
Accelerate Multi-Agent Reinforcement Learning in
Zero-Sum Games with Subgame Curriculum Learning

Anonymous Author(s)
Affiliation
Address
email

Abstract

Learning Nash equilibrium (NE) in complex zero-sum games with multi-agent1

reinforcement learning (MARL) can be extremely computationally expensive. Cur-2

riculum learning is an effective way to accelerate learning, but an under-explored3

dimension for generating a curriculum is the difficulty-to-learn of the subgames –4

games induced by starting from a specific state. In this work, we present a novel5

subgame curriculum learning framework for zero-sum games. It adopts an adaptive6

initial state distribution by resetting agents to some previously visited states where7

they can quickly learn to improve performance. Building upon this framework,8

we derive a subgame selection metric that approximates the squared distance to9

NE values and further adopt a particle-based state sampler for subgame genera-10

tion. Integrating these techniques leads to our new algorithm, Subgame Automatic11

Curriculum Learning (SACL), which is a realization of the subgame curriculum12

learning framework. SACL can be combined with any MARL algorithm such as13

MAPPO. Experiments in the particle-world environment and Google Research14

Football environment show SACL produces much stronger policies than baselines.15

In the challenging hide-and-seek quadrant environment, SACL produces all four16

emergent stages and uses only half the samples of MAPPO with self-play. The17

project website is at https://sites.google.com/view/sacl-neurips.18

1 Introduction19

Applying reinforcement learning (RL) to zero-sum games has led to enormous success, with trained20

agents defeating professional humans in Go [41], StarCraft II [46], and Dota 2 [5]. To find an21

approximate Nash equilibrium (NE) in complex games, these works often require a tremendous22

amount of training resources including hundreds of GPUs and weeks or even months of time. The23

unaffordable cost prevents RL from more real-world applications beyond these flagship projects24

supported by big companies and makes it important to develop algorithms that can learn close-to-25

equilibrium strategies in a substantially more efficient manner.26

One way to accelerate training is curriculum learning – training agents in tasks from easy to hard.27

Many existing works in solving zero-sum games with MARL generate a curriculum by choosing28

whom to play with. They often use self-play to provide a natural policy curriculum as the agents29

are trained against increasingly stronger opponents [4, 2]. The self-play framework can be further30

extended to population-based training (PBT) by maintaining a policy pool and iteratively training new31

best responses to mixtures of previous policies [31, 23]. Such a policy-level curriculum generation32

paradigm is very different from the paradigm commonly used in goal-conditioned RL [29, 35].33

Most curriculum learning methods for goal-conditioned problems directly reset the goal or initial34

states for each training episode to ensure the current task is of suitable difficulty for the learning35

agent. In contrast, the policy-level curriculum in zero-sum games only provides increasingly stronger36

Submitted to 37th Conference on Neural Information Processing Systems (NeurIPS 2023). Do not distribute.

https://sites.google.com/view/sacl-neurips

opponents, and the agents are still trained by playing the full game starting from a fixed initial state37

distribution, which is often very challenging.38

In this paper, we propose a general subgame curriculum learning framework to further accelerate39

MARL training for zero-sum games. It leverages ideas from goal-conditioned RL. Complementary40

to policy-level curriculum methods like self-play and PBT, our framework generates subgames (i.e.,41

games induced by starting from a specific state) with growing difficulty for agents to learn and42

eventually solve the full game. We provide justifications for our proposal by analyzing a simple43

iterated Rock-Paper-Scissors game. We show that in this game, vanilla MARL requires exponentially44

many samples to learn the NE. However, by using a buffer to store the visited states and choosing an45

adaptive order of state-induced subgames to learn, the NE can be learned with linear samples.46

A key challenge in our framework is to choose which subgame to train on. This is non-trivial in47

zero-sum games since there does not exist a clear progression metric like the success rate in goal-48

conditioned problems. While the squared difference between the current state value and the NE value49

can measure the progress of learning, it is impossible to calculate this value during training as the NE50

is generally unknown. We derive an alternative metric that approximates the squared difference with51

a bias term and a variance term. The bias term measures how fast the state value changes and the52

variance term measures how uncertain the current value is. We use the combination of the two terms53

as the sampling weights for states and prioritize subgames with fast change and high uncertainty.54

Instantiating our framework with the state selection metric and a non-parametric subgame sampler,55

we develop an automatic curriculum learning algorithm for zero-sum games, i.e., Subgame Automatic56

Curriculum Learning (SACL). SACL can adopt any MARL algorithm as its backbone and preserve57

the overall convergence property. In our implementation, we choose the MAPPO algorithm [52] for58

the best empirical performances.59

We first evaluate SACL in the Multi-Agent Particle Environment and Google Research Football,60

where SACL learns stronger policies with lower exploitability than existing MARL algorithms for61

zero-sum games given the same amount of environment interactions. We then stress-test the efficiency62

of SACL in the challenging hide-and-seek environment. SACL leads to the emergence of all four63

phases of different strategies and uses 50% fewer samples than MAPPO with self-play.64

2 Preliminary65

2.1 Markov game66

A Markov game [25] is defined by a tuple MG = (N ,S,A, P,R, �, ⇢), where N = {1, 2, · · · , N}67

is the set of agents, S is the state space, A = ⇧N
i=1Ai is the joint action space with Ai being the action68

space of agent i, P : S ⇥A! �(S) is the transition probability function, R = (R1, R2, · · · , RN) :69

S ⇥A ! Rn is the joint reward function with Ri being the reward function for agent i, � is the70

discount factor, and ⇢ is the distribution of initial states. Given the current state s and the joint action71

a = (a1, a2, · · · , aN) of all agents, the game moves to the next state s0 with probability P (s0|s,a)72

and agent i receives a reward Ri(s,a).73

For infinite-horizon Markov games, a subgame MG(s) is defined as the Markov game induced by74

starting from state s, i.e., ⇢(s) = 1. Selecting subgames is therefore equivalent to setting the Markov75

game’s initial states. The subgames of finite-horizon Markov games are defined similarly and have an76

additional variable to denote the current step t.77

We focus on two-player zero-sum Markov games, i.e., N = 2 and R1(s,a) +R2(s,a) = 0 for all78

state-action pairs (s,a) 2 S ⇥A. We use the subscript i to denote variables of player i and the79

subscript �i to denote variables of the player other than i. Each player uses a policy ⇡i : S ! Ai80

to produce actions and maximize its own accumulated reward. Given the joint policy ⇡ = (⇡1,⇡2),81

each player’s value function of state s and Q-function of state-action pair (s,a) are defined as82

V ⇡
i (s) = Eat⇠⇡(·|st),st+1⇠P (·|st,at)

hX

t

�tRi(s
t,at)

���s0 = s
i
, (1)

Q⇡
i (s,a) = Eat⇠⇡(·|st),st+1⇠P (·|st,at)

hX

t

�tRi(s
t,at)

���s0 = s,a0 = a
i
. (2)

2

round 1

0

round 2
!! wins

!! loses or draws

0

round n

0

1……!! wins !! wins !! wins
"" "! "#$!

Figure 1: Illustration of the iterated Rock-Paper-Scissors game.

The solution concept of two-player zero-sum Markov games is Nash equilibrium (NE), which is a83

joint policy where no player can get a higher value by changing its policy alone.84

Definition 1 (NE). A joint policy ⇡⇤ = (⇡⇤
1 ,⇡

⇤
2) is a Nash equilibrium of a Markov game if for all85

initial states s0 with ⇢(s0) > 0, the following condition holds86

⇡⇤
i = argmax

⇡i

V
(⇡i,⇡

⇤
�i)

i (s0), 8i 2 {1, 2}. (3)

We use V ⇤
i (·) to denote the NE value function of player i and Q⇤

i (·, ·) to denote the NE Q-function of87

player i, and the following equations hold by definition and the minimax nature of zero-sum games.88

V ⇤
i (s) = max

⇡i

min
⇡�i

Ea⇠⇡(·|s) [Q
⇤
i (s,a)] , (4)

Q⇤
i (s,a) = Ri(s,a) + � · Es0⇠P (·|s,a) [V

⇤
i (s

0)] . (5)

2.2 MARL algorithms in zero-sum games89

MARL methods have been applied to zero-sum games tracing back to the TD-Gammon project [45].90

A large body of work [54, 6, 42, 16] is based on regret minimization, and a well-known result is91

that the average of policies produced by self-play of regret-minimizing algorithms converges to the92

NE policy of zero-sum games [15]. Another notable line of work [25, 17, 23, 34] combines RL93

algorithms with game-theoretic approaches. These works typically use self-play or population-based94

training to collect samples and then apply RL methods like Q-learning [51] and PPO [39] to learn the95

NE value functions and policies, and have recently achieved great success [41, 20, 46, 5].96

For the analysis in the next section, we introduce a classic MARL algorithm named minimax-Q97

learning [25] that extends Q-learning to zero-sum games. Initializing functions Qi(·, ·) with zero98

values, minimax-Q uses an exploration policy induced by the current Q-functions to collect a batch99

of samples {(st,at, rti , s
t+1)}Tt=0 and uses these samples to update the Q-functions by100

Qi(s
t,at) (1� ↵) ·Qi(s

t,at) + ↵ ·
�
rti + � ·max

⇡i

min
⇡�i

Ea⇠⇡(·|s)
⇥
Qi(s

t+1,a)
⇤ �

, (6)

where ↵ is the learning rate. This sample-and-update process continues until the Q-functions converge.101

Under the assumptions that the state-action sets are discrete and finite and are visited an infinite102

number of times, it is proved that the stochastic updates by Eq. (6) leads to the NE Q-functions [43].103

3 A motivating example104

In this section, we show by a simple illustrative example that vanilla MARL methods like minimax-Q105

require exponentially many samples to derive the NE. However, if we can dynamically set the initial106

state distribution and induce an appropriate order of subgames to learn, the sample complexity can107

be substantially reduced from exponential to linear. Such an observation motivates our proposed108

algorithm described in later sections.109

3.1 Iterated Rock-Paper-Scissors game110

We introduce an iterated variant of the Rock-Paper-Scissor (RPS) game, denoted as RPS(n). As111

shown in Fig. 1, P1 and P2 play the RPS game for up to n rounds. If P1 wins all rounds, it gets a112

reward of 1 and P2 gets a reward of�1. If P1 loses or draws in any round, the game ends immediately113

without playing the remaining rounds and both players get zero rewards. Note that the RPS(n) game114

3

Figure 2: Number of samples used to learn the
NE Q-values of RPS(n) games.

Algorithm 1: Subgame curriculum learning
Input: state sampler oracle(·).
Initialize policy ⇡;
repeat

Sample s0 ⇠ oracle(S);
Rollout ⇡ in MG(s0);
Train ⇡ via MARL;

until ⇡ converges;
Output: final policy ⇡.

is different from playing the RPS game repeatedly for n times because players can play less than n115

rounds and they only receive a non-zero reward if P1 wins in all rounds. We use sk to denote the116

state where players have already played k RPS games and are at the k + 1 round. It is easy to verify117

that the NE policy for both players is to play Rock, Paper, or Scissors with equal probability at each118

state. Under this joint NE policy, P1 can win one RPS game with 1/3 probability, and the probability119

for P1 to win all n rounds and get a non-zero reward is 1/3n.120

Consider using standard minimax-Q learning to solve the RPS(n) game. With Q-functions initialized121

to zero, we execute the exploration policy to collect samples and perform the update in Eq. (6). Note122

all state-actions pairs are required to be visited to guarantee convergence to the NE. Therefore, in123

this sparse-reward game, random exploration will clearly take O(3n) steps to get a non-zero reward.124

Moreover, even if the exploration policy is perfectly set to the NE policy of RPS(n), the probability125

for P1 to get the non-zero reward by winning all RPS games is still O(1/3n), requiring at least O(3n)126

samples to learn the NE Q-values of the RPS(n) game.127

3.2 From exponential to linear complexity128

An important observation is that the states in later rounds become exponentially rare in the samples129

generated by starting from the fixed initial state. If we can directly reset the game to these states130

and design a smart order of minimax-Q updates on the subgames induced by these states, the NE131

learning can be accelerated significantly. Note that RPS(n) can be regarded as the composition132

of n individual RPS(1) games, a suitable order of learning would be from the easiest subgame133

RPS(1) starting from state sn�1 to the full game RPS(n) starting from state s0. Assuming we have134

full access to the state space, we first reset the game to sn�1 and use minimax-Q to solve subgame135

RPS(1) with O(1) samples. Given that the NE Q-values of RPS(k) are learned, the next subgame136

RPS(k + 1) is equivalent to an RPS(1) game where the winning reward is the value of state sn�k.137

By sequentially applying minimax-Q to solve all n subgames from RPS(1) to RPS(n), the number138

of samples required to learn the NE Q-values is reduced substantially from O(3n) to O(n).139

In practice, we usually do not have access to the entire state space and cannot directly start from the140

last subgame RPS(1). Instead, we can use a buffer to store all visited states and gradually span the141

state space. By resetting games to the newly visited states, the number of samples required to cover the142

full state space is still O(n), and we can then apply minimax-Q from RPS(1) to RPS(n). Therefore,143

the total number of samples is still O(n). The detailed analysis can be found in Appendix A.1. We144

validate our analysis by running experiments on RPS(n) games for n = 1, · · · , 10 and the results145

averaged over ten seeds are shown in Fig. 2. It can be seen that the sample complexity reduces from146

exponential to linear by running minimax-Q over a smart order of subgames, and the result of using a147

state buffer in practice is comparable to the result with full access.148

4 Method149

The motivating example suggests that NE learning can be largely accelerated by running MARL150

algorithms in a smart order over states. Inspired by this insight, we present a general framework to151

accelerate NE learning in zero-sum games by training over a curriculum of subgames. We further152

propose two practical techniques to instantiate the framework and present the overall algorithm.153

4

4.1 Subgame curriculum learning154

The key issue of the standard sample-and-update framework is that the rollout trajectories always start155

from the fixed initial state distribution ⇢, so visiting states that are most critical for efficient learning156

can consume a large number of samples. To accelerate training, we can directly reset the environment157

to those critical states. Suppose we have an oracle state sampler oracle(·) that can initiate suitable158

states for the current policy to learn, i.e., generate appropriate induced subgames, we can derive a159

general-purpose framework in Alg. 1, which we call subgame curriculum learning. Note that this160

framework is compatible with any MARL algorithm for zero-sum Markov games.161

A desirable feature of subgame curriculum learning is that it does not change the convergence property162

of the backbone MARL algorithm, as discussed below.163

Proposition 1. If all initial states s0 with ⇢(s0) > 0 are sampled infinitely often, and the backbone164

MARL algorithm is guaranteed to converge to an NE in zero-sum Markov games, then subgame165

curriculum learning also produces an NE of the original Markov game.166

The proof can be found in Appendix A.2. Note that such a requirement is easy to satisfy. For example,167

given any state sampler oracle(·), we can construct a valid mixed sampler by sampling from oracle(·)168

for probability 0 < p < 1 and sampling from ⇢ for probability 1� p.169

Remark. With a given state sampler, the only requirement of our subgame curriculum learning170

framework is that the environment can be reset to a desired state to generate the induced game. This171

is a standard assumption in the curriculum learning literature [13, 29, 35] and is feasible in many RL172

environments. For environments that do not support this feature, we can simply reimplement the reset173

function to make them compatible with our framework.174

4.2 Subgame sampling metric175

A key question is how to instantiate the oracle sampler, i.e., which subgame should we train on for176

faster convergence? Intuitively, for a particular state s, if its value has converged to the NE value,177

that is, Vi(s) = V ⇤
i (s), we should no longer train on the subgame induced by it. By contrast, if the178

gap between its current value and the NE value is substantial, we should probably train more on the179

induced subgame. Thus, a simple way is to use the squared difference of the current value and the180

NE value as the weight for a state and sample states with probabilities proportional to the weights.181

Concretely, the state weight can be written as182

w(s) =
1

2

2X

i=1

(V ⇤
i (s)� Vi(s))

2 (7)

= Ei

⇥
(V ⇤

1 (s)� Ṽi(s))
2
⇤

(8)

= Ei

⇥
V ⇤
1 (s)� Ṽi(s)

⇤2
+Vari

⇥
V ⇤
1 (s)� Ṽi(s)

⇤
, (9)

where Ṽ1(s) = V1(s) and Ṽ2(s) = �V2(s). The second equality holds because the game is zero-sum183

and V ⇤
2 (s) = �V

⇤
1 (s). With random initialization and different training samples, {Ṽi}

2
i=1 can be184

regarded as an ensemble of two value functions and the weight w(s) becomes the expectation over the185

ensemble. The last equality further expands the expectation to a bias term and a variance term, and186

we sample state with probability P (s) = w(s)/
P

s0 w(s
0). For the motivating example of RPS(n)187

game, the NE value decreases exponentially from the last state sn�1 to the initial state s0. With value188

functions initialized close to zero, the prioritized subgames throughout training will move gradually189

from the last round to the first round, which is approximately the optimal order.190

However, Eq. (9) is very hard to compute in practice because the NE value is generally unknown.191

Inspired by Eq. (9), we propose the following alternative state weight192

w̃(s) = ↵ · Ei

⇥
Ṽ (t)
i (s)� Ṽ (t�1)

i (s)
⇤2

+Vari
⇥
Ṽi(s)

⇤
, (10)

which takes a hyperparameter ↵ and uses the difference between two consecutive value function193

checkpoints instead of the difference between the NE value and the current value in Eq. (9). The first194

term in Eq. (10) measures how fast the value functions change over time. If this term is large, the195

value functions are changing constantly and still far from the NE value; if this term is marginal, the196

value functions are probably close to the converged NE value. The second term in Eq. (10) measures197

5

Algorithm 2: Subgame Automatic Curriculum Learning (SACL)
Input: state buffers M with capacity K, probability p to sample initial state from the state buffer.
Randomly initialize policy ⇡i and value function Vi for player i = 1, 2;
repeat

V 0
i Vi, i = 1, 2;

// Select subgame and train policy.
Sample s0 ⇠ sampler(M) with probability p, else s0 ⇠ ⇢(·);
Rollout in MG(s0) and train {⇡i, Vi}

2
i=1 via MARL;

// Compute weight by Eq. (10) and update state buffer.
w̃t
 ↵ · E[Ṽi(st)� Ṽ 0

i (s
t)]2 +Var({Ṽi(st)}2i=1), t = 0, · · · , T ;

M M [{(st, w̃t)}Tt=0;
if kMk > K then

M FPS(M,K);

until (⇡1,⇡2) converges;
Output: final policy (⇡1,⇡2).

the uncertainty of the current learned values and is the same as the variance term in Eq. (9) because198

V ⇤
1 (s) is a constant. If ↵ = 1, Eq. (10) approximates Eq. (9) as t increases. It is also possible to199

train an ensemble of value functions for each player to further improve the empirical performance.200

Additional analysis can be found in Appendix A.3.201

Since Eq. (10) does not require the unknown NE value to compute, it can be used in practice as202

the weight for state sampling and can be implemented for most MARL algorithms. By selecting203

states with fast value change and high uncertainty, our framework prioritizes subgames where agents’204

performance can quickly improve through learning.205

4.3 Particle-based subgame sampler206

With the sample weight at hand, we can generate subgames by sampling initial states from the state207

space. But it is impractical to sample from the entire space which is usually unavailable and can be208

exponentially large for complex games. Typical solutions include training a generative adversarial209

network (GAN) [11] or using a parametric Gaussian mixture model (GMM) [35] to generate states210

for automatic curriculum learning. However, parametric models require a large number of samples211

to fit accurately and cannot adapt instantly to the ever-changing weight in our case. Moreover, the212

distribution of weights is highly multi-modal, which is hard to capture for many generative models.213

We instead adopt a particle-based approach and maintain a large state buffer M using all visited states214

throughout training to approximate the state space. Since the size of the buffer is limited while the215

state space can be infinitely large, it is important to keep representative samples that are sufficiently216

far from each other to ensure good coverage of the state space. When the number of states exceeds the217

buffer’s capacity K, we use farthest point sampling (FPS) [36] which iteratively selects the farthest218

point from the current set of points. In our implementation, we first normalize each dimension of the219

state and then use the deep graph library package to utilize GPUs for fast and stable FPS results.220

4.4 Overall algorithm221

Combining the subgame sampling metric and the particle-based sampler, we present a realization222

of the subgame curriculum learning framework, i.e., the Subgame Automatic Curriculum Learning223

(SACL) algorithm, which is summarized in Alg. 2.224

When each episode resets, we use the particle-based sampler to generate suitable initial states s0225

for the current policy to learn. To satisfy the requirements in Proposition 1, we also reset the game226

according to the initial state distribution ⇢(·) with 0.3 probability. After collecting a number of227

samples, we train the policies and value functions using MARL. The weights for the newly collected228

states are computed according to Eq. (10) and used to update the state buffer M. If the capacity of229

the state buffer is exceeded, we use FPS to select representative states-weight pairs and delete the230

others. An overview of SACL in the hide-and-seek game is illustrated in Fig. 3.231

6

highlow

sam
ple

weight
initial states

update

self-play

reset

Fort BuildingRunning and Chasing Ramp Use Ramp Defense
sam

ple

weight
initial states

update

self-play

reset

low high

agentagentagent environmentagentagentagent environment

Figure 3: Illustration of SACL in the hide-and-seek environment. In the Fort Building stage, the
states with hiders near the box have high weights (red) and agents can easily learn to build a fort
by practicing on these subgames, while the states with randomly spawned hiders have low weights
(green) and contribute less to learning. By sampling initial states with respect to the approximate
squared distance to NE values, agents can proceed to new stages more efficiently.

5 Experiment232

We evaluate SACL in three different zero-sum environments: Multi-Agent Particle Environment233

(MPE) [28], Google Research Football (GRF) [22], and the hide-and-seek (HnS) environment [2].234

We use a state-of-the-art MARL algorithm MAPPO [52] as the backbone in all experiments.235

In zero-sum games, because the performance of one player’s policy depends on the other player’s236

policy, the return curve throughout training is no longer a good evaluation method. One way to237

compare the performance of different policies is to use cross-play, which uses a tournament-style238

match between any two policies and records the results in a payoff matrix. However, due to the239

non-transitivity of many zero-sum games [3], winning other policies does not necessarily mean being240

close to NE policies, so a better way to evaluate the performance of policies is to use exploitability.241

Given a pair of policies (⇡1,⇡2), the exploitability is defined as242

exploitability(⇡1,⇡2) =
2X

i=1

max
⇡0
i

Es0⇠⇢(·)

h
V

(⇡0
i,⇡�i)

i (s0)
i
. (11)

Exploitability can be roughly interpreted as the “distance” to the joint NE policy. In complex243

environments like the ones we use, the exact exploitability cannot be calculated because we cannot244

traverse the policy space to find ⇡0
i that maximizes the value. Instead, we compute the approximate245

exploitability by training an approximate best response ⇡̃0
i of the fixed policy ⇡i using MARL.246

5.1 Main results247

We first compare the performance of SACL in three environments against the following baselines for248

solving zero-sum games: self-play (SP), two popular variants including Fictitious Self-Play (FSP) [17]249

and Neural replicator dynamics (NeuRD) [19], and a population-based training method policy-space250

response oracles (PSRO) [23]. More implementation details can be found in Appendix B.251

Multi-Agent Particle Environment. We consider the predator-prey scenario in MPE, where three252

slower cooperating predators chase one faster prey in a square space with two obstacles. In the default253

setting, all agents are spawned uniformly in the square. We also consider a harder setting where the254

predators are spawned in the top-right corner and the prey is spawned in the bottom-left corner. All255

algorithms are trained for 40M environment samples and the curves of approximate exploitability256

w.r.t. sample over three seeds are shown in Fig. 4(a) and 4(b). SACL converges faster and achieves257

lower exploitability than all baselines in both settings, and its advantage is more obvious in the hard258

scenario. This is because the initial state distribution in corners makes the full game challenging259

to solve, while SACL generates an adaptive state distribution and learns on increasingly harder260

subgames to accelerate NE learning. More results and discussions can be found in Appendix C.261

Google Research Football. We evaluate SACL in three GRF academy scenarios, namely pass and262

shoot, run pass and shoot, and 3 vs 1 with keeper. In all scenarios, the left team’s agents cooperate263

7

(a) MPE: exploitability. (b) MPE hard: exploitability. (c) HnS: number of samples.

Figure 4: Main experiment results in (a) MPE, (b) MPE hard, and (c) Hide-and-seek.

Scenario SACL SP FSP PSRO NeuRD

pass and shoot 3.79 (0.87) 4.17 (1.45) 4.73 (2.64) 4.68 (2.46) 9.18 (1.89)
run pass and shoot 4.05 (1.22) 4.45 (1.22) 4.62 (0.02) 8.40 (0.48) 9.27 (0.35)
3 vs 1 with keeper 5.49 (0.93) 7.76 (0.67) 6.23 (1.14) 7.43 (1.49) 8.72 (0.15)

Table 1: Approximate exploitability of learned policies in different GRF scenarios.

to score a goal and the right team’s agents try to defend them. The first two scenarios are trained264

for 50M environment samples and the last scenario is trained for 100M samples. Table 1 lists the265

approximate exploitabilities of different methods’ policies over three seeds, and SACL achieves the266

lowest exploitability. Additional cross-play results and discussions can be found in Appendix C.267

Hide-and-seek environment. HnS is a challenging zero-sum game with known NE policies, which268

makes it possible for us to directly evaluate the number of samples used for NE convergence. We269

consider the quadrant scenario where there is a room with a door in the lower right corner. Two270

hiders, one box, and one ramp are spawned uniformly in the environment, and one seeker is spawned271

uniformly outside the room. Both the box and the ramp can be moved and locked by agents. The272

hiders aim to avoid the lines of sight from the seeker while the seeker aims to find the hiders.273

There is a total of four stages of emergent stages in HnS, i.e., Running and Chasing, Fort Building,274

Ramp Use, and Ramp Defense. As shown in Fig. 4(c), SACL with MAPPO backbone produces all275

four stages and converges to the NE policy with only 50% the samples of MAPPO with self-play.276

We also visualize the initial state distribution to show how SACL selects appropriate subgames for277

agents to learn. Fig. 5(a) depicts the distribution of hiders’ position in the Fort Building stage. The278

probabilities of states with hiders inside the room are much higher than states with hiders outside,279

making it easier for hiders to learn to build a fort with the box. Similarly, the distribution of the280

seeker’s position in the Ramp Use stage is shown in Fig. 5(b), and the most sampled subgames start281

from states where the seeker is close to the walls and is likely to use the ramp.282

5.2 Ablation study283

We perform ablation studies to examine the effectiveness of the proposed sampling metric and284

particle-based sampler. All experiments are done in the hard predator-prey scenario of MPE and the285

results are averaged over three seeds. More ablation studies on state buffer size, subgame sample286

probability, and other hyperparameters can be found in Appendix C.287

Subgame sampling metric. The sampling metric used in SACL follows Eq. (10) which consists of a288

bias term and a variance term. We compare it with four other metrics including a uniform metric,289

a bias-only metric, a variance-only metric, and a temporal difference (TD) error metric. The last290

metric uses the TD error |�t| = |rt + �V (st+1)� V (st)| as the weight, which can be regarded as an291

estimation of value uncertainty. The results are shown in Fig. 5(c) and the sampling metric used by292

SACL achieves the best results and outperforms both the bias-only metric and variance-only metric.293

State generator and buffer update method. We substitute the particle-based sampler with other294

state generators including using GAN from the work [11] and using GMM from the work [35]. We295

also replace the FPS buffer update method with a uniform one that randomly keeps states and a296

greedy one that keeps states with the highest weights. Results in Fig. 5(c) show that our particle-based297

sampler with FPS update leads to the fastest convergence and lowest exploitability.298

8

(a) Fort Building. (b) Ramp Use. (c) Ablation on metric. (d) Ablation on generator.

Figure 5: Visualization of the state distributions in HnS (a-b) and ablation studies (c-d).

6 Related work299

A large number of works achieve faster convergence in zero-sum games by playing against an300

increasingly stronger policy. The most popular methods are self-play and its variants [18, 1, 21, 34].301

Self-play creates a natural curriculum and leads to emergent complex skills and behaviors [4, 2].302

Population-based training like double oracle [31] and policy-space response oracles (PSRO) [23]303

extend self-play by training a pool of policies. Some follow-up works further accelerate training by304

constructing a smart mixing strategy over the policy pool according to the policy landscape [3, 33,305

26, 12]. [30] extends PSRO to extensive-form games by building policy mixtures at all states rather306

than only the initial states, but it still directly solves the full game starting from some fixed states.307

In addition to policy-level curriculum learning methods, other works to accelerate training in zero-308

sum games usually adopt heuristics and domain knowledge like the number of agents [27, 49] or309

environment specifications [5, 40, 44]. By contrast, our method automatically generates a curriculum310

over subgames without domain knowledge and only requires the environments can be reset to desired311

states. Subgame-solving technique [7] is also used in online strategy refinement to improve the312

blueprint strategy of a simplified abstract game. Another closely related work to our method is [9]313

which combines backward induction with policy learning, but this method requires knowledge of the314

game topology and can only be applied to finite-horizon Markov games.315

Besides zero-sum games, curriculum learning is also studied in cooperative settings. The problem316

is often formalized as goal-conditioned RL where the agents need to reach a specific goal in each317

episode. Curriculum learning methods design or train a smart sampler to generate proper task318

configurations or goals that are most suitable for training advances w.r.t. some progression metric [10,319

14, 13, 37, 29, 35, 11]. Such a metric typically relies on an explicit signal, such as the goal-reaching320

reward, success rates, or the expected value of the testing tasks. However, in the setting of zero-sum321

games, these explicit progression metrics become no longer valid since the value associated with322

a Nash equilibrium can be arbitrary. A possible implicit metric is value disagreement [53] used in323

goal-reaching tasks, which can be regarded as the variance term in our metric. By adding a bias term,324

our metric approximates the squared distance to NE values and gives better results in ablation studies.325

Our work adopts a non-parametric subgame sampler which is fast to learn and naturally multi-modal,326

instead of training an expensive deep generative model like GAN [13]. Such an idea has been327

recently popularized in the literature. Some representative samplers are Gaussian mixture model [50],328

Stein variational inference [8], Gaussian process [32], or simply evolutionary computation [47, 48].329

Technically, our method is also related to prioritized experience replay [38, 14, 24] with the difference330

that we maintain a buffer [50] to approximate the uniform distribution over the state space.331

7 Conclusion332

We present SACL, a general algorithm for accelerating MARL training in zero-sum Markov games333

based on the subgame curriculum learning framework. We propose to use the approximate squared334

distance to NE values as the sampling metric and use a particle-based sampler for subgames generation.335

Instead of starting from the fixed initial states, RL agents trained with SACL can practice more on336

subgames that are most suitable for the current policy to learn, thus boosting training efficiency. We337

report appealing experiment results that SACL efficiently discovers all emergent strategies in the338

challenging hide-and-seek environment and uses only half the samples of MAPPO with self-play. We339

hope SACL can be helpful to speed up prototype development and help make MARL training on340

complex zero-sum games more affordable to the community.341

9

References342

[1] Yu Bai, Chi Jin, and Tiancheng Yu. Near-optimal reinforcement learning with self-play.343

Advances in neural information processing systems, 33:2159–2170, 2020.344

[2] Bowen Baker, Ingmar Kanitscheider, Todor Markov, Yi Wu, Glenn Powell, Bob McGrew, and345

Igor Mordatch. Emergent tool use from multi-agent autocurricula. In International Conference346

on Learning Representations, 2020.347

[3] David Balduzzi, Marta Garnelo, Yoram Bachrach, Wojciech Czarnecki, Julien Perolat, Max348

Jaderberg, and Thore Graepel. Open-ended learning in symmetric zero-sum games. In Interna-349

tional Conference on Machine Learning, pages 434–443. PMLR, 2019.350

[4] Trapit Bansal, Jakub Pachocki, Szymon Sidor, Ilya Sutskever, and Igor Mordatch. Emergent351

complexity via multi-agent competition. In International Conference on Learning Representa-352

tions, 2018.353

[5] Christopher Berner, Greg Brockman, Brooke Chan, Vicki Cheung, Przemysław Debiak, Christy354

Dennison, David Farhi, Quirin Fischer, Shariq Hashme, Chris Hesse, et al. Dota 2 with large355

scale deep reinforcement learning. arXiv preprint arXiv:1912.06680, 2019.356

[6] Noam Brown, Adam Lerer, Sam Gross, and Tuomas Sandholm. Deep counterfactual regret357

minimization. In International conference on machine learning, pages 793–802. PMLR, 2019.358

[7] Noam Brown and Tuomas Sandholm. Safe and nested subgame solving for imperfect-359

information games. Advances in neural information processing systems, 30, 2017.360

[8] Jiayu Chen, Yuanxin Zhang, Yuanfan Xu, Huimin Ma, Huazhong Yang, Jiaming Song, Yu Wang,361

and Yi Wu. Variational automatic curriculum learning for sparse-reward cooperative multi-agent362

problems. Advances in Neural Information Processing Systems, 34:9681–9693, 2021.363

[9] Weizhe Chen, Zihan Zhou, Yi Wu, and Fei Fang. Temporal induced self-play for stochastic364

bayesian games. arXiv preprint arXiv:2108.09444, 2021.365

[10] Xi Chen, Diederik P Kingma, Tim Salimans, Yan Duan, Prafulla Dhariwal, John Schulman, Ilya366

Sutskever, and Pieter Abbeel. Variational lossy autoencoder. arXiv preprint arXiv:1611.02731,367

November 2016.368

[11] Patrick Dendorfer, Aljosa Osep, and Laura Leal-Taixé. Goal-gan: Multimodal trajectory369

prediction based on goal position estimation. In Proceedings of the Asian Conference on370

Computer Vision, 2020.371

[12] Xidong Feng, Oliver Slumbers, Ziyu Wan, Bo Liu, Stephen McAleer, Ying Wen, Jun Wang,372

and Yaodong Yang. Neural auto-curricula in two-player zero-sum games. Advances in Neural373

Information Processing Systems, 34:3504–3517, 2021.374

[13] Carlos Florensa, David Held, Xinyang Geng, and Pieter Abbeel. Automatic goal generation375

for reinforcement learning agents. In International conference on machine learning, pages376

1515–1528. PMLR, 2018.377

[14] Carlos Florensa, David Held, Markus Wulfmeier, Michael Zhang, and Pieter Abbeel. Reverse378

curriculum generation for reinforcement learning. In Conference on robot learning, pages379

482–495. PMLR, 2017.380

[15] Yoav Freund and Robert E Schapire. Game theory, on-line prediction and boosting. In381

Proceedings of the ninth annual conference on Computational learning theory, pages 325–332,382

1996.383

[16] Audrūnas Gruslys, Marc Lanctot, Rémi Munos, Finbarr Timbers, Martin Schmid, Julien Perolat,384

Dustin Morrill, Vinicius Zambaldi, Jean-Baptiste Lespiau, John Schultz, et al. The advantage385

regret-matching actor-critic. arXiv preprint arXiv:2008.12234, 2020.386

[17] Johannes Heinrich, Marc Lanctot, and David Silver. Fictitious self-play in extensive-form387

games. In International conference on machine learning, pages 805–813. PMLR, 2015.388

10

[18] Johannes Heinrich and David Silver. Deep reinforcement learning from self-play in imperfect-389

information games. arXiv preprint arXiv:1603.01121, 2016.390

[19] Daniel Hennes, Dustin Morrill, Shayegan Omidshafiei, Rémi Munos, Julien Perolat, Marc391

Lanctot, Audrunas Gruslys, Jean-Baptiste Lespiau, Paavo Parmas, Edgar Duéñez-Guzmán, et al.392

Neural replicator dynamics: Multiagent learning via hedging policy gradients. In Proceedings393

of the 19th International Conference on Autonomous Agents and MultiAgent Systems, pages394

492–501, 2020.395

[20] Max Jaderberg, Wojciech M Czarnecki, Iain Dunning, Luke Marris, Guy Lever, Antonio Garcia396

Castaneda, Charles Beattie, Neil C Rabinowitz, Ari S Morcos, Avraham Ruderman, Nicolas397

Sonnerat, Tim Green, Louise Deason, Joel Z Leibo, David Silver, Demis Hassabis, Koray398

Kavukcuoglu, and Thore Graepel. Human-level performance in first-person multiplayer games399

with population-based deep reinforcement learning. arXiv preprint arXiv:1807.01281, July400

2018.401

[21] Chi Jin, Qinghua Liu, Yuanhao Wang, and Tiancheng Yu. V-learning–a simple, efficient,402

decentralized algorithm for multiagent rl. arXiv preprint arXiv:2110.14555, 2021.403

[22] Karol Kurach, Anton Raichuk, Piotr Stańczyk, Michał Zając, Olivier Bachem, Lasse Espeholt,404

Carlos Riquelme, Damien Vincent, Marcin Michalski, Olivier Bousquet, et al. Google research405

football: A novel reinforcement learning environment. In Proceedings of the AAAI Conference406

on Artificial Intelligence, volume 34, pages 4501–4510, 2020.407

[23] Marc Lanctot, Vinicius Zambaldi, Audrunas Gruslys, Angeliki Lazaridou, Karl Tuyls, Julien408

Pérolat, David Silver, and Thore Graepel. A unified game-theoretic approach to multiagent409

reinforcement learning. Advances in neural information processing systems, 30, 2017.410

[24] Yunfei Li, Tao Kong, Lei Li, and Yi Wu. Learning design and construction with varying-sized411

materials via prioritized memory resets. In 2022 International Conference on Robotics and412

Automation (ICRA), pages 7469–7476, 2022.413

[25] Michael L Littman. Markov games as a framework for multi-agent reinforcement learning. In414

Proceedings of the eleventh international conference on machine learning, volume 157, pages415

157–163, 1994.416

[26] Xiangyu Liu, Hangtian Jia, Ying Wen, Yujing Hu, Yingfeng Chen, Changjie Fan, Zhipeng417

Hu, and Yaodong Yang. Towards unifying behavioral and response diversity for open-ended418

learning in zero-sum games. Advances in Neural Information Processing Systems, 34:941–952,419

2021.420

[27] Qian Long, Zihan Zhou, Abhinav Gupta, Fei Fang, Yi Wu, and Xiaolong Wang. Evolution-421

ary population curriculum for scaling multi-agent reinforcement learning. In International422

Conference on Learning Representations, 2020.423

[28] Ryan Lowe, Yi Wu, Aviv Tamar, Jean Harb, Pieter Abbeel, and Igor Mordatch. Multi-agent actor-424

critic for mixed cooperative-competitive environments. In Proceedings of the 31st International425

Conference on Neural Information Processing Systems, 2017.426

[29] Tambet Matiisen, Avital Oliver, Taco Cohen, and John Schulman. Teacher-student curriculum427

learning. IEEE transactions on neural networks and learning systems, 2019.428

[30] Stephen McAleer, John B Lanier, Kevin A Wang, Pierre Baldi, and Roy Fox. Xdo: A double429

oracle algorithm for extensive-form games. Advances in Neural Information Processing Systems,430

34:23128–23139, 2021.431

[31] H Brendan McMahan, Geoffrey J Gordon, and Avrim Blum. Planning in the presence of cost432

functions controlled by an adversary. In Proceedings of the 20th International Conference on433

Machine Learning (ICML-03), pages 536–543, 2003.434

[32] Bhairav Mehta, Manfred Diaz, Florian Golemo, Christopher J Pal, and Liam Paull. Active435

domain randomization. In Conference on Robot Learning, pages 1162–1176. PMLR, 2020.436

11

[33] Nicolas Perez-Nieves, Yaodong Yang, Oliver Slumbers, David H Mguni, Ying Wen, and Jun437

Wang. Modelling behavioural diversity for learning in open-ended games. In International438

Conference on Machine Learning, pages 8514–8524. PMLR, 2021.439

[34] Julien Perolat, Bart de Vylder, Daniel Hennes, Eugene Tarassov, Florian Strub, Vincent de Boer,440

Paul Muller, Jerome T Connor, Neil Burch, Thomas Anthony, et al. Mastering the game of441

stratego with model-free multiagent reinforcement learning. arXiv preprint arXiv:2206.15378,442

2022.443

[35] Rémy Portelas, Cédric Colas, Katja Hofmann, and Pierre-Yves Oudeyer. Teacher algorithms444

for curriculum learning of deep rl in continuously parameterized environments. In Conference445

on Robot Learning, pages 835–853. PMLR, 2020.446

[36] Charles R. Qi, Li Yi, Hao Su, and Leonidas J. Guibas. Pointnet++: Deep hierarchical feature447

learning on point sets in a metric space. Advances in Neural Information Processing Systems,448

30, 2017.449

[37] Sebastien Racaniere, Andrew K Lampinen, Adam Santoro, David P Reichert, Vlad Firoiu, and450

Timothy P Lillicrap. Automated curricula through setter-solver interactions. arXiv preprint451

arXiv:1909.12892, 2019.452

[38] Tom Schaul, John Quan, Ioannis Antonoglou, and David Silver. Prioritized experience replay.453

arXiv preprint arXiv:1511.05952, 2015.454

[39] John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal455

policy optimization algorithms. arXiv preprint arXiv:1707.06347, 2017.456

[40] Jack Serrino, Max Kleiman-Weiner, David C Parkes, and Josh Tenenbaum. Finding friend and457

foe in multi-agent games. Advances in Neural Information Processing Systems, 32, 2019.458

[41] David Silver, Aja Huang, Chris J Maddison, Arthur Guez, Laurent Sifre, George Van Den Driess-459

che, Julian Schrittwieser, Ioannis Antonoglou, Veda Panneershelvam, Marc Lanctot, et al.460

Mastering the game of go with deep neural networks and tree search. nature, 529(7587):484,461

2016.462

[42] Eric Steinberger, Adam Lerer, and Noam Brown. Dream: Deep regret minimization with463

advantage baselines and model-free learning. arXiv preprint arXiv:2006.10410, 2020.464

[43] Csaba Szepesvári and Michael L Littman. A unified analysis of value-function-based465

reinforcement-learning algorithms. Neural computation, 11(8):2017–2060, 1999.466

[44] Zhenggang Tang, Chao Yu, Boyuan Chen, Huazhe Xu, Xiaolong Wang, Fei Fang, Simon467

Du, Yu Wang, and Yi Wu. Discovering diverse multi-agent strategic behavior via reward468

randomization. arXiv preprint arXiv:2103.04564, 2021.469

[45] Gerald Tesauro et al. Temporal difference learning and td-gammon. Communications of the470

ACM, 38(3):58–68, 1995.471

[46] Oriol Vinyals, Igor Babuschkin, Wojciech M Czarnecki, Michaël Mathieu, Andrew Dudzik, Jun-472

young Chung, David H Choi, Richard Powell, Timo Ewalds, Petko Georgiev, et al. Grandmaster473

level in StarCraft II using multi-agent reinforcement learning. Nature, 575(7782):350–354,474

2019.475

[47] Rui Wang, Joel Lehman, Jeff Clune, and Kenneth O Stanley. Poet: open-ended coevolution of476

environments and their optimized solutions. In Proceedings of the Genetic and Evolutionary477

Computation Conference, pages 142–151, 2019.478

[48] Rui Wang, Joel Lehman, Aditya Rawal, Jiale Zhi, Yulun Li, Jeffrey Clune, and Kenneth Stanley.479

Enhanced poet: Open-ended reinforcement learning through unbounded invention of learning480

challenges and their solutions. In International Conference on Machine Learning, pages481

9940–9951. PMLR, 2020.482

12

[49] Weixun Wang, Tianpei Yang, Yong Liu, Jianye Hao, Xiaotian Hao, Yujing Hu, Yingfeng Chen,483

Changjie Fan, and Yang Gao. From few to more: Large-scale dynamic multiagent curriculum484

learning. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 34, pages485

7293–7300, 2020.486

[50] David Warde-Farley, Tom Van de Wiele, Tejas Kulkarni, Catalin Ionescu, Steven Hansen, and487

Volodymyr Mnih. Unsupervised control through non-parametric discriminative rewards. In488

International Conference on Learning Representations, 2019.489

[51] Christopher JCH Watkins and Peter Dayan. Q-learning. Machine learning, 8(3):279–292, 1992.490

[52] Chao Yu, Akash Velu, Eugene Vinitsky, Yu Wang, Alexandre Bayen, and Yi Wu. The surprising491

effectiveness of ppo in cooperative, multi-agent games. arXiv preprint arXiv:2103.01955, 2021.492

[53] Yunzhi Zhang, Pieter Abbeel, and Lerrel Pinto. Automatic curriculum learning through value493

disagreement. Advances in Neural Information Processing Systems, 33:7648–7659, 2020.494

[54] Martin Zinkevich, Michael Johanson, Michael Bowling, and Carmelo Piccione. Regret mini-495

mization in games with incomplete information. Advances in neural information processing496

systems, 20, 2007.497

13

	Introduction
	Preliminary
	Markov game
	MARL algorithms in zero-sum games

	A motivating example
	Iterated Rock-Paper-Scissors game
	From exponential to linear complexity

	Method
	Subgame curriculum learning
	Subgame sampling metric
	Particle-based subgame sampler
	Overall algorithm

	Experiment
	Main results
	Ablation study

	Related work
	Conclusion
	Analysis and proofs
	Detailed analysis of the motivating example
	Proof of Proposition 1
	Detailed analysis of the state sampling metric

	Implementation details
	Training details
	Evaluation details

	Additional experiment results
	Multi-Agent Particle Environment
	Google Research Football
	Hide-and-seek
	Ablation studies

	Limitation and broader impact

