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Reproducibility Summary1

Scope of Reproducibility2

In this work we perform a replication study of the paper “Towards Visually Explaining Variational Autoencoders".3

This paper claims to have found a method to provide visual explanations of Variational Autoencoders (VAEs). The4

paper’s primary claim is that their proposed method can generate gradient-based attention maps from the latent space of5

a VAEs. This is visually demonstrated on the MNIST dataset. Moreover, these attention maps are claimed to be useful6

for anomaly detection, which is demonstrated on the UCSD Ped1 and MVTec-AD datasets. Finally, this method is7

integrated into a loss function to obtain the attention disentanglement loss. This loss is shown to improve latent space8

disentanglement when integrated into a FactorVAE model, which is demonstrated on the dSprites dataset. This paper9

aims to reproduce all of the claims stated above.10

Methodology11

In order to produce attention maps which can localize anomalies for the MNIST dataset the code from the repository of12

the authors could be reused. Additional models were implemented for the UCSD Ped1 and MVTec-AD datasets based13

on supplementary material provided for the original paper. To reproduce the latent space disentanglement results, a14

AD-FactorVAE model – which combines the attention disentanglement loss and FactorVAE model – was implemented15

based on the original paper, the original paper’s supplement, the FactorVAE paper and external code sources.16

Results17

The attention maps for the MNNIST dataset were successfully replicated. Nevertheless, we failed to reproduce the18

results for the UCSD Ped1 and MVTec-AD dataset. Furthermore, we were unable to reproduce the results for the19

AD-FactorVAE. Potential explanations for this could be the incorrect aggregation and/or weighting of the attention20

disentanglement loss, not training the models for enough epochs, or not using the correct method to produce the21

attention maps.22

What was easy23

Reproducing the attention maps and anomaly localization results for the MNIST dataset was relatively easy.24

What was difficult25

Reproducing the anomaly localization results for the UCSD Ped1, and MVTec-AD datasets was difficult. Additionally,26

reproducing the disentanglement results using the AD-FactorVAE proved to be problematic.27

Communication with original authors28

Except for a reply to our initial e-mail updating them of our attempt to reproducing the paper and asking if they would29

share more of their code, which they declined, the authors of the paper did not respond to any of our questions.30

Submitted to ML Reproducibility Challenge 2020. Do not distribute.



1 Introduction31

This paper describes our attempt to reproduce the paper “Towards Visually Explaining Variational Autoencoders" by Liu32

et al [1]. Their paper introduces a method to provide visual explanations for variational autoencoders (VAEs) [2], which33

is inspired by the recent development of gradient-based attention maps for Convolutional Neural Networks (CNNs) that34

aid in visualizing and understanding these models [3]. The attention maps highlight areas of an image that are important35

for the classification (in the CNN case) or reconstruction (in the VAE case) of the respective image. It is important36

to search for these explanations since deep learning models tend to be difficult to interpret due to their complicated37

structure [4]. This complexity allows for superior performance but also prevents creators from understanding the reasons38

behind their models’ outputs. If the models’ underlying assumptions cannot be made explicit, there is a possibility39

that the predictions of the models rely on false assumptions. This could cause failure in later stages of deployment.40

Furthermore, adequate explanations for predictions can improve consumers’ trust in the abilities and fairness of a model41

[5]. Additionally, we could learn new properties of the data with these explanations, and improve our own decision42

making abilities [6]. Deep models have been especially successful in the field of computer vision and have been widely43

adopted in real-life tasks which makes the demand for proper understanding of their performance all the more urgent44

[7, 8, 9]. The performance of techniques to produce explanations can generally only be determined by qualitative45

analysis, which is highly subjective and selective since not all train or test instances can be evaluated. Thus, we decided46

to reproduce a paper that not only promises to provide a method that can generate visual explanations for VAEs but also47

states that these attention maps produce state-of-the-art anomaly localization results and can be used to improve latent48

space disentanglement, which can both be quantitatively measured.49

2 Scope of reproducibility50

The original paper proposes a gradient-based technique to produce visual attention maps for VAEs [1]. It claims51

that these attention maps are not only useful as explanations of VAE predictions but can also be used to perform52

anomaly localization, which is demonstrated on the MNIST, UCSD Ped1 and MVTec-AD datasets, and latent space53

disentanglement, which is demonstrated on the dSprites dataset. In this paper we try to reproduce the attention maps and54

the results for these two practical use-cases. In order to determine whether the paper can be successfully reproduced,55

the following claims were constructed that capture the most important statements and which can be either confirmed by56

our research (in which case the reproduction was successful) or rejected (in which case our reproduction has failed).57

• The method introduced in [1] is able to generate gradient-based attention maps from the latent space learned58

by a VAE model. These attention maps denote characteristics of a set of images that are important to the model59

and intuitively make sense, which is verified by qualitative analysis on the MNIST dataset.60

• The attention maps are useful for anomaly localization, which is demonstrated on the MNIST data set, for61

which only qualitative analysis is provided. Additionally, it is shown on the UCSD Ped1 dataset where it62

obtains a better AUROC score than the Vanilla-VAE method that simply computes the difference between the63

original and reconstructed image. Finally, the performance for anomaly localization is state-of-the-art, which64

is shown on the MVTec-AD dataset where it obtains AUROC and IOU scores that are better or similar to those65

obtained by the models compared in the MVTec-AD paper.66

• The attention maps can be used to improve latent space disentanglement by combining them into a loss67

function that can be added to the VAE loss during training. This is proven by incorporating the loss with68

the FactorVAE which results in a higher disentanglement score for the dSprites data set than the baseline69

FactorVAE model, while keeping a similar reconstruction loss.70

3 Methodology71

The following section discusses the implementation of the necessary functions to reproduce the claims stated in the72

previous section.73

3.1 Attention maps74

The first claim of the original paper is that the proposed gradient-based attention maps can explain the inner workings75

of a VAE model. Attention maps can be generated for each latent dimension separately. First, the image is forwarded76

through the model to obtain its latent representation. Subsequently, the activation of each of the dimensions of this77

representation is backpropagated to one of the last convolutional layers. The resulting gradients are aggregated per78

channel of the feature maps of the convolutional layer to obtain the weight given to each channel of the feature map.79
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This weighted sum of channels of the respective feature maps can then be used to retrieve the attention map of a single80

latent dimension. The method to obtain attention maps for anomaly detection is also closely related to this technique.81

The authors showcase how these attention maps explain the model by training models on a single class of images from82

the MNIST data set [10] and then showing attention maps generated by the model for images of other classes. These83

attention maps highlight areas which are not characteristic of the originally learned class.84

The training of the VAE model was done by following the instructions in the repository with the code made available by85

the authors which included the main training procedure and the experimental VAE architecture. Small adjustments86

were implemented to make the core run on CPU as well. Acquiring the dataset, and transforming this to the right data87

structure was already done in the provided code as well. In addition to training the models ourselves, we had access to88

the pre-trained models which could be downloaded via a link in the authors’ GitHub repository. The VAE structure –89

two convolutional layers followed by a fully connected layer in the encoder and a mirrored structure in the decoder –90

and the hyperparameters – image_size = 28 | batch_size = 128 | latent_space = 32 | learning_rate 0.001 – were described91

in the supplementary paper, which is available online1, as well as provided in the code base. The amount of epochs was92

unclear, but we trained the model for 100 epochs since this was the default provided in the code.93

The provided code already contained an implementation for attention map generation, which we could run after94

removing an erroneous parameter (gradient=one_hot) in the backpropagation function2. However, when consulting the95

paper it seemed that some parts of the code did not match the original method. By following the paper more closely we96

discovered that Liu et al. distinguish between two different methods, (1) the first is proposed to visualise explanations97

for VAEs by calculating the attention maps per latent dimension and aggregating these, and (2) the second is proposed98

specifically for anomaly detection where attention maps are generated from the sum of the inferred mean vector. In the99

provided code base only the (2) second method is implemented and so, in addition, we implemented the (1) first method100

ourselves.101

Besides implementing both methods, we also chose to test various functions in place of the ReLU in function (2) of102

the paper. This was done as the provided code implemented the absolute value instead of the ReLU, which seemed to103

give similar results and we were curious to see whether the sigmoid could be used as well, since this is also a common104

function used to scale values between 0 and 1. To conclude, we tested both the pre-trained models and the models105

trained from scratch with the two different methods and the three different functions.106

3.2 Anomaly detection107

The second claim by Liu et al. is that the attention maps are not only useful for anomaly localization but can produce108

state-of-the-art results. They show this by conducting qualitative and quantitative experiments on two different datasets109

for anomaly detection: the UCSD Ped1 dataset [11] and the MVTec-AD dataset [12].110

3.2.1 UCSD Ped1 set up111

The UCSD Ped1 dataset contains video frames of a pedestrian walkway where all non-pedestrains are considered to be112

anomalies. The implementation for the anomaly detection on the UCSD Ped1 dataset was not provided in the authors’113

code. For the qualitative research we could use the same approach as in the previous section, namely training a VAE114

model on the UCSD Ped1 training set – which does not contain any anomalies – and afterwards generate attention maps115

of the test set – which does contain anomalies – for each of the convolutional layers of the VAE using the (2) second116

method. The changes we had to make for these experiments consisted of implementing a different architecture for the117

VAE model containing three convolutional layers instead of two and adding functions to properly read in the UCSD118

Ped1 training and test set, which included resizing the images to 100 by 100 pixels. Table 2 in the addendum paper119

shows the architecture of the VAE model that was used for these experiments and specifies a learning rate of 0.0001120

with a batch size of 32 frames for training. The amount of epochs was unclear, but we ended up training the model for121

1000 epochs, which took around 4 hours on one NVIDIA 1080 GPU.122

For replicating the quantitative results, we implemented functions to evaluate the produced attention maps. The UCSD123

Ped1 test set contains both video frames containing anomalies as well as ground truth masks denoting the location of a124

possible anomaly. Given the anomaly attention maps, binary anomaly localization maps were generated using a variety125

of thresholds whose respective overlap with these ground truth masks is encapsulated in a pixel-level true positive rate126

(TPR), false positive rate (FPR) and ROC curve. Subsequently, these could be used to calculate the area under the ROC127

curve (ROC AUC) score using the sklearn metric ‘roc_auc_score‘. Furthermore, with the trained model we tried to128

reproduce the baseline score presented in the paper, which involved computing the difference between the input image129

and its reconstruction and similarly comparing the result with the ground truth masks to obtain the ROC AUC score.130

1https://openaccess.thecvf.com/content_CVPR_2020/supplemental/Liu_Towards_Visually_Explaining_CVPR_2020_supplemental.pdf
2The original authors have recently also updated their implementation in the same way we did.
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3.2.2 MVTec-AD set up131

In the paper, the anomaly detection is further tested on the in 2019 released MVTec Anomaly Detection (MVTec-AD)132

dataset [12]. This dataset consists of images of 15 natural objects and textures with different defects and pixel-level133

ground truth masks. Again the repository did not contain any code to run experiments specifically for this dataset, but134

the functions to obtain the attention maps using method (2) could be used. Additionally, we implemented the VAE135

as stated in Table 3 of the addendum paper by the authors. The encoder consists of a ResNet18 (except for its last136

two layers) followed by two linear layers and the decoder consists of two linear layers, six blocks containing a 2D137

Convolutional layer, batch normalization and a ReLU, and finally a sigmoid layer. During training, Adam was used138

for optimization with a learning rate of 1e−4 and batch size of 8. We trained a separate model for each object/texture139

category. Again, the number of epochs was undeclared, but we trained each category for 100 epochs due to time140

constraints.141

Before training, the data was augmented similarly to the MVTec-AD paper, of which the specifications are as follows.142

All images were resized to 256× 256 pixels. Additionally, they were randomly rotated between [-30◦, +30◦] and/or143

horizontally mirrored to create an augmented training set of 10.000 images per object/texture. The probability for the144

horizontal mirroring was not specified but chosen to be 0.5 because it is the default value for this method. The padding145

used after rotation was also unclear. We therefore decided to use black pixels since that is the standard parameter for146

padding. For comparison, the leather category was padded differently, namely with the colour of the original image’s147

upper-left pixel.148

After training, the attention maps for the images containing anomalies could be generated for the last convolutional149

layer of the VAE model. These attention maps could then be compared to the ground truth masks to obtain the ROC150

AUC score. Moreover, the intersection-over-union (IOU) score was also calculated from the ROC curve.151

The experiments were run on the same GPU node as the USCD data set. Creation of the augmented dataset took around152

1,5 hours per object, while training of one model for 100 epochs took around 2,5 hours. The MVTec-AD dataset has a153

size of 5GB and training requires around 11GB of memory154

3.3 Latent space disentanglement155

The authors’ code did not contain any implementation specific to the proposed attention disentanglement (AD) loss.156

Nonetheless, the code to generate attention maps applying the (2) method proved to be useful. Consequently, we had157

to implement the FactorVAE, disentanglement metric, and calculation of the AD loss ourselves. The authors use the158

FactorVAE [13] to showcase how the proposed loss can be integrated into other loss terms. They call this new version159

of the model AD-FactorVAE. To implement FactorVAE, we adapted an external GitHub repository [14] which was160

recommended to us by the original authors. From this repository we also adopted code to read in the dSprites dataset,161

which is used for the evaluation of both the FactorVAE and AD-FactorVAE [15]. We integrated the proposed loss162

into this implementation according to Equation 6 in the paper. Besides the model, the paper also makes use of the163

disentanglement metric proposed in the FactorVAE paper. The underlying assumption of this metric is that if the latent164

space is perfectly disentangled, then each latent dimension of the representation should correspond to a single latent165

factor used to generate the data. Consequently, if that latent factor is kept fixed, the variance of the corresponding166

latent dimensions should be 0. A majority vote classifier is trained to predict factors corresponding to specific latent167

dimensions by fixing single factors, passing data through the trained VAE model and checking for the dimension with168

the lowest variance. The metric is the accuracy of this classifier. The implementation of this metric was adopted from169

an external GitHub repository [16].170

The hyperparameters used for these experiments are shown in Table 1. The original paper states that they did not modify171

any parameters of the model compared the ones mentioned in the FactorVAE paper [13], other then increasing the172

number of latent dimensions from 10 to 32. The negative slope of the LeakyReLU in the Discriminator is not mentioned173

in the FactorVAE paper, however the adapted implementation assumes it to be 0.2. Moreover the authors also did not174

specify the size of the test set used to obtain the disentanglement score. We chose to use 200 votes, because this did not175

slow down the score calculation too much while still providing us with a robust indication of the accuracy. Additionaly,176

some hyperparameters of AD-FactorVAE were unclear from the paper. There is no optimal value stated for λ, the177

weight of the AD loss. It was also not clear how to aggregate AD losses of several latent dimension pairs or how to178

pick one or more pairs for the AD loss in general. However due to time constraints, we could only experiment with179

the different aggregation of AD losses for all possible dimension pairings. The experiments were again run on one180

NVIDIA 1080 GPU node. Training requires around 16GB memory and 24 hours to finish, while testing requires the181

same amount of memory and at most 30 minutes.182
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Optimizer: Adam Learning rate: 10−4 Batch size: 64
Latent dimensions: 32 VAE beta1: 0.9 VAE beta2: 0.999
LeakyReLU slope: 0.2 Discriminator beta1: 0.5 Discriminator beta2: 0.9
Metric batch size: 100 Metric training size: 800 Metric evaluation size: 200
γ value: {20, 40, 100} λ value: 1 Aggregation method: {sum, mean}

Table 1: Hyperparameters used for AD-FactorVAE. Bold parameters are not clearly defined in the paper.

Figure 1: Qualitative results on the MNIST dataset
with activation functions along the y axis and the var-
ious methods along the x axis. The algorithms were
trained on handwritten 1’s and per method three ran-
dom 7’s are visualised.

Figure 2: Qualitative results on the MNIST dataset.
On the left are the original results and on the right are
randomly sampled results produced with method (1)
and ReLU.

4 Results183

This section states the results of the experiments described in the previous section.184

4.1 Attention maps185

Replicating the results for the MNIST dataset was an involved process – as described in the methodology – leaving us186

with various versions of replications. In Figure 1 we present the two different methods based on the pre-trained model187

trained on handwritten digit 1’s and tested on handwritten digit 7’s with three different functions (ReLU, absolute value188

and sigmoid). Most of these versions would be able to produce the images presented in the paper, except for those189

generated using the sigmoid which is why this function was excluded from further experiments. The only difference190

between the decent versions is the level of cherry picking Liu et al did. We are assuming a minimal amount, and191

therefore conclude that the examples in Figure 4 in the original paper were most likely produced with method (1) and192

the ReLU function, even though the paper seems to suggest they were produced using method (2). We chose to proceed193

with method (1) as the results resembled those presented in the paper much better. The attention maps for the model194

trained on digit 1 and tested on the digits 9, 2 and 4, as well as the model trained on digit 3 and tested on 8 and 5 are195

produced with those settings and the pre-trained models. These can be found in Figure 2.196

We are fairly certain that the differences between the pre-trained model and the models trained from scratch are not due197

to differences in architecture or hyperparameters as they were explicitly stated in the addendum paper, which means the198

only remaining influential factor is the amount of epochs for which the model was trained. As we reached out to the199

authors about the amount of epochs but did not get a response we could not confirm this suspicion.200

4.2 UCSD Ped1 Results201

We were able to generate qualitative results which match those presented in the paper to a certain degree, however, they202

are not as good in quality. These results can be seen on Figure 3. The frames in the paper could be matched in quality if203

we were cherry picking results, which could be one of the explanations for the mismatch, but a more likely explanation204

would be that we were simply not able to replicate the results properly.205

Quantitative results are shown in Table 4. These results show that we were unable to recreate the exact scores presented206

by Liu et al. It is worth noting that we were also not able to exactly reproduce the baseline scores presented by Liu et al.207

for the VAE model (also Vanilla-VAE). The baseline score in the paper reached 0.86 while ours got stuck at 0.82. In208

conclusion, all our ROC AUC scores were significantly lower compared to the scores from the paper. The scores were209
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highly dependent on the method, and while method (2) was presented as the anomaly localisation method, method (1)210

seems to consistently perform better.211

An additional topic of uncertainty was how masks without anomalies were handled. As it was not touched upon in the212

paper or the addendum paper we explored two options, (1) including all images whether they had anomalies or not213

and (2) excluding those frames without any anomalies. Furthermore, because we created this code from scratch we214

experimented with various small adjustments to the code, one of which was whether we should upsample or downscale215

the images, depending on the convolutional layer. Where the second (downscaling) led to higher scores, we decided to216

stick with the first approach as we felt it was more representative of the actual performance of the model (downscaling217

increases the probability of getting the right pixel value, so as we apply more convolutions the image gets smaller which218

leads to higher scores). Another question left unanswered was whether to do any processing on the generated attention219

maps, such as normalization etc. We decided against this, as it did not improve the scores and the normalization in the220

code base seemed to only have the goal of displaying the images correctly.221

Figure 3: Attention maps for anomaly detection on
UCSD, for different layers and generation methods.

Paper (1) relu (1) abs (2) relu (2) abs
baseline 0.86 0.82 0.82 0.82 0.82
conv1 0.89 0.71 0.70 0.56 0.59
conv2 0.92 0.80 0.78 0.63 0.69
conv3 0.91 0.68 0.73 0.52 0.64

Figure 4: AUROC scores on UCSD

4.3 MVTec-AD Results222

The MVTec-AD results are shown in Table 2. Due to time constraints we were not able to produce scores for all223

objects and textures and could only use the (2) second method for attention map generation. We see that our scores224

are significantly lower compared to the scores stated in the paper and presented in the second column of Table 2. The225

results are also lower compared the scores presented in the original work of Bergmann et al. [12] which are presented226

in Table 2 of the original paper by Liu et al. Figure 5a shows some qualitative results from three categories. These227

attention maps were one of the best that were produced during our experiments. One can note that these attention maps228

are far from accurate in selecting the anomalous regions. Therefore both the quantitative and the qualitative results we229

produced are quite different from the results in the original paper. However, in contrast to the UCSD Ped1 experiments,230

there is no baseline score we can use to put the scores into perspective.231

(a) Qualitative results for Hazelnut, Cable and Grid cat-
egories in MVTec-AD. For each category, we show the
original image, the ground-truth mask, the attention maps
generated with ReLU and with absolute value

(b) Achieved disentanglement scores of FactorVAE and
AD-FactorVAE models. The numbers next to the markers
indicate γ parameter values.

Figure 5
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4.4 Anomaly detection232

Category theirs ours
ReLU

ours
abs

Carpet 0.78
0.1

0.51
0.02

0.47
0.02

Grid 0.73
0.02

0.55
0.02

0.50
0.02

Leather
(diff. padding)

0.95
0.24

0.52
0.13

0.67
0.18

Tile 0.80
0.23

0.59
0.14

0.62
0.14

Wood 0.77
0.14

0.42
0.05

0.63
0.07

Bottle 0.87
0.27

0.53
0.08

0.46
0.08

Cable 0.90
0.18

0.50
0.05

0.62
0.08

Capsule 0.74
0.11

0.54
0.03

0.69
0.04

Hazelnut 0.98
0.44

0.63
0.08

0.75
0.09

Metal Nut 0.94
0.49

0.39
0.15

0.46
0.15

Pill 0.83
0.18

0.53
0.05

0.60
0.06

Screw 0.97
0.17

0.52
0.00

0.51
0.00

Toothbrush 0.94
0.14

0.64
0.04

0.65
0.03

Transistor 0.93
0.30

0.47
0.12

0.61
0.15

Table 2: Quantitative results for pixel
level segmentation on 14 categories
from MVTec-AD dataset. For each cat-
egory, we report the area under ROC
AUC curve on the top row, and best IOU
on the bottom row.

In conclusion, we can state that we were not able to replicate the results for233

anomaly detection proposed by the authors. We therefore cannot support the234

claim that the performance of their proposed anomaly localization method235

is state-of-the-art by obtaining ROCAUC and IOU scores that are better or236

similar to those obtained by the models compared in the original work of237

Bergmann et al. Moreover, the attention maps did not exceed the baseline238

score for the UCSD Ped1 experiments.239

There might, however, be room for improvement within our implementations240

which could lead to state-of-the-art performance, as stated by Liu et al.241

Possibilities for improvement could be training the models for more epochs,242

different weight initialization, or changing the way we generate the attention243

maps, for which there is some confusion about the usage of method (1) or244

method (2), and using ReLU or absolute value.245

Striking is the fact that method (1) – which was originally just proposed246

for visualising the attention maps – consistently outperforms method (2) –247

which was specifically proposed for anomaly localization – on the anomaly248

localization task and is able to generate results much closer related to those249

presented in the paper. The trade-off between the two functions seems to be250

quality vs. time. Method (1) has to loop over the entire latent space, making251

it much slower, where method (2) just has to propagate the mean vector. We252

are unsure which one of these methods was actually used to obtain the final253

results presented in the paper.254

4.5 Attention Disentanglement Results255

As the FactorVAE paper does not mention the weight initialisation used,256

we relied on the external code which provides options for both normal and257

kaiming normal initialization. However after being unable to reproduce the258

baseline results with either of these methods, explicit weight initialization was259

removed causing the pytorch default, kaiming uniform, to be applied. This260

allowed us to achieve the desired results, but it also shows how sensitive these261

methods are to small technical details. Additionally, we had to ignore the262

color factor to reach the correct disentanglement scores. Object or background263

color cannot be varied randomly in the dSprites dataset hence it always acts264

as a fixed factor for the metric.265

Setups where loss values were aggregated using the mean and a γ value of266

20 or 40, converged successfully to the expected reconstruction loss. Results267

of their corresponding scores can be seen on Figure 5b. We can clearly see268

that using ReLU achieves significantly superior results compared to using269

absolute value. However, in general we can see that adding the proposed270

loss did not increase the disentanglement score compared to the baseline271

FactorVAE.272

Setups where the loss values were aggregated using a sum or a γ of 100, converged to reconstruction loss values well273

over 100. A possible reason to why summing does not work is that then the AD loss gets too large and influences the274

overall loss too much. The same could apply to the issues with a large γ parameter and the Total Correlation loss of275

FactorVAE, however as this was part of the baseline, this rather suggests that we might have missed key information276

about training models with a parameter of this magnitude. Because the authors claim the addition of the AD loss does277

not decrease the reconstruction loss, we only determined a model’s disentanglement score if it reached a reconstruction278

loss similar to the baseline FactorVAE model.279

5 Discussion280

In this paper, we have provided insights in the reproducibility attempt of the paper “Towards Visually Explaining281

Variational Autoencoders" by Liu et al. Our results show that, with the provided tools and within a time-frame of four282

weeks, we have been able to reproduce similar attention maps for the MNIST dataset. The gradient-based attention283
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maps clearly denoted characteristics that intuitively made sense. We can therefore confirm the first claim by the authors.284

Besides that, we have not been able to produce any results that were comparable to the ones from paper. This leads to285

the conclusion that we cannot successfully confirm the second and third claim made by the authors. However, some286

results and extra experiments indicated that there might be room for improvement within the used methods through287

hyperparameter tuning or small model changes. Our approach has several weaknesses which will be discussed in the288

next section.289

5.1 Strengths and weaknesses290

Our implementation has several strong points, including:291

• The authors’ code was partly available on GitHub containing method (2) for the generation of the attention292

maps (as explained in Section 3.1) as well as the set-up for the MNIST experiments. This means that for these293

parts, we are quite certain that our code matches the authors’ code.294

• All datasets were publicly available and well documented, causing us to be fairly confident that we used the295

same data as the authors.296

• For the models that were not implemented in the authors’ code, the architectural details were publicly available297

in the authors’ addendum paper. We were therefore able to implement the same models as the authors used.298

• For the FactorVAE model, the authors referred us to a repository which contained an implementation that299

only needed some small adjustments to give us the correct baseline results. Thus, it seems unlikely that our300

implementation of the FactorVAE model is incorrect.301

• For the FactorVAE disentanglement metric a Google repository was found that contained a proper implementa-302

tion, which gives a high probability that our implementation of this metric is correct.303

• In many of our experiments, we have tried several different approaches to obtain the same results as the authors.304

For example, because we did not obtain correct results for the MNIST experiments, we also implemented the305

first approach for the attention maps generation even though the paper mentioned the results were obtained306

using the second approach. For the attention disentanglement we experimented with several attention map307

generation and loss aggregation methods.308

However, there are also some weaknesses in our approach:309

• The authors’ code and the paper were sometimes inconsistent with each other. Especially for the generation of310

the attention maps. It was unclear if the results were obtained using ReLU (as stated in the paper) or using311

absolute value (as stated in the code). We tried to overcome this weakness by implementing both approaches.312

Furthermore, it was unclear which method to use for which part. The misalignment between the fact that313

method (2) seems to be presented as the method to use for all experiments in the original paper, while method314

(1) consistently brings us results that are closer to the results presented is vexing to us and might account for315

some of the discrepancies between the original results and ours.316

• For each experiment the amount of training epochs was unclear causing us to make guesses due to limited317

time.318

• It showed to be very difficult to reproduce the qualitative and quantitative results for anomaly localization on319

both the UCSD Ped1 dataset and the MVTec-AD data even though the models’ architectures were specified in320

the addendum paper. Additional research is needed to discover why our experiments failed to produce the321

correct scores.322

• It was not possible to implement the exact same data augmentation for the MVTec-AD dataset as the paper did323

not provide enough information on this topic.324

• The entire implementation for the attention disentanglement was missing in the authors’ code. We therefore325

had to make many guesses about the implementation of this part, which made it difficult to reproduce the326

qualitative and quantitative results for latent space disentanglement on the dSprites dataset.327

5.2 Communication with original authors328

We have communicated with the authors on two occasions. The first time we e-mailed them with a request for the329

complete code as the public repository had many missing parts. They replied that they were not able to give us330

their full code as they were planning to patent their implementation in the future. We sent them another e-mail with331

some follow-up questions about the number of epochs, data-augmentation for the MVTec-AD dataset and method of332

aggregation of the AD loss. Unfortunately, we did not receive a reply to that last e-mail.333
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