
Under review as a conference paper at ICLR 2024

NEW RECIPES FOR GRAPH ANOMALY DETECTION: FOR-
WARD DIFFUSION DYNAMICS AND GRAPH GENERATION

Anonymous authors
Paper under double-blind review

ABSTRACT

Distinguishing atypical nodes in a graph, which is known as graph anomaly de-
tection, is more crucial than the generic node classification in real applications,
such as fraud and spam detection. However, the lack of prior knowledge about
anomalies and the extremely class-imbalanced data pose formidable challenges
in learning the distributions of normal nodes and anomalies, which serves as the
foundation of the state of the arts. We introduce a novel paradigm (first recipe) for
detecting graph anomalies, stemming from our empirical and rigorous analysis of
the significantly distinct evolving patterns between anomalies and normal nodes
when scheduled noise is injected into the node attributes, referred to as the forward
diffusion process. Rather than modeling the data distribution, we present three
non-GNN methods to capture the evolving patterns and achieve promising results
on nine widely-used datasets, while mitigating the oversmoothing limitation and
shallow architecture of GNN methods. We further investigate the generative power
of denoising diffusion models to synthesize training samples that align with the
original graph semantics (second recipe). In particular, we derive two principles for
designing the denoising neural network and generating graphs. With our proposed
graph generation method, we attain record-breaking performance while our gener-
ated graphs are also capable of enhancing the results of existing methods. All the
code and data are available at https://github.com/DiffAD/DiffAD.

1 INTRODUCTION

Forward diffusion process
(add noise to node attributes)

{A,X}

I. Detect anomalies based on evolving trajectory

Anomalies
Normal nodes

Reverse process
(denoise and graph generation){A,Xa}

II. Generate additional training samples
{A,N (0, I)}

{A,XT }

Figure 1: Two recipes for graph anomaly detection.

Learning the graph data distribution with
regard to its structure and node attributes
serves as the foundation of static graph anal-
ysis (Chami et al., 2022; Cui et al., 2019),
especially for detecting anomalous graph en-
tities (Akoglu et al., 2015; Ma et al., 2021).
Given the learned data distributions, anoma-
lies are significantly divergent from normal
entities due to the deviating mechanisms that
generate them. Though anomalies are far
rarer and much less dominant than the majority, recognizing their presence and understanding their
significant impacts are even more crucial for real-world applications. To list a few, fraud detection in
online social networks (Dou et al., 2020; Wang et al., 2023b; Gao et al., 2023b), fake news detection
in social media (Wang et al., 2023a), rare molecule detection for drug discovery, malware detection
in computing systems, and brain health monitoring (Xu et al., 2022a; Ma et al., 2023).

More recently, graph neural networks (GNNs) have greatly advanced the frontier of graph machine
learning, but learning the graph data distribution remains an open problem (Chen et al., 2022; Sun
et al., 2023). Instead of solely learning either the structure distribution p(A) or attribute distribution
p(X), graph learning techniques expect to learn the joint distribution p(A,X) considering the
complex relation between the graph structure and node attributes. In the realm of graph anomaly
detection, effectively capturing the distributions of anomalies is even more challenging due to the lack
of prior knowledge about them and the tremendous cost of acquiring labeled anomalies. Nevertheless,
since the number of anomalies is far less than normal entities, vanilla models will bias on learning
normal entities giving such extremely imbalanced data (Johnson & Khoshgoftaar, 2019).

1

https://github.com/DiffAD/DiffAD

Under review as a conference paper at ICLR 2024

0.00

0.12

0.24

0.36

0.00

0.12

0.24

0.36

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0
0.00

0.03

0.06

0.08

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0
0.00

0.03

0.06

0.08

<latexit sha1_base64="l6v7b8WEz3KlQh/xTtq1s64OQWE=">AAAB7nicbVDLSsNAFL2pr1pfVZduBovgqiQi6rLoxmUF+4A2lJvJpB06mYSZiVBCP8KNC0Xc+j3u/BunbRbaemDgcM65zL0nSAXXxnW/ndLa+sbmVnm7srO7t39QPTxq6yRTlLVoIhLVDVAzwSVrGW4E66aKYRwI1gnGdzO/88SU5ol8NJOU+TEOJY84RWOlTl/YaIiDas2tu3OQVeIVpAYFmoPqVz9MaBYzaahArXuemxo/R2U4FWxa6WeapUjHOGQ9SyXGTPv5fN0pObNKSKJE2ScNmau/J3KMtZ7EgU3GaEZ62ZuJ/3m9zEQ3fs5lmhkm6eKjKBPEJGR2Owm5YtSIiSVIFbe7EjpChdTYhiq2BG/55FXSvqh7V/XLh8ta47aoowwncArn4ME1NOAemtACCmN4hld4c1LnxXl3PhbRklPMHMMfOJ8/P7OPhg==</latexit>

�EigenvaluesDiffusion steps(%)

step 0% step 25%

step 50% step 100%

Low
frequencies

High
frequencies

Egonet dissimilarity

Linear
scheduler

Cosine
scheduler

Spectral energy distribution

Anomalies
Normal nodes

(a) (b)

0 20 40 60 80 100

1

2

3

4

0 20 40 60 80 100

1

2

3

4

Figure 2: On Cora dataset, by
gradually injecting scheduled
noise to node attributes as the
forward diffusion process. (a).
Anomalies’ egonet dissimilari-
ties change more dramatically
than normal nodes. (b). The
ratios of lower frequency en-
ergy decreases while higher fre-
quencies rise (shift from low to
higher frequencies). Details are
presented in §4.

Besides the challenges posed by the data for anomaly detection, GNNs also encounter intrinsic
technical limitations (Azabou et al., 2023). Their fundamental message-passing (MP) mechanism
undermines the effectiveness in learning the distributions of anomalies and normal nodes since vanilla
MP aggregates anomalous and normal nodes’ features with each other. Such schema blends anomalies
and normal nodes in the representation space (Liu et al., 2020) and prevents a deeper architecture of
GNNs since nodes will collapse together when staking more MP layers (Keriven, 2022).

In this paper, we first explore a novel paradigm to detect anomalies on a static graph without the
need to explicitly learn its data distribution and to employ MP-GNNs. Our analysis on the differences
between anomalies and their egonet neighbors, called egonet dissimilarity, illustrate that anomalies
and normal nodes can be separated by gradually injecting T scales of scheduled Gaussian noise into
node attributes, referring to as the forward diffusion process. Scrutinizing the egonet dissimilarity
changes in this process (Fig. 2(a)), we find that anomalies experience a more dramatic drop in egonet
dissimilarity compared to normal nodes. We recognize this unexplored anomaly detection paradigm
as classifying nodes in terms of their evolving trajectories in the forward diffusion.

Suffering from the shortage of knowledge about anomalies, we further investigate graph generation,
assuming that high quality synthesized data could facilitate anomaly detectors learning a better
decision boundary. Inspired by denoising-based generative models, we have delved into the reverse
diffusion process for graph generation, which is to denoise the data, and introduce two fundamental
principles to design the denoising neural network such that the generated graphs adhere to the original
graph semantics. By inspecting the forward diffusion process via the lens of graph’s spectrum, we
discover a progressive shift in the graph’s spectral energy from lower frequencies to higher frequencies
as the diffusion forwards, which is depicted in Fig. 2(b) and Fig. 3 that the energy ratios of lower
frequency signals (corresponding to smaller eigenvalues) decrease continuously from diffusion step 0
to 100% while higher frequencies are becoming more dominant. These observations from the forward
diffusion process underscore the need for the denoising network to 1). Explore each node’s egonet
dissimilarity (capturing the local graph semantics) and 2). Recover the low frequency graph energy.

Upon these findings, we offer two fresh recipes for graph anomaly detection: 1) Distinguishing
anomalies based on the distinctive forward diffusion dynamics and 2) Synthesizing additional samples
to complement detectors (as depicted in Fig. 1). For learning the divergent dynamics of anomalies,
we design three innovative non-GNN methods (§5) and for the purpose of graph generation, we
follow the principles and devise a novel generative graph diffusion framework for synthesizing
graphs, particularly for anomaly detection (§6). The main contributions of this paper are: 1) A
novel paradigm to detect graph anomalies. We, for the first time, propose to shift the focus of
graph anomaly detection from learning a static data distribution to the exploration of dynamics in the
forward diffusion process. This new paradigm enables us to promptly apply non-GNN techniques for
investigating graph data, well-tackling the oversmoothing issues of MP-GNNs in anomaly detection.
The promising results of our proposed non-GNN methods empirically underpin this as a potential
research direction. 2) Two principles for designing the denoising-based graph diffusion model.
Adhering to the principles, our model can generate supplementary and effective training samples to
mitigate the shortage of labeled anomalies. Extensive experiments on real-world datasets demonstrate
that these generated samples can significantly improve the detection performance. 3), we rigorously
review and prove our observations on the diffusion process, which will serve as foundations for future
works in graph anomaly detection.

2

Under review as a conference paper at ICLR 2024

2 PRELIMINARIES

Static attributed graph. A static attributed graph G = {A,X} comprises n nodes with attributes.
Ai,j in the adjacency matrix A is 1 if nodes vi and vj in G are directly connected; otherwise, 0. The
attribute matrix X = [xi]n×k contains each node vi’s k-dimensional attribute vector.

Egonet dissimilarity. The egonet dissimilarity Ω = [ωi]n×k = LX quantifies how each node’s
attributes are different from its egonet neighbors. L = I − D- 12AD- 12 is the normalized graph
Laplacian corresponding to G and D is the diagonal degree matrix.

Forward graph diffusion (process). The forward graph diffusion is referred to as injecting T scales
of scheduled noise to node attributes with the fixed graph structure. For each diffusion step {t}T0 , the
corrupted graph Gt+1 = {A,Xt+1} are derived from Gt = {A,Xt}, with G0 = G.

Generative graph data augmentation for graph anomaly detection. We define generative graph
data augmentation as to synthesize additional graphs Ga = {G1

a, . . . ,G
|Ga|
a } for enhancing the graph

anomaly detection performance. Each Gi
a = {A,Xi

a} has the same structure as the original graph G
and the attribute distributions p(Xi

a|A) ∼ p(X|A).

Contextual anomalies and graph anomaly detection. In this paper, we aim to detect contextual
anomalies, which are defined as nodes exhibiting significantly different attributes compared to their
neighbors (Liu et al., 2022b). The detection is conducted with access to a small proportion of labeled
data so as to simulate real scenarios. Given an attributed graph G containing both anomalies in V1, and
normal nodes in V0, we aim to learn a classification function that maps each node vi ∈ V, V=V1∪V0

to its class label, which is 1 for anomalies and 0 for normal nodes, i.e., f : {A,X} → y ∈ {0, 1}n.
Practically, anomalies are far rarer than normal nodes, which means the cardinalities |V1| ≪ |V0|.1

3 RELATED WORK

3.1 SEMI-/SUPERVISED GRAPH ANOMALY DETECTION

Anomalous node detection, particularly contextual anomaly detection, is a key topic in graph anomaly
detection (Akoglu et al., 2015; Ma et al., 2021; Gavrilev & Burnaev, 2023). These anomalies are rare
compared to the majority, but are pervasive in real-world scenarios. Concrete examples include fake
news in social media, business fraudsters in financial systems, and malfunctioning cortices in brain
networks. Tremendous effort has been committed to learn the graph distribution for detecting the
violating anomalies, and most recent approaches have shifted to adopting MP-GNNs to investigate the
abnormal patterns of anomalies (Dou et al., 2020; Tang et al., 2022; Liu et al., 2022b). However, due
to the oversmoothing issue of MP-GNNs, straightforwardly applying them to anomaly detection is
non-trivial, spurring Dou et al. (2020), Liu et al. (2020) and others to mitigate the negative impact of
MP or seek band-pass filters to capture the signals of anomalies (Tang et al., 2022). These approaches
consider the technical challenges associated with GNNs, but solutions to the shortage of labeled
anomalies still lack sufficient exploration. Others, such as Ding et al. (2019), Zheng et al. (2021),
and Liu et al. (2021) expect to address this with unsupervised/contrastive learning techniques, but
they only predict the irregularity (a continuous score) of each node and cannot explicitly classify
anomalies. Although a human defined threshold can be utilized to label anomalies, determining an
effective threshold under the unsupervised setting is non-trivial in practice (Ma et al., 2021; Akoglu,
2021). Following (Tang et al., 2022), we do not cover structural anomalies that form more densely
links with other nodes (Liu et al., 2022b) as this type of anomalies only exhibit deviating structural
patterns and can be effectively detected using structure statistics like node degree and centralities.

3.2 DENOISING DIFFUSION PROBABILISTIC MODEL (DDPM)

Denoising diffusion probabilistic models (DDPMs) is a class of generative models built upon the
forward diffusion process (diffusion process) and reverse process (denoising process) (Ho et al.,

1We use the terms ‘graph anomalies’ and ‘anomalous nodes’, as well as ‘node features’ and ‘node attributes’ interchangeably. We use
anomalies to specifically represent contextual anomalies. The italic T specifically denotes noise scales while the superscript ‘⊤’ stands for the
transpose of a matrix. To eliminate confusion, we use ’egonet dissimilarity’ to specifically denote how each node’s attributes differ from its
egonet neighbors, distinct from the embedding method used in previous works.

3

Under review as a conference paper at ICLR 2024

2020; Nichol & Dhariwal, 2021). Typically, the diffusion process is defined as a Markov chain that
progressively adds a sequence of scheduled Gaussian noise, to corrupt the original data x0 to standard
Gaussian noise as follows:

q(xT |x0) =

T∏
t=1

q(xt|xt−1) = N
(
xT ;

√
ᾱTx0, (1− ᾱT)I

)
, (1)

where ᾱT =
∏T

t=1(1− βt) and βt is the variance of the noise at step t. The denoising process is a
reverse Markov chain that attempts to recover the original data from noise by

pθ(x0:T) := p(xT)

T∏
t=1

pθ(xt−1|xt), pθ(xt−1|xt) := N
(
xt−1;µθ(xt, t),Σθ(xt, t)

)
, (2)

where the mean µθ and variance Σθ of distribution pθ(xt−1|xt) are learned using a deep neu-
ral network with parameters θ. By minimizing the Kullback-Leibler (KL) divergence between
q(xt−1|xt,x0) and pθ(xt−1|xt), which is

argmin
θ

DKL(q(xt−1|xt,x0) ∥ pθ(xt−1|xt)), (3)

the neural network will capture the original data distributions. Consequently, new samples (i.e., xa
0)

adhering to the original data distributions can be firmly generated by simply sampling xT ∼ N (0, I)
and running the denoising process. Due to space limitations, we provide additional related works in
graph anomaly detection and explanations of DDPM (including Eq. (3)) in Appendix A.

4 PRELIMINARY STUDY: ANOMALIES’ DYNAMICS AND GRAPH ENERGY
SHIFTS IN THE FORWARD DIFFUSION PROCESS

The power of diffusion models in discerning different modes of the data stems from the forward
and reverse diffusion processes. Our work investigates both processes and unveils two significant
observations, particularly in the context of graph anomaly detection.

4.1 PRELIMINARY STUDY SETUP

Our preliminary study aims at exploring: The deviating dynamics of graph anomalies and Changes
in the graph spectral energy distributions during the forward diffusion. We conduct the study on
Cora by fixing the graph structure and gradually injecting noise into node attributes. Specifically, we
generate the noise employing two variance schedulers, i.e., linear scheduler and cosine scheduler,
while the node attributes are randomly drawn from two Gaussian distributions, N (1, 1) for the normal
class and N (1, 5) for anomalies, following Tang et al. (2022). Our observations are as follows.

4.2 OBSERVATION I - MORE DRAMATIC CHANGES IN ANOMALIES’ EGONET SIMILARITIES

Since contextual anomalies have markedly distinct features compared to their egonet neighbors, we
target the problem of what deviating patterns anomalies will manifest during the forward diffusion
process. When measuring the average egonet dissimilarity 1

|Vy|
∑

vj∈Vy
ωj for anomalies (y=1) and

normal nodes (y=0) at each forward step, we surprisingly find that anomalies (the red line) undergo
more substantial changes than normal nodes (the blue line), as depicted in Fig. 2(a).

Proposition 1 Given T scales of noise from linear or cosine scheduler, when injecting them gradually
into node attributes through the forward diffusion process, the egonet dissimilarities of anomalies
change more dramatically than normal nodes.

By this, we propose to detect anomalies by investigating the dynamics related to egonet dissimilarity
Ωt in the diffusion process, as an alternation of learning the graph distribution. We recognize this
as a novel paradigm for graph anomaly detection. Since learning p(A,X) is no longer mandatory,
other powerful algorithms can be promptly adopted for detecting graph anomalies and breaking the
limitations of MP-GNNs. As the pioneer in this line, we hereafter present three non-GNN models
to capture such dynamics, namely FSC, TRC-TRANS, and TRC-MLP, built upon LSTM (Hochreiter
& Schmidhuber, 1997), Transformer (Vaswani et al., 2017), and MLP (Goodfellow et al., 2016),
respectively. Proof of this proposition is provided in Appendix B.

4

Under review as a conference paper at ICLR 2024

4.3 OBSERVATION II - RECOVERY THE LOW FREQUENCY ENERGY FOR GRAPH GENERATION

20 40 60 80 100
0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

Steps

E
ig

en
va

lu
e

0.000

0.125

0.250

0.375

0.500

0.625

0.750

0.875

1.000

Accumulated
energy ratio

0.3

20 40 60 80 100

0.1

0.2

0.3

0.4

0.5

Steps

 Eigenvalue ≤ 0.3

Figure 3: Γ across diffusion steps.

Considering the recent success of DDPMs in generating
high-quality data samples (Ho et al., 2020; Nichol &
Dhariwal, 2021; Song et al., 2021), we are motivated to
synthesize additional training samples to enrich the train-
ing set and complement anomaly detectors. However,
the critical capabilities that the denoising neural network
should possess for synthesizing training samples, espe-
cially in the context of graph anomaly detection, remain
unexplored. We inspect particular changes in the graph
spectrum across forward diffusion. Given a original
graph signal x (a column of X), a sequence of corrupted
signal (x1, . . . ,xT)

⊤ in the forward diffusion process
(by Eq. (1)) and the eigenvectors U = (u1, . . . ,un)

⊤

of the graph Laplacian L, in which ul is the eigenvec-
tor corresponding to the l-the smallest eigenvalue. We
quantify the energy ratio of a particular frequency (rank
l) at diffusion step t as γl(xt,L) = (x̂tl)

2/
∑n

i=1(x̂
t
i)

2,
where x̂t = U⊤xt = (x̂t1, . . . , x̂

t
l , . . . , x̂

t
n)

⊤ is the graph Fourier transformed signal. Taking l
as a threshold, we identify signals (x̂t1, . . . , x̂

t
l) as low frequency signals and the rest are the high

frequency. As depicted in Fig. 2(b), the ratios of low frequency signals are gradually decreasing while
higher frequencies are becoming more significant along the forward diffusion process. We further
delve into the overall ratios of low and high frequency signals with regard to different thresholds at
each step t by measuring the accumulated energy ratio at rank l following Tang et al. (2022) as:

Γl(xt,L) =

l∑
i=1

γi(xt,L). (4)

We find that the accumulated energy is shifting to higher frequencies (as diffusion proceeds, the
accumulated energy ratio with eigenvalues below a low threshold (e.g., 0.3) decreases continuously,
as depicted Fig. 3) and we have the following expectation regarding Γl(xt,L).

Proposition 2 The expectation of low frequency energy ratio Ex∼N (|µ|,σ2)[Γl(xt,L)] is monotoni-
cally decreasing during the forward diffusion process.

This indicates that the graph spectral energy distribution weights less on low frequency eigenvalues
at step t than t−1, and to denoise xt for obtaining xt−1, the denoising network needs to recover the
lower frequency energy. The proof is in Appendix C.

Ultimately, we identify two principles for designing denoising networks for DDPM-based graph
generation. Principle I (from Observation I). The denoising neural network should be capable
of capturing the local information in egonets (the graph’s local semantics), such that the prior
distribution p(Xa|A) of the generated graph aligns with the original distribution p(X|A), enabling
the classifier to learn a more effective decision boundary to distinguish anomalies. Principle II (from
Observation II). The denoising neural network needs to recover the low frequency energy.

5 OUR APPROACH I – LEARNING DIFFUSION DYNAMICS FOR GRAPH
ANOMALY DETECTION

Conforming to our novel paradigm for discerning anomalies upon the diffusion dynamics, in this
section, we first introduce a new data structure for storing Ωt across forward diffusion, followed
by our proposed sequence and trajectory learning based detection methods. Our algorithms are
summarized in Appendix I.

5.1 STORING THE GRAPH INFORMATION IN FORWARD DIFFUSION

The forward diffusion process corrupts the original node attributes with respect to T scales of
scheduled noise. Eventually, the node attributes become standard Gaussian noise XT ∼ q(XT |A) :=

5

Under review as a conference paper at ICLR 2024

N (XT ;0, I) and for any discrete time step t ∈ {0, . . . , T}, we can promptly infer the corrupted
graph Gt = {A,Xt} based on Eq. (1) as follows:

Xt ∼ q(Xt|X,A) = N
(
Xt;

√
ᾱtX, (1− ᾱt)I

)
. (5)

We then employ a tensor G ∈ Rn×T×k to store {Ωt = LXt}Tt=0 at all diffusion steps. Specifically,
the 2-D slice Gi,:,: = (ω0

i , . . . ,ω
T
i)

⊤ encapsulates node vi’s egonet dissimilarity from step 0 to
step T . The 1-D slice Gi,t,: = ωt

i ∈ Rk denotes vi’s egonet dissimilarity at a particular step t.
Apparently, the memory cost of G is proportional to T , thus we present a skip-step algorithm to
reduce its size, and provide a batch implementation to facilitate training (in Appendix D). Given G,
we then reformulate graph anomaly detection as to classify nodes with regard to their corresponding
2-D slices and propose the following methods.

5.2 FORWARD SEQUENCE CLASSIFICATION (FSC)

Each 2-D slice Gi,:,: is typically a sequence of multivariate features derived from vi’s egonet dissimi-
larity in the diffusion process. Our goal is to encode the long- and short-term evolving patterns of the
forward sequence into a hidden state for classifying nodes. Consider node vi, we propose FSC to
revisit ωt

i at each diffusion step and generates its hidden state hi
0 ∈ Rd using a LSTM:

τ i
t = tanh(WτGi,t,: +Uτh

i
t+1 + bτ), f i

t = tanh(WfGi,t,: +Ufh
i
t+1 + bf) (6)

gi
t = tanh(WgGi,t,: +Ugh

i
t+1 + bg), oi

t = tanh(WoGi,t,: +Uoh
i
t+1 + bo) (7)

cit = f i
t ⊙ cit+1 + τ i

t ⊙ gi
t, and hi

t = oi
t ⊙ tanh(f i

t ⊙ cit+1 + τ i
t ⊙ gi

t), (8)

where hi
t, c

i
t, τ

i
t , f i

t , gi
t and oi

t are the hidden state, cell state, input gate, forget gate, cell gate, and
output gate at step t, respectively. ⊙ denotes the Hadamard product, and the initial hi

T ∼ N (0, I).
We then predict its probabilities of being normal or anomalous through a fully connected layer:

f(hi
0;Wc, bc) := SOFTMAX(hi

0Wc + bc), (9)
where Wc ∈ Rd×2 and bc ∈ R2 are trainable parameters. Regarding the extremely imbalanced data,
we adjust the weights of anomalies and normal nodes in the training objective so as to regularize the
model focuses equally on both classes. This class-wise training objective is to minimize:

L = −
∑

y∈{0,1}

∑
vi∈Vy

1

|Vy|
logψ(vi | y), (10)

where ψ(vi | y) is the predicted possibility of vi being anomalous (y=1) or normal (y=0).

5.3 TRAJECTORY REPRESENTATION-BASED CLASSIFICATION (TRC)

While FSC predicts a hidden state from the forward sequence for distinguishing anomalies, we
propose TRC to learn a representation for each node’s trajectory and detect anomalies upon it. As to
capture the whole trajectory, for each node vi, TRC first encodes Gi,t,: at each diffusion step t into a
latent space and then reads the trajectory representation out from all the steps following:

htr
i = READOUT

[
∪t∈[0,T]g(Gi,t,:;θg)

]
, and htr

i ∈ Rd, (11)
where g(·;θg) is the function for encoding Gi,t,:, and READOUT(·) is to fuse the information at
each diffusion step and extract trajectory representation htr

i . We hereafter propose TRC-TRANS, and
TRC-MLP to implement both functions. In TRC-TRANS, we adopt the raw Transformer architecture
and generate the trajectory representation by passing Gi,:,: through the self-attention module (ATTN)
and position-wise feed-forward neural network (FFN), which follows:

ATTN(Ḡi,:,:) = SOFTMAX(
QiK

⊤
i√
k

)Vi, htr
i = READOUT{FFN[ATTN(Ḡi,:,:)]}, (12)

with Qi = Ḡi,:,:WQ, Ki = Ḡi,:,:WK , Vi = Ḡi,:,:WV , (13)

where WQ, WK , and WV ∈ Rk×k are the projection matrices for Q, K, and V, respectively. Ḡi,:,:

is vi’s corresponding 2-D slice after adding the position encoding (Eq. (48)). The READOUT function
is a fully connected layer. Ultimately, the trajectory representation-based classification is performed
through the classifier formulated in Eq. (9) by replacing hi

0 with htr
i and the whole model can be

flexibly trained via minimizing Eq. (10). For space limitation, we provide details of this readout
function and present an even straightforward yet effective MLP-based model in Appendix E.

6

Under review as a conference paper at ICLR 2024

6 OUR APPROACH II - GENERATIVE GRAPH ANOMALY DETECTION

Motivated by the success of generative models in synthesizing high quality data samples, we propose
a novel DDPM-based graph diffusion model (namely DIFFAD) to generate auxiliary training samples
and complement detectors for more effective anomaly detection.

6.1 REVERSE PROCESS FOR DATA DISTRIBUTION MODELING

Let {Gt}Tt=0 denote a sequence of noised graphs in the forward graph diffusion process, each
Gt = {A,Xt} and Xt ∼ q(Xt|X,A) = N (Xt;

√
ᾱtX, (1 − ᾱt)I) (detailed in §5.1). Our goal is

to learn the original graph data distribution through the reverse process, which can be practically
described as to learn a denoising network in accordance with Eq. (3):

θ∗ = argmin
θ

DKL[q(Xt−1|Xt,X,A) ∥ pθ(Xt−1|Xt,A)]. (14)

Given the fact that node attributes of the corrupted graph at each forward step t follow distribution
N (Xt;

√
ᾱtX, (1− ᾱt)I), learning θ∗ via Eq. (14) is actually estimating the mean value

√
ᾱt−1X

and variance (1− ᾱt−1)I of the prior step t−1 using graph Gt (detailed in Appendix G).

Upon our design Principle II (§4.3), which advises that the denoising network should recover low
frequency signals, we opt to use graph convolutional neural network (GCN) (Kipf & Welling, 2017) as
the backbone because of its capacity to act as a low-pass filter, attenuating high frequency signals and
emphasizing lower frequencies (Nt & Maehara, 2019; Keriven, 2022). From the spatial perspective,
GCN inherently explores the local graph semantics, which aligns with our principle I. Our proposed
model DIFFAD has two ingredients: a step-dependent GCN (SDN) for learning node representations
Zt at step t and DEN for estimating the distribution (mean and variance) of Xt−1.

6.1.1 STEP-DEPENDENT GCN - SDN

Built on Kipf & Welling (2016), we assume that the latent node representations also conform to
a Gaussian distribution which is p(Zt|Xt,A, t) ∼ N (µSDN

t , diag(ΣSDN
t)) =

∏n
i=1 p(z

i
t|Xt,A, t),

with p(zi
t|Xt,A, t) = N (zi

t;µi,t,σ
2
i,t). The matrices µSDN

t and diag(ΣSDN
t) summarize the mean

and variance vectors (µi,t, σ2
i,t) of node representations zi

t at step t, which are generated by:

µSDN
t = SDNµ(Xt,A, t) = Ã

first GCN layer︷ ︸︸ ︷
ReLU[Ã(Xt + TE(t))W SDN

1]W SDN
2︸ ︷︷ ︸

second GCN layer

, (15)

log[diag(ΣSDN
t)] = SDNσ(Xt,A, t) = ÃReLU[Ã(Xt + TE(t))W SDN

1]W SDN
3 , (16)

where Ã = D− 1
2AD− 1

2 is the normalized adjacency matrix. W SDN
1 ,W SDN

2 and W SDN
3 are variables

in the GCN layers. SDNµ and SDNσ share the first layer, parametrized by W SDN
1 . We incorporate the

diffusion step t in the learning process by encoding it as a matrix given by TE(·) (see Appendix F).

6.1.2 DISTRIBUTION ESTIMATING GCN - DEN

Then, we propose DEN for predicting the less noisy node attributes Xt−1 with Zt. Empirically, this
is to estimate the mean and variance of Xt−1 (in Eq. (5)) and we obtain them by

p(Xt−1|Zt, Z̄t,A) ∼ N (µDEN
t−1, diag(ΣDEN

t−1)) :=

N∏
i=1

p(xi
t−1|zi

t, z̄
i
t,A), (17)

with p(xi
t−1|zi

t, z̄
i
t,A) = N (xi

t−1;µ
′
i,t−1,σ

′2
i,t−1), where z̄i

t ∈ Z̄t is the output of the first GCN
layer in SDN. We take this residual information from SDN as to prevent oversmoothing and further
validate its effectiveness through the ablation study in §J.8. Notably, different from SDN, the
matrices µDEN

t−1 and diag(ΣDEN
t−1) summarize the mean vectors µ′

i,t−1 and σ′2
i,t−1 of xi

t−1 to describe
the distribution of Xt−1, and are learned through a two-layered GCN similar to SDN as follows:

µDEN
t−1 = DENµ′(Zt, Z̄t,A) = Ã{

first GCN layer︷ ︸︸ ︷
[ReLU(Ã(Zt ⊕ Zt)W

DEN
1)]⊕Z̄t}W DEN

2︸ ︷︷ ︸
second GCN layer

, (18)

7

Under review as a conference paper at ICLR 2024

log[diag(ΣDEN
t−1)] = DENσ′(Zt, Z̄t,A) = Ã{[ReLU(Ã(Zt ⊕ Zt)W

DEN
1)]⊕ Z̄t}W DEN

3 , (19)

where ⊕ is for concatenation, W DEN
1 ,W DEN

2 and W DEN
3 parameterize the GCN layers.

6.1.3 SIMPLIFIED TRAINING OBJECTIVE OF THE REVERSE PROCESS

Eventually, all parameters θ = {W SDN
i }3i=1 ∪ {W DEN

i }3i=1 ∪ {W TE
i }2i=1 can be promptly fine-tuned

with regard to Eq. (14) at each diffusion step. Likewise for the simplified training objective of DDPM,
our training objective can be reformulated as to predict the added noise:

θ∗ = argmin
θ

EX,ϵ(||ϵ− ϵθ||22), (20)

where ϵθ is the predicted noise. For space limitation, we provide details in Appendix G.

6.2 GRAPH GENERATION

Once the whole model is sufficiently trained, we can simply sample XT from N (0, I) and generate a
new graph Ga by reversing the T step forward diffusion (Eq. (2)) following:

Xt−1 =
1

√
αt

(
Xt −

1− αt√
1− ᾱt

ϵθ(Xt,A, t)

)
+ σtϵ

∗, (21)

where ϵ∗ ∼ N (0, I), and σ2
t = 1−ᾱt−1

1−ᾱt
βt. The generated sample can be then utilized as auxiliary

data to enhance the anomaly detectors. The full algorithms are summarized in Appendix H and I.

6.3 GRAPH ANOMALY DETECTION WITH GENERATED SAMPLES

Given a set of generated graphs Ga = {G1
a, . . . ,G

|Ga|
a } and the original graph G, we then train a

two-layered GCN classifier (see Appendix F) by reformulating the class-wise objective in Eq. (10) to
involve the training signals from the generated graphs, which can be formulated as:

L = −
∑

y∈{0,1}

∑
vi∈Vy

1

|Vy|

logψ(vi | y) + 1

|Ga|

|Ga|∑
g=1

logψ(vgi | y)

 , (22)

where ψ(vgi | y) predicts the possibility of node vi being an anomaly or normal.

7 EXPERIMENTS

7.1 EXPERIMENTAL SETUP

The nine graph anomaly detection datasets can be categorized into two groups: one with organic
anomalies, including YelpChi (Rayana & Akoglu, 2015), Reddit (Wang et al., 2021a), Weibo (Zhao
et al., 2020), Tfinance, Tolokers and Questions (Tang et al., 2023); and another with injected anomalies
(BlogCatalog (Ding et al., 2019), ACM (Ding et al., 2019), and Cora (Liu et al., 2022b)). Our methods
are compared against three GNN detectors built upon GCN (Kipf & Welling, 2017), GAT (Veličković
et al., 2018), and GraphSAGE (Hamilton et al., 2017), seven state-of-the-art semi-/supervised anomaly
detectors: GeniePath (Liu et al., 2019), FdGars (Wang et al., 2019), BWGNN (Tang et al., 2022),
DAGAD (Liu et al., 2022a), GAT-sep (Zhu et al., 2020), AMNet (Chai et al., 2022), GHRN (Gao
et al., 2023a), and two contrastive detectors, namely CONAD (Xu et al., 2022b) and CoLA (Liu et al.,
2021). We use a training ratio of 20% and report the 5-fold average performance (in percentage)
along with the standard deviation using four commonly used metrics: Macro-F1, Macro-Precision,
Macro-Recall, and AUC (Ma et al., 2021). More details of the datasets and baselines can be found in
Appendix J.

7.2 ANOMALY DETECTION PERFORMANCE

From the results in Tables 1 and 4 (Appendix J), we see that DIFFAD achieves the best results on
almost all datasets. This confirms the validity of our second recipe that synthesized graphs could

8

Under review as a conference paper at ICLR 2024

Table 1: Detection results on six datasets (best in bold).

Method YelpChi Reddit Weibo BlogCatalog ACM Cora
M-F1 AUC M-F1 AUC M-F1 AUC M-F1 AUC M-F1 AUC M-F1 AUC

GCN 46.08±0.1 57.09±0.1 49.15±0.1 57.74±0.1 82.27±0.1 85.64±0.1 60.14±0.4 68.18±0.7 56.77±0.1 69.21±0.2 53.12±0.3 67.75±0.4
GAT 46.98±0.1 58.24±0.1 49.24±0.1 64.45±0.2 85.62±0.1 79.86±0.9 62.39±0.3 71.47±0.3 61.58±0.1 68.11±0.2 63.15±0.3 68.90±0.3

GraphSAGE 60.86±0.2 80.36±0.1 49.15±0.1 51.31±0.2 89.20±0.1 88.35±0.2 63.25±0.2 61.31±0.2 65.70±0.2 64.96±0.2 52.24±0.3 68.00±0.4

GeniePath 46.08±0.1 48.74±0.1 49.15±0.1 46.30±0.1 55.06±1.7 62.94±1.4 48.53±0.1 52.23±0.1 49.08±0.1 49.02±0.2 48.70±0.1 60.27±0.1
FdGars 49.77±0.1 53.01±0.5 48.52±0.2 63.05±0.1 87.65±0.1 93.11±0.6 42.23±0.3 54.59±0.2 36.69±0.2 65.03±0.1 42.10±0.1 69.69±0.4

BWGNN 63.68±0.3 80.96±0.1 43.29±0.5 66.89±0.3 89.27±0.3 92.29±0.3 52.97±0.1 51.35±0.3 54.93±0.3 47.69±0.6 52.18±0.2 44.93±0.2
DAGAD 52.08±0.2 59.83±0.1 49.15±0.1 61.49±0.3 89.63±0.1 91.05±0.1 64.49±0.4 73.88±0.5 72.03±0.2 73.74±0.1 65.42±0.2 68.78±0.3
GAT-sep 65.93±0.3 80.01±0.3 49.16±0.1 50.22±0.5 91.92±0.2 95.71±0.1 66.82±0.1 75.97±0.5 71.09±0.4 76.43±0.2 59.05±0.4 66.68±0.8
AMNet 54.66±0.8 64.01±1.2 50.39±0.1 62.14±0.3 91.63±0.1 97.11±0.1 71.77±0.2 72.23±0.3 60.11±0.1 74.54±0.2 53.09±0.1 66.09±0.6
GHRN 65.59±0.1 81.92±0.1 45.60±0.3 66.09±0.4 89.26±0.1 91.78±0.2 56.69±0.2 51.62±0.5 57.60±0.1 36.58±0.2 50.80±0.1 47.06±0.7

CONAD 47.42±0.1 47.50±0.2 46.39±0.1 55.78±0.2 79.01±0.1 90.40±0.1 53.87±0.2 63.03±0.1 53.16±0.1 70.86±0.1 53.53±0.1 70.48±0.7
CoLA 45.82±0.1 61.60±0.1 46.09±0.3 50.26±0.3 49.90±0.2 71.59±0.4 47.35±0.1 58.29±0.2 43.77±0.5 48.68±0.2 48.18±0.5 51.86±0.4

FSC 55.36±0.1 75.18±0.1 50.88±0.1 57.33±0.1 90.83±0.1 98.11±0.1 64.49±0.1 66.53±0.3 60.97±0.1 55.09±0.2 65.63±0.1 74.08±0.1
TRC-MLP 55.36±0.1 75.64±0.1 50.23±0.1 58.41±0.1 90.75±0.1 95.80±0.1 53.03±0.1 62.36±0.1 59.13±0.1 72.21±0.1 64.68±0.1 73.57±0.1

TRC-TRANS 56.58±0.1 72.83±0.2 48.21±0.2 57.11±0.1 92.06±0.1 98.17±0.1 53.12±0.1 54.74±0.1 51.64±0.1 52.44±0.1 65.71±0.1 76.32±0.2
DIFFAD 73.88±0.1 87.94±0.1 51.85±0.1 71.20±0.1 90.58±0.1 95.46±0.5 76.24±0.2 77.55±0.5 73.91±0.2 77.40±0.2 69.28±0.2 74.05±0.2

complement anomaly detectors to better distinguish anomalies, thereby mitigating the shortage
of labeled data. While DAGAD also aims to enhance performance through data augmentation, it
primarily focuses on combining class-biased features and cannot generate auxiliary training samples.
GeniePath, FdGars and BWGNN only investigate anomalies’ patterns by proposing new graph signal
filtering algorithms or by constructing discriminating features from the raw data. They ignore the
challenges imposed by the scarcity of anomalies, thus obtain compromised results. The performance
of the three GNN detectors reveals the power of these vanilla GNN backbones but they still suffer
from the oversmoothing problem of MP-GNNs (as described in §1). Our non-GNN methods (i.e., FSC,
TRC-MLP, and TRC-TRANS), which are built in accordance with the new graph anomaly detection
paradigm (first recipe), obtain the top-3 performance on Weibo dataset. We attribute this to the
significantly lower feature similarities between anomalies and normal nodes (0.004 vs. 0.993) (Liu
et al., 2022b), which makes anomalies’ trajectories easier to be distinguished from normal nodes.
The competitive results on other datasets demonstrate that this paradigm worth future exploration.

7.3 CASE STUDY I - THE EFFICACY OF GENERATED GRAPHS

Table 2: Performance improvement brought by generated graphs.

Method YelpChi Reddit
M-F1 AUC M-F1 AUC

GAT 72.68±0.1 (↑ 55%) 86.70±0.1 (↑ 49%) 51.42±0.1 (↑ 4.4%) 66.33±0.2 (↑ 2.9%)
GraphSAGE 74.21±0.1 (↑ 22%) 87.51±0.1 (↑ 8.9%) 52.29±0.1 (↑ 6.4%) 67.90±0.2 (↑ 32%)

GeniePath 51.67±0.1 (↑ 12%) 59.43±0.1 (↑ 22%) 50.15±0.2 (↑ 2.1%) 47.05±0.1 (↑ 1.6%)
FdGars 55.74±0.1 (↑ 15%) 68.27±0.1 (↑ 29%) 48.55±0.1 (↑ 0.1%) 64.03±0.1 (↑ 1.6%)

BWGNN 64.88±0.2 (↑ 1.9%) 81.06±0.1 (↑ 0.1%) 47.69±0.1 (↑ 10%) 70.31±0.1 (↑ 5.1%)
DAGAD 53.71±0.3 (↑ 3.1%) 60.11±0.1 (↑ 0.5%) 52.81±0.3 (↑ 7.4%) 69.28±0.1 (↑ 13%)
GAT-sep 66.91±0.2 (↑ 1.5%) 83.79±0.1 (↑ 4.7%) 50.15±1.8 (↑ 2.0%) 61.55±0.5 (↑ 23%)
AMNet 61.45±0.3 (↑ 12%) 81.69±0.1 (↑ 27%) 51.35±0.1 (↑ 1.9%) 70.04±0.1 (↑ 12%)
GHRN 69.36±0.2 (↑ 5.7%) 86.32±0.1 (↑ 5.4%) 47.53±0.3 (↑ 4.2%) 72.59±0.2 (↑ 9.8%)

CONAD 52.68±0.1 (↑ 11%) 50.32±0.1 (↑ 5.9%) 49.15±0.1 (↑ 5.9%) 57.23±0.1 (↑ 2.6%)
CoLA 46.14±0.2 (↑ 0.7%) 65.42±0.1 (↑ 6.2%) 47.04±0.1 (↑ 2.1%) 51.53±0.1 (↑ 2.5%)

We further investigate the ef-
fectiveness of our generated
graphs in enhancing other
state-of-the-art detectors by
feeding them as additional
training samples. For fairness,
we generate one graph us-
ing DIFFAD and reformulate
existing detectors’ objectives
(similar to Eq. (22)) to enjoy
the training signals from the
generated graph. We select two real-world datasets, namely YelpChi and Reddit, and report the
improved performance and growth rate (in bracket) on M-F1 and AUC in Table 2. As can be seen,
the additional graph samples can improve the performance of the existing detectors to different
degrees. This empirically proves that the additional samples synthesized by DIFFAD could provide
complementary information about anomalies, leading to boosted performance. We also notice that
such improvement is dependent on the detectors. We attribute this to the varying capabilities of
each method in learning the data distribution and assimilating synthetic information. We report
additional experiments on exploring the impact of the generated graphs, key parameters and the
skip-step algorithm, as well as an ablation study in Appendix J.

8 CONCLUSION

We offer two fresh recipes for graph anomaly detection based on our scrutiny of the forward diffusion
process. We discover that anomalies can be distinguished with regard to their distinct dynamics in
the diffusion process (first recipe), and the denoising network for generating auxiliary training data
(second recipe) needs to be capable of recovering low frequency signals. Upon these findings, we
design three non-GNN methods and a generative graph diffusion model to detect anomalies. Our
methods deliver record-breaking performance across nine widely-used datasets, with merely 20% of
labeled data, and our generated graphs also significantly boost other detectors’ performance.

9

Under review as a conference paper at ICLR 2024

REFERENCES

Leman Akoglu. Anomaly mining: Past, present and future. In CIKM, pp. 1–2, 2021.

Leman. Akoglu, Hanghang. Tong, and Danai Koutra. Graph based anomaly detection and description:
A survey. Data Min. Knowl. Disc., 29:626–688, 2015.

Mehdi Azabou, Venkataramana Ganesh, Shantanu Thakoor, Chi-Heng Lin, Lakshmi Sathidevi, Ran
Liu, Michal Valko, Petar Veličković, and Eva L Dyer. Half-Hop: A graph upsampling approach
for slowing down message passing. ICML, pp. 1341–1360, 2023.

Ziwei Chai, Siqi You, Yang Yang, Shiliang Pu, Jiarong Xu, Haoyang Cai, and Weihao Jiang. Can
abnormality be detected by graph neural networks? In Proceedings of the Thirty-First International
Joint Conference on Artificial Intelligence, IJCAI-22, 2022.

Ines Chami, Sami Abu-El-Haija, Bryan Perozzi, Christopher Ré, and Kevin Murphy. Machine
learning on graphs: A model and comprehensive taxonomy. J. Mach. Learn. Res., 23(89):1–64,
2022.

Dexiong Chen, Leslie O’Bray, and Karsten Borgwardt. Structure-aware transformer for graph
representation learning. In ICML, pp. 3469–3489, 2022.

Peng Cui, Xiao Wang, Jian Pei, and Wenwu Zhu. A survey on network embedding. IEEE Trans.
Knowl. Data Eng., 31(5):833–852, 2019.

Kaize Ding, Jundong Li, Rohit Bhanushali, and Huan Liu. Deep anomaly detection on attributed
networks. In SDM, pp. 594–602, 2019.

Yingtong Dou, Zhiwei Liu, Li Sun, Yutong Deng, Hao Peng, and Philip S Yu. Enhancing graph
neural network-based fraud detectors against camouflaged fraudsters. In CIKM, pp. 315–324,
2020.

Yuan Gao, Xiang Wang, Xiangnan He, Zhenguang Liu, Huamin Feng, and Yongdong Zhang. Ad-
dressing heterophily in graph anomaly detection: A perspective of graph spectrum. In Proceedings
of the ACM Web Conference 2023, pp. 1528–1538, 2023a.

Yuan Gao, Xiang Wang, Xiangnan He, Zhenguang Liu, Huamin Feng, and Yongdong Zhang.
Alleviating structural distribution shift in graph anomaly detection. In Proceedings of the Sixteenth
ACM International Conference on Web Search and Data Mining, pp. 357–365, 2023b.

Dmitrii Gavrilev and Evgeny Burnaev. Anomaly detection in networks via score-based generative
models. In ICML 2023 Workshop on Structured Probabilistic Inference & Generative Modeling,
2023.

Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning, chapter Deep Feedforward
Networks, pp. 163–220. MIT Press, Cambridge, MA, USA, 2016.

Frank E Grubbs. Procedures for detecting outlying observations in samples. Technometrics, 11(1):
1–21, 1969.

William L. Hamilton, Rex Ying, and Jure Leskovec. Inductive representation learning on large graphs.
In NeurIPS, pp. 1025–1035, 2017.

Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. In NeurIPS,
pp. 6840–6851, 2020.

Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural Computation, 9(8):
1735–1780, 1997.

Han Huang, Leilei Sun, Bowen Du, Yanjie Fu, and Weifeng Lv. GraphGDP: Generative diffusion
processes for permutation invariant graph generation. In ICDM, pp. 201–210, 2022.

Bowen Jing, Gabriele Corso, Regina Barzilay, and Tommi S Jaakkola. Torsional diffusion for
molecular conformer generation. In NeurIPS, pp. 24240–24253, 2022.

10

Under review as a conference paper at ICLR 2024

Jaehyeong Jo, Dongki Kim, and Sung Ju Hwang. Graph generation with destination-driven diffusion
mixture. In Machine Learning for Drug Discovery workshop, ICLR, 2023.

Justin M Johnson and Taghi M Khoshgoftaar. Survey on deep learning with class imbalance. J. Big
Data, 6, Art. no. 27, 2019.

Nicolas Keriven. Not too little, not too much: a theoretical analysis of graph (over)smoothing. In
NeurIPS, pp. 2268–2281, 2022.

Diederik P Kingma and Max Welling. Auto-encoding variational bayes. stat, 1050:1, 2014.

Thomas N Kipf and Max Welling. Variational graph auto-encoders. In NeurIPS Workshop on
Bayesian Deep Learning, 2016.

Thomas N. Kipf and Max Welling. Semi-supervised classification with graph convolutional networks.
In ICLR, 2017.

Yan Li, Xinjiang Lu, Yaqing Wang, and Dejing Dou. Generative time series forecasting with diffusion,
denoise, and disentanglement. In NeurIPS, pp. 23009–23022, 2022.

Fanzhen Liu, Xiaoxiao Ma, Jia Wu, Jian Yang, Shan Xue, Amin Behesht, Chuan Zhou, Hao Peng,
Quan Z. Sheng, and Charu C. Aggarwal. DAGAD: Data augmentation for graph anomaly detection.
In ICDM, pp. 259–268, 2022a.

Kay Liu, Yingtong Dou, Yue Zhao, Xueying Ding, Xiyang Hu, Ruitong Zhang, Kaize Ding, Canyu
Chen, Hao Peng, Kai Shu, et al. BOND: Benchmarking unsupervised outlier node detection on
static attributed graphs. In NeurIPS, pp. 27021–27035, 2022b.

Yixin Liu, Zhao Li, Shirui Pan, Chen Gong, Chuan Zhou, and George Karypis. Anomaly detection
on attributed networks via contrastive self-supervised learning. IEEE Trans. Neural Netw. Learn.
Syst., 33(6):2378–2392, 2021.

Zhiwei Liu, Yingtong Dou, Philip S Yu, Yutong Deng, and Hao Peng. Alleviating the inconsistency
problem of applying graph neural network to fraud detection. In SIGIR, pp. 1569–1572, 2020.

Ziqi Liu, Chaochao Chen, Longfei Li, Jun Zhou, Xiaolong Li, Le Song, and Yuan Qi. GeniePath:
Graph neural networks with adaptive receptive paths. In AAAI, pp. 4424–4431, 2019.

Calvin Luo. Understanding diffusion models: A unified perspective. arXiv preprint arXiv:2208.11970,
2022.

Xiaoxiao Ma, Jia Wu, Shan Xue, Jian Yang, Chuan Zhou, Quan Z. Sheng, Hui Xiong, and Leman
Akoglu. A comprehensive survey on graph anomaly detection with deep learning. IEEE Trans.
Knowl. Data Eng., 2021.

Xiaoxiao Ma, Jia Wu, Jian Yang, and Quan Z. Sheng. Towards graph-level anomaly detection via
deep evolutionary mapping. In KDD, pp. 1631–1642, 2023.

Alexander Quinn Nichol and Prafulla Dhariwal. Improved denoising diffusion probabilistic models.
In ICML, pp. 8162–8171, 2021.

Hoang Nt and Takanori Maehara. Revisiting graph neural networks: All we have is low-pass filters.
arXiv preprint arXiv:1905.09550, 2019.

Oleg Platonov, Denis Kuznedelev, Michael Diskin, Artem Babenko, and Liudmila Prokhorenkova. A
critical look at the evaluation of gnns under heterophily: are we really making progress? arXiv
preprint arXiv:2302.11640, 2023.

Shebuti Rayana and Leman Akoglu. Collective opinion spam detection: Bridging review networks
and metadata. In KDD, pp. 985–994, 2015.

Yang Song, Jascha Sohl-Dickstein, Diederik P Kingma, Abhishek Kumar, Stefano Ermon, and Ben
Poole. Score-based generative modeling through stochastic differential equations. In ICLR, 2021.

11

Under review as a conference paper at ICLR 2024

Jiaqi Sun, Lin Zhang, Guangyi Chen, Peng Xu, Kun Zhang, and Yujiu Yang. Feature expansion for
graph neural networks. In ICML, pp. 33156–33176, 2023.

Jianheng Tang, Jiajin Li, Ziqi Gao, and Jia Li. Rethinking graph neural networks for anomaly
detection. In ICML, pp. 21076–21089, 2022.

Jianheng Tang, Fengrui Hua, Ziqi Gao, Peilin Zhao, and Jia Li. Gadbench: Revisiting and bench-
marking supervised graph anomaly detection. arXiv preprint arXiv:2306.12251, 2023.

Jie Tang, Jing Zhang, Limin Yao, Juanzi Li, Li Zhang, and Zhong Su. ArnetMiner: Extraction and
mining of academic social networks. In KDD, pp. 990–998, 2008.

Lei Tang and Huan Liu. Relational learning via latent social dimensions. In KDD, pp. 817–826,
2009.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. Attention is all you need. In NeurIPS, 2017.

Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Liò, and Yoshua
Bengio. Graph attention networks. In ICLR, 2018.

Haoran Wang, Yingtong Dou, Canyu Chen, Lichao Sun, Philip S Yu, and Kai Shu. Attacking fake
news detectors via manipulating news social engagement. In WWW, pp. 3978–3986, 2023a.

Jianyu Wang, Rui Wen, Chunming Wu, Yu Huang, and Jian Xiong. FdGars: Fraudster detection via
graph convolutional networks in online app review system. In WWW, pp. 310–316, 2019.

Yanling Wang, Jing Zhang, Shasha Guo, Hongzhi Yin, Cuiping Li, and Hong Chen. Decoupling
representation learning and classification for gnn-based anomaly detection. In SIGIR, pp. 1239–
1248, 2021a.

Yanling Wang, Jing Zhang, Shasha Guo, Hongzhi Yin, Cuiping Li, and Hong Chen. Decoupling
representation learning and classification for gnn-based anomaly detection. In SIGIR, pp. 1239–
1248, 2021b.

Yuchen Wang, Jinghui Zhang, Zhengjie Huang, Weibin Li, Shikun Feng, Ziheng Ma, Yu Sun, Dianhai
Yu, Fang Dong, Jiahui Jin, et al. Label information enhanced fraud detection against low homophily
in graphs. In Proceedings of the ACM Web Conference 2023, pp. 406–416, 2023b.

Jiehui Xu, Haixu Wu, Jianmin Wang, and Mingsheng Long. Anomaly transformer: Time series
anomaly detection with association discrepancy. In ICLR, 2022a.

Zhiming Xu, Xiao Huang, Yue Zhao, Yushun Dong, and Jundong Li. Contrastive attributed network
anomaly detection with data augmentation. In PAKDD, pp. 444–457, 2022b.

Ling Yang, Zhilong Zhang, Yang Song, Shenda Hong, Runsheng Xu, Yue Zhao, Yingxia Shao,
Wentao Zhang, Bin Cui, and Ming-Hsuan Yang. Diffusion models: A comprehensive survey of
methods and applications. arXiv preprint arXiv:2209.00796, 2022.

Jiaqiang Zhang, Senzhang Wang, and Songcan Chen. Reconstruction enhanced multi-view contrastive
learning for anomaly detection on attributed networks. pp. 6702–6711, 2022.

Tong Zhao, Chuchen Deng, Kaifeng Yu, Tianwen Jiang, Daheng Wang, and Meng Jiang. Error-
bounded graph anomaly loss for gnns. In CIKM, pp. 1873–1882, 2020.

Tong Zhao, Tianwen Jiang, Neil Shah, and Meng Jiang. A synergistic approach for graph anomaly
detection with pattern mining and feature learning. IEEE Trans. Neural Netw. Learn. Syst., 33(6):
2393–2405, 2021.

Yu Zheng, Ming Jin, Yixin Liu, Lianhua Chi, Khoa T Phan, and Yi-Ping Phoebe Chen. Generative
and contrastive self-supervised learning for graph anomaly detection. IEEE Trans. Knowl. Data
Eng., 2021.

Jiong Zhu, Yujun Yan, Lingxiao Zhao, Mark Heimann, Leman Akoglu, and Danai Koutra. Beyond
homophily in graph neural networks: Current limitations and effective designs. Advances in neural
information processing systems, 33:7793–7804, 2020.

12

Under review as a conference paper at ICLR 2024

A RELATED WORK

A.1 GRAPH ANOMALY DETECTION

Anomalous node detection, particularly contextual anomaly detection, is a key topic in graph anomaly
detection (Akoglu et al., 2015; Ma et al., 2021; Gavrilev & Burnaev, 2023). These anomalies
are rare compared to the majority, but they are pervasive in real scenarios. Concrete examples
include fraudulent/malicious users in online social networks, business frauds in financial systems,
and abnormal cortices in brain networks. In semi-/supervised scenarios, graph anomaly detection
can be treated as a specific yet significantly different binary node classification task, compared to the
generic classification (Tang et al., 2022). The main differences are two folds. Essentially, anomalies
are rare and generated by other unknown mechanisms. Directly learning anomalies’ distributions
usually leads to biased results for the shortage of labeled anomalies and extremely class-imbalanced
data (Liu et al., 2022a; Wang et al., 2021b). Moreover, to maximize their influence under a controlled
cost, most anomalies tend to form links with normal nodes rather than other anomalies, violating the
homophility assumption (Zhao et al., 2021; Dou et al., 2020).

As to explore the graph structure and node attributes to fuse abnormal patterns of anomalies, recent
approaches in semi-/supervised graph anomaly detection have shifted to use GNNs (Dou et al., 2020;
Tang et al., 2022; Liu et al., 2022b). They attempt to directly assign labels to anomalies by utilizing
knowledge from few labeled anomalies in the training data. For instance, BWGNN (Tang et al., 2022)
employs the Beta graph wavelet and utilizes few labeled anomalies to learn band-pass filters to capture
the signals of anomalies, DAGAD (Liu et al., 2022a) permutes class-biased and unbiased features
from few labeled anomalies as to enhance the node representations and performance. For overcoming
the scarcity of labeled anomalies, DAGAD augments a set of labeled node representations through
random combinations of class-biased and unbiased features. However, these synthesized samples
may not follow the original data distribution and alleviate the performance due to randomness.

These existing semi-/supervised approaches achieved considerable results, but they all focus on the
vanilla routine of investigating the static patterns of anomalies and distributions (Ma et al., 2021).
Besides, they almost rely on GNNs, exhibiting the intrinsic limitations from the message-passing
schema, oversmoothing phenomenon, and shadow architectures. Other powerful deep learning
frameworks as well as valuable clues including our discoveries in the egonet dissimilarity dynamics
have yet to be sufficiently explored in this field. Furthermore, generating additional graph samples
that adhere to the original data distribution to tackle the shortage of labeled anomalies is still an
unexplored territory.

Notably, there are plenty of unsupervised anomaly detection techniques, such as CONAD (Liu et al.,
2021), SL-GAD (Zheng et al., 2021) and Sub-CR (Zhang et al., 2022), that investigate the consistency
between anomalies and their neighbors in different contrastive views to measure node irregularity.
While these methods investigate the egonet dissimilarity for anomaly detection, they only focus on
the original graph, and the dynamics of egonet dissimilarity in the forward diffusion process remains
unexplored. Moreover, these unsupervised methods only predict the irregularity (a continuous score)
of each node and cannot explicitly classify anomalies. Although a human defined threshold can be
applied for labeling anomalies, it is non-trivial to get an effective and practical threshold under the
unsupervised setting (Akoglu, 2021; Ma et al., 2021).

A.2 DDPM

Denoising diffusion probabilistic models (DDPMs) have recently shown their great power in image
synthesis (Ho et al., 2020; Nichol & Dhariwal, 2021), time series forecasting (Li et al., 2022), and
many other generative tasks (Yang et al., 2022). These remarkable advances show that one can
generate high quality samples by capturing the modes of a data distribution through the denoising
diffusion process. Practically, DDPM contains two processes, namely the forward diffusion process
(also called diffusion process), which gradually adds scheduled Gaussian noise to the original data x0

through a T-step Markov chain such that the eventual distribution at the last step q(xT |x0) ∼ N (0, I).
And the reverse process (or denoising process), which strives to recover the data by removing the
noise at each time step.

13

Under review as a conference paper at ICLR 2024

In the forward diffusion process, given the noise variance schedule βt ∈ (0, 1), the noisy data at step
t can be written in a closed form:

q(xt|x0) =

t∏
s=1

q(xs|xs−1) = N (xt;
√
ᾱtx0, (1− ᾱt)I), (23)

where ᾱt =
∏t

s=1 αs and αt = 1− βt. While the reverse process attempts to recover the original
data from noise following

pθ(x0:T) := p(xT)

T∏
t=1

pθ(xt−1|xt), pθ(xt−1|xt) := N
(
xt−1;µθ(xt, t),Σθ(xt, t)

)
, (24)

where the mean and variance (i.e., µθ and Σθ) of the data distribution pθ(xt−1|xt) are learned using
a deep neural network with parameters θ.

According to the results in Nichol & Dhariwal (2021) and Luo (2022), the combination of p and
q is typically a VAE (Kingma & Welling, 2014) and its evidence lower bound is given by L =
L0 + · · ·+ Lt−1 + · · ·+ LT , in which:

L0 = − log pθ(x0|x1) (25)

Lt−1 = DKL
(
q(xt−1|xt,x0) ∥ pθ(xt−1|xt)

)
(26)

LT = DKL
(
q(xT |x0) ∥ p(xT)

)
, (27)

and since the LT term is independent to θ, it can be dropped for training purposes while L0 term can
be approximated using Monte Carlo (Luo, 2022) or following Ho et al. (2020). Therefore, the rest
terms related to the sum of Lt−1 are expected to be minimized and for brevity, this is formulated as:

argmin
θ

DKL
(
q(xt−1|xt,x0) ∥ pθ(xt−1|xt)

)
. (28)

By minimizing this, the neural network will capture the original data distributions as well as new
samples (i.e., xa

0) adhering to the original data distributions can be firmly generated through the
reverse process by simply sampling xT ∼ N (0, I). Practically, the training objective can be replaced
by an equivalent variant (Ho et al., 2020; Luo, 2022; Nichol & Dhariwal, 2021) to minimize the
distance between the injected noise ϵ and prediction at arbitrary steps following:

argmin
θ

Ex0,ϵ

(
||ϵ− ϵθ(

√
ᾱtx0 +

√
1− ᾱtϵ, t)||22

)
, (29)

For space limitation, we recommend referring to relevant literature such as (Ho et al., 2020; Nichol &
Dhariwal, 2021; Luo, 2022; Yang et al., 2022) for more details about DDPMs.

To date, although DDPMs have shown superior capability in conventional data generation tasks,
the progress on denoising graph diffusion still focuses on weighted graphs and generic graph-level
tasks (Jo et al., 2023; Huang et al., 2022; Jing et al., 2022). They all focus on modeling the graph-level
data distribution patterns for a set of graphs, while capturing the node attribute and local structure
distributions within a single graph, especially for graph anomaly detection has not been explored
yet. In this work, we investigate the DDPM framework specifically for graph anomaly detection and
following our definition in §2, our forward graph diffusion process is to inject scheduled noise to the
node attributes, X, and the graph structure is fixed at all diffusion steps.

B PROOF OF PROPOSITION 1

With the definition of contextual anomalies in §2, we prove our Proposition 1. Based on Eq. (1) and
the reparameterization trick, we can get the corrupted graph Gt = {A,Xt} at an arbitrary diffusion

14

Under review as a conference paper at ICLR 2024

step t by

Xt =
√
αtXt−1 +

√
1− αtϵ

∗
t−1 (30)

=
√
αtαt−1Xt−2 +

√
αt − αtαt−1ϵ

∗
t−2 +

√
1− αtϵ

∗
t−1 (31)

=
√
αtαt−1Xt−2 +

√√
αt − αtαt−1

2
+

√
1− αt

2
ϵt−2 (32)

=
√
αtαt−1Xt−2 +

√
1− αtαt−1ϵt−2 (33)

... (34)

=

√√√√ t∏
s=1

αsX+

√√√√1−
t∏

s=1

αsϵ (35)

=
√
ᾱtX+

√
1− ᾱtϵ (36)

∼ N
(
Xt;

√
ᾱtX, (1− ᾱt)I

)
, (37)

in which ϵ∗t−1, ϵ
∗
t−2, ϵ ∼ N (0, I). In Lines 31 and 32, we rewrite

√
αt − αtαt−1ϵ

∗
t−2+

√
1− αtϵ

∗
t−1

as an expression of another Gaussian random variable ϵt−2, since ϵ∗t−2 and ϵ∗t−1 are two independent
Gaussian random variables and their sum is still a Gaussian, whose mean and variance can be obtained
by summing the mean and variance of ϵ∗t−2 and ϵ∗t−1, respectively.

Then, for any node vi, its corrupted attribute xt
i in Xt can be inherently formulated as:

xt
i =

√
ᾱtxi +

√
1− ᾱtϵ, (38)

where xi is the original node attribute vector, and vi’s egonet dissimilarity ωi at this arbitrary step t
is quantified as:

ωt
i =

1

| ego(vi)|
∑

j∈ego(vi)

(
xt
i − xt

j

)
(39)

=
1

| ego(vi)|
∑

j∈ego(vi)

(√
ᾱtxi +

√
1− ᾱtϵi −

√
ᾱtxj −

√
1− ᾱtϵj

)
(40)

≈
√
ᾱt

| ego(vi)|
∑

j∈ego(vi)

(xi − xj) (41)

where ϵi, ϵj are the corresponding Gaussian noise added to vi and vj . ego(vi) denotes all vi’s
one-hop neighbors, and | ego(vi)| is the number of one-hop neighbors.

We can then quantify how fast ωt
i changes during the diffusion process as its partial derivative with

respect to t, which is:

∂ωt
i

∂t
≈

 1

| ego(vi)|
∑

j∈ego(vi)

(xi − xj)

︸ ︷︷ ︸

1⃝

∂
√
ᾱt

∂t
. (42)

Regarding the fact that contextual anomalies’ attributes are significantly different from their neighbors,
while normal nodes are similar to their egonet neighbors, the absolute values of 1⃝ with respect
to anomalies will be larger than that of normal nodes. Given ∂

√
ᾱt

∂t the same for each node, ωt
i of

anomalies will change more dramatically than normal nodes.

C PROOF OF PROPOSITION 2

We follow the approach of previous works (Grubbs, 1969; Tang et al., 2022) by assuming all node
attributes are identically independently drawn from a Gaussian distribution N (x; |µ|, σ2), and the
coefficient of variance σ/|µ| measures the degree of anomalies in the graph signal x. Consequently,
the coefficient will be higher if there are more anomalies in the graph. As the forward diffusion

15

Under review as a conference paper at ICLR 2024

destroys the original graph signal x and xt ∼ N (
√
ᾱtx, 1− ᾱt), we can measure the signal-to-noise

ratio at an arbitrary step t by

SNR(t) =
µ2
t

σ2
t

=
ᾱt

1− ᾱt
, (43)

which denotes the ratio between the original signal and noise being added. Therefore, a higher SNR
means more original signal, while a lower SNR indicates more noise.

Recall that the forward diffusion process aims to corrupt the original graph signal by adding noise.
As the noise variance scheduler βt increases over the diffusion step, correspondingly, ᾱt and the
signal-to-noise ratio SNR decrease progressively. As a result, the measurement of the degree of
anomalies, which can be quantified with regard to SNR as:

σ

|µ|
=

√
1− ᾱt√
ᾱt

=

√
1

SNR(t)
, (44)

increases as the diffusion proceeds. Then, based on the Proof 1 in Tang et al. (2022), the expectation of
low frequency energy ratio E(Γl(Xt,L)) will decrease as σ

|µ| increases during the forward diffusion
process.

D SKIP-STEP FOR MEMORY OPTIMIZATION AND BATCHING

While we attempt to represent the original graph as G, its memory cost and model fitting time are
obviously proportional to the number of diffusion steps. To save the memory and training time
costs, we can either reduce the number of scales T in the forward diffusion process or skip potential
steps. We refer to the second as skip-step, achieved by a sliding window-based method. Specifically,
we generate a downsampled tensor following Ĝ:,t,: = G:,t+s:t+s+w,: for anomaly detection, where
0 < t+ s+ w ≤ T , w is the windows size and s is the stride size. We further evaluate our models’
sensitivity to w and s in §J.6.

G can also be flexibly divided into smaller batches for training. Unlike graph batching which might
cause information loss due to neighborhood sampling, since G stores a 2-D tensor (matrix) for each
node, we can directly apply the existing batching methods in CV and NLP for training our graph
anomaly detectors.

E IMPLEMENTATION DETAILS OF READOUT AND TRC-MLP

We present details about the READOUT function hereafter. Recall that after the encoding function
g(·;θg), we typically obtain a matrix (for brevity, we denote it as Zi ∈ RT×d) for each vi, in which
each row encapsulated the information of a particularly diffusion step. The READOUT function is to
generate a vector (htr

i) for each node from this matrix. Similar to the readout function in graph-level
tasks (generate a vector representation for the whole graph based on its nodes), potential variants like
max-pooling, mean-pooling, or min-pooling can be promptly applied as READOUT. We propose an
MLP to achieve this by:

htr
i = SQUEEZE [ReLU(ZiW1 + b1)]W2, (45)

where W1 ∈ Rd×1 and W2 ∈ RT×d′
. The SQUEEZE function transforms the output of the inner

layer from size T × 1 to T . d and d′ are the dimensions of Zi and htr
i , respectively. b1 is the bias.

In addition to the Transformer-based model, TRC-TRANS, we propose an even straightforward
MLP-based model, which learns htr

i following:

htr
i = READOUT[ReLU(Gi,:,:W + b)], (46)

while keeping the READOUT function, classifier, and training the same as the Transformer model.

To summarize, from our Observation I, we propose two novel graph anomaly detection methods (i.e.,
FSC and TRC) by learning anomalies’ divergent trajectories in the forward diffusion process. While
FSC predicts a hidden state following the trajectory for classifying anomalies, TRC directly learns
the representation of each node’s evolving trajectory. Both approaches follow our novel paradigm to
detect graph anomalies without MP-GNN and achieve even better performance, as presented in §7.

16

Under review as a conference paper at ICLR 2024

F IMPLEMENTATION DETAILS OF DIFFAD AND BASELINES

In this section, we present the diffusion step encoding function TE(·), non-probabilistic implementa-
tions of DIFFAD, followed by implementation details of all baselines.

F.1 DIFFUSION STEP ENCODING TE

We propose the diffusion step encoding function TE(·) to involve the step information for training.
Practically, we generate a particular embedding matrix for each step t, given by:

TE(t) = SeLU
[
SE(t)W TE

1

]
W TE

2 , (47)

where W TE
1 and W TE

2 are trainable matrices for projection. SE(·) is the sinusoidal encoding function
and the value of SE(t)’s each dimension is encoded as:

SE(t)i =

[
sin

(
t · exp(log 10000

d/2− 1
· i)

)
, cos

(
t · exp(log 10000

d/2− 1
· i)

)]
, (48)

F.2 NON-PROBABILISTIC VARIANTS OF DIFFAD

The non-probabilistic implementation of DIFFAD contains non-probabilistic SDN and DEN, which
aim to explicitly predict the added noise ϵθ formulated in Eq. (20), at an arbitrary diffusion step t.
The non-probabilistic SDN takes Gt = {A,Xt} and t as inputs and generates node embeddings by

Zt = SDN(A,Xt, t) = ReLU(ÃZ′
tW2), Z′

t = ReLU
[
Ã
(
Xt + TE(t)

)
W1

]
(49)

and TE(t) is the diffusion step encoding function formulated in Eq. (47).

Correspondingly, the DEN takes A, Zt and Z′
t as inputs and predicts the added noise following:

ϵθ = DEN(Zt,Z
′
t,A) = SeLU

{
Ã

[
ReLU

(
Ã(Zt ⊕ Zt)W3

)
⊕ Z′

t

]
W4

}
. (50)

{Wi}4i=1 are trainable variables in DIFFAD. By minimizing EX,ϵ(||ϵ− ϵθ||22), these variables will
model the original graph data distribution, empowering DIFFAD to generate auxiliary graph samples
that adhere to the distribution of the original graph G.

F.3 DIFFAD’S GCN DETECTOR

Given the original graph G and generated graphs Gi
a ∈ G, we pass them into a detector, containing

two GCN layers and one fully-connected layer, to predict the possibility of each node belonging to
anomalies or normal. The two GCN layers can be formulated as:

Z = GCN(A,X) = ReLU
(
ÃReLU(ÃXW0)W1

)
, (51)

and the fully-connected layer predicts the possibilities following:

ψ(vi | y) = MLP(zi) = SOFTMAX [ReLU(ziWc + bc)] , (52)
where denote to the predicted possibility of node vi being normal (y = 0) or anomalous (y = 1),
respectively. Eventually, we assign a label to each node as argmaxy[ψ(vi | y=0), ψ(vi | y=1)].

F.4 BASELINE IMPLEMENTATIONS

F.4.1 CONVENTIONAL GNN-BASED DETECTORS

We have implemented the GCN2 (Kipf & Welling, 2017), GAT3 (Veličković et al., 2018), and
GraphSAGE4 (Hamilton et al., 2017) detectors based on their original settings. Specifically, each

2https://github.com/tkipf/gcn
3https://github.com/PetarV-/GAT
4https://github.com/williamleif/GraphSAGE

17

https://github.com/tkipf/gcn
https://github.com/PetarV-/GAT
https://github.com/williamleif/GraphSAGE

Under review as a conference paper at ICLR 2024

of them stacks a fully connected layer above two GNN layers. The difference is that the GCN
detector investigates the graph convolutional neural network layers, the GAT detector adopts the
graph attention neural network layers, and the GraphSAGE detector applies the GraphSAGE layers.
In our experiment, we follow DIFFAD’s configurations and set their GNN layers’ dimensions as 256
and 128, respectively. We apply ReLU as the activation function for these three detectors and set the
number of training iterations to 200.

F.4.2 STATE-OF-THE-ART METHODS

We use the published implementations and configurations of GeniePath5 (Liu et al., 2019),
FdGars5 (Wang et al., 2019), BWGNN6 (Tang et al., 2022), DAGAD7 (Liu et al., 2022a), GAT-
sep (Zhu et al., 2020), AMNet (Chai et al., 2022), GHRN (Gao et al., 2023a)8, CONAD5 (Xu et al.,
2022b) and CoLA5 (Liu et al., 2021) in our experiment. For BWGNN, we report the best results of
its two variants (i.e., Homo and Hetero) as published in the original paper (Tang et al., 2022).

G RELATION BETWEEN KL DIVERGENCE AND OUR GRAPH DIFFUSION
OBJECTIVE

As detailed in §6.1, the learning objective of our proposed graph diffusion process is to minimize the
difference between the distributions of the corrupted graph (through the forward graph diffusion) and
the recovered graph (through the reverse process). This is formally defined in Eq. (14) as:

argmin
θ

DKL
(
q(Xt−1|Xt,X,A) ∥ pθ(Xt−1|Xt,A)

)
. (53)

To indicate the relation between this KL divergence and our learning objective formulated in Eq. (20),
we first calculate q(Xt−1|Xt,X,A) by submitting the Bayes rule:

q(Xt−1|Xt,X,A) =
q(Xt|Xt−1,X,A)q(Xt−1|X,A)

q(Xt|X,A)
(54)

=
N
(
Xt;

√
αtXt−1, (1− αt)I

)
· N

(
Xt−1;

√
ᾱt−1X, (1− ᾱt−1)I

)
N
(
Xt;

√
ᾱtX, (1− ᾱt)I

) (55)

∝ exp

{
− 1− ᾱt

2(1− αt)(1− ᾱt−1)

[
X2

t−1 − 2

√
αt(1− ᾱt−1)Xt +

√
ᾱt−1(1− αt)X

1− ᾱt
Xt−1

]}
(56)

∝ N

Xt−1;

√
αt(1− ᾱt−1)Xt +

√
ᾱt−1(1− αt)X

1− ᾱt︸ ︷︷ ︸
µq(Xt,X)

,
(1− αt)(1− ᾱt−1)

1− ᾱt︸ ︷︷ ︸
σ2

t

I

 , (57)

We can then rewrite the KL divergence to show that minimizing it is equivalent to: 1) Minimizing
the difference between the means of the two distributions; 2) Minimizing the difference between the

5https://github.com/pygod-team/pygod
6https://github.com/squareRoot3/Rethinking-Anomaly-Detection
7https://github.com/FanzhenLiu/DAGAD
8https://github.com/squareRoot3/GADBench

18

https://github.com/pygod-team/pygod
https://github.com/squareRoot3/Rethinking-Anomaly-Detection
https://github.com/FanzhenLiu/DAGAD
https://github.com/squareRoot3/GADBench

Under review as a conference paper at ICLR 2024

injected noise and predicted noise. For the first, we have:

argmin
θ

DKL
(
q(Xt−1|Xt,X,A) ∥ pθ(Xt−1|Xt,A)

)
(58)

= argmin
θ

DKL
(
N (Xt−1;µt,σ

2
t),N (Xt−1;µθ,σ

2
θ)
)

(59)

= argmin
θ

DKL
(
N (Xt−1;µt,σ

2
t),N (Xt−1;µθ,σ

2
t)
)

(60)

= argmin
θ

1

2

[
log

σ2
t

σ2
t

− d+ tr((σ2
t)

−1σ2
t) + (µθ − µt)

⊤(σ2
t)

−1(µθ − µt)

]
(61)

= argmin
θ

1

2

[
(µθ − µt)

⊤(σ2
t)

−1(µθ − µt)
]

(62)

= argmin
θ

1

2σ2
t

[
||µθ − µt||22

]
, (63)

where in Line 59, we can directly calculate σ2
θ at a specific time step from the noise variance scheduler

βt as in Line 57. Therefore, it is replaced by σ2
t in Line 60. Line 61 is based on the definition of

KL divergence between two Gaussian distributions. As such, we show that learning to minimize the
KL divergence is practically equivalent to minimizing the difference between the means of the two
distributions. In our implementation, µθ is the output of DEN, µDEN (given by Eq. (18)). Similarly,
for the second, we have:

argmin
θ

DKL
(
q(Xt−1|Xt,X,A) ∥ pθ(Xt−1|Xt,A)

)
(64)

= argmin
θ

DKL
(
N (Xt−1;µt,σ

2
t),N (Xt−1;µθ,σ

2
θ)
)

(65)

= argmin
θ

DKL
(
N (Xt−1;µt,σ

2
t),N (Xt−1;µθ,σ

2
t)
)

(66)

= argmin
θ

1

2σ2
t

[
|| 1
√
αt

Xt −
1− αt√
1− ᾱt

√
αt

ϵθ(Xt,A, t)−
1

√
αt

Xt +
1− αt√
1− ᾱt

√
αt

ϵ||22
]

(67)

= argmin
θ

1

2σ2
t

[
|| 1− αt√

1− ᾱt
√
αt

(
ϵ− ϵθ(Xt,A, t)

)
||22

]
(68)

= argmin
θ

1

2σ2
t

(1− αt)
2

(1− ᾱt)(αt)

[
||ϵ− ϵθ(Xt,A, t)||22

]
(69)

∝ argmin
θ

[
||ϵ− ϵθ(Xt,A, t)||22

]
, (70)

Hence, we can see that learning to minimize the KL divergence is also equivalent to minimizing the
error between the added noise ϵ and the predicted noise ϵθ(Xt,A, t). For interested readers, we refer
to two comprehensive reviews Luo (2022) and Yang et al. (2022).

H GENERATIVE ALGORITHM

After training SDN and DEN sufficiently, we can then randomly sample Xt ∼ N (0, I) and reverse the
process (as summarized in Algorithm 1) progressively to obtain a new graph Ga following Eq. (21).

19

Under review as a conference paper at ICLR 2024

As given in Eq. (57), we can get Xt−1 from Xt and X following:

Xt−1 =

√
αt(1− ᾱt−1)Xt +

√
ᾱt−1(1− αt)X

1− ᾱt
+

√
(1− αt)(1− ᾱt−1)

1− ᾱt
ϵ∗ (71)

=

√
αt(1− ᾱt−1)Xt +

√
ᾱt−1(1− αt)X

1− ᾱt
+

√
(1− ᾱt−1)βt

1− ᾱt
ϵ∗ (72)

=

√
αt(1− ᾱt−1)

1− ᾱt
Xt +

1− αt

1− ᾱt

Xt −
√
1− ᾱtϵ√
αt

+ σtϵ
∗ (73)

=
1

√
αt

Xt −
1− αt√
1− ᾱt

√
αt

ϵ+ σtϵ
∗ (74)

=
1

√
αt

(
Xt −

1− αt√
1− ᾱt

ϵθ(Xt,A, t)

)
+ σtϵ

∗, with ϵ∗ ∼ N (0, I), (75)

by applying the reparameterization trick and estimating the added nopise ϵ using SDN and DEN,

given by ϵθ(Xt,A, t). ϵ∗ ∼ N (0, I). In our implementation, we directly assign
√

(1−αt)(1−ᾱt−1)
1−ᾱt

to σt for calculation.

Algorithm 1: DIFFAD
Input: Graph G = {A,X}, ytrain, diffusion parameters β, α, ᾱ.
Output: Generated graphs Ga and predicted label y′ for each node

1 while Not Converged do
2 //Train the generative model
3 t ∼ Uniform(1, · · · , T)
4 ϵt ∼ N (0, I)
5 Zt,Z

′
t ← SDN(Xt,A, t)

6 ϵ′t ← DEN(Zt,Z
′
t,A)

7 Update parameters in SDN and DEN with Gradients
8 ∇WEX,ϵ(||ϵt − ϵ′t||22)
9 end

10 Xa,T ∼ N (0, I)
11 for t← T to 1 do
12 //Generate graphs
13 ϵ ∼ N (0, I)
14 Zt,Z

′
t ← SDN(Xa,t,A, t)

15 ϵ′ ← DEN(Zt,Z
′
t,A)

16 Xa,t−1 ← 1√
αt

(
Xa,t − 1−αt√

1−ᾱt
ϵ′
)
+

√
(1−αt)(1−ᾱt−1)

1−ᾱt
ϵ

17 end
18 Xa ← Xa,0

19 Ga ← {A,Xa}
20 while Not Converged do
21 //Train the classifier
22 ψ(vi | y)← GCN(A,X,ytrain)
23 ψ(vai | y)← GCN(A,Xa,ytrain)
24 Update parameters in GCN with Gradients measured by Eq. (22)
25 end
26 y′i ← argmaxy[ψ(vi | y=0), ψ(vi | y=1)] //prediction
27 return Ga, y′i

I SUMMARY OF ALL ALGORITHMS AND COMPLEXITY ANALYSIS

The algorithms for our proposed methods, namely DIFFAD, FSC, TRC-MLP, TRC-TRANS are
summarized in Algorithm 1 and Algorithm 2, respectively. As can be seen, DIFFAD encompasses
three stages, i.e., training the generative model, graph generation and training the classifier. For
training the generative model, we take an arbitrary time step t from {0, . . . , T} and train the SDN and

20

Under review as a conference paper at ICLR 2024

DEN to predict the added noise ϵt with regard to Xt,A and t. All the parameters in the generative
model are fine-tuned until the training objective, as formulated in Eq. (20), converges. We then
generate an auxiliary graph Ga by reversing the diffusion process and this generated graph is utilized
to train the classifier together with the original graph G (Lines 18-25). Different from DIFFAD, FSC,
TRC-MLP, TRC-TRANS involve no reverse diffusion process. All these three methods take the tensor
G as input, which can be obtained through the forward diffusion process, and employ different neural
networks, i.e., MLP, LSTM and Transformer, to classify nodes as anomalous or normal with regard
to the evolving patterns.

I.1 COMPLEXITY ANALYSIS

The complexity of DIFFAD. The primary computational cost of DIFFAD stems from the training of
the generative model, graph generation, and classifier training. In the generative model training, as
both SDN and DEN adopt GCN as the backbone, the cost of each training iteration is approximately
O(4nkd), where n is the number of nodes in G, k is the dimensionality of node attributes, and d is the
dimension of the GCN layers. The graph generation stage involves SDN and DEN for inference, and
the total cost of generating one graph is about O(4nkdT), with T diffusion steps. Lastly, the cost of
each iteration for training the GCN classifier approximates O(2nkd). In practice, the diffusion step is
commonly set to 1000, while the training iterations of SDN, DEN, and the classifier are less than 200.
Hence, the overall cost of the three stages in DIFFAD is approximately O(4.5nkdT) ∼ O(nkdT).

The complexity of FSC. As summarized in Algorithm 2, the cost of each training iteration arises
from the computation of the states, i.e., hi

t, c
i
t, τ

i
t , f i

t , gi
t and oi

t. Assuming the dimension of the
neural networks layers in FSC is d, this cost is approximately O(8nkdT + 2nd) ∼ O(nkdT), where
O(2nd) is the cost for training the classifier in Line 19.

The complexity of TRC-MLP. TRC-MLP only involves multiple layers of fully connected neural
network. From Lines 26-33 in Algorithm 2, its cost in each training iteration is approximately
O(nkdT).

The complexity of TRC-TRANS. TRC-TRANS applies the Q, K, and V attention blocks for learning
the representation of each node’s evolving trajectory. In each training iteration, the computational cost
of Lines 38-40 is about O(3nkdT), where WQ,WK,WV ∈ Rk×d. The cost for computing the self-
attention in Line 41 is O(2ndT 2) for the whole graph. For reading out the trajectory representation
in Line 42, its cost is approximately O(ndT), and the classifier training cost in Line 42 is O(2nT).
Therefore, the overall cost of TRC-TRANS is similar to the conventional Transformers, which is
quadratic to the diffusion steps T .

J EXPERIMENT DETAILS AND ADDITIONAL RESULTS

J.1 DATASETS

The nine graph anomaly detection datasets can be categorized into two groups: one with organic
anomalies, including YelpChi (Rayana & Akoglu, 2015), Reddit (Wang et al., 2021a), Weibo (Zhao
et al., 2020), Tfinance (Tang et al., 2022), Tolokers (Tang et al., 2023) and Questions (Tang
et al., 2023); and another with injected anomalies, encompassing BlogCatalog (Ding et al., 2019),
ACM (Ding et al., 2019), and Cora (Liu et al., 2022b). The statistics of these datasets are summarized
in Table 3 and they are available in our GitHub repository9.

Organic datasets.

YelpChi (Rayana & Akoglu, 2015) is an online review dataset with spam and legitimate reviews of
hotels and restaurants. All reviews are labeled by Yelp. There are three types of relations in this
dataset and for a fair comparison, we test each baseline on all these relations and report the best
performance. Table 3 reports the total number of edges.

Reddit (Wang et al., 2021a) compromises collected posts from subreddit. The ground-truth anomalies
are banned users from Reddit.

9https://github.com/DiffAD/DiffAD

21

https://github.com/DiffAD/DiffAD

Under review as a conference paper at ICLR 2024

Algorithm 2: FSC, TRC-MLP, TRC-TRANS

Input: Graph G = {A,X}, ytrain, diffusion parameters β, α, ᾱ.
Output: Predicted label y′i for each node

1 Calculate graph Laplacian L
2 for t← 1 to T do
3 //StoreG as a tensor G
4 ϵ ∼ N (0, I)

5 Xt ←
√
ᾱtX+ (1− ᾱt)ϵ

6 G:,t,: ← LXt

7 end
8 // FSC
9 if method is FSC then

10 while Not Converged do
11 for each node vi, t← T to 0 do
12 τ i

t ← tanh(WτGi,t,: +Uτh
i
t+1 + bτ)

13 f i
t ← tanh(WfGi,t,: +Ufh

i
t+1 + bf)

14 gi
t ← tanh(WgGi,t,: +Ugh

i
t+1 + bg)

15 oi
t ← tanh(WoGi,t,: +Uoh

i
t+1 + bo)

16 cit ← f i
t ⊙ cit+1 + τ i

t ⊙ gj
t

17 hi
t ← oi

t ⊙ σ(f i
t ⊙ cit+1 + τ i

t ⊙ gi
t)

18 end
19 ψ(vi | y)← SOFTMAX(hi

0Wc + bc)
20 Take gradient step based on Eq. (10)
21 end
22 y′i ← argmaxy[ψ(vi | y=0), ψ(vi | y=1)] //prediction
23 return y′i
24 end
25 // TRC-MLP
26 if method is TRC-MLP then
27 while Not Converged do
28 htr

i ← READOUT[ReLU(Gi,:,:W + b)]

29 ψ(vi | y)← SOFTMAX(htr
i Wc + bc)

30 Take gradient step based on Eq. (10)
31 end
32 y′j ← argmaxy[ψ(vj | y=0), ψ(vj | y=1)] //prediction
33 return y′i
34 end
35 // TRC-TRANS
36 if method is TRC-TRANS then
37 while Not Converged do
38 Qi ← G′

i,:,:WQ

39 Ki ← G′
i,:,:WK

40 Vi ← G′
i,:,:WV

41 ATTN(Gi,:,:)← SOFTMAX(
QiK

T
i√

k
)Vi

42 htr
i ← READOUT {FFN[ATTN(Gi,:,:)]}

43 ψ(vi | y)← SOFTMAX(htr
i Wc + bc)

44 Take gradient step based on Eq. (10)
45 end
46 y′j ← argmaxy[ψ(vj | y=0), ψ(vj | y=1)] //prediction
47 return y′i
48 end

22

Under review as a conference paper at ICLR 2024

Table 3: Dataset statistics

Dataset #Nodes #Edges #Features #Degree #Anomalies Anomaly Ratio
YelpChi 45,954 3,846,979 32 83.7 6677 16.9%

Reddit 10,984 168,016 64 15.3 366 3.3%
Weibo 8,405 407,963 400 48.5 868 10.3%

Tfinance 39,357 21,222,543 10 539.2 1810 4.6%
Tolokers 11,758 519,000 10 44.1 2563 21.8%

Questions 48,921 153,540 301 3.1 1467 3%

BlogCatalog 5,196 172,759 8,189 33.2 298 5.7%
ACM 16,484 74,073 8,337 4.5 597 3.6%
Cora 2,708 11,060 1,433 4.1 138 5.1%

Weibo (Zhao et al., 2020) is collected from the Tencent-Weibo platform. The ground-truth anomalies
are users who have engaged in more than five suspicious events.

Tfinance (Tang et al., 2022) is an online review dataset with spam and legitimate reviews of hotels
and restaurants. All reviews are labeled by Yelp. There are three types of relations in this dataset and
for a fair comparison, we test each baseline on all these relations and report the best performance.
Table 3 reports the total number of edges.

Tolokers (Tang et al., 2023) is collected from the Toloka crowdsourcing platform (Platonov et al.,
2023). In this dataset, anomalies denote workers who have been banned in at least one project.

Questions (Tang et al., 2023) is from the Yandex Q website. Users of this question-answering website
are denoted as nodes and an edge is built between two users if one user’s question has been answered
by another (Platonov et al., 2023). Anomalies are users that are no longer active after August 2022.

Synthetic datasets. These three synthetic datasets are downloaded from site.10

BlogCatalog (Tang & Liu, 2009) is collected from an online blog sharing network. The edges denote
the follower-followee relations among users and tags associated with users are node attributes.

ACM (Tang et al., 2008) is built based on the ACM scientific citation network, in which publications
are represented as nodes and their citation relations are represented as edges.

Cora (Liu et al., 2022b) is another scientific citation network containing publications and their citation
links.

J.2 EXPERIMENTAL SETTING AND IMPLEMENTATION DETAILS

We measure the performance of all methods with regard to four commonly used anomaly detection
metrics, namely Macro-F1, Macro-Precision, Macro-Recall, and AUC (Ma et al., 2021). The three
macro-level metrics provide a balanced evaluation of the detection performance on both anomalies
and normal nodes, while AUC measures the area under the ROC curve.

We compare our methods, FSC, TRC-MLP, TRC-TRANS, and DIFFAD, with three GNN detectors
and seven state-of-the-art semi-/supervised anomaly detectors. The three GNN detectors are built
upon GCN (Kipf & Welling, 2017), GAT (Veličković et al., 2018), and GraphSAGE (Hamilton
et al., 2017), respectively. Seven state-of-the-art detectors include GeniePath (Liu et al., 2019),
FdGars (Wang et al., 2019), BWGNN (Tang et al., 2022), DAGAD (Liu et al., 2022a) GAT-sep (Zhu
et al., 2020), AMNet (Chai et al., 2022), GHRN (Gao et al., 2023a) and two contrastive detectors,
namely CONAD (Xu et al., 2022b) and CoLA (Liu et al., 2021). There are other baselines proposed
before BWGNN and DAGAD, such as CARE-GNN (Dou et al., 2020) and GraphConsis (Liu et al.,
2020), but we do not include them since BWGNN and DAGAD have demonstrated superiority over
them.

In our experiment, we follow the published configurations of all methods. Implementation details of
baselines and our method are provided in the prior section in Appendix F. We used a training ratio of

10https://github.com/pygod-team/data

23

https://github.com/pygod-team/data

Under review as a conference paper at ICLR 2024

Table 4: Detection results on nine datasets (best in bold).

Method YelpChi Reddit Weibo
M-F1 AUC M-Pre M-Rec M-F1 AUC M-Pre M-Rec M-F1 AUC M-Pre M-Rec

GCN 46.08±0.1 57.09±0.1 42.73±0.1 50.00±0.1 49.15±0.1 57.74±0.1 48.33±0.1 50.00±0.1 82.27±0.1 85.64±0.1 82.38±0.1 82.18±0.1
GAT 46.98±0.1 58.24±0.1 70.97±1.6 50.24±0.1 49.24±0.1 64.45±0.2 48.34±0.1 50.00±0.1 85.62±0.1 79.86±0.9 88.57±0.2 83.22±0.1

GraphSAGE 60.86±0.2 80.36±0.1 75.11±0.2 58.62±0.2 49.15±0.1 51.31±0.2 48.33±0.1 50.00±0.1 89.20±0.1 88.35±0.2 90.16±0.1 88.43±0.2

GeniePath 46.08±0.1 48.74±0.1 42.73±0.1 49.97±0.1 49.15±0.1 46.30±0.1 48.80±0.1 50.30±0.1 55.06±1.7 62.94±1.4 53.52±1.9 56.88±1.5
FdGars 49.77±0.1 53.01±0.5 51.65±0.1 51.55±0.2 48.52±0.2 63.05±0.1 50.80±0.1 53.57±0.3 87.65±0.1 93.11±0.6 88.68±0.1 86.90±0.3

BWGNN 63.68±0.3 80.96±0.1 63.30±0.1 72.84±0.1 43.29±0.5 66.89±0.3 51.55±0.1 60.47±0.3 89.27±0.3 92.29±0.3 88.82±0.1 89.77±0.1
DAGAD 52.08±0.2 59.83±0.1 60.81±0.1 52.74±0.1 49.15±0.1 61.49±0.3 48.71±0.1 50.22±0.1 89.63±0.1 91.05±0.1 88.74±0.1 87.54±0.1
GAT-sep 65.93±0.3 80.01±0.3 72.10±0.1 63.74±0.4 49.16±0.1 50.22±0.5 48.33±0.1 50.01±0.1 91.92±0.2 95.71±0.1 85.95±0.2 93.98±0.1
AMNet 54.66±0.8 64.01±1.2 55.68±1.3 55.51±0.6 50.39±0.1 62.14±0.3 50.94±0.2 50.82±0.1 91.63±0.1 97.11±0.1 86.86±0.7 89.56±0.2
GHRN 65.59±0.1 81.92±0.1 64.28±0.1 74.14±0.3 45.60±0.3 66.09±0.4 51.57±0.1 59.79±0.3 89.26±0.1 91.78±0.2 89.11±0.1 89.43±0.1

CONAD 47.42±0.1 47.50±0.2 47.35±0.1 45.51±0.1 46.39±0.1 55.78±0.2 49.58±0.1 48.02±0.1 79.01±0.1 90.40±0.1 74.91±0.1 88.25±0.1
CoLA 45.82±0.1 61.60±0.1 46.26±0.1 45.54±0.1 46.09±0.3 50.26±0.3 49.48±0.1 50.43±0.2 49.90±0.2 71.59±0.4 50.53±0.1 50.80±0.2

FSC 55.36±0.1 75.18±0.1 61.34±0.1 72.77±0.1 50.88±0.1 57.33±0.1 54.36±0.5 55.97±0.1 90.83±0.1 98.11±0.1 91.49±0.1 92.83±0.1
FSC(linear) 54.78±0.1 69.98±0.1 59.94±0.1 69.96±0.1 51.19±0.1 56.54±0.1 53.58±0.3 55.45±0.1 90.35±0.1 97.80±0.1 90.56±0.1 93.32±0.1

TRC-MLP 55.36±0.1 75.64±0.1 63.13±0.2 73.12±0.1 50.23±0.1 58.41±0.1 53.88±0.4 56.60±0.1 90.75±0.1 95.80±0.1 90.80±0.1 92.90±0.1
TRC-MLP(linear) 54.77±0.1 72.13±0.1 59.67±0.1 69.62±0.1 49.63±0.1 55.76±0.1 51.07±0.1 54.93±0.1 86.04±0.2 91.79±0.2 88.69±0.2 91.55±0.1

TRC-TRANS 56.58±0.1 72.83±0.2 61.01±0.1 72.10±0.1 48.21±0.2 57.11±0.1 50.81±0.1 56.19±0.1 92.06±0.1 98.17±0.1 92.55±0.1 94.66±0.1
TRC-TRANS(linear) 55.88±0.1 72.56±0.2 60.93±0.1 71.90±0.1 44.85±0.4 54.94±0.1 50.67±0.1 54.62±0.1 92.05±0.1 95.05±0.1 92.64±0.1 95.05±0.1

DIFFAD 73.88±0.1 87.94±0.1 77.81±0.8 80.98±0.1 51.85±0.1 71.20±0.1 54.36±0.3 66.35±0.1 90.58±0.1 95.46±0.5 92.14±0.9 91.55±0.9

Method Tfinance Tolokers Questions
M-F1 AUC M-Pre M-Rec M-F1 AUC M-Pre M-Rec M-F1 AUC M-Pre M-Rec

GCN 72.68±0.1 81.10±0.4 84.94±0.8 71.49±0.1 55.80±0.2 71.69±0.1 60.86±0.1 55.87±0.1 53.00±0.1 52.76±0.1 53.67±0.5 52.04±0.1
GAT 48.52±0.2 54.60±0.5 49.73±0.2 52.17±0.3 55.43±0.2 71.97±0.1 60.07±0.1 55.69±0.2 50.42±0.2 54.70±0.1 52.92±0.1 50.64±0.1

GraphSAGE 70.97±0.1 43.51±0.4 85.63±0.1 65.99±0.1 55.66±0.2 72.31±0.1 60.43±0.1 55.73±0.1 56.37±0.1 51.42±0.1 54.44±0.1 54.38±0.1

GeniePath 48.84±0.1 53.65±0.1 47.71±0.1 51.02±0.2 43.88±0.1 49.22±0.1 39.09±0.2 50.13±0.1 49.24±0.1 49.71±0.1 48.51±0.1 50.11±0.1
FdGars 81.86±0.1 78.29±0.1 54.55±0.1 70.76±0.1 54.05±0.1 52.76±0.2 54.19±0.1 53.96±0.1 48.93±0.1 54.18±0.1 50.54±0.1 54.39±0.1

BWGNN 85.28±0.7 91.91±0.3 91.54±0.5 78.17±0.8 57.35±0.9 64.14±1.6 57.29±1.1 58.06±0.6 56.45±0.1 56.15±0.1 56.17±0.1 56.82±0.1
DAGAD 70.89±0.6 88.05±0.2 72.18±1.1 78.64±0.6 63.10±0.1 72.67±0.1 61.07±0.1 64.09±0.2 55.39±0.1 60.57±0.1 54.61±0.1 56.99±0.1
GAT-sep 83.20±0.1 91.56±0.1 85.28±0.1 79.42±0.1 63.12±0.7 72.06±0.4 60.56±0.4 63.14±0.7 56.05±0.1 70.18±0.1 55.19±0.3 57.37±0.1

AMnet 82.98±0.1 91.17±0.4 86.65±0.2 76.88±0.2 56.74±0.5 65.33±0.1 57.03±0.1 57.89±0.2 55.63±0.1 61.86±0.1 55.67±0.1 56.86±0.1
GHRN 81.64±1.1 91.89±0.4 86.79±1.2 78.66±0.8 60.56±0.5 71.27±1.2 61.78±0.1 59.86±0.5 56.81±0.1 56.14±0.1 56.44±0.1 57.32±0.1

CONAD 43.84±0.1 82.24±0.1 47.38±0.1 41.09±0.1 46.54±0.1 61.24±0.1 46.37±0.1 47.13±0.5 48.64±0.1 50.36±0.1 50.54±0.1 52.37±0.1
CoLA 43.77±0.1 57.68±0.2 47.59±0.1 41.44±0.2 50.78±0.1 55.45±0.1 51.10±0.1 50.91±0.1 47.24±0.1 56.97±0.1 50.42±0.1 52.28±0.1

FSC 82.70±0.2 89.04±0.1 86.63±0.4 78.73±0.2 61.90±0.1 70.01±0.1 59.26±0.1 63.23±0.1 56.34±0.1 67.80±0.1 54.82±0.1 63.95±0.1
FSC(linear) 81.67±0.1 86.32±0.1 79.57±0.9 76.71±0.1 58.90±0.1 68.43±0.1 59.32±0.1 63.56±0.1 55.79±0.1 67.94±0.1 54.59±0.1 63.20±0.1

TRC-MLP 54.41±0.2 64.28±0.3 71.03±0.2 62.94±0.3 54.81±0.1 57.51±0.1 57.60±0.3 56.32±0.1 55.34±0.1 63.46±0.1 55.94±0.1 59.13±0.2
TRC-MLP(linear) 55.25±0.3 62.05±0.4 80.88±1.6 59.94±0.4 54.77±0.1 59.28±0.2 55.09±0.1 56.72±0.2 52.96±0.1 62.16±0.1 52.67±0.1 58.55±0.3

TRC-TRANS 80.43±0.1 89.28±0.1 87.72±0.1 78.75±0.1 59.68±0.1 70.07±0.1 58.91±0.1 62.98±0.1 56.32±0.1 68.22±0.1 55.48±0.1 56.54±0.1
TRC-TRANS(linear) 78.53±0.1 85.65±0.1 82.72±0.1 77.55±0.1 60.98±0.1 70.37±0.1 58.94±0.1 63.03±0.1 50.17±0.1 57.31±0.2 54.51±1.6 50.52±0.1

DIFFAD 86.16±0.1 92.14±0.1 94.72±0.1 80.98±0.1 63.35±0.1 74.33±0.1 63.05±0.1 68.64±0.1 57.28±0.1 70.27±0.1 56.81±0.1 65.97±0.1

Method BlogCatalog ACM Cora
M-F1 AUC M-Pre M-Rec M-F1 AUC M-Pre M-Rec M-F1 AUC M-Pre M-Rec

GCN 60.14±0.4 68.18±0.7 69.36±0.8 57.60±0.8 56.77±0.1 69.21±0.2 58.19±0.1 55.91±0.1 53.12±0.3 67.75±0.4 56.21±0.5 52.71±0.2
GAT 62.39±0.3 71.47±0.3 69.51±0.1 64.96±0.4 61.58±0.1 68.11±0.2 66.59±0.2 59.10±0.1 63.15±0.3 68.90±0.3 65.31±0.3 67.43±0.2

GraphSAGE 63.25±0.2 61.31±0.2 73.95±0.4 59.68±0.1 65.70±0.2 64.96±0.2 67.88±0.2 61.26±0.1 52.24±0.3 68.00±0.4 57.01±0.5 51.89±0.2

GeniePath 48.53±0.1 52.23±0.1 47.14±0.1 50.00±0.1 49.08±0.1 49.02±0.2 48.19±0.1 50.11±0.1 48.70±0.1 60.27±0.1 47.46±0.1 50.04±0.1
FdGars 42.23±0.3 54.59±0.2 50.62±0.1 52.61±0.2 36.69±0.2 65.03±0.1 51.06±0.1 57.56±0.2 42.10±0.1 69.69±0.4 52.44±0.1 62.57±0.2

BWGNN 52.97±0.1 51.35±0.3 53.44±0.1 59.24±0.1 54.93±0.3 47.69±0.6 55.27±0.4 56.70±0.2 52.18±0.2 44.93±0.2 53.99±0.2 51.85±0.1
DAGAD 64.49±0.4 73.88±0.5 73.69±0.8 63.26±0.6 72.03±0.2 73.74±0.1 72.57±0.2 71.61±0.2 65.42±0.2 68.78±0.3 66.35±0.4 64.49±0.2
GAT-sep 66.82±0.1 75.97±0.5 67.44±0.1 66.40±0.2 71.09±0.4 76.43±0.2 72.03±0.4 70.41±0.4 59.05±0.4 66.68±0.8 60.06±0.4 58.40±0.4
AMNet 71.77±0.2 72.23±0.3 70.29±0.2 73.76±0.2 60.11±0.1 74.54±0.2 58.93±0.2 62.41±0.1 53.09±0.1 66.09±0.6 53.18±0.1 53.13±0.1
GHRN 56.69±0.2 51.62±0.5 56.13±0.2 60.55±0.2 57.60±0.1 36.58±0.2 72.53±0.3 55.09±0.1 50.80±0.1 47.06±0.7 53.73±0.2 50.92±0.1

CONAD 53.87±0.2 63.03±0.1 58.97±0.1 52.90±0.1 53.16±0.1 70.86±0.1 54.28±0.1 60.12±0.1 53.53±0.1 70.48±0.7 54.53±0.2 66.17±0.1
CoLA 47.35±0.1 58.29±0.2 52.14±0.1 58.63±0.1 43.77±0.5 48.68±0.2 51.78±0.5 50.03±0.2 48.18±0.5 51.86±0.4 51.65±0.2 52.48±0.3

FSC 64.49±0.1 66.53±0.3 83.38±0.3 62.02±0.1 60.97±0.1 55.09±0.2 55.60±0.1 60.97±0.2 65.63±0.1 74.08±0.1 64.30±0.2 71.13±0.1
FSC(linear) 52.32±0.1 56.79±0.1 74.64±0.2 54.92±0.1 50.67±0.1 54.58±0.1 54.40±0.2 53.72±0.1 64.89±0.1 74.11±0.1 64.21±0.1 71.32±0.1

TRC-MLP 53.03±0.1 62.36±0.1 87.16±0.1 59.32±0.1 59.13±0.1 72.21±0.1 59.68±0.3 71.36±0.1 64.68±0.1 73.57±0.1 64.29±0.2 70.96±0.1
TRC-MLP(linear) 48.73±0.1 51.15±0.1 50.43±0.1 50.20±0.1 50.01±0.4 56.76±0.7 52.53±0.2 55.52±0.2 63.64±0.3 73.54±0.1 63.56±0.1 70.26±0.1

TRC-TRANS 53.12±0.1 54.74±0.1 60.51±0.3 53.69±0.1 51.64±0.1 52.44±0.1 52.42±0.1 52.28±0.1 65.71±0.1 76.32±0.2 66.35±0.3 72.91±0.1
TRC-TRANS(linear) 52.24±0.1 53.42±0.1 67.96±0.3 53.42±0.1 51.32±0.1 51.26±0.1 50.42±0.1 51.73±0.1 48.59±0.2 58.42±0.1 52.17±0.1 56.28±0.1

DIFFAD 76.24±0.2 77.55±0.5 87.88±0.6 74.95±0.3 73.91±0.2 77.40±0.2 76.21±0.1 74.41±0.2 69.28±0.2 74.05±0.2 68.66±0.2 71.08±0.2

20% and performed 5-fold test to ensure the robustness and reliability of the results. Unless specially
defined in our provided configuration files (under ‘configs’ directory in our GitHub repository), we
set the number of diffusion steps to 1000 and use the cosine scheduler in all our methods. The two
GCN layers’ dimensions in SDN, DEN and the anomaly detector are 128 for the first layers and 64 for
the second layers. For the two constrastive detectors, we classify the top k nodes as anomalies with
regard to the anomaly scores, where k is the number of ground-truth anomalies in the test set. Details
of our data, splits, and experimental setup are also available in our GitHub repository. We conducted
all the experiments on a Rocky Linux 8.6 (Green Obsidian) server equipped with a 12-core CPU, 1
Nvidia V100 GPU (with 30GB RAM), and 100GB RAM.

J.3 CASE STUDY II - PERFORMANCE V.S. NUMBER OF GENERATED GRAPHS

As DIFFAD is capable of generating an auxiliary graph by simply sampling Gaussian noise and
reversing the diffusion process. In this study, we explore whether the performance will improve as
more generated graphs are involved for training. The results on four datasets (Fig. 4 and Tables 1, 4)
illustrate that augmenting the quantity of generated graphs does not yield a significant performance
boost. We attribute this to the limited diversity among the generated graphs and generating diversified
samples will be a pivotal focus of our future research.

24

Under review as a conference paper at ICLR 2024

2 4 6 8 10
0.65

0.70

0.75

0.80

0.85

0.90

0.95
YelpChi

S
co

re

#generated graphs

 M-F1

 AUC

1 2 3 4 5 6 7 8 9 10
0.55

0.60

0.65

0.70

0.75

0.80

0.85
Cora

S
co

re

#generated graphs

 M-F1

 AUC

2 4 6 8 10
0.40

0.45

0.50

0.55

0.60

0.65

0.70

0.75

Reddit

S
co

re

#generated graphs

 M-F1

 AUC

2 4 6 8 10
0.00

0.20

0.40

0.60

0.80

1.00
Weibo

S
co

re

#generated graphs

 M-F1

 AUC

Figure 4: DIFFAD’s performance across the different numbers of generated graphs.

Cora Reddit Weibo YelpChi

0.5

0.6

0.7

0.8

0.9

1.0

A
U
C

 Cosine

 Linear

 Min~Max

 Mean

Cora Reddit Weibo YelpChi

0.5

0.6

0.7

0.8

0.9

M
-F
1

Figure 5: DIFFAD’s performance using schedulers (linear vs. cosine) regarding M-F1 and AUC.

0.1K 0.5K 1.0K 2.0K 3.0K 4.0K
0.50

0.55

0.60

0.65

0.70

0.75

0.80

0.85
Cora

S
co

re

#diffusion steps

 M-F1

 AUC

0.1K 0.5K 1.0K 2.0K 3.0K 4.0K
0.40

0.45

0.50

0.55

0.60

0.65

0.70

0.75
Reddit

S
co

re

#diffusion steps

 M-F1

 AUC

0.1K 0.5K 1.0K 2.0K 3.0K 4.0K
0.65

0.70

0.75

0.80

0.85

0.90

0.95
YelpChi

S
co

re

#diffusion steps

 M-F1

 AUC

0.1K 0.5K 1.0K 2.0K 3.0K 4.0K

0.40

0.50

0.60

0.70

0.80

0.90

1.00

Weibo

S
co

re

#diffusion steps

 M-F1

 AUC

Figure 6: DIFFAD’s performance across diffusion steps regarding M-F1 and AUC.

Cora Reddit Weibo YelpChi

0.4

0.5

0.6

0.7

0.8

0.9

1.0

M
-F
1

Cora Reddit Weibo YelpChi

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

A
U
C

 #layers = 1

 #layers = 2

 #layers = 3

 #layers = 4

 Min~Max

 Mean

Figure 7: DIFFAD’s performance on the different numbers of GNN layers in SDN&DEN regarding
M-F1 and AUC.

8 16 32 64 128 256
0.30

0.40

0.50

0.60

0.70

0.80

Cora

S
co

re

Dimension

 M-F1

 AUC

8 16 32 64 128 256
0.30

0.40

0.50

0.60

0.70

0.80
Reddit

S
co

re

Dimension

 M-F1

 AUC

8 16 32 64 128 256

0.80

0.84

0.88

0.92

0.96

1.00
Weibo

S
co

re

Dimension

 M-F1

 AUC

8 16 32 64 128 256
0.40

0.45

0.50

0.55

0.60

0.65

0.70
YelpChi

S
co

re

Dimension

 M-F1

 AUC

Figure 8: DIFFAD’s performance on different GNN dimensions regarding M-F1 and AUC.

25

Under review as a conference paper at ICLR 2024

J.4 CASE STUDY III - SENSITIVITY TO DIFFERENT DIFFUSION SETTINGS

Cosine scheduler v.s. linear scheduler. The noise variance scheduler plays a key role in controlling
the amount of noise added to the original data at each diffusion step and manipulating the diffusion
process (Nichol & Dhariwal, 2021). From Fig. 5, we can see that for DIFFAD, the AUC is not
much affected by the choice of the scheduler, but the better F1 score on Reddit is achieved using the
cosine scheduler while the linear scheduler is better on Weibo. Meanwhile, for FSC, TRC-MLP, and
TRC-TRANS, we found that the cosine scheduler is the slightly better linear scheduler.

The impact of diffusion steps T . The number of diffusion steps decides how fast the original data
will be corrupted to standard Gaussian noise. In order to validate whether more diffusion steps will
lead to better performance, we set the diffusion steps as {100, 500, 1000, 2000, 4000} respectively
and report the results on four datasets in Fig. 6. While prolonging the diffusion step corrupts the data
more smoothly, its impact on the anomaly detection performance is not significant.

J.5 CASE STUDY IV - DIFFAD’S SENSITIVITY TO GNN DIMENSIONS AND LAYERS

The impact of stacking GNN layers. We conduct tests on the number of GNN layers (set as
{1, 2, 3, 4}) in both SDN and DEN and depict the results in Fig. 7, the AUC score is slightly affected
by the number of GNN layers, but the F1 score on Weibo is significantly improved when stacking
more GNN layers.

The impact of GCN detector’s dimension. We further validate how DIFFAD’s GCN detector is
sensitive to the GNN dimensionality. We fix the number of layers to 2, and illustrate the results
in Fig. 8. As can be seen, the detector achieves the best performance when the two GNN layers’
dimensions are 128 and 64, respectively.

J.6 CASE STUDY V - PERFORMANCE WITH SKIP-STEP

Recall that in §5.1 and Appendix D, we have presented a skip-step method to reduce the store
cost of G and the computational cost of FSC, TRC-MLP and TRC-TRANS. In our implemen-
tation, we set the window size w equal to the stride size s in skip-step and calculate the ratio
of remaining steps (called keep ratio), as w+s

T . We set T as 1000 and vary this ratio among
{0.01, 0.02, 0.03, 0.04, 0.05, 0.1, 0.2, 0.3, 0.4, 0.5}.

0 . 0 2 0 . 0 3 0 . 0 4 0 . 0 5 0 . 1 0 . 2 0 . 3 0 . 4 0 . 50 . 0 10 . 5 5

0 . 6 0

0 . 6 5

0 . 7 0

0 . 7 5

0 . 8 0

 M - F 1 M - P r e
A U C M - R e c

Figure 9: Skip-step v.s. perfor-
mance on Cora.

Variants M-F1 AUC M-Pre M-Rec
FSC 65.63±0.1 74.08±0.1 64.30±0.2 71.13±0.1
⊘Class-wise loss 48.67±0.1 65.32±0.7 48.48±0.2 50.00±0.1

TRC-MLP 64.68±0.1 73.57±0.1 64.29±0.2 70.96±0.1
⊘Class-wise loss 52.23±0.6 61.37±0.8 56.05±0.5 55.46±0.7

TRC-TRANS 65.71±0.1 76.32±0.2 66.35±0.3 72.91±0.1
⊘Class-wise loss 46.76±0.3 57.08±0.1 51.50±0.1 57.08±0.1

DIFFAD 69.28±0.2 74.05±0.2 68.66±0.2 71.08±0.2
⊘Class-wise loss 48.70±0.1 51.43±0.7 47.46±0.1 50.00±0.1
⊘Generation 66.35±0.3 68.95±0.4 66.67±0.5 67.70±0.4
⊘Generation & ⊘Class-wise loss 53.12±0.3 67.75±0.4 56.21±0.5 52.71±0.2
⊘Residual links 67.64±0.1 70.97±0.2 64.15±0.3 69.16±0.2

Table 5: Ablation test on Cora (best in bold). ‘⊘’ means the
corresponding functional module is detached

As depicted in Fig. 9, downsampling the input tensor has a considerable impact on the detection
performance but regarding the fact that the input tensor size increases proportionally to the keep ratio,
a trade-off between the performance and cost should be taken in practice.

J.7 DISCUSSION ON DETECTION PERFORMANCE AGAINST INITIAL EGONET DISSIMILARITY

Since our Observation 1 (presented in Section 4.2) demonstrates the potential of exploring egonet
dissimilarity for graph anomaly detection, we are also interested in studying the impact of the initial
egonet dissimilarity on the detection performance. Intuitively, lower egonet dissimilarity denotes that
anomalies and normal nodes’ attributes are similar to each other, making anomalies even harder to be
discrimanted from normal nodes. We empirically clarify this impact by comparing the discrepancy in
detection performance on datasets that exhibit different initial egonet dissimilarities.

26

Under review as a conference paper at ICLR 2024

From the results summarized in Tables 1 and 4, we observe that all methods perform significantly
better on the Weibo dataset than on Reddit. This is mainly because anomalies have significantly
lower feature similarity with normal nodes on the Weibo dataset, while the Reddit dataset exhibits
similar average neighbor feature similarities in both classes, according to the statistics reported in (Liu
et al., 2022b). This performance drop experienced by all methods highlights the need to address this
significant challenge posed by low initial egonet dissimilarity, and we denote this as an important
direction for future efforts.

J.8 ABLATION STUDY

In our ablation study, we demonstrate the efficacy of the key ingredients in our proposed methods: The
class-wise loss function formulated in Eq. (10) (for FSC, TRC-MLP and TRC-TRANS) and Eq. (22)
(for DIFFAD), generated graph samples, and the effectiveness of the residual links between SDN and
DEN. For validating Eq. (10), we replace the class-wise loss in FSC, TRC-MLP and TRC-TRANS
as the conventional binary cross-entropy loss. For the rest study with DIFFAD, we implemented
four variants of DIFFAD by detaching particular function modules. As reported in Table 5, the row
corresponding to ‘⊘Class-wise loss’ represents the variant that replaces our proposed class-wise loss
function by the conventional cross-entropy loss to train the anomaly detector. The ‘⊘Generation’ row
denotes the results achieved by DIFFAD without using any generated graphs, and ‘⊘Generation &
⊘Class-wise loss’ is the GCN anomaly detector, which uses cross-entropy as the loss function and
ignores generated graphs. We also evaluate how the residual links impact the detection performance
by comparing DIFFAD and the variant ‘⊘Residual links’, which ignores the residual links between
SDN and DEN.

From the results, it is evident that the class-wise loss enables the anomaly detector to focus on both
anomalies and regular nodes, leading to better detection performance. DIFFAD’s better performance
over ‘⊘Generation’ indicates that incorporating generated graphs is an effective strategy for boosting
the detection performance. Moreover, the compromised performance of ‘⊘Residual links’ validates
that the residual links benefit SDN and DEN to generate better graph samples, which further enhance
the detection performance.

27

	Introduction
	Preliminaries
	Related work
	Semi-/supervised graph anomaly detection
	denoising diffusion probabilistic model (DDPM)

	Preliminary study: Anomalies' dynamics and graph energy shifts in the forward diffusion process
	Preliminary study setup
	Observation I - More dramatic changes in anomalies' egonet similarities
	Observation II - Recovery the low frequency energy for Graph generation

	Our approach I – Learning Diffusion dynamics for graph anomaly detection
	Storing the graph information in forward diffusion
	Forward sequence classification (Fsc)
	Trajectory representation-based classification (Trc)

	Our approach II - Generative graph anomaly detection
	Reverse process for data distribution modeling
	Step-dependent GCN - Sdn
	Distribution estimating GCN - Den
	Simplified Training Objective of the reverse process

	Graph generation
	Graph Anomaly detection with generated samples

	Experiments
	Experimental setup
	Anomaly detection performance
	Case study I - the efficacy of generated graphs

	Conclusion
	Related work
	Graph anomaly detection
	DDPM

	Proof of proposition 1
	Proof of proposition 2
	Skip-step for Memory optimization and Batching
	Implementation details of Readout and Trc-mlp
	Implementation details of DiffAD and baselines
	Diffusion step encoding Te
	Non-probabilistic variants of DiffAD
	DiffAD's GCN detector
	Baseline implementations
	Conventional GNN-based detectors
	State-of-the-art methods

	Relation between KL divergence and our graph diffusion objective
	Generative algorithm
	Summary of all Algorithms and Complexity Analysis
	Complexity Analysis

	Experiment details and additional results
	Datasets
	Experimental setting and implementation details
	Case study II - Performance v.s. Number of generated graphs
	Case study III - Sensitivity to different diffusion settings
	Case study IV - DiffAD's sensitivity to GNN dimensions and layers
	Case study V - Performance with skip-step
	Discussion on detection performance against initial egonet dissimilarity
	Ablation study

