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Abstract

We investigate the mechanism underlying a previously identified phenomenon
in Vision Transformers – the emergence of high-norm tokens that lead to noisy
attention maps (Darcet et al., 2024). We observe that in multiple models (e.g.,
CLIP, DINOv2), a sparse set of neurons is responsible for concentrating high-norm
activations on outlier tokens, leading to irregular attention patterns and degrading
downstream visual processing. While the existing solution for removing these
outliers involves retraining models from scratch with additional learned register
tokens, we use our findings to create a training-free approach to mitigate these
artifacts. By shifting the high-norm activations from our discovered register neu-
rons into an additional untrained token, we can mimic the effect of register tokens
on a model already trained without registers. We demonstrate that our method
produces cleaner attention and feature maps, enhances performance over base
models across multiple downstream visual tasks, and achieves results comparable
to models explicitly trained with register tokens. We then extend test-time registers
to off-the-shelf vision-language models, yielding cleaner attention-based, text-to-
image attribution. Finally, we outline a simple mathematical model that reflects the
observed behavior of register neurons and high norm tokens. Our results suggest
that test-time registers effectively take on the role of register tokens at test-time,
offering a training-free solution for any pre-trained model released without them.1

1 Introduction

Vision Transformers (ViTs) (Dosovitskiy et al., 2021) have become a dominant architecture in
computer vision, offering strong performance across a wide range of tasks (Oquab et al., 2024;
Radford et al., 2021). Recently, Darcet et al. (2024) observed a surprising property in these models:
the emergence of high-norm intermediate tokens at seemingly random locations in the image during
the internal computation of the ViT (see "Original" column in Figure 1). These outlier tokens
were shown to appear in low-information image areas (e.g., uniform background patches) and were
demonstrated to capture global image information.

Darcet et al. (2024) interpreted these high-norm tokens as a form of emergent global memory
– a mechanism through which the model stores and retrieves global information, analogous to
registers in CPUs. Based on this interpretation, they proposed to eliminate these outlier image tokens
by augmenting the input with dedicated non-image tokens during training, calling them “register
tokens.” This allows the patch tokens to focus solely on encoding local content, leading to improved
performance on dense visual tasks. However, this technique requires re-training existing models from
scratch with these extra register tokens, limiting its applicability in practice.

1Project Page: https://avdravid.github.io/test-time-registers
Code: https://github.com/nickjiang2378/test-time-registers

39th Conference on Neural Information Processing Systems (NeurIPS 2025).
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Figure 1: Controlling high-norm tokens in Vision Transformers. As shown in Darcet et al. (2024),
high-norm outlier tokens emerge in ViTs and lead to noisy attention maps (“Original”). By identifying
the mechanism responsible for their emergence, we demonstrate that we can shift these outlier tokens
to arbitrary positions at test time (“Shifted”). Shifting the outlier tokens outside of the image mimics
register behavior at test-time (“w/ Test-time Register”), resulting in more interpretable attention
patterns and downstream performance comparable to models retrained with registers.

In this work, we argue that while registers are indeed useful, models don’t need to be retrained with
them. Instead, we show that registers can be added post hoc, without any additional training. To do
this, we first investigate the mechanism underlying the emergence of high-norm tokens. We identify
a sparse set of neurons – register neurons – that create the outlier tokens by contributing high-norm
values to them. By directly editing the activation maps of the register neurons during the forward pass
of the network, we can induce the formation of the high-norm activations at arbitrary token positions
(Figure 1). We use it to create new register tokens at test-time, even in models that were never trained
with them, by appending new tokens and activating the register neurons in their positions.

We show that models with test-time registers provide comparable performance to models with
trained registers on various downstream tasks (e.g., classification, segmentation, and depth prediction)
and largely improve over models without registers for unsupervised object discovery (20-point
correct localization improvement) and attention-based zero-shot segmentation (+5 mIOU). Next, we
demonstrate that test-time registers reduce high-norm artifacts in vision-language models, improving
the alignment between textual outputs and relevant visual regions. Finally, we present a simple
mathematical model capturing the observed behavior of register neurons and high-norm tokens,
empirically finding that test-time attention biases can mitigate outliers and attention sinks without
any additional tokens.

In summary, our contributions are as follows:
• We determine the mechanism behind the creation of high-norm tokens in ViTs by finding register

neurons that, when activated, cause the appearance of these outliers (Section 3.1). A simple
mathematical model captures the observed behavior of these neurons (Section 6).

• We demonstrate that activating the register neurons at test-time in other image locations shifts the
high-norms to the corresponding tokens (Section 3.2).

• We present a training-free method for adding registers to models that were trained without them,
by appending additional tokens and activating register neurons in their positions (Section 4).

• We evaluate the performance of models with test-time registers and show that it is comparable to
models with trained registers, thus eliminating the need for retraining models with registers from
scratch (Section 5).

2 Related work

Feature visualization in vision models. Visualizing features of computer vision models has been
used for diagnostics long before the transition of the field to deep-learning (e.g., Vondrick et al. (2013)).
Features in early CNN-based models were visualized to interpret their emergent computation (Zeiler
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& Fergus, 2014; Bau et al., 2017) and to approximate saliency maps (Itti et al., 2002). In ViTs, the
attention map from the [CLS] token has been used for various attribution methods (Caron et al.,
2021; Chefer et al., 2021), and has also been steered to improve model performance (Shi et al., 2023).
Darcet et al. (2024) showed that the newer ViT-based models (Oquab et al., 2024; Radford et al., 2021)
exhibit artifacts in their attentions, affecting their applicability for visualization and downstream tasks.
These artifacts were connected to high-norm tokens that emerge in the Transformers.

High-norm tokens in Transformers. Transformers tend to create high-norm tokens during their
internal computation, when trained on language tasks (Xiao et al., 2024) or on vision tasks (Darcet
et al., 2024). For language models, Xiao et al. (2024) showed that Transformers allocate excessive
attention to these high-norm tokens, and named them “attention sinks.” Sun et al. (2024) demonstrated
that “attention sinks” emerge due to previous massive activations in the residual stream. Yona et al.
(2025) linked the emergence of “attention sinks” to the inability of language models to repeatedly
generate a single token, and suggested a test-time fix by zeroing out the relevant activated neurons.
For vision models, Darcet et al. (2024) demonstrated the emergence of high-norm tokens in low-
informative areas and suggested retraining the model with extra tokens (“registers”) to remove these
large norms from the image patches. Wang et al. (2024) used a simpler fine-tuning approach in
DINOv2 to avoid complete re-training. Nakamura et al. (2024) suppressed artifacts during inference
by modifying last-layer attention, showing that it improved image clustering performance. In contrast,
we remove high-norm outliers at their source by editing the activations of the neurons that create
them, aiming to eliminate their effect on later computations.

Explaining neural functionality in vision models. The role of individual neurons (post non-linearity
single channel activations) has been broadly studied in vision models, demonstrating that some
neurons recognize low-level image features as well as high-level perceptual and semantic properties
of the inputs (Schwettmann et al., 2023; Bau et al., 2017; Hernandez et al., 2021; Gandelsman et al.,
2025; Dravid et al., 2023). Nevertheless, most of the research has focused on linking neural behavior
to features of the input or output, neglecting other possible neural functionality that may not be related
to any specific image feature. Robinson et al. (2024) discovered sparse neural activations that indicate
the absence of features rather than serving as feature detectors. Sun et al. (2024) found massive
activations in ViTs that operate as constant biases for attention layers. Differently, we discover and
edit neuron activations responsible for creating high-norm tokens in ViTs to mimic registers.

3 Interpreting the outlier tokens mechanism in ViTs

As shown by Darcet et al. (2024), high-norm outlier patches emerge during inference in various
pre-trained ViTs. These patches strongly draw attention from the [CLS] token, resulting in artifacts
in the attention maps (Figure 1). Outlier patches appear primarily in areas that exhibit high similarity
to their neighboring areas (e.g., uniform background patches). Moreover, they were shown to capture
global image information and lose their local patch contents (pixel + position). In this section, we
study how the outlier tokens emerge in ViTs during the forward pass and discover a sparse set of
neurons whose activations dictate the location of outliers. We use the term "neuron" to denote a
single hidden unit in the MLP layers of a Transformer block, i.e., the scalar output after the linear
transformation and nonlinearity. We then show that we can edit these neurons to move the outlier
positions. Our main analysis is applied to OpenCLIP ViT-B/16 (Cherti et al., 2023), with similar
findings on DINOv2-L/14 (Oquab et al., 2024) shown in Section A.12.

3.1 How do outliers emerge in ViTs?

Outlier patches appear after MLPs. To identify the Transformer component most responsible for
outlier patches, we track the maximum norm of image patches after attention blocks and MLPs across
1000 ImageNet images (Deng et al., 2009). Figure 2 shows that outliers appear after the MLP of layer
6 in OpenCLIP. We also measure the maximum weight the [CLS] token attends to any patch across
all heads in each layer and observe that high attention occurs after the layer 6 MLP. This observation
suggests that the MLP increases the norms of certain patches, consequently creating attention sinks.

A small, consistent set of neurons activate highly on outlier positions. Examining layer 6, we
find that just five MLP neurons exhibit consistently high contributions at the top outlier patch across
images (see Section A.11.1). When inspecting the activation maps of three such neurons (Figure 3,
more in Section A.10), we observe that they sparsely activate on all outlier positions, not just the top
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Figure 2: Outlier patches appear after MLPs; attention sinks appear after outlier patches. Left:
Max norms across image patches (OpenCLIP ViT-B/16). Right: max attention scores of the [CLS]
token in the last layer. In both plots, we average across 1000 images. The outlier norms and attention
sinks occur in consecutive layers.

Input Patch Norms L6 Neuron 980 L6 Neuron 61 L6 Neuron 2372

Figure 3: Highly activated neurons on the top outlier activate on all outlier positions. We present
activation maps of three neurons from layer 6 that activate highly on the top outlier patch. These
maps near-perfectly align with the high-norm outliers ("Patch Norms").

outlier position. This suggests that these high-activating neurons are not position-specific, but rather,
responsible for outliers generally. Given these observations, we develop a method to automatically
detect these neurons in the next section.

3.2 Register neurons

Based on our previous analysis, we hypothesize that a small, consistent set of sparsely activating
neurons control where outliers emerge. These neurons appear in the preceding layers before outliers
form. Given their importance for the formation of outliers, we call them “register neurons.”

Algorithm 1 FINDREGISTERNEURONS

1: Input: Image set I = {I1, . . . , IM}, maxi-
mum layer index top_layer, number of reg-
ister neurons to return top_k, number of neu-
rons in each layer N

2: Output: top_k register neurons
3: avg_act ← 0top_layer×N # initialize

array for average activations
4: for all Ii ∈ I do
5: O ← FindOutliers(Ii) # get

indices of top-norm patches
6: for ℓ = 0 to top_layer do
7: for n = 0 to N − 1 do
8: avg_act[ℓ, n] ← avg_act[ℓ, n] +

1
|O|M

∑
p∈O activationℓ,n(Ii, p)

9: end for
10: end for
11: end for
12: return top_k neurons with largest avg_act

Detecting register neurons. Based on our hypothe-
sis, we formulate a simple algorithm to find register
neurons in Algorithm 1. Our method finds neurons
whose average activation at outlier positions is con-
sistently high across images. To detect outlier po-
sitions (FINDOUTLIERS within Algorithm 1), we
follow Darcet et al. (2024) and output the positions
for which the norms of the corresponding image to-
kens are above a predefined threshold. Our algorithm
searches for neurons in preceding layers before out-
liers start, set by the top_layer parameter. We output
top_k neurons with the highest average activations.
We present a discussion of hyperparameters in Sec-
tion A.4. For OpenCLIP, we set top_layer = 5, the
outlier threshold at 75, and top_k = 10. Since regis-
ter neurons determine where outliers emerge, we can
also intervene upon them to move outliers to arbitrary
positions, as demonstrated next.

Moving outliers with register neurons. To demonstrate the importance of these register neurons, we
can use them to “move” outliers to different image locations. We first apply FINDREGISTERNEURONS
to detect the register neurons. We then modify their activation pattern during the forward pass – for
each register neuron, we copy the highest neuron activation across the tokens into the locations of the
tokens to which we want to move the outliers. We zero out the activations of the neuron elsewhere.
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Figure 4: Intervening on activations of register neurons effectively shifts outliers to random
patches and test-time registers. For all register neurons, we copy their highest activation into a
selected patch and zero out the activations elsewhere. Left: norm of chosen random patch (yellow)
and max norm of any other patch (blue). Right: [CLS] attention to chosen random patch (yellow)
and max [CLS attention (blue) to any other patch. Our intervention can shift outliers to randomly
selected patches as well as test-time registers (see Section A.11.2).

Register neurons causally set the position of outliers. To test our ability to move outliers to
arbitrary spots, we assign the highest activation to a random patch and measure its last-layer output
norm, the maximum norm of other patches, and the highest last-layer [CLS] attention, both to the
selected outlier and any other patch. Successful interventions yield high norms and attention for the
targeted patch, with low values elsewhere. As shown in Figure 4, modifying the activations of register
neurons effectively controls where outliers emerge. In contrast, intervening on random neurons has
little effect (Section A.11.3). Figure 1 demonstrates that intervening on register neurons can make
outliers appear in various counts and spatial patterns (e.g. a heart). We use this technique to mimic
registers, as follows in the next section.

4 Adding registers at test-time

Given that register neurons can be used to move outliers arbitrarily, we investigate moving outliers
outside the image entirely into extra tokens we call “test-time registers.”

Moving outliers to added tokens. As outlier patches lose their local patch information (Darcet et al.,
2024), it is undesirable to have them within the image since it may affect downstream performance.
Previous work has suggested retraining ViTs with extra tokens to remove high-norm artifacts and
attention sinks. However, retraining existing ViTs is expensive, so we propose to add an extra
input token and move the outliers there with register neurons. Algorithm 2 (Section A.3) with
accompanying visualization in Figure 11, specifies our test-time register edit. At each register
neuron, we copy the maximum patch activation to the register token, set all other token activations to
zero, and resume the forward computation. Importantly, these outliers are essential to the model’s
internal computations and must appear within a token. For instance, zeroing out the register neurons’
activation maps instead of moving the outliers causes OpenCLIP ViT-B/16’s zero-shot ImageNet
performance to drop ∼15%. Ablating a set of random neurons results in minimal drop: 69.3%± 1.1.

Test-time register initialization. We initialize our extra token to be a vector of zeros. We assess
several initialization strategies, but we find that they do not significantly affect the ability of test-time
registers to store the high norms (Section A.6). Additionally, we focus our investigation on using one
test-time register and report the impact of using more registers in Section A.5.

Outliers move outside the image after adding test-time registers. To evaluate whether test-time
registers can absorb the outliers, we apply our intervention and measure the max norms of image
patch outputs and the test-time register. Our intervention results are nearly identical to the distribution
of patch norms and [CLS] attention after shifting outliers to random patches, previously shown in
Figure 4 (see results for test-time registers in Section A.11.2). The image patches no longer have
outliers, whereas the test-time register absorbs the outlier norms. This change is also present in the
attention maps (Figure 5), which no longer have noisy artifacts and match the quality of attention
maps from models with trained registers.2 See Section A.9 for attention maps in all model layers.

2As there is no open-source OpenCLIP trained with registers, we only present comparisons on DINOv2.
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Figure 5: Qualitative results on attention maps w/
test-time registers. We present the last layer’s mean
[CLS] attention maps in DINOv2 and compare them
to the model with trained registers. Test-time registers
produce similarly high-quality maps as trained registers.

IN1k CF10 CF100

[CLS] token 85.6 99.4 93.4
central token 73.3 98.0 88.1
outlier token 84.5 99.2 92.8
trained register 83.1 99.2 93.0
test-time register 84.5 99.1 93.0

Table 1: Linear probing classification re-
sults (DINOv2 ViT-L/14). Test-time reg-
isters achieve higher performance on linear
probing than non-outlier tokens, suggest-
ing that they hold global information simi-
larly to trained registers. They match the
performance of outlier tokens, indicating
that they have absorbed the role of outliers.

Test-time registers hold global information. We verify that test-time registers encapsulate global
image information (e.g., image class) similarly to trained registers (Darcet et al., 2024). To assess
this, we perform linear probing on both trained and test-time registers for classification on Ima-
geNet (Deng et al., 2009), CIFAR-10, and CIFAR-100 (Krizhevsky et al., 2009). We also compare
their performance to the [CLS] token and a token that corresponds to a central patch in the image.
As shown in Table 1, the classification accuracy of test-time registers closely matches that of trained
registers and is slightly lower than the [CLS] token performance. These results suggest that test-time
registers, like their learned counterparts, effectively capture global image-level information.

5 Experiments

We evaluate how adding test-time registers affects the downstream performance of models trained
without registers. We begin by detailing the evaluated models, then compare performance across
classification, dense prediction, unsupervised object discovery, and zero-shot segmentation tasks,
finding that test-time registers perform comparably to their retrained counterparts. Finally, we apply
test-time registers to an off-the-shelf vision-language model to improve its interpretability. We present
additional experiments on preventing typographic attacks in Section A.8.

Models. We evaluate using DINOv2 (Oquab et al., 2024) and OpenCLIP (Cherti et al., 2023). For
DINOv2, we use the publicly released ViT-L/14 checkpoints trained on LVD-142M, including both
the standard model and a variant trained with four registers. These two models serve as our baselines,
while our approach applies edits to the standard model. For OpenCLIP, we evaluate the ViT-L/14 and
ViT-B/16 models trained on LAION-2B (Schuhmann et al., 2022). As no checkpoints with trained
registers are available for OpenCLIP, we only compare our approach to the standard models. We
present results on larger models in Section A.7.

5.1 Classification and dense prediction

Linear probing. We conduct linear probing on ImageNet classification (Deng et al., 2009), ADE20k
segmentation (Zhou et al., 2017), and NYUv2 monocular depth estimation (Nathan Silberman &
Fergus, 2012), following the procedure outlined in (Oquab et al., 2024; Darcet et al., 2024).

The results in Table 2 show that models edited with test-time registers maintain their performance on
ImageNet classification with slight performance gains over the base model on segmentation and depth
estimation tasks. These improvements are consistent with the performance gains observed in DINOv2
explicitly trained with registers. Thus, we demonstrate that intervening on a model with test-time
registers does not degrade the model’s representations, and in some cases, even enhances performance
on prediction tasks. While we observe a small improvement in classification performance with
the DINOv2 model trained with registers, we note that this was an independently trained model.
Hence, the difference could be due to variations in initialization and training dynamics, rather than
the effect of trained registers fixing artifacts. We report 95% confidence intervals for these results
in Section A.13 and find that performance differences remain consistent.
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IN ADE20k NYUd
Top-1 ↑ mIoU ↑ rmse ↓

DINOv2 ViT-L/14 86.4 48.3 0.388
w/ trained registers 86.7 49.1 0.382
w/ test-time register 86.4 49.1 0.378

OpenCLIP ViT-B/16 77.4 40.1 0.603
w/ test-time register 77.5 40.3 0.596

Table 2: Linear probing results. The performance of models with
test-time registers maintains or improves performance over the origi-
nal models, and largely matches models with trained registers.

OpenCLIP Acc.

ViT-L/14 76.4
w/ test-time register 76.4

ViT-B/16 71.3
w/ test-time register 71.3

Table 3: OpenCLIP zero-
shot ImageNet classification.
Adding test-time registers
maintains performance.

Zero-shot classification. We evaluate zero-shot ImageNet classification with OpenCLIP to assess
whether test-time registers preserve the semantic structure of the original representation space. Unlike
linear probing, where a trained linear head can compensate for small shifts in representation, zero-shot
classification is more sensitive to such changes. We compare zero-shot performance before and
after applying test-time registers across both ViT-L/14 and ViT-B/16 in Table 3, observing that the
intervention does not sacrifice performance.

5.2 Zero-shot segmentation

To validate that test-time registers result in more interpretable attention maps, we follow a standard
protocol for evaluating heatmap-based explainability methods (Hooker et al., 2019) – binarizing
the heatmap into a foreground/background segmentation map, and evaluating its segmentation
quality. We compute the mean attention map for the [CLS] token in the last layer (Chefer et al.,
2021) for the original model without registers, the model with test-time registers, and a model
trained with registers if available. We evaluate zero-shot segmentation performance on ImageNet-
segmentation (Guillaumin et al., 2014), which contains 4,276 images from the ImageNet validation
set with annotated segmentations.

Results. We present our zero-shot segmentation scores in Table 4. We also qualitatively compare the
attention maps for DINOv2 with test-time and trained registers in Figure 5, demonstrating similarly
high-quality attention maps. Using test-time registers on both DINOv2 and OpenCLIP outperforms
the original model on mean IOU and mAP with minimal drops in pixel accuracy. Test-time registers
also show slight boosts over the retrained DINOv2 with registers on mean IOU and mAP, suggesting
that test-time registers lead to attention maps as clean as those from trained registers.

5.3 Unsupervised object discovery

We evaluate models edited with test-time registers for unsupervised object discovery, extracting their
features for downstream processing. Darcet et al. (2024) found that the performance on this task
correlates with the smoothness of a model’s attention maps, particularly for DINOv2, and showed
that attention features from models with trained registers lead to better object localization.

Evaluation setting. We apply the LOST (Siméoni et al., 2021) object discovery method on the
PASCAL VOC 2007, PASCAL VOC 2012 (Everingham et al., 2010), and COCO 20k (Lin et al.,
2014) datasets. Our evaluation involves sweeping over the key, query, or value features over the last
four layers, and manually adding a bias value to the Gram matrix of features as suggested by Darcet
et al. (2024). We compare DINOv2 and OpenCLIP edited with test-time registers against the unedited
models and, if available, those with trained registers.

Test-time registers improve unsupervised object discovery. We report correct localization (corloc)
scores in Table 5, using the best result across key, query, and value features from the final four layers.
We find that LOST performance improves significantly over the base model on features computed
with our method for DINOv2 (increase of ∼21 corloc). Adding the test-time register closes the gap
between the baseline model and a model with trained registers, reaching within ∼0−2 corloc. This
suggests that the test-time register mimics the role of trained registers on this task. However, we note
that test-time registers only marginally affect the results for OpenCLIP, a phenomenon also observed
in Darcet et al. (2024) with trained registers. Further analysis can be found in Section A.14.
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mIoU Pix. Acc. mAP

DINOv2 ViT-L/14 38.3 87.6 80.6
w/ trained registers 33.9 91.4 79.0
w/ test-time register 38.9 87.6 81.1

OpenCLIP ViT-B/14 34.7 76.0 79.2
w/ test-time register 40.0 74.2 82.1

Table 4: Zero-shot segmentation results on Im-
ageNet. We use the last layer’s mean [CLS] at-
tention maps and find that test-time registers out-
perform the original models and DINOv2 models
with trained registers on mean IOU and mAP.

VOC07 VOC12 COCO

DINOv2 ViT-L/14 32.2 36.8 25.4
w/ trained registers 56.2 60.2 42.3
w/ test-time register 53.8 57.9 41.9

OpenCLIP ViT-B/16 30.8 35.9 23.4
w/ test-time register 30.9 35.9 23.6

Table 5: Unsupervised Object Discovery with
LOST (Siméoni et al., 2021). Adding test-time
registers significantly boosts performance for DI-
NOv2, effectively closing the gap with DINOv2
trained with registers.

5.4 Applying test-time registers to vision-language models

Beyond discriminative vision models, we explore the effect of test-time registers on vision-language
modeling (VLM) tasks. Adding a test-time register to the image encoder of a VLM preserves
performance on several multimodal benchmarks while improving the interpretability of feature maps.

Evaluation setting. Using Algorithm 1, we find a set of 100 register neurons (out of ∼100K neurons)
from CLIP ViT-L/14 vision encoder of LLaVA-Llama-3-8B.3. We then create a test-time register to
collect their activations and evaluate the model on the eight main benchmarks from the VLMEvalKit
toolkit (Duan et al., 2024). The benchmarks span across OCR, chart interpretation, visual Q/A, etc.

Benchmark Baseline
w/ Test-time

Register
Avg. 46.2 46.2

HallusionBench 28.6 29.4
MMVet 33.4 33.9
MMMU_VAL 40.4 40.1
OCRBench 41.6 41.3
MMStar 46.3 46.4
MathVista 40.9 41.3
AI2D 69.9 69.4
MMBenchv1.1 68.5 68.0

Table 6: Adding a test-time reg-
ister maintains overall perfor-
mance across multi-modal tasks.

Test-time registers maintain performance. We report our
benchmark results in Table 6. Overall, we observe that adding
a test-time register preserves performance for multi-modal pro-
cessing. We do not pass the register to the LLM; we leave
exploring its use as global memory for the LLM or leveraging
multiple registers for adaptive computation to future work.

Test-time registers improve VLM interpretability. While
adding a test-time register has only a minor impact on perfor-
mance, it improves the interpretability of cross-modal attention
maps, as illustrated in Figure 6. We visualize the norms of the
patch outputs from the vision encoder, highlighting the pres-
ence of outlier tokens. Next, we visualize the average attention
– aggregated across all layers and heads of the language model –
from the token responsible for answering the question to the visual tokens. Without registers, the
outlier visual tokens create artifacts in the language model’s attention. However, adding a test-time
register removes outliers and results in more interpretable text-to-vision attribution. This provides
clearer insights into the model’s behavior (e.g., the attention map shows incorrect localization of the
“man closest to us"). We provide more visualizations in Section A.15.

Input Patch Norms Attention Overlay Patch Norms Attention Overlay

w/ Test-time RegisterOriginal

Model Response: Yes Model Response: Yes 
Does the man 
closest to us 
have a hat?

Model Response: 2 Model Response: 2 
How many 
trees are in 
this image?

Figure 6: Test-time registers improve interpretability of LLaVA-Llama-3-8B. We visualize the
patch norms of the vision encoder before projection and the average attention from the answer token
to the visual tokens. We observe that outliers leak into the language model’s attention to visual tokens,
while adding a test-time register mitigates this and leads to more interpretable maps.

3https://huggingface.co/xtuner/llava-llama-3-8b

8

https://huggingface.co/xtuner/llava-llama-3-8b


6 A mathematical model for register neurons

In this section, we present a simple mathematical model describing how register neurons can induce
high-norm tokens that attract excess attention. We then relate this behavior to our empirical findings.
Prior work has examined the emergence of outlier tokens in large language models and proposed
several explanations, most notably the no-op (no-operation) hypothesis (Clark et al., 2019; Kobayashi
et al., 2020; Bondarenko et al., 2023), which attributes these effects to the softmax constraint
enforcing that attention weights sum to one. As a result, the attention operation forces aggregating
some information from other tokens, even when current embeddings already contain sufficient
information for the task. This constraint can direct excess attention towards low-information tokens,
creating attention sinks (Xiao et al., 2024). We show that, under certain conditions, register neurons
can produce high-norm tokens that give rise to such attention sinks within the no-op framework.

6.1 Analytical model

Set-Up. We consider the MLP layer from the penultimate Transformer block followed by the full final
block (attention + MLP) of a Vision Transformer without normalization layers. Let the input sequence
to the penultimate MLP be a task-specific [CLS] token and n patch tokens: x(0)

cls, x
(0)
1 , ...x

(0)
n ∈ Rd

The MLPs will consist of two linear layers (no bias) and an activation function ϕ (e.g., ReLU or
GELU). We denote the weight matrices of the penultimate block’s MLP as W (1)

in ∈ Rd×dmlp ,W
(1)
out ∈

Rdmlp×d, and those of the final block’s MLP as W
(2)
in ∈ Rd×dmlp ,W

(2)
out ∈ Rdmlp×d. There will be

one attention head with identity projection matrices: WQ = WK = WV = WO = Id ∈ Rd×d.
Finally, the output task-specific head is a linear projection that uses the [CLS] token’s embedding
for prediction: Whead ∈ Rd×c, where c is the number of output classes (or regression targets). Our
analysis is carried out in the regime where both W

(2)
in , Whead are low-rank, i.e., rank(W (2)

in ) <
min(d, dmlp) and rank(Whead) < rank(d, c). Hence, both matrices possess non-trivial kernels.

Proposition 1 (Register neuron induces attention sink and no-op attention) Let u1 = (W
(1)
in ):,1

be a register neuron and u2 = (W
(1)
out )1,: be the corresponding row in the MLP’s second weight

matrix, with ∥u2∥ ≫ ∥(W (1)
out )j,:∥ for j ̸= 1. If both u1, u2 ∈ ker(W

(2)⊤
in ) ∩ ker(W⊤

head) and a token
xs is aligned with u1, i.e., x(0)

s = βu1 for some β > 0, then xs becomes an attention sink and the
attention layer has no contribution to the model’s output.

Proof. See Section A.1.

Corollary 1 (Register neuron induces implicit attention bias) The contribution of register neu-
rons is equivalent to the attention mechanism with explicit bias terms (k′,v′) as in Sun et al. (2024):

Attention(Q,K, V ;k′,v′) = softmax
(
Q
[
KT k′]) [ V

v′T

]
Proof. See Section A.1.

6.2 Empirical validation on OpenCLIP

This mathematical model captures three distinct observed behaviors of register neurons and high norm
tokens. We validate this correspondence qualitatively and quantitatively. Notably, our framework
admits an equivalent attention formulation augmented with explicit bias terms – values that can be
derived directly from register neurons without any additional training.

(1) Task-Irrelevant Attention Sinks: The token that achieves the attention sink behavior in our
mathematical model lives in the kernel, or null space, of the task specific head, indicating it is not
informative of the task. This aligns with the observation that register neurons fire on seemingly
random, uninformative regions such as background or uniform texture (e.g., see Figure 3). In the case
of language models, attention sinks have been observed to appear in semantically low-information
tokens such as <BOS> or delimiters (Xiao et al., 2024).

(2) Lack of Sink Ruins Performance: Our framework suggests that zeroing out the activation of a
register neuron would disrupt the “no-op” attention behavior, thus unnecessarily altering the [CLS]
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token from its intended representation and substantially degrading model performance. To test this,
we zero-out the 10 register neurons in OpenCLIP ViT-B/16 and observe a drop in IN1k zero-shot
performance from 70.4% to 55.6%. As a baseline, zeroing out a random set of 10 neurons over three
trials results in minimal change: 69.3%± 1.1.

(3) Register Neurons Induce an Implicit Attention Bias: Corollary 1 aligns with prior obser-
vations (Sun et al., 2024; Gu et al., 2024) that high-norm tokens induce an implicit bias term in
the attention mechanism. Sun et al. (2024) proposed learning biases in the attention layers of large
language models to remove outliers. Specifically, given the query, key, and value features from T
tokens Q,K, V ∈ RT×d for each attention head, they train additional parameters k′,v′ ∈ Rd in:

Attention(Q,K, V ;k′,v′) = softmax

(
Q
[
KT k′]
√
d

)[
V
v′T

]
(1)

To test that register neurons implicitly induce attention biases as predicted by Corollary 1, we use
OpenCLIP ViT-B/16. For each attention head, k′ and v′ are set to the mean key and value vectors
of the test-time register token, which captures the aggregate contribution of the register neurons,
averaged across 1000 images. Instead of a test-time register, we zero out the register neurons and
inject the constant vectors k′ and v′ directly into the attention computation as above at interference.
This maintains the 71.3% IN1k zero-shot performance while suppressing artifacts in attention maps
(Figure 7) and mitigating outliers completely from the residual stream (details in Section A.2).

Input Original w/ Attention Bias w/ Test-time Register

Figure 7: Register-based attention bias mitigates artifacts. Mean [CLS] attention maps from
the last layer of OpenCLIP ViT-B/16 show that attention bias terms derived from test-time registers
(Equation (1)) suppress artifacts, matching the effect of explicitly using test-time registers.

7 Discussion, limitations, and future work

We uncovered a simple emergent mechanism in ViTs, a sparse set of neurons that is responsible for
creating high-norm tokens in low-information image locations. Editing this mechanism at test-time
allowed us to shift the high norms into additional registers, removing artifacts from patches and
yielding more interpretable feature maps – while preserving or modestly improving downstream
performance. Next, we discuss limitations of our analysis and conclude with future work.

While our analysis shows that we can steer the location of high-norm tokens, we only addressed
one component type that is responsible for their creation – neurons, while neglecting other possible
elements that can contribute to their formation, such as attention layers or positional encodings (Yang
et al., 2024). The edited tokens result in slight performance differences with their learned counterpart
(Table 1), suggesting that the test-time registers are not fully equivalent to the high-norm tokens.
Finally, similarly to Darcet et al. (2024), we mostly focus on individual models (CLIP, DINOv2). We
do not present results on other, less commonly used, pretrained ViTs, and leave it for future work.

The mechanism that we found points to an intriguing property about model neurons – not all neurons
have a feature-related role. Register neurons, for example, are responsible for igniting high-norm
tokens – an image-independent role – and cannot be discovered by correlating their activations to
the image features. Similar high-norm tokens have also been observed in language models (Xiao
et al., 2024; Dettmers et al., 2022), suggesting that large language models may rely on a related
mechanism. Uncovering other similar input-independent roles of neurons can shed additional light
on the computational process of deep neural networks. We plan to develop a methodology for such
automatic discovery in future work.
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A Appendix

A.1 Proof of Proposition 1 and Corollary 1

Set-Up. We consider the MLP layer from the penultimate Transformer block followed by the
full final block (attention + MLP) of a residual Vision Transformer without normalization layers.
Let the input sequence to the penultimate MLP be a task-specific [CLS] token and n patch tokens:
x
(0)
cls, x

(0)
1 , ...x

(0)
n ∈ Rd The MLPs will consist of two linear layers (no bias) and an activation function

ϕ (e.g., ReLU or GELU). We denote the weight matrices of the penultimate block’s MLP as W (1)
in ∈

Rd×dmlp ,W
(1)
out ∈ Rdmlp×d, and those of the final block’s MLP as W (2)

in ∈ Rd×dmlp ,W
(2)
out ∈ Rdmlp×d.

There will be one attention head with identity projection matrices: WQ = WK = WV = WO =
Id ∈ Rd×d. Finally, the output task-specific head is a linear projection that uses the [CLS] token’s
embedding for prediction: Whead ∈ Rd×c, where c is the number of output classes (or regression
targets).

Our analysis is carried out in the regime where both W
(2)
in , Whead are low-rank, i.e., rank(W (2)

in ) <
min(d, dmlp) and rank(Whead) < rank(d, c). Hence, both matrices possess non-trivial kernels. This
low-rank property is consistent with the effective structure observed in practice (Li et al., 2018;
Aghajanyan et al., 2021; Hu et al., 2022).

Proposition 1 (Register neuron induces attention sink and no-op attention) Let u1 = (W
(1)
in ):,1

be a register neuron and u2 = (W
(1)
out )1,: be the corresponding row in the MLP’s second weight

matrix, with ∥u2∥ ≫ ∥(W (1)
out )j,:∥ for j ̸= 1. If both u1, u2 ∈ ker(W

(2)⊤
in ) ∩ ker(W⊤

head) and a token
xs is aligned with u1, i.e., x(0)

s = βu1 for some β > 0, then xs becomes an attention sink and the
attention layer has no contribution to the model’s output.

Proof:

After the first MLP with a residual connection, the updated hidden states for the tokens are:

x
(1)
i = x

(0)
i + ϕ

(
x
(0)
i W

(1)
in

)
W

(1)
out , i ∈ {cls, 1, 2, ..., n} (2)

This can be interpreted as adding a unit vector vi ∈ Rd to the tokens modulated by some coefficient
αi:

x
(1)
i = x

(0)
i + αivi, i ∈ {cls, 1, 2, ..., n} (3)

If x(0)
s is aligned with the register neuron u1 (i.e., x(0)

s = βu1 for some β > 0), its activation
α̃s = ϕ(x

(0)⊤
s u1) = ϕ(βu⊤

1 u1) will positively scale the corresponding row in the second MLP
matrix u2. As ∥u2∥ ≫ ∥(W (1)

out )j,:∥ for j ̸= 1, the update is dominated by the direction of u2, making
it the principal contribution to xs in the residual stream. Thus, x(1)

s ≈ x
(0)
s + α̃su2 = βu1 + α̃su2.

To make the norm and direction of the update explicit, we rewrite this as x
(1)
s = βu1 + αsv2,

where v2 = u2

∥u2∥ and αs = α̃s∥u2∥. As the register neuron activation ∥α̃s∥ → ∞, it follows that

∥αs∥, ∥α̃s∥ ≫ ∥αi∥ for i ̸= s, and ∥x(1)
s ∥ ≫ ∥x(1)

i ∥ for i ̸= s.

Given identity projection matrices during attention (i.e., the key, queries, values are the tokens
themselves), the attention update for the [CLS] token is:

x
(2)
cls = x

(1)
cls +

∑
i∈{cls,1,...,n}

pcls,i x
(1)
i , (4)

where pcls,i is the softmax attention weight assigned by the [CLS] token to token i:

pcls,i =
exp
(
x
(1)⊤
cls x

(1)
i

)∑
j∈{cls,1,...,n} exp

(
x
(1)⊤
cls x

(1)
j

) . (5)
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As ∥x(1)
s ∥ → ∞, the dot product x(1)⊤

cls x
(1)
s = ∥x(1)

cls∥ · ∥x
(1)
s ∥ · cos(θ) grows without bound even for

small angle θ between the two token embeddings, leading the softmax to assign nearly all attention
weight to x

(1)
s . Thus,

x
(2)
cls ≈ x

(1)
cls + x(1)

s = x
(1)
cls + βu1 + αsv2 (6)

is the [CLS] token representation after the attention layer.

Since, u1, v2 ∈ ker(W
(2)⊤
in ), the [CLS] token representation after the second MLP layer is:

x
(3)
cls = x

(2)
cls + ϕ

(
x
(2)
clsW

(2)
in

)
W

(2)
out (7)

=
(
x
(1)
cls + βu1 + αsv2

)
+ ϕ

(
(x

(1)
cls + βu1 + αsv2)W

(2)
in

)
W

(2)
out (8)

= x
(1)
cls + βu1 + αsv2 + ϕ

(
x
(1)
clsW

(2)
in

)
W

(2)
out . (9)

Finally, the output prediction is

x
(3)
clsWhead =

(
x
(1)
cls + βu1 + αsv2 + ϕ(x

(1)
clsW

(2)
in )W

(2)
out
)
Whead (10)

=
(
x
(1)
cls + ϕ(x

(1)
clsW

(2)
in )W

(2)
out
)
Whead, (11)

since u1, v2 ∈ ker(W⊤
head). This is equivalent to the forward pass without the attention layer, thus

exhibiting the “no-op” attention behavior.

Remarks. In this proof, we assumed ∥u2∥ ≫ ∥(W (1)
out )j,:∥ for j ̸= 1. In practice, we do observe that

the register neurons’ corresponding rows in the MLP’s second weight matrix have specific high norm
dimensions (Figure 25).

Corollary 1 (Register neuron induces implicit attention bias) Given the aforementioned set-up,
the contribution of register neurons is equivalent to the attention mechanism augmented with explicit
bias terms (k′,v′) as in Sun et al. (2024):

Attention(Q,K, V ;k′,v′) = softmax
(
Q
[
KT k′]) [ V

v′T

]
Proof:

As our set-up uses identity projection matrices during attention (i.e., the key, queries, values are the
tokens themselves), the attention mechanism is:

Attention(Q,K, V ;x′,x′) = softmax
(
X
[
X⊤ x′]) [X

x′⊤

]
. (12)

where X ∈ Rn×d is the stacked representations of n tokens. From Equation (6), the attention update
for the [CLS] token can be decomposed into a contribution from the sink token prior to the first MLP
and from the register neuron:

x
(2)
cls ≈ x

(1)
cls + x(1)

s = x
(1)
cls + βu1︸︷︷︸

pre-MLP sink token

+ αsv2︸︷︷︸
register neuron contribution

(13)

Based on the proof for Proposition 1, as the register neuron activation ∥α̃s∥ → ∞, it follows
that ∥αs∥, ∥α̃s∥ ≫ ∥αi∥ for i ̸= s, and ∥x(1)

s ∥ ≫ ∥x(1)
i ∥ for i ̸= s. In other words, as the

register neuron activation grows unboundedly, it dominates the sink token representation and the
sink token achieves a significantly larger norm than all other tokens. As ∥x(1)

s ∥ → ∞, the dot
product x(1)⊤

cls x
(1)
s = ∥x(1)

cls∥ · ∥x
(1)
s ∥ · cos(θ) grows without bound even for small angle θ between

the two token embeddings, leading the softmax to assign nearly all attention weight to x
(1)
s . Thus, the

attention update is
x
(2)
cls ≈ x

(1)
cls + x(1)

s = x
(1)
cls + βu1 + αsv2 (14)
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As the register neuron activation ∥α̃s∥ → ∞, it follows that ∥αs∥, ∥α̃s∥ ≫ β. We take a leading
order approximation to simplify Equation (14) to

x
(2)
cls ≈ x

(1)
cls + αsv2 (15)

A similar update rule holds for any arbitrary token i:

x
(2)
i = x

(1)
i + αsv2, i ∈ {cls, 1, 2, ..., n} (16)

This update can be achieved by plugging in the register neuron contribution αsv2 into x′ in Equa-
tion (12):

Attention(Q,K, V ;αsv2, αsv2) = softmax
(
X
[
X⊤ αsv2

]) [ X
αsv2

⊤

]
. (17)

Using a similar argument from the proof for Proposition 1, as ∥αs∥ → ∞, for any token index i, the
dot product x(1)⊤

i (αsv2) = ∥x(1)
i ∥ · ∥αsv2∥ · cos(θ) grows without bound even for small angle θ

between the two vectors, leading the softmax to assign nearly all attention weight to αsv2. Thus, the
update representation for token i after this augmented attention is:

x
(2)
i = x

(1)
i + αsv2, i ∈ {cls, 1, 2, ..., n} (18)

which is equivalent to Equation (16), thus showing that register neurons induce a bias term in the
attention mechanism. This suggests that we can directly plug in the contribution of register neurons
into the attention mechanism as in eq. (17), without the need for a test-time register. We investigate
this in the next section.

A.2 Removing outliers with attention biases

While we focus on shifting outliers outside the image in this work, high-norm outliers still persist
in the extra test-time register. Here, we propose a preliminary method to eliminate these artifacts
without additional register tokens, by using test-time attention biases to fully remove high-norm
outliers from the residual stream.

Incorporating attention biases at test time. Sun et al. (2024) observed that language and vision
Transformers have massive values at certain dimensions and proposed to remove them by incor-
porating attention biases during training. Specifically, given the query, key, and value matrices
Q,K, V ∈ RT×d for each attention head, they train additional parameters k′,v′ ∈ Rd such that

Attention(Q,K, V ;k′,v′) = softmax

(
Q
[
KT k′]
√
d

)[
V
v′T

]

We propose to create these attention biases in OpenCLIP ViT-B/16 training-free by approximating
the effect of a test-time register on the attention computations. To set k′ and v′ for each attention
head, we compute the mean key and value vectors of a test-time register token across 1000 images.
At test-time, we zero out the activations of register neurons using the parameters from Section 3.2.

Results. We report zero-shot ImageNet performance in Table 7. Zeroing out the register neurons leads
to a significant performance drop, but this drop is fully recovered by introducing the attention bias,
which restores the model’s original performance. This suggests that zeroing out registers effectively
removes outliers, while the attention bias approximates their influence at test time. Importantly, we no
longer observe high-norm outliers across all layers (Figure 8). We also find that attention biases create
clean attention maps free of artifacts comparable to using a test-time register (Figure 9). Our findings
support the claim by Sun et al. (2024) that registers primarily function as attention biases. Although
massive activations are relatively modest in Vision Transformers (e.g., < 500), they can exceed the
mean activation by up to 10,000× in language models, creating challenges for quantization—where
specialized methods are often needed to handle such outliers (Xiao et al. (2023)). Our results suggest
that these large activations can be controlled without any additional training overhead. We leave the
application of our method to the language domain for future work.
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Figure 8: Averaged max patch norm across all layers in OpenCLIP-B/16 using attention biases.
We find that using attention biases completely removes the presence of high-norm outliers from the
residual stream.

Input Original w/ Attention Bias w/ Test-time Register

Figure 9: Using attention biases produces similarly clean attention maps as using a test-time
register. We compute the attention map of the [CLS] token averaged across the attention heads of
the last layer on OpenCLIP-B/16, finding that both attention biases and test-time registers remove
artifacts.

OpenCLIP Acc.
ViT-B/16 71.3
w/ zeroed register neurons 55.6
w/ attention bias 71.3

Table 7: Creating attention biases at test-time maintains zero-shot ImageNet performance.
Zeroing out register neurons significantly drops performance, but attention biases recover the loss.
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A.3 Algorithm overview

We provide a broad overview of Algorithm 1 and Algorithm 2 accompanied by illustrations of their
execution. To find register neurons with Algorithm 1, we compute the average activation of each
neuron on high-norm patches across an image set and return the top_k neurons with the highest
values (Figure 10). Using these discovered register neurons, we implement a test-time register by
initializing a dummy token to a vector of zeros which is passed forward along with the regular tokens.
According to Algorithm 2, whenever a register neuron is encountered during the forward pass, the
maximum register neuron activation across the tokens is copied into the test-time register and the
activations of this register neuron are zeroed-out elsewhere (Figure 11).

Figure 10: Finding register neurons. Our register neuron discovery algorithm returns the neurons
with the highest activations on outlier patch locations.

Figure 11: Test-time register intervention. During the forward pass, the max activation from each
layer’s register neuron is shifted to the test-time register. The register neuron activations are then
zeroed-out over the other tokens, and the inference computation proceeds.

Algorithm 1 FINDREGISTERNEURONS

1: Input: Image set I = {I1, . . . , IM}, maximum
layer index top_layer, number of register neu-
rons to return top_k, number of neurons in each
layer N

2: Output: top_k register neurons
3: avg_act ← 0top_layer×N # initialize

array for average activations
4: for all Ii ∈ I do
5: O ← FindOutliers(Ii) # get indices

of top-norm patches
6: for ℓ = 0 to top_layer do
7: for n = 0 to N − 1 do
8: avg_act[ℓ, n] ← avg_act[ℓ, n] +

1
|O|M

∑
p∈O activationℓ,n(Ii, p) # avg.

activation of neuron on outlier
patches

9: end for
10: end for
11: end for
12: return top_k neurons with largest avg_act

Algorithm 2 SHIFTREGISTERNEURONS

1: Input: List of register neuron indices in this layer
R, array of n neuron activation maps over T to-
kens produced by this layer A ∈ RT×N

2: Output: updated A
3: for all r ∈ R do
4: A[−1, r] ← maxt∈[0,T−1] A[t, r] # set

test-time register token (idx = -1)
to max register neuron activation
value over all tokens

5: A[0:T − 1, r]← 0 # zero-out register
neuron activation for all other
tokens

6: end for
7: return A # proceed with forward pass
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A.4 Hyperparameter Selection

Algorithm 1 relies on three hyperparameters: (1) the outlier threshold, (2) the index of the highest
layer we search up to when identifying register neurons, and (3) the number of register neurons
to return. The first two are straightforward to set using simple heuristics. Specifically, the outlier
threshold can be defined using the classical criterion of three standard deviations above the mean
patch norm. The second, top_layer, is chosen as the layer at which outliers first emerge. Setting the
number of neurons to return is slightly more involved, relying on sweeping top_k until the outliers
are suppressed. However, this is manageable in practice since the number of register neurons is
sparse. We test how scalable this approach is in Section A.7.

A.5 Ablating number of register tokens

In the main text, we focused on evaluation using a single register. Here, we examine the impact
of employing multiple registers. Following the analysis from Sun et al. (2024), we separate the
influence of high-norm tokens on the attention output (i.e. after multiplication with value features).
The attention output at each token t can be decomposed into two components: value contributions
from the register tokens R, and value contributions accumulated over the [CLS] and patch tokens.

Attention(Q,K, V )t =
∑
i

ptivi =
∑
i∈R

ptivi︸ ︷︷ ︸
registers contribution

+
∑
i/∈R

ptivi︸ ︷︷ ︸
non-registers contribution

(19)

where pti is the attention weight of query token t to token i, and vi is the value embedding associated
with token i.

Experimental setup for test-time registers. Given Equation (19), we analyze the contribution of
test-time registers to the value updates of all other tokens in the final attention layer of DINOv2
ViT-L/14. We first compute the value update for each token across the ImageNet validation set using
a single test-time register. Then, we vary the number of registers and, for each setting, compute
the cosine similarity between the resulting value update and the one obtained with a single register,
averaged over all tokens. Since all test-time registers are initialized to zero, we break symmetry by
randomly assigning which test-time register receives the outlier register neuron activation. Thus, each
test-time register holds the activations from a different set of register neurons.

Increasing the number of test-time registers beyond one has a negligible impact. Our results
in Table 8 show that increasing the number of registers has a marginal impact on the internal
computation of the model. We see the qualitative effect of this on the last layer’s [CLS] token
attention map averaged across all heads in Figure 12. One test-time register removes all the high-
norm artifacts from the original model’s attention map. We then evaluate the impact on downstream
performance using a linear probe on the NYUd depth estimation task. Overall, we find that adding
more test-time registers beyond one does not significantly change performance. We note that there is
a slight degradation in performance beyond three test-time registers, although performance remains
higher than without registers. These results align with the finding from Sun et al. (2024) that register
tokens act as implicit attention biases. Thus, a single register token can be sufficient to induce the

# Test-time
Registers

Cosine Sim.
w.r.t. 1 Register

1 1.000
2 0.998
3 0.995
4 0.991
5 0.985

Table 8: Cosine similarity between value
updates from one test-time register and
increasingly larger sets of register tokens.
Increasing register count beyond one has
marginal effect.

# Test-time
Registers NYUd rmse ↓

0 0.3876± 0.0014
1 0.3774± 0.0013
2 0.3771± 0.0014
3 0.3785± 0.0014
4 0.3791± 0.0017
5 0.3795± 0.0016

Table 9: NYUd RMSE for DINOv2-L/14
with varying numbers of test-time registers.
Increasing the number of registers beyond one
has minimal gains.
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Figure 12: One test-time register is sufficient to remove artifacts. We increment the number of
test-time registers where each register holds the activations from a different set of register neurons.
The last layer’s average [CLS] token attention map from DINOv2 ViT-L/14 does not significantly
change with more test-time registers.

Input Original Zero Init. Mean Init. Random Init.

Figure 13: Different test-time register initialization strategies yield similar attention maps. We
experiment with three different initialization strategies and find that they do not impact the test-time
register’s ability to hold high norms and clean up attention maps.

same value update across tokens and clean up internal features. We further corroborate this behavior
on trained registers next.

Experimental setup for trained registers. We use DINOv2 ViT-L/14 trained with four registers
and calculate the value update contributions from each of the four registers to both image patch
tokens and the [CLS] token. To approximate their collective effect with a single token, we construct
a synthetic register by assigning, for each embedding dimension, the value (including sign) with
the largest absolute magnitude across the four trained registers. We then compute the value update
induced by this synthetic register and measure its cosine similarity with the original update from the
four-register setup, averaged over all tokens.

Multiple trained registers can be approximated by one token. We obtain a cosine similarity of
0.834 between the value update from four registers and from the one constructed token. This suggests
that a single register can retain the majority of the representational effect of multiple trained registers.
This suggests that the main role of trained registers may be holding large activations. However, since
the cosine similarity is not 1.0, this implies that the registers may also involve additional mechanisms,
beyond simply holding large activations, in contributing to the model’s behavior.

A.6 Evaluating different initial values for test-time registers

Test-time register initialization strategies. We experiment with various initialization strategies for
the test-time registers and evaluate their performance through linear probing on ImageNet, CIFAR10,
and CIFAR100 classification tasks. Specifically, we test three initialization methods: initializing the
token to zero, initializing it with a Gaussian distribution matching the mean and standard deviation of
the patch tokens, and initializing it to the mean of the patch tokens.

IN1k CF10 CF100

[reg] (zero init.) 84.5 99.1 93.0
[reg] (rand. init.) 84.6 99.2 92.8
[reg] (mean init.) 84.5 99.1 92.9

Table 10: Image classification via linear
probing the test-time register token (DI-
NOv2 ViT-L/14). We sweep over different
initialization strategies for the token and find
that they yield similar results.

Different initializations produce similar results.
All three approaches yield similar probing perfor-
mance as reported in Table 10. We attribute this
outcome to the fact that the primary contribution of
the register during attention comes from the large
activations it holds, while the other values, which
are much smaller in magnitude, have little impact
on the final result. In Figure 13, we visualize the
last layer’s average [CLS] token attention map from
DINOv2 ViT-L/14, and observe that different ini-
tialization strategies do not significantly impact the
test-time register’s ability to remove artifacts.
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Figure 14: Mitigating artifacts in InternViT-6B. Using a test-time register removes artifacts
from the [CLS] attention map.

VOC 2007 VOC 2012 COCO 20k

InternViT-6B 30.3 35.4 22.4
w/ test-time register 41.6 48.7 32.7

Table 11: Unsupervised Object Discovery with LOST (Siméoni et al., 2021). Using a test-time
register boosts LOST performance on InternViT-6B, one of the largest open-source ViTs.

A.7 InternViT-6B

To test the scalability of our approach, we apply our analysis from Section 3 to InternViT-6B, one
of the largest publicly available vision transformers (Zhu et al., 2025). We find that outliers form at
layer 29 (out of 45). We then tracked the max norms across image patches at the output layer, and
found that outlier patch norms reach up to a value of 7000, while the median patch norm value is 332
and the standard deviation is 396. Using Algorithm 1, we then identified 300 register neurons out
of a total of 576,000 candidate neurons responsible for driving outlier formation. When we apply a
test-time register with these register neurons, the maximum output patch norm at the output layer
only reaches 608 on average, effectively mitigating the outliers.

To assess the downstream impact, we ran unsupervised object discovery using the LOST algorithm
(as in Section 5.3) since Darcet et al. (2024) found that the performance on this task correlates
with the smoothness of a model’s attention maps. We report the correct localization (corloc) results
below with and without a test-time register on InternViT-6B, and observe up to a 13-point correct
localization improvement.

A.8 Typographic attacks

Darcet et al. (2024) showed that outlier patches retain less local information by demonstrating that
their pixel/position information is harder to recover with a linear probe compared to normal patches.
However, this analysis leaves open the possibility that local information at outliers might still be
redistributed to other patches and indirectly influence the [CLS] token. We demonstrate here that this
is not the case and that outlier tokens mask local patch information. To evaluate this masking effect,
we use typographic attacks as a test-bed. Azuma & Matsui (2023) showed that CLIP is vulnerable
to typographic attacks, where images can be misclassified based on written text in the image rather
than the depicted object (Figure 15). We strategically place high-norm artifacts within an image to
mask out adversarial patches while preserving semantic content. This intervention is highly localized
and relies on activating only a small fraction of neurons to produce targeted changes in the image
representation.

Experimental setup. Following Azuma & Matsui (2023), we use OpenAI CLIP (Radford
et al., 2021) and identify register neurons with Algorithm 1 on this model. Then, we local-
ize the largest region of text in the image with OCR and, using the register neurons, move
high-norm outliers onto the patches corresponding to the text location. We evaluate on the
RTA-100 dataset (Azuma & Matsui, 2023), which contains approximately 1000 images with
text written on top of an object from one of 100 classes. We calculate zero-shot accuracy
by comparing CLIP’s image embedding to the “real” and “attack” labels’ text embedding.
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Figure 15: Qualitative results on typographic attacks. We show the patch norms of the last layer
before (“Original”) and after (“Shifted”) intervening on register neurons. Shifting the outliers to the
text location masks the text in activation space and results in more accurate classification.

Model Attack success %

CLIP 50.5
w/ pixel ablation 7.6
w/ register neuron edit 7.5
w/ random neuron edit 50.5 ± 0.2

Table 12: Typographic attack success rate.
We leverage register neurons to shift outliers to
tokens at areas with text, effectively masking
the adversarial text out in activation space.

Results. Qualitative results in Figure 15 show that
shifting the activation maps of ten register neu-
rons early in the model’s computation causes outlier
patches to later appear corresponding to the text area.
Table 12 presents the attack success rate and find
that it significantly drops after our intervention, in-
dicating that our method masks part of the model’s
internal representation without harming semantic
content. Our results suggest that patch information
at outliers is lost from the model computation rather
than transferred elsewhere. We also present results
of an alternative masking procedure in the input space, setting areas corresponding to text to the
mean pixel value of the region. Our intervention matches this method’s performance using only a
sparse modification – repurposing CLIP’s internal mechanisms by modifying roughly 0.02% of all
neurons, compared to masking ∼10% of the input. This highlights the influence of register neurons
in guiding CLIP’s visual representation and output behavior – shifting outliers on top of the text areas
is performance-wise equivalent to the text never being present from the start. In contract, editing
three random sets of ten neurons has minimal effect (w/random neuron edit). The finding that the
register neurons effectively mask patch information explains why mitigating the artifacts can improve
dense prediction tasks.

A.9 Attention maps after intervening upon register neurons

We present attention maps from all layers for several example images, applying our intervention on
OpenCLIP (Figure 16) and DINOv2 (Figure 17 and Figure 18). Our results show that intervening
upon register neurons produces clean attention maps free of the high-norm artifacts.

A.10 Additional activation maps of register neurons

While our primary focus is on layer 6 of OpenCLIP (Section 3.1), we also include additional activation
maps highlighting neurons that strongly activate at the top outlier location. As shown in Figure 19,
the most active neurons from earlier layers produce activation maps that align closely with the
output patch norms. This consistent alignment supports our hypothesis in Section 3.2 that a small
number of sparsely activating neurons determine outlier locations even before they fully emerge. In
OpenCLIP, we observe that top-activating neurons in earlier layers causally influence those in later
layers. In particular, interventions on neurons in layer 5 or earlier lead to automatic changes in layer
6 activations (see Figure 4).

A.11 Additional OpenCLIP experiments

A.11.1 How do outliers emerge in ViTs?

A small subset of neurons have a consistently high contribution at the top outlier position. To
localize the set of neurons that drive outlier formation, we evaluate the norm contribution of individual
neurons at layer 6, where outliers appear. In Figure 20, we plot the distribution of activations for all
layer 6 neurons, comparing the average activation at a top outlier patch with a randomly selected
non-outlier patch. We observe that five MLP neurons consistently have large activations on the top
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Figure 16: Attention maps for OpenCLIP with test-time register. We show the mean [CLS]
attention maps from all layers for several input images. Outliers appear in layer 6 for the original
model but do not appear with test-time registers, producing clean, interpretable attention maps.
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Figure 17: Attention maps for DINOv2 with test-time register (Layers 0-11). We show the mean
[CLS] attention maps from layers 0-11 for several input images. As we do not intervene in these
layers, there is no difference in the attention maps.

24



L1
2

L1
3

L1
4

L1
5

L1
6

L1
7

L1
8

L1
9

L2
0

L2
1

L2
2

L2
3

L1
2

L1
3

L1
4

L1
5

L1
6

L1
7

L1
8

L1
9

L2
0

L2
1

L2
2

L2
3

Original w/ Test-time 

Register

w/ Trained 

Registers

Original w/ Test-time 

Registers

w/ Trained 

Registers

Figure 18: Attention maps for DINOv2 with test-time register (Layers 12-23). We show the mean
[CLS] attention maps from layers 12-23 for several input images. Artifacts appear in uniform regions
around layer 18 for the original model. With test-time registers, attention maps become clean and
reveal the images’ main objects.
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Figure 19: Additional activation maps of neurons that activate highly on the top outlier position.
Even in layers before outliers emerge (layer 6), we observe that there exist neurons whose activation
maps closely align with the output patch norms.
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Figure 20: Neuron activation distributions differ between outlier and non-outlier patches. For
all layer 6 neurons, we average their activations on the top outlier patch and a randomly selected
non-outlier patch across 1000 images. Non-outlier patches have a more symmetric distribution (left),
whereas outlier patches show a skewed distribution with most activations near zero. Five neurons
consistently exhibit high activations for outlier patches across images (right).

outlier, creating a skewed distribution, and low activations on non-outliers. To measure the effect
of these neurons, we track their aggregate contribution to the residual stream over 1000 images by
computing the norm and pairwise cosine similarities of their update vectors. As shown in Figure 21,
these neurons have consistent, high-norm contributions with effectively constant directions. In
contrast, a random set of five neurons produces low-norm updates whose directions vary substantially.

A.11.2 Adding register at test-time

In Section 4, we moved outlier activations to an added, test-time register in OpenCLIP and observed
that it removes outliers from the image patches. After moving the outliers to a single test-time register,
we measured the test-time register’s output norm, the maximum norm of image patch outputs, and
the highest last-layer [CLS] attention, both to the test-time register and any image patch. We now
present the full results in Figure 22 and find a nearly identical distribution to Figure 4, indicating that
the image patch outliers have been moved to the test-time register.

A.11.3 Intervening on random neurons

Intervening on random neurons is ineffective for shifting outliers. While register neurons are
highly effective for shifting outliers (Section 3), we evaluate a random baseline to further justify our
selection of neurons. We perform a similar intervention method used for register neurons on random
neurons in OpenCLIP ViT-B/16, but we find they are ineffective for shifting outliers. For each layer,
we randomly select the same number of neurons as those in our corresponding set of register neurons.
During the forward pass, we intervene on the activation maps of these random neurons. We copy
the highest activation across the original activation map to a randomly selected patch. In Figure 23,
we observe that the selected patch does not absorb the high norms, demonstrating that using random
neurons fails to shift outliers.

Intervening on random neurons with high activations is similarly ineffective. We also test the
hypothesis that it is the high activations specifically of register neurons that cause the outliers to
appear. Instead of using the highest activation for the random neuron, we instead copy the highest
activation from the corresponding register neuron. However, we find similarly ineffective results in
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Figure 21: Outlier neurons show stable, high-magnitude contributions. We track the overall
residual stream update from five random neurons and five identified outlier neurons on the top outlier
patch across 1000 images. Outlier neurons contribute high norm updates (left) that are consistent in
direction (right).
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Figure 22: Intervening on activations of register neurons effectively shifts outliers to test-time
registers. For all register neurons, we copy their highest activation into the test-time register and zero
out the activations elsewhere. The test-time register absorbs the high norms and attention from the
[CLS] token, indicating that the image patches no longer have outliers.

Figure 24. The inability of random neurons to shift outliers reinforces our hypothesis that register
neurons (i.e., their decoder direction) specifically are crucial for outlier emergence.

Decoders of register neurons have large weights in certain dimensions. Sun et al. (2024) observe
that outlier patches have massive activations in certain dimensions. Given this observation, we
extract the decoder weights (post-non-linearity) for four register neurons from layer 5 and plot the
distribution of weight magnitudes across dimensions in Figure 25. We find that certain dimensions
(e.g. 579, 408) consistently have large weights across register neurons, which we do not observe with
other random neurons. This property further supports the hypothesis that register neurons are the key
mechanism that leads to outlier formation.
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Figure 23: Intervening on random neurons does not shift outliers. We attempt to apply our
intervention method with random neurons to move outliers to arbitrary patches. However, we find
that the selected patch fails to absorb the high norms, suggesting that our selection of register neurons
is meaningful.
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Figure 24: Copying in high activations into random neurons does not shift outliers. To verify
that it is the high activations in the corresponding register neuron channels that create outliers, we
intervene upon random neurons but copy in the highest activation value from a corresponding register
neuron. We find that the norm of the selected patch remains low, supporting our selection of register
neurons to intervene upon.
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Figure 25: Decoder weights of register neurons have large values in specific dimensions. We take
the absolute value of decoder weights from layer 5 neurons in OpenCLIP and plot the distribution
of magnitudes across dimensions. Top row: layer 5 register neurons. Bottom row: layer 5 random
neurons.
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Figure 26: Outlier patches appear after MLPs in DINOv2; attention sinks appear after outlier
patches. Left: Max norms across image patches (DINOv2-L/14). Right: max attention scores of the
[CLS] token in the last layer. In both plots, we average across 1000 images. The increase in max
norms and emergence of attention sinks occur in consecutive layers.
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Figure 27: A small set of neurons in DINOv2 have high activations on the top outlier patch
(right). We average the neuron activations at layer 17 in DINOv2 for the top outlier patch and a
randomly selected, non-outlier patch. Both types of patches have skewed distributions. A small
subset of neurons (<25) consistently exhibit high activations for outlier patches across images (right).

A.12 Investigating outliers in DINOv2

We outline a similar investigation as presented in Section 3 on DINOv2-L/14 and find a sparse set of
neurons that can be used to move outliers to arbitrary patches.

Outlier patches appear after MLPs. To evaluate whether the attention block or MLP causes outliers
to form, we plot the maximum norm of the residual stream across all patches for every attention and
MLP component. In Figure 26, we observe that the outliers appear at the MLP of layer 17, with
attention sinks emerging soon after. These observations mirror Figure 2, where we also find a single
layer in OpenCLIP that outliers tend to start appearing.

A small subset of neurons shows consistently high activations before outlier patches. To
investigate layer 17, we evaluate the distribution of activations for its MLP neurons on the top outlier
patch, averaged across 1000 images. To identify the top outlier patch, we find the patch with the
maximum norm in the 2nd-to-last layer’s output (layer 22). We choose the 2nd-to-last layer to identify
outliers because the maximum patch norm drops in the last layer output (Figure 26), making it difficult
to differentiate outliers from normal patches. In Figure 27, we observe that the activation distribution
for outliers is heavily skewed, with <25 neurons having disproportionately high activations. We find
a similar skew in OpenCLIP (Figure 20), suggesting that outliers form due to a sparse set of neurons
across different ViTs.

Highly activated neurons activate on all outlier locations. Having seen that a small set of neurons
highly activate on the top outlier, we now investigate whether these neurons highly activate across all
outliers. We show three qualitative examples of activation maps in Figure 28 that closely align with
the outliers. This alignment suggests that these highly activating neurons are responsible for outliers
generally, which corroborates the results from OpenCLIP (Figure 3).

Detecting register neurons. Given that these highly activating neurons–which we refer to as “register
neurons”–appear responsible for outlier formation, we develop an automatic discovery algorithm to
identify and intervene upon them to shift outliers. To identify register neurons (Algorithm 1), we
compute the average activations at outlier patches for all MLP neurons and return the top neurons.
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Figure 28: Highly activated neurons on the top outlier in DINOv2 activate on all outlier positions.
We present activation maps of three neurons from layer 17 that activate highly on the top outlier patch.
These maps near-perfectly align with the high-norm outliers ("patch norms").
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Figure 29: Moving outliers in DINOv2 to random patches. For all register neurons, we copy their
highest activation into a selected patch and zero out the activations elsewhere. Left: norm of chosen
random patch (yellow) and max norm of other patches (blue). Right: [CLS] attention to chosen
random patch (yellow) and max [CLS] attention (blue) to any other patch. We find that the outliers
shift to randomly selected patches, similar to OpenCLIP (Figure 4).

To move outliers to arbitrary patches, we follow the same intervention method from Section 3.2.
For each register neuron, we copy the highest activation across patches into the selected patch and
zero out the activations elsewhere. For applying Algorithm 1 to DINOv2, we set top_k = 45,
highest_layer = 17, and the outlier threshold to 150.

Register neurons causally set the position of outliers. Following Section 3.2, we evaluate whether
our intervention method can move outliers to arbitrary patches in DINOv2. After intervening, we
measure the max norm of the selected patch, max norm of all other patches, and the highest last-layer
[CLS] attentions to the selected patch and any other patch. We show in Figure 29 that our intervention
successfully causes any selected patch to absorb the high norms and attention sinks. In Figure 1, we
use register neurons to shift attention artifacts to form arbitrary spatial patterns, further demonstrating
our ability to control outliers. These findings mirror that of OpenCLIP (Figure 4), exhibiting the
generalizability of our intervention across ViTs.

A.13 Extended Linear Probe Results

We present detailed linear probe results in Table 13 based on the experiments from Section 5.1. We
run 3 independent seeds for our linear probe evaluations and report 95% confidence intervals below.
Performance differences remain consistent. Models with test-time registers maintain or slightly
improve performance across all metrics, with comparable performance to models trained explicitly
with registers.

A.14 Additional LOST object discovery results

LOST Algorithm Overview. The LOST unsupervised object discovery algorithm (Siméoni et al.,
2021) begins by using patch representations to construct a Gram matrix A, which encodes pairwise
patch similarities. Next, we form an undirected patch similarity graph G where two nodes are
connected if their similarity is positive. The initial seed is selected as the patch with the lowest
degree in the graph. During the subsequent expansion phase, the algorithm iteratively selects the next
lowest-degree patch that is positively correlated with the current seed, forming a set of patches S.
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IN ADE20k NYUd
Top-1 ↑ mIoU ↑ rmse ↓

DINOv2 ViT-L/14 86.36 ± 0.11 48.27 ± 0.15 0.3876 ± 0.0014
w/ trained registers 86.69 ± 0.09 49.07 ± 0.12 0.3823 ± 0.0011
w/ test-time register 86.38 ± 0.10 49.13 ± 0.11 0.3774 ± 0.0013

OpenCLIP ViT-B/16 77.42 ± 0.08 40.14 ± 0.11 0.6025 ± 0.0017
w/ test-time register 77.53 ± 0.07 40.29 ± 0.09 0.5956 ± 0.0016

Table 13: Linear probing results. The performance of models with test-time registers maintains or
improves performance over the unedited models, and largely matches models with trained registers.

A binary mask M is then computed by comparing all patch features to those in S and retaining the
patches that, on average, have a positive correlation with features in S . Finally, the bounding box of
the connected component in M that contains the initial seed is used as the detected object.

Visualizing Intermediate LOST Steps. We visualize the impact of test-time registers on the
intermediate computation steps of the LOST object discovery algorithm in Figure 30. The first row
(LOST score) displays the inverse degree of each patch in the similarity graph G. The second row
shows the similarity between all patch features and the initial seed. The third row highlights the
initial seed in yellow and illustrates the resulting seed expansion. For DINOv2, adding a test-time
register cleans up the intermediate maps used during LOST, translating to the performance gains
in Table 5. Notably, the resulting intermediate steps resemble those obtained when using trained
registers. Adding a test-time register to OpenCLIP also refines the intermediate maps. However,
since OpenCLIP already produces higher-quality intermediate LOST maps compared to DINOv2,
the resulting improvement in unsupervised object discovery is marginal, which was also observed
by Darcet et al. (2024).

OpenCLIP LOST Feature Analysis. We visualize the LOST score for OpenCLIP using the key,
query, and value projection features in Figure 31. Adding a test-time register results in maps that are
more focused on the object. However, the value projection from the original model already filters out
much of the noise in the background regions, making the baseline maps relatively clean. As a result,
the improvement from using a test-time register is less pronounced compared to DINOv2. Darcet
et al. (2024) suggest that for OpenCLIP, this may be the case since outliers seem to reside in the null
space of the value projection layer.
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Figure 30: Intermediate computation steps for LOST unsupervised object discovery. Adding a
test-time register produces sharper intermediate maps.
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Figure 31: OpenCLIP LOST maps using different features. Adding a test-time register sharpens
intermediate maps for different features. However, gains are limited for the values since the value
projection already suppresses background noise.
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A.15 Additional VLM results

We present additional visualizations of LLaVA-Llama-3-8B patch norms and attention maps in Fig-
ure 32. As in Section 5.4, we visualize the patch norm map from the final layer of the vision encoder
prior to projection into the language model input space. The patch norm maps highlight the presence
of a sparse set of high-norm tokens, if any. We then visualize the average attention across all layers
and heads of the language model from the response token to the visual tokens. We find that adding a
test-time register to the vision encoder of the VLM leads to more interpretable attribution of the text
output to the visual tokens.

Model Response: 28 Model Response: 28 

Model Response: Yes Model Response: Yes 

Model Response: Orange Model Response: Orange 

Model Response: 2 Model Response: 2 Model Response: 2 Model Response: 2 

Model Response: Yellow Model Response: Yellow 

Input Patch Norms Attention Overlay Patch Norms Attention Overlay

w/ Test-time RegisterOriginal

Which spot is the 
red car parked on?

How many trees 
are in this image?

Does the man 
closest to us 
have a hat?

What color is the 
raincoat of the 

man on the left?

What is the color 
of the shoes of 
the woman with 
her hands up?

Figure 32: Additional visualizations of LLaVA-Llama-3-8B patch norms and attention maps.
As in Figure 6, we show patch norms of the vision encoder and the average attention from the answer
token to the visual tokens. Adding a test-time register mitigates high-norm artifacts in the vision
encoder which would otherwise lead to anomalous attention patterns in the language model.
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NeurIPS Paper Checklist

The checklist is designed to encourage best practices for responsible machine learning research,
addressing issues of reproducibility, transparency, research ethics, and societal impact. Do not remove
the checklist: The papers not including the checklist will be desk rejected. The checklist should
follow the references and follow the (optional) supplemental material. The checklist does NOT count
towards the page limit.

Please read the checklist guidelines carefully for information on how to answer these questions. For
each question in the checklist:

• You should answer [Yes] , [No] , or [NA] .
• [NA] means either that the question is Not Applicable for that particular paper or the

relevant information is Not Available.
• Please provide a short (1–2 sentence) justification right after your answer (even for NA).

The checklist answers are an integral part of your paper submission. They are visible to the
reviewers, area chairs, senior area chairs, and ethics reviewers. You will be asked to also include it
(after eventual revisions) with the final version of your paper, and its final version will be published
with the paper.

The reviewers of your paper will be asked to use the checklist as one of the factors in their evaluation.
While "[Yes] " is generally preferable to "[No] ", it is perfectly acceptable to answer "[No] " provided a
proper justification is given (e.g., "error bars are not reported because it would be too computationally
expensive" or "we were unable to find the license for the dataset we used"). In general, answering
"[No] " or "[NA] " is not grounds for rejection. While the questions are phrased in a binary way, we
acknowledge that the true answer is often more nuanced, so please just use your best judgment and
write a justification to elaborate. All supporting evidence can appear either in the main paper or the
supplemental material, provided in appendix. If you answer [Yes] to a question, in the justification
please point to the section(s) where related material for the question can be found.

IMPORTANT, please:

• Delete this instruction block, but keep the section heading “NeurIPS Paper Checklist",
• Keep the checklist subsection headings, questions/answers and guidelines below.
• Do not modify the questions and only use the provided macros for your answers.

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: We provide quantitative and qualitative results that support the claims.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: See Section 7.
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Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [NA]

Justification: [NA]

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We provide a full algorithm description. We will open-source the code upon
acceptance.

Guidelines:

• The answer NA means that the paper does not include experiments.
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• If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: The paper will provide code upon acceptance.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).
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• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: See the experimental settings in the text.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [NA]
Justification: Most of our results are deterministic. We use open-source models and do not
retrain any model.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: Our results do not require additional compute-heavy training
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
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• The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

• The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: [NA]
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [NA]
Justification: [NA]
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: [NA]
Guidelines:

• The answer NA means that the paper poses no such risks.
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• Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [NA]

Justification: [NA]

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]

Justification: [NA]

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: [NA]
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Guidelines:
• The answer NA means that the paper does not involve crowdsourcing nor research with

human subjects.
• Including this information in the supplemental material is fine, but if the main contribu-

tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: [NA]
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: [NA]
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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