By definition) (18)

= max
θ,φ

1

1− α
logEqφ(z|XT ,YT ,XC ,YC)

[
p(z, YT |XT , XC , YC)

qφ(z|XT , YT , XC , YC)

]1−α

+ Const.(Split marginal likelihood)

(19)

= max
θ,φ

1

1− α
logEqφ(z|XT ,YT ,XC ,YC)

[
p(z, YT |XT , XC , YC)

qφ(z|XT , YT , XC , YC)

]1−α

(Equivalence of removing the constant)

(20)

≈ max
θ,φ

1

1− α
logEqφ(z|XT ,YT ,XC ,YC)

[
pθ(YT |XT , z)qφ(z|XC , YC)

qφ(z|XT , YT , XC , YC)

]1−α

(21)
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A.5 DERIVATION OF LRNPML (EQ 12)

We start by rewriting the ML objective (Eq 8) as minimizing the KL divergence:

− LML(θ) = max
θ

EDtrain log pθ(YT |XT ,C) (22)

= max
θ

EDtrain

[
1

N

N∑
n=1

log pθ(yn|xn,C)

]
+ Const (Average likelihood for stabilized training)

(23)

≈ max
θ

EDtrain

∫
p̂(y|x,C) log pθ(y|x,C)dy( Definition of the empirical distribution) (24)

= max
θ

EDtrain

∫
p̂(y|x,C) [log pθ(y|x,C)− log p̂(y|x,C) + log p̂(y|x,C)] dy (25)

≡ min
θ

EDtrain [DKL (p̂(y|x,C)∥pθ(y|x,C))] (Definition of KLD and removing the constant without θ)

(26)

We now replace the KLD with RD

min
θ

EDtrain [Dα(p̂(y|x,C)∥pθ(y|x,C))] (27)

= min
θ

EDtrain

1

α− 1

[
log

∫
p̂α(y|x,C)p1−α

θ (y|x,C)dy
]
(Definition of RD) (28)

≈ min
θ

EDtrain

1

α− 1

[
log

N∑
n=1

(
1

N
)αp1−α

θ (yn|xn,C)

]
(Definition of the empirical distribution)

(29)

= min
θ

EDtrain

1

α− 1
log

N∑
n=1

p1−α
θ (yn|xn,C) + Const( Split the non-θ term) (30)

≡ min
θ

EDtrain

1

(α− 1)N
log

N∑
n=1

p1−α
θ (yn|xn,C)(Average likelihood for stabilized training) (31)

= min
θ

EDtrain

1

(α− 1)N

N∑
n=1

log

(∫
pθ(yn, z|xn,C)dz

)1−α

(32)

A.6 THEORETICAL RELATIONSHIPS BETWEEN THE LV I , LML AND LRNP OBJECTIVES. 4.2

Our Rényi objective unifies the common three objectives for NPs: LV I ,LML (maximum likelihood
estimation), and LCNP (conditional NPs or deterministic NPs).

− LRNP :
1

1− α
logEqφ(z|XT ,YT ,XC ,YC)

[
pθ(YT |XT , z)qφ(z|XC , YC)

qφ(z|XT , YT , XC , YC)

]1−α

(33a)

− LV I(α → 1) : Eqφ(z|XT ,YT ,XC ,YC) log

[
pθ(YT |XT , z)qφ(z|XC , YC)

qφ(z|XT , YT , XC , YC)

]
(33b)

− LML(α = 0) : logEqφ(z|XC ,YC)pθ(YT |XT , z) (33c)

− LCNP (α = 0 and qφ(z|XC , YC) = δ(φ(XC , YC)) : log pθ(YT |XT , φ(XC , YC)) (33d)
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Proof of the ML objective:

LRNP (α=0) = logEqφ(z|XT ,YT ,XC ,YC)

[
pθ(YT |XT , z)qφ(z|XC , YC)

qφ(z|XT , YT , XC , YC)

]
(34a)

= log

∫
qφ(z|XT , YT , XC , YC)

[
pθ(YT |XT , z)qφ(z|XC , YC)

qφ(z|XT , YT , XC , YC)

]
(34b)

= log

∫
pθ(YT |XT , z)qφ(z|XC , YC) = logEqφ(z|XC ,YC)pθ(YT |XT , z) = LML (34c)

Proof of the NPVI objective: Next we will prove that LRNP,α→1 = LV I . Applying Theorem 5
from (Van Erven & Harremos, 2014a) to the new posteior and prior, we have:

Dα→1 (qφ(z|XT , YT , XC , YC)||p(z|XT , YT , XC , YC)) (35a)
= KL (qφ(z|XT , YT , XC , YC)||p(z|XT , YT , XC , YC)) (35b)

= Eqφ(z|XT ,YT ,XC ,YC) log
qφ(z|XT , YT , XC , YC)p(YT |XC , YC , XT )

p(z, YT |XT , XC , YC)
(35c)

= −Eqφ(z|XT ,YT ,XC ,YC) log
p(z, YT |XT , XC , YC)

qφ(z|XT , YT , XC , YC)
+ Const (35d)

≡ −Eqφ(z|XT ,YT ,XC ,YC) [log p(YT |z, XT ) + log pφ(z|XC , YC)− log qφ(z|XT , YT , XC , YC)] = LV I

(35e)

A.7 GRADIENTS OF OBJECTIVES FOR RÉNYI NEURAL PROCESSES

∇φLRNP = −∇φ

(
1

α− 1
log

∫ [
p(YT |XT , z)

1−αqφ(z|C)1−αqφ(z|C,T)α
]
dz

)
(36a)

=
1

1− α

∫
∇φ

[
p(YT |XT , z)

1−αqφ(z|C)1−αqφ(z|C,T)α
]
dz∫

p(YT |XT , z)1−αqφ(z|C)1−αqφ(z|C,T)αdz
(36b)

=
1

1− α

∫
p(YT |XT , z)

1−α∇φ
[
qφ(z|C)1−αqφ(z|C,T)α

]
dz∫

p(YT |XT , z)1−αqφ(z|C)1−αqφ(z|C,T)αdz
(36c)

=
1

1− α

A∫
p(YT |XT , z)1−αqφ(z|C)1−αqφ(z|C,T)αdz

(Product rule)

A =

∫
p(YT |XT , z)

1−α

[
α

(
qφ(z|C,T)
qφ(z|C)

)α−1

∇φqφ(z|C,T) + (1− α)

(
qφ(z|C,T)
qφ(z|C)

)α

∇φqφ(z|C)

]
dz

(36d)

A.8 PRIOR MISSPECIFICATION SETTINGS

We consider two scenarios of prior misspecification: q(z|Cbad, φ) and q(z|C, φbad). For
q(z|Cbad, φ), we design the experiments with the following setting: keep the target data (XT , YT )
clean and corrupt the context data with noise ỹC = (1 − β) ∗ yC + β ∗ ϵ, ϵ ∼ N (0, 1). The
noise level β is set as 0.3 for both training and testing, and the marginal predictive distribution is
p(YT |XT , XC , ỸC) and we report the test target set log-likelihood in Table 4.

For bad parameterization q(z|C, φbad). We adopted domain shift datasets since p(z|Dtrain) and
p(z|Dtest) do not come from the same distribution. Therefore, the prior model is suboptimal when
conditioned on the training parameters q(z|C, φtrain).

A.9 AUTOMATIC TUNING OF α.

We can start with training the model with the KL objective (α → 1) then gradually decrease (with
granularity according to computational constraints) to 0. The intuition is inspired by KL annealing
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Table 4: Test log-likelihood with noisy contexts.

Model Obj RBF Matern 5/2 Periodic MNIST SVHN CelebA

NP LV I -0.53 ± 0.01 -0.56 ± 0.01 -0.74 ± 0.00 0.76 ± 0.02 2.81 ± 0.04 0.89 ± 0.07
LRNP -0.45 ± 0.01 -0.50 ± 0.01 -0.73 ± 0.00 0.83 ± 0.02 2.98 ± 0.01 1.16 ± 0.02

ANP LV I -2.43 ± 0.19 -2.15 ± 0.18 -0.99 ± 0.01 0.90 ± 0.02 2.83 ± 0.06 1.55 ± 0.05
LRNP -2.29 ± 0.12 -2.11 ± 0.15 -1.20 ± 0.03 0.96 ± 0.01 3.11 ± 0.02 1.82 ± 0.03

Table 5: RNP results with automatic tuning of α values

Model Set Setting RBF Matern 5/2 Periodic MNIST SVHN

NP
context LV I 0.69±0.01 0.56±0.02 -0.49±0.01 0.99±0.01 3.24±0.02

LRNP _adaα 0.75±0.02 0.61±0.02 -0.49±0.00 1.01±0.01 3.26±0.01

target LV I 0.26±0.01 0.09±0.02 -0.61±0.00 0.90±0.01 3.08±0.01
LRNP _adaα 0.31±0.01 0.13±0.01 -0.61±0.00 0.92±0.01 3.10±0.01

ANP
context LV I 1.38±0.00 1.38±0.00 0.65±0.04 1.38±0.00 4.14±0.00

LRNP _adaα 1.38±0.00 1.38±0.00 0.97±0.11 1.38±0.00 4.14±0.00

target LV I 0.81±0.00 0.64±0.00 -0.91±0.02 1.06±0.01 3.65±0.01
LRNP _adaα 0.83±0.01 0.66±0.01 -0.71±0.05 1.06±0.01 3.65±0.01

TNPD
context LV I 2.58±0.01 2.57±0.01 -0.52±0.00 1.73±0.11 10.63±0.12

LRNP _adaα 2.58±0.01 2.57±0.01 -0.52±0.00 1.94±0.02 10.73±0.57

target LV I 1.38±0.01 1.03±0.00 -0.59±0.00 1.63±0.07 6.69±0.04
LRNP _adaα 1.39±0.00 1.03±0.00 -0.59±0.00 1.56±0.02 6.71±0.24

Table 6: Simple baseline comparison. In the setting column Separate PQ means the prior and posterior
models are parameterised separately for the NP frameworks and optimised using the VI objective

Model Set Setting RBF Matern 5/2 Periodic MNIST SVHN

NP context
Separate PQ 0.56±0.02 0.41±0.01 -0.50±0.00 1.00±0.03 3.21±0.01
LRNP (α) 0.78±0.01 0.66±0.01 -0.49±0.00 1.01±0.02 3.26±0.01

target
Separate PQ 0.18±0.01 0.01±0.00 -0.61±0.00 0.90±0.02 3.05±0.01
LRNP (α) 0.33±0.01 0.16±0.01 -0.62±0.00 0.91±0.01 3.09±0.01

ANP context
Separate PQ 1.38±0.00 1.38±0.00 -0.17±0.25 1.38±0.00 4.14±0.00
LRNP (α) 1.38±0.00 1.38±0.00 1.22±0.02 1.38±0.00 4.14±0.00

target
Separate PQ 0.80±0.01 0.63±0.01 -0.70±0.02 1.06±0.00 3.66±0.01
LRNP (α) 0.84±0.00 0.67±0.00 -0.57±0.01 1.05±0.01 3.61±0.02

for VAE models Bowman et al. (2016), which starts with a strong prior penalization (close to 1) to
reduce the posterior variance quickly and gradually reduces the prior penalization (close to 0) and
focuses more on model expressiveness. The results are presented in Table 5. Our heuristics still
managed to outperform the baselines across multiple datasets and methods.

A.10 ADDITIONAL RESULTS.

We provided some qualitative results of the baseline NPs as well as their corresponding RNPs.

Table 6 compares RNP with a simple baseline model using separate parameters of the prior and
posterior models.

Table 7 added a wall clock time comparison between our objective and the VI objective.

Alternative objective using a prior-based “local” RD. Recall that in standard variational inference
the main goal is to minimize the KL divergence between the approximate posterior and the true
posterior KL(q(z|x)||p(z|x)). Since the true posterior is unavailable, VI instead maximizes the
ELBO, which is the sum of an expected log likelihood term and the negative KL divergence between
the approximate posterior and the prior KL(q(z|x)||p(z)).
In contrast, our approach minimizes the RD directly, as it involves the logarithm of an expectation
instead of the expectation of a logarithm. However, it is possible to maximize an objective analogous
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(a) NP LV I (b) NP LRNP

(c) ANP LV I (d) ANP LRNP

(e) BA-NP LV I (f) BA-NP LRNP

(g) TNPD LML (h) TNPD LRNP

(i) VNP LV I (j) VNP LRNP

Figure 6: 1D regression RBF dataset.
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(a) NP LV I (b) NP LRNP

(c) ANP LV I (d) ANP LRNP

(e) BA-NP LV I (f) BA-NP LRNP

(g) TNPD LML (h) TNPD LRNP

(i) VNP LV I (j) VNP LRNP

Figure 7: 1D regression Matern dataset.
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(a) NP LV I (b) NP LRNP

(c) ANP LV I (d) ANP LRNP

(e) BA-NP LV I (f) BA-NP LRNP

(g) TNPD LV I (h) TNPD LRNP

(i) VNP LV I (j) VNP LRNP

Figure 8: 1D regression Periodic dataset.
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Table 7: Wall clock time (in seconds) comparison. 32 MC samples were chosen during training to be
consistent with the results in Table 1.

Model Setting RBF Matern 5/2 Periodic MNIST SVHN

NP LV I 1028 1015 1067 3231 4620
LRNP (α) 1108 1000 1048 3058 4780

ANP LV I 1585 1620 1721 3770 5391
LRNP (α) 1712 1693 1671 3605 5444

to the ELBO: Eq(z|XT ,YT ,XC ,YC) log p(YT |XT , z)−Dα(q(z|XT , YT , XC , YC)||p(z|XC , YC)) that
replaces the prior-based KL divergence with the RD. We will refer to this objective as “local”.

Figure 9: Local α divergence

Fig 9 shows the test log-likelihood difference between two objec-
tives using the optimal α values. Our method outperforms the local
Rényi divergence on three GP regression tasks. By comparing the
gradient over the posterior parameters of the two objectives, our
objective adds a scaling factor p(YT |XT , z)

1−α to the “local ” RD
objective, which imposes a larger gradient penalty on less confident
predictions and therefore focus more on samples with low likeli-
hoods. This further improves the mass covering behaviour of the
RNP and leads to better log-likelihood values.
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