Computational Algebra with Attention:
Transformer Oracles for Border Basis Algorithms

Hiroshi Kera*'?®> Nico Pelleriti*®> Yuki Ishihara® Max Zimmer® Sebastian Pokutta®
LChiba University ~ ?National Institute of Informatics ~ Zuse Institute Berlin ~ *Nihon University

Abstract

Solving systems of polynomial equations, particularly those with finitely many
solutions, is a crucial challenge across many scientific fields. Traditional methods
like Grobner and Border bases are fundamental but suffer from high computa-
tional costs, which have motivated recent Deep Learning approaches to improve
efficiency, albeit at the expense of output correctness. In this work, we introduce
the ORACLE BORDER BASIS ALGORITHM, the first Deep Learning approach
that accelerates Border basis computation while maintaining output guarantees.
To this end, we design and train a Transformer-based oracle that identifies and
eliminates computationally expensive reduction steps, which we find to dominate
the algorithm’s runtime. By selectively invoking this oracle during critical phases
of computation, we achieve substantial speedup factors of up to 3.5x compared to
the base algorithm, without compromising the correctness of results. To generate
the training data, we develop a sampling method and provide the first sampling
theorem for border bases. We construct a tokenization and embedding scheme
tailored to monomial-centered algebraic computations, resulting in a compact and
expressive input representation, which reduces the number of tokens to encode an
n-variate polynomial by a factor of O(n). Our learning approach is data efficient,
stable, and a practical enhancement to traditional computer algebra algorithms and
symbolic computation.

1 Introduction

Polynomial equation systems serve as a fundamental model in a wide range of fields, including
dynamical systems (such as those arising from the Lorenz attractor [48] or from digitalized gene-
regulatory networks [43] 144])), cryptography where multivariate systems [27, [38] form the basis
of signature schemes [67], in data-manifold representation [55], camera-pose estimation [38]], or
optimization [3| 42]. Solving these systems, even with a small probability of success, reveals
critical properties such as stationary points [14] and optimal control strategies [S3]], highlighting the
fundamental importance of polynomial system solving. Many of these applications involve so-called
zero-dimensional systems with finitely many solutions, which are the focus of this work.

However, solving polynomial systems is notoriously hard: Even for zero-dimensional systems with
finitely many solutions, the worst-case complexity is exponential in the number of variates [[15}50]
and becomes practically intractable with as few as five variables. A most fundamental tool for their
solution is the computation of Grobner bases [10} [13] or Border bases [28,129, 40|, the former being
interpretable as a nonlinear analogue of Gaussian elimination and the latter being a generalization of
the former in the zero-dimensional case.

This work focuses on border basis computation, which is essentially an iterative process that extends
a polynomial basis set: at each step, new candidate polynomials are generated from the current basis
and reduced to determine whether they extend the basis span. Crucially, reducing candidates that

*Equal contribution.
Correspondence to kera@chiba-u. jp/or pelleriti@zib.de.

39th Conference on Neural Information Processing Systems (NeurIPS 2025).

mailto:kera@chiba-u.jp
mailto:pelleriti@zib.de

fail to extend the basis set is computationally wasteful and leads to long runtime of the algorithm.
While several computer-algebraic techniques, including heuristics, address this [24,|29], the advances
in the field of Deep Learning (DL) suggest new directions for symbolic computation [4} 35, 41]: A
seminal work [54] introduced a Reinforcement Learning approach to optimize candidate polynomial
construction in Grébner basis computation, though their method was limited to binomial Grobner
bases and inputs. A recent work [35] used a Transformer [62] to directly predict Grobner bases from
input systems, but lacks output guarantees - verifying the predicted basis requires a full Grobner
computation, nullifying any efficiency gains.

In this study, we address this problem from the Algorithms with Predictions perspective - enhancing
algorithms with predictions for better performance, without sacrificing the correctness of the output.
To that end, we propose the ORACLE BORDER BASIS ALGORITHM, the first output-certified
algorithm for solving zero-dimensional polynomial systems using DL. Precisely, we develop a
supervised training framework of a Transformer-based oracle that eliminates unnecessary reduction
candidates, thereby significantly improving the efficiency of border basis computation.

Contributions. Our contributions can be summarized as follows:

1. Algorithm for supervised data generation: To generate the oracle’s training data, we
develop a sampling method for diverse polynomial sets, realizing the random generation of
diverse generators of zero-dimensional ideals. We present the first sampling theorem for
border bases and also generalize the ideal-invariant transformation theorem [35].

2. Efficient monomial-level token embedding: We propose a tokenization and embedding
scheme tailored to monomial-centered algebraic computations, resulting in a compact and
expressive input representation. For n-variate polynomials, it reduces token count by O(n)
and attention memory by O(n?) while improving predictive accuracy.

3. Efficient oracle-guided algorithm with correctness guarantees: Finally, we propose a
Transformer oracle specialized to the final stage of border basis computation, along with
an effective heuristic for determining when to invoke the oracle. The resulting ORACLE
BORDER BASIS ALGORITHM eliminates unnecessary reduction candidates and significantly
improves the efficiency of border basis computation, validated across diverse parameter
settings and prediction tasks.

A key insight is that border basis computation proceeds degree-by-degree, enabling us to collect
labeled training examples by recording which reductions extend the basis at each degree. In contrast,
Grobner basis computation lacks this natural decomposition, which is why the previous study [54] had
to rely on reinforcement learning - a less data-efficient and less stable approach than our supervised
learning framework [[19, 156l 59} [68]]. Since border bases generalize Grobner bases in the zero-
dimensional case, we can efficiently recover Grobner bases from border bases when they exist.

Further related work. Buchberger’s algorithm [10] computes Grobner bases by iteratively forming
and reducing S-polynomials until achieving closure under a monomial order [[13]. Faugere’s F4/F5
algorithms [17} [18]] improve upon this via sparse linear algebra and signature-based redundancy
detection. Various heuristics [20] help mitigate combinatorial explosion. Border bases do not require
a fixed variable ordering and are a term-order-free [9)], numerically stable alternative to Grobner
bases, defined relative to a chosen monomial set O with leading terms on its border [28] 29].

Apart from the previously mentioned works on using machine learning for symbolic computation,
[26] enhanced cylindrical algebraic decomposition, while [66] improved the stability of Grobner
basis solvers. Our work further connects to the broader field of learning-guided algorithms, where
predictions have proven effective at steering heuristic decisions across combinatorial optimization
problems [51]]. For example, in the context of mixed integer programming, [S]] and [36] demonstrated
the effectiveness of learning-based approaches to improve branching decisions.

2 Preliminaries
We introduce the necessary notation as well as the core concepts of border bases and their computation.
For comprehensive treatments, see [28, [29]] on border bases and [[12] on ideals and polynomials.

An n-variate term or monomial % := x7* - - - x%" is defined by an exponent vector a € ZZ,. We
denote by 7T, the set of all such terms and by K[X]| = K|[z1,...,x,] the polynomial ring over a

00

QE—00

(a) Border Basis (b) Naive BB expansions (c) Oracle-guided expansions
[¢] ¢ o0 " LT(V) o —— Extension ~* Discarded C

Figure 1: Border basis concepts: (a) A border basis with order ideal {1,y} and border terms
{y?, zy, x}. (b) BBA’s iterative expansion of V, showing leading terms: two initial polynomials yield
four expansions, then eight more - though only two out of twelve were necessary. (c) The oracle
approach achieves the same result with just four targeted expansions.

field K. We use K [X]< for its restriction to polynomials of degree at most d. We use < to denote a
term ordering on K [X]. The leading term LT(f) of a polynomial f is its largest term under <. For a
polynomial set F' = {fy,..., f-},LT(F) = {LT(f1) ...,LT(f.)} denotes its leading terms. The set
of polynomials Z = (f1,..., fr) = {fih1 + -+ frhy | h1,..., h € K[X]} is called the ideal
generated by F' in K[X]. If LT(K[X]) \ LT(I) is a finite set, the ideal is called zero-dimensional.
The cardinality of the set denoted is by |-|. For an ideal Z C K[X], the quotient ring K[X]/Z
denotes the factor ring of K [X] modulo Z. Its elements are equivalence classes of polynomials under
the relation f ~ g <= f — g € Z. The symbol @ denotes the direct sum of vector spaces: for
subspaces V, W C K[X], V ® W means every element can be uniquely written as v +w withv € V,
we W,and VNW = {0}

2.1 Defining border bases

A border basis of ideal Z is a set of polynomials {g1, ..., gs} that generates 7 with specific properties
and is defined relative to an order ideal O, a subset of monomials that is closed under division.

Definition 2.1. A finite set O C ,, is an order ideal if whenever ¢t € T, divides any o € O, then
t € O. Its border 00 = (|J;_, xO)\O consists of terms obtained by multiplying elements of O
by variables which are not in O itself.

Definition 2.2. Let O C 7, be an order ideal with border 0O = {by, ..., bs}. A set of polynomials
G ={91,-..,9s} is an O-border prebasis if foralli = 1,... s,

gi =b; — tht 2.1

teO

with ¢; € K. If O forms a basis of K[X]/(G), then G is the O-border basis of (G). In other words,
with the span of vector space (O)k = {>_,crcit | ¢s € K}, wehave K[X]| =7 @ (O)k.

To illustrate, consider a simple polynomial system over Q with polynomials 22 + y2 — 1 and = — 1.
Taking the order ideal O = {1,y}, we obtain the border 00 = {z,yx,y?}. The corresponding
border basis is {y?, 7 — 1,2y — y}. It generates the original ideal (x? + y? — 1,z — 1) and has the
required structure: each polynomial’s leading term lies in O while its remaining terms are in O.

2.2 Computing border bases

For clarity, we defer the full border basis algorithm to the appendix and focus on its most important
component: the L-stable-span step [29]]. This step is central to the Border Basis Algorithm (BBA),
and accelerating it is the primary objective of our work.

The L-stable-span step operates as follows. We begin with a finite set £ = {z® : ||a||; < d}, which
serves as our computational universe of monomials up to degree d. We are also given an initial set of
polynomials Vy C span(L), each with a distinct leading term.

At each iteration, we expand the current set V by multiplying every polynomial v € V by each
variable z;, for j = 1,...,n. This produces the set V* = {z;v | v € V, j = 1,...,n}. Next,

we perform a linear algebra operation called BasisExtension: we compute a basis for the span of
the expanded set, and then restrict this basis to those polynomials whose terms lie within £. If this
process does not yield any new elements, the routine terminates.

To clarify the algorithmic process, consider again _
V = {2—1, 22452 —1} and the initial computational ~ Algorithm 1: L-Stable Span computa-
universe £ = {1, z,y, 2%, zy, y*}. Multiplying each ~ tionin BBA and OBBA

v e V by each variable yields four candidates (cf. Input : Polynomials V,, universe £;
Figure[T]|b)). After reduction modulo V, two candi- i—0

dates have leading termsin £: x - (x — 1) = 22 — x
andy-(r—1) = yr —y. Reducing 2% — modulo V n
gives 22 —x — (22 +y?> —1) = —x — y?> + 1. Thus, GV

V is extended to include y? + z — 1 and yz — y. C; < Oracle(L,V;)

4
Most importantly for our setting, BBA identifies the s Vit+1 < BasisExtension(V;,C;, L)
successful candidates for the border basis only in 6 i1+ 1

hindsight. To address this, we introduce an oracle that 7 until V; = V; 11

predicts these key polynomials in advance, reducing
unnecessary iterations and improving efficiency.

2 repeat

3 The Oracle Border Basis Algorithm

In practice, most elements of C; are redundant—they vanish after reduction modulo V;. To eliminate
this inefficiency, we introduce an expansion oracle that selects a much smaller subset C; C Vi+ ; only
these polynomials proceed to the reduction step. We refer to the resulting algorithm as the Oracle
Border Basis Algorithm (OBBA). The difference to BBA is highlighted in Algorithm [T} instead of

setting C; < V;’ as BBA does, we use the oracle C; < Oracle(L;, V;) .

The oracle is a lightweight Transformer model (detailed in the next section) that takes a tokenized
version of the current computational universe £; and generator set V; as input, and outputs a set of
pairs (z¢, v,), Where xy is a variable and v,,, = LT(p,,,) is a distinct leading term in V;. Each pair
corresponds to a candidate polynomial z4p,, € V; .

3.1 Termination of the algorithm

We allow the oracle to propose a reduced candidate set up to &k times. After the k-th invocation, the
algorithm defaults to the standard BBA expansion, i.e., C; = V;". This strict cap ensures correctness:
the oracle can override the vanilla expansion at most & times, after which the algorithm reverts to the
standard procedure, preserving both termination and exactness:

Theorem 3.1. OBBA terminates and returns a correct border basis.

Limiting the oracle to k non-standard expansions prevents repeated expansion in the same direction
indefinitely and guarantees termination. For brevity, we present only our main conclusions here and
defer detailed empirical and theoretical results to the appendix.

3.2 Allocating the k oracle calls

As the algorithm progresses, the generator set } expands, increasing the number of polynomials to
reduce each iteration. Empirically (cf. Table , we find that between 70 % to 95 % of the runtime
is spent in the final stage, i.e., the iterations that follow the last enlargement of the computational
universe £. Since the final iterations dominate the runtime, we aim to spend the oracle budget
exclusively there, where every avoided reduction yields the greatest benefit.

A simple yet effective heuristic for recognizing this final stage is to monitor the gap g == |£| — [V|.
When ¢ approaches the size of the (unknown) order ideal O of the target border basis, no further

universe expansion is required (cf. Lemma and the relative version of this gap, % has a strong

relationship with the remaining required expansions (cf. Figures|I IHI13)).

Invoking the oracle too early can be counterproductive: an inaccurate prediction may enlarge V while
still leaving many expansions to run, so the algorithm ends up performing more reductions on a
bigger set. Reserving the k-oracle calls for the final stage prevents these costs (cf. Theorem [A.5).

4 Designing the transformer oracle

This section presents the architecture and training of the Transformer oracle
ORACLE: (£, V) — S, where LCT,, VCK[X]|,SC{z1,...,x,} X V. 4.1)

We assume a standard encoder—decoder Transformer [62], a general model for sequence-to-sequence
tasks. We collect a large number of training samples ((£, V), S) by running the border basis algorithm.
Collecting diverse samples is non-trivial, and we develop new techniques to address this task. Since
input sequences to the Transformer oracle are often extremely long (typically tens of thousands of
tokens), we also develop methods to substantially reduce their length. All proofs are provided in
Appendices[B|and[C]

4.1 Dataset generation

Our overall goal is to collect many input—output instances to train the Transformer oracle on, which we
could achieve by running the BBA over many sets of polynomials. A crucial challenge is to generate
diverse sets of polynomials as the following observation highlights. Recall that we are interested
in zero-dimensional ideals and let F' C K[X] be a collection of randomly sampled polynomials
(see Appendix [E.1]regarding the sampling from K[X]). If |F| < n, (F) is not zero-dimensional. If
however |F| > n, (F)) is generally the unit ideal, i.e., (F)) = K[X]. Thus, random sampling only
works for |F'| = n, which is a strong restriction.

We will now address this issue in two steps. First, instead of sampling polynomial systems at random,
we propose border basis sampling to generate diverse border bases {G; };—a problem that, to the best
of our knowledge, has not been explored in the literature. Secondly, generalizing the results in [35],
our ideal-invariant generator transform converts each G; into a non-basis F; such that (G;) = (F;).
This backward approach not only yields a diverse set of polynomial systems with |F'| > n, but
also provides direct control over the complexity of the corresponding border bases, as the sizes and
degrees of the border bases (particularly, the order ideals) can be predetermined.

4.1.1 Border basis sampling

Our algorithm first samples order ideals, and then constructs border bases supported by them. Recall
that a finite set O C 7, is called an order ideal if for any ¢ € O, its divisors are all included in O. Thus,
fort € T,,, O, := {all the divisors of ¢} is an order ideal, and the union |J{_; Oy, fort; ..., ¢, € T,
is also an order ideal. The latter observation provides a strategy for the sampling of order ideals,
requiring refinement of this approach, with the formal algorithm deferred to Appendix

Now that we can sample order ideals, let O = {o, ..., 0, } be an order ideal and 0O = {b1,...,b,}
its border. A border prebasis G = {g1, ..., g,} takes the form g; = b; *Z;ﬂ cijojfori=1,...,p,
with arbitrary coefficients c¢;; € K. To obtain a true border basis, these coefficients must satisfy
algebraic conditions ensuring that O spans the K -vector space K[X|/(G).

In consequence, random coefficients do not produce border bases. A crucial observation is that the
coefficients of G can be readily obtained via simple linear algebra for so-called vanishing ideals,
which we introduce next.

Definition 4.1. Let P = {p;,...,p,} C K™ be a set of points. The vanishing ideal of P is the set
of all polynomials that vanish on P, namely, Z(P) = {g € K[X] | g(p;) =0, i =1,...,v}.
The following theorem formalizes the construction of a border basis from an order ideal.
Theorem 4.2. Let O = {o01,...,0,} and 00 = {b1,...,b,} be an order ideal and its border,
respectively. Let P = {p1,...,p,} C K™ be a set of v distinct points. Let
bi(p1) -+ bu(p1) o1(p1) -+ ou(p1)
M(P) :=[00(P) O(P)]:= | : : : : e KW 4.2)
by (pu) T bu(pV) 01(1)1,) T Ou(pu)

If O(P) is full-rank, the nullspace of M(P) is u-dimensional and spanned by {v;}_,, where
v, = (0,...,1,...,0,¢1,..., CZ-,,)T, with the first u entries being zero except for a 1 in the i-th
position. The set {g; = b; — 25:1 ¢ij0; Yh is the O-border basis of the vanishing ideal Z(P).

Remark 4.3. Several algorithms [23} |30, 146l [64]] can compute a border basis of a vanishing ideal
Z(P) from a set of points P. However, it only leads to a special type of border bases, which are
Zariski-closed (i.e., zero-measure set). Our method covers more general ones, refer to Appendix
Remark 4.4. Non-trivial ideals from random generators are generically radical, and any radical
ideal Z = (f1,..., f») is vanishing ideal Z(P) if the solution set P of f1(X) =---= f.(X) =0is
a finite subset of K". A previous work [35] assumes ideals in shape position, and vanishing ideals
involve them in this setup. Further generalization to non-radical, positive dimensional ideals is still
an open problem.

4.1.2 Ideal-invariant generator transform

Now, we are able to obtain a border basis G = {g1, ..., gs} of a vanishing ideal Z(P). Next, we
design the following matrix A € K[X]"*® to transform a border basis G = {g1,...,9s}:
F=AG, st (F)=(G). 4.3)

This effectively allows us to sample generating sets of Z(P). [35] recently identified a sufficient
condition: if A has a left inverse then the ideal-invariant condition (F') = (G holds. A subset of such
matrices is given by a Bruhat decomposition A = U; P [UQT O] " with unimodular upper-triangular

matrices Uy € K[X]™*", Uy € K[X]***® and a permutation matrix P of size r. However, the key
assumption | F'| > |G| fails in our case, as typically |G| > n.

We therefore propose a more general construction of A satisfying the ideal invariance condition.

Theorem 4.5. Let K be a field of characteristic 0, T a zero-dimensional radical ideal of K[X],
and d a positive integer. Let G € K[X]® be a generating set of T and F = AG € K[X]" a set of

rXSs

polynomials given by a generic matrix A € K[X|_°.

1. If r < nand G is a Grobner basis, we have (F) # (G).
2. If r > n, we have (F) = (G).

This suggests that for » > n and a field K of characteristic 0, the probability that a random A satisfies
(AG) = (G) is almost 1E] The probability is also very close to 1 when K is a finite field F), with a
large prime number p.

Corollary 4.6. Let d and dax be positive integers. Let K = ¥, be a finite field of order p for a
prime number p and let G be a subset of F,[X <a,,... such that {(G) is a 0-dimensional radical ideal
of Fp[X]. Assume r > nandlet G = {A € Fp[X|Z)° | (AG) = (G)}. Then, a generically sampled
A € Fy[X]|Z° satisfies (AG) = (G) with probability

/
9, d

1-= (4.4)

Prip)=—————— >
®) =I5, X v

for some positive integer d', which is determined by d and d., independent of any specific p.

Therefore, for sufficiently large p, the success rate of the ideal-invariant transform is almost 1
(note that the vanishing ideal Z(P) is a 0-dimensional radical ideal). See Figure E] for a numerical
experiment. In summary, sampling a random A with more than n rows, which is arguably the simplest
approach, works.

4.2 Efficient input sequence representation

The input (£, V) and output S are respectively regarded as sequences of polynomials (in the fully
expanded form), and tokenized into sequences of rokens. For example, with L = {1,z,y} and

’Note that in this paper, a generically (or randomly) sampled polynomial f € K[X] refers to a linear
combination of all monomials whose degrees are up to an (implicit) upper bound d. The combination coefficients
are sampled uniformly and independently from the field K.

V = [z + 2, y], the input sequence in the infix representation is

(C1, EO, EO, <sep>, Cl1l, El1, EO, <sep>, Cl, EO, El1, <supsep>,

(4.5)
Ci, E1, EO, +, C2, EO, EO, <sep>, Cl, EO, El1, <eos>),

where Cn and En represent coefficient and exponent of values n. The token <sep> separates elements
in a set, and <supsep> separates sets. The token <eos> represents the end of the sequence.

In standard Transformers, the computational cost of self-attention grows quadratically with the input
size. The sizes of £,V are often large, and V contains polynomials with many terms. We introduce
two methods that, when combined, significantly reduce input size as shown in Figure@

Simplification of in- and output. We replace £ with its minimal identifying subset £ C L (cf.
Appendix [D.3)). Since the basis extension step in the BBA primarily relies on leading terms, we
truncate each polynomial in V to its [leading terms, which we found to have minimal impact on
the predictive performance of the oracle (cf. Table [I)). The target sequence is a list of pairs like
S = {(z,v)}yexvev. Since the polynomials in V have mutually distinct leading terms, we can
replace each v € V with LT(v).

Monomial embedding. A fully expanded n-variate degree-d polynomial (e.g., xy + y instead of
(z + 1)y) typically contains on the order of ("Zd) monomials. Standard representations (e.g., infix)
tokenize each monomial using n + 1 tokens—one for the coefficient and n for the exponents. Each
monomial is followed by a token like + or <sep>, so a polynomial set F' = {f1,..., f..} yields

a sequence of the order of (n + 2)s (":d). We introduce an efficient embedding scheme for
polynomials, representing each monomial with a single token. By combining a monomial and its

follow-up token into one vector, this approach removes the (n + 2) factor from the input size.

Definition 4.7. (Monomial embedding) Let ¥ be the set of all tokens. Let (¢, <*>) be a pair consisting
of a monomial ¢ = cz® € 7, with coefficient ¢ € K, exponent vector a € ZZ, and a follow-up
token <*> € 3. Let ., e, and ¢r denote embeddings of the coefficient, exponent vector, and follow-
up token into a d-dimensional space, respectively. The monomial embedding ¢, : 75, x ¥ — R%is
given by

om(t, <*>) = @c(c) + pe(a) + pr(<*>). (4.6)

Symbolic computations are fundamentally monomial-centric: monomials are compared, added, or
divided. Without monomial embedding, attention-based models must connect (n + 1) tokens per
monomial; this is reduced to a simple one-to-one mapping, substantially improving success rates in
cumulative polynomial product tasks (cf. Table[3). See Appendix [D.|for the exact implementation.

S Experimental results

We empirically evaluate our approachﬂ dataset generation, training details, and additional results are
in Appendix

5.1 Fast Gaussian elimination

As an additional contribution, we present a fast Gaus- = Jizme it = oot = e caeen)
sian elimination (FGE) kernel that replaces the standard

elimination in BasisExtension (see Algorithm[I). FGE
maintains the active reducer set in a balanced search

72372

fun
(=]
T«

11243
2021

6348

fur
o
S

Max Token Count
b=y

. . . 1434
tree, enabling O(log(m)) look-ups and insertions; find- 629 200 209337 282.489°
ing a reducer with a matching leading monomial is thus 102] 4o a9 22 = 70
logarithmic, not linear. Combined with on-the-fly nor- 10! 10
n=3 n=4 n=5

malization and an index map for immediate reuse of new
reducers, our kernel makes the entire BasisExtension
step quasi-linear. This yields an ~ 10x wall-clock Figure 2: (Fs1, k = 5). The term trun-

speedup in data generation (cf. Table [/H9), enabling ..tion and monomial embedding signifi-
to create an order of magnitude more training samples. cantly reduce input size. See also Figure|[8]

Number of Variables (n)

3Our code is available at https: //github. com/HiroshiKERA/OracleBorderBasis,

https://github.com/HiroshiKERA/OracleBorderBasis

Table 1: Evaluation results of Transformer predictions over polynomial ring Fs; [x1, . . ., 2,,]. Trans-
former successfully learns the expansion directions. The input polynomials are truncated to their
first [leading terms. The No Expansion Accuracy column shows that the Transformer model can
determinate the termination with high accuracy. Refer to Table 5] for the complete version.

Field Variables [Precision (%) Recall (%) F1 Score (%) No Expansion Acc.
(%)
1 84.4 86.8 85.6 99.7
n=3 3 89.4 90.0 89.7 99.7
5 91.6 93.2 92.4 99.7
1 90.7 91.6 91.1 98.8
Fs1 n=4 3 92.9 93.7 93.3 98.8
5 94.2 94.7 94.4 98.8
1 92.7 93.1 92.9 99.6
n=>5 3 94.3 94.6 94.4 99.6
5 94.8 95.3 95.1 99.6

Importantly, FGE is orthogonal to the Transformer ora-
cle: while the oracle eliminates unnecessary reductions,
FGE accelerates all necessary ones, and their benefits compound.

5.2 Learning successful expansions

We begin by demonstrating that the Transformer model can learn to predict successful expansion.

Dataset. Datasets were generated as described in Section with one million training and one
thousand evaluation samples. We set G C K[z1,...,%,]<2 and A € Kz1,...,2,])"** forr € {n+
1,...,2n}, collecting samples only from the final five expansions of each border basis computation.
Each polynomial in A has at most ten terms, sampled as detailed in Appendix In total, 27
datasets were constructed by varying the number of variables n € {3,4, 5}, coefficient field F,, with
p € {7,31,127}, and truncation to the [leading terms with [€ {1, 3,5}.

Setup. Experiments used a standard Transformer with 6 encoder and decoder layers, 8 attention
heads, and our monomial embedding. Embedding and feedforward dimensions were (dyodel, dn) =
(512,2048). We set dropout to 0.1. The positional embeddings were randomly initialized and
trained throughout the epochs. The model was trained for 8 epochs with AdamW [49] (5, = 0.9,
Bo = 0.999), a linearly decaying learning rate from 10~*, and batch size 16.

Results. Table|I]summarizes our results. The Transformer predicts a set S = {(;,v;)} of expansion
direction and target polynomial pairs. For non-empty predictions, we report precision, recall, and
F1 score against ground truth; for empty predictions (indicating algorithm termination), we report
accuracy. The Transformer consistently learns both expansion directions and target polynomials
across all (n,p, k) settings. Notably, it achieves near-perfect accuracy in the No Expansion case,
reliably identifying termination and avoiding at least the final unnecessary expansion step. Overall,
the performance improves with larger n and p, likely due to the higher success rate of the ideal-
invariant generator transform (as suggested by Corollary 4.6]and Figure[6)). It is also noteworthy
that truncation to the [leading terms has only a minor effect on predictive performance, despite
significantly reducing input size (cf. Figure|g).

5.3 Transformer oracle
We now demonstrate that integrating the Transformer accelerates the improved border basis algorithm.

We also evaluate the Transformer oracle’s out-of-distribution performance on higher-degree systems,
which are more challenging to predict.

5.3.1 In-distribution performance

We assess the Transformer oracle’s in-distribution performance, i.e., the performance on systems
drawn from the same distribution as the training data.

Table 2: Wall-clock runtime in seconds (mean + standard deviation over 100 random zero-
dimensional systems of total degree < 4) for five algorithms over polynomial ring Fs;[z1, ..., 2]
and variable counts n = 3,4, 5 variables. BBA is the classical border basis algorithm; IBBA is the
incremental BBA baseline; OBBA is our oracle-augmented BBA, reducing runtime by about 3 x
versus IBBA. IBBA+FGE and OBBA+FGE add fast Gaussian elimination (FGE), an orthogonal linear
algebra speedup; OBBA+FGE is the fastest, reaching up to two orders of magnitude improvement
over IBBA. A 3.5x speedup in terms of unneccessary expansions is shown in the appendix in Table|[6]

Baseline Ours
Field n BBA IBBA OBBA IBBA+FGE OBBA+FGE
3 0.07 £0.11 0.06 £ 0.09 0.06 £ 0.08 0.03 £ 0.03 0.03 £ 0.03
Fs1 4 0.46 £+ 0.43 0.35 £ 0.25 0.22 +£0.13 0.09 £ 0.05 0.09 + 0.05
5 11.44 + 8.25 7.60 +5.13 2.58 £1.37 0.88 +0.49 0.60 + 0.32
- a0 Degree =4 - w0 Degree =8 z'z‘ Degree =4 zz Degree =8
o o
§3o~ E3o~ 21.8< 21.8«
“ “ Qo Qo
S 201 S 20 z:‘::l'GA 1:';1'64
§ § & 1.4 ® 1.4
£10~ ';Em‘ t%1.2~ %12
0 {t=—e——o—g0e 1.0 ¢ 10 $
07 08 09 10 07 08 0.9 10 07 08 09 10 07 08 0.9 10
Border gap |V|/|£] Border gap |V|/|£] Border gap |V|/|£] Border gap |V|/|£]

I —=— 31 —— 27

Figure 3: Speed-up of OBBA over IBBA on OOD systems with n = 4 variables and increased degree.
Each point averages 100 random instances per field. The relative border-gap % is the threshold that
decides when the oracle is invoked; a ratio of 1 corresponds to IBBA, where the oracle is never used.
Although the oracle is trained only on systems of total degree 2 for n = 4, it generalizes to degrees 4
and 8, achieving up to 1.8 x speed-up even for degree 8. The average runtime for IBBA on the OOD

systems is two orders of magnitude higher than for the in distribution case.

Setup. We compare five algorithmic variants: the classical BBA, the Improved Border Basis
Algorithm (IBBA), IBBA with fast Gaussian elimination (IBBA+FGE), and the oracle-guided
versions OBBA and OBBA+FGE. For oracle-augmented variants, the oracle is called at most five
times, consistent with our training on the final five expansions. We invoke the oracle at ratios of

0.7,0.75,0.8,0.85,0.9,0.95,0.975 of the relative border gap %
Results. Table 2] shows that the oracle-guided algorithm achieves up to a 3x speedup over the
state-of-the-art IBBA for systems with five variables, with smaller gains for three and four variables.
Notably, none of the oracle-guided variants required reverting to standard iterations, indicating that
the Transformer oracle successfully predicts expansion directions and target polynomials for all cases.

5.3.2 Out-of-distribution performance

We assess the Transformer oracle’s out-of-distribution performance by evaluating on higher-degree
systems, which are more challenging for both the oracle to predict and the IBBA to solve. The goal is
to test whether the Transformer, trained on easy instances, can generalize to harder ones, where we
defer full results to Appendix [E.4]

Setup. We introduce 27 new datasets (i.e., three variables, three degrees, and three field orders). We
increase the total degree of the sampled input system F' and transformation matrix A by 1 at each
step, limiting ourselves to F7, F3;,F157. This produces systems of total degree 3, 4, 6, and 8. To
isolate the oracle’s impact, we compare IBBA and OBBA without FGE. The average IBBA runtimes
(in seconds) on these out-of-distribution instances are: 1.17, 3.21, 20.54, and 40.28 for total degree
3,4, 6, and 8, respectively, averaged over the three fields.

I BBA [IBBA IEE OBBA I IBBA+FGE I OBBA+FGE

IS F27 F31

102 4

1014

Runtime (s)

1094

2 3 4 2 3 4 2 3 4
Total degree d Total degree d Total degree d

Figure 4: Runtime comparison (log scale) across increasing total degrees d for polynomial systems
over F7, F197, and F3; with n = 5 variables. Bars show mean wall-clock runtimes of 100 instaces for
two baselines (BBA, IBBA) and three versions of our method (OBBA, IBBA+FGE, and OBBA+FGE).
Note the logarithmic y-axis, which reveals that higher-degree out-of-distribution systems are orders
of magnitude harder than the degree-2 systems used for training. Despite never being trained on such
hard instances, our method,particularly OBBA+FGE, maintains dramatically lower runtimes, showing
strong generalization beyond the training distribution to problems that are magnitudes harder.

Results. Figure [3|shows that the oracle generalizes to systems with n = 4 and total degrees d = 4
and d = 8, achieving speedup factors of up to 1.8 even for the hardest case (d = 8). Despite being
trained only on systems of total degree d = 2, it generalizes to these substantially more difficult
out-of-distribution systems. Figure [] further illustrates this effect for n = 5; OBBA with FGE
achieves significant speedups on out-of-distribution systems that are an order of magnitude harder
than those encountered during training. For the hardest instances, IBBA took on average 101.22
seconds, while our method reduces this to 5.51 seconds. Notably, the Transformer was trained only
on degree-2 instances, for which IBBA has an average runtime of 7.16 seconds (cf. Table[7). This
highlights the model’s strong ability to generalize beyond its training distribution, solving problems
that are magnitudes more difficult than those in training. See Appendix [E-4]for the full results.

6 Conclusion

We introduced a transformer-enhanced border basis algorithm that allows for efficiently solving
systems of polynomial equations. Our approach is the first to integrate deep learning into border
basis computation, achieving up to 3.5x speedup while fully preserving solution correctness. The
development of this oracle-guided method was based on a detailed analysis of algorithmic costs, a new
framework for generating diverse training data specific to border bases, and an efficient task-specific
polynomial representation, investigated both empirically and theoretically. We believe our work
thus provides a practical, data-efficient, and stable enhancement to the symbolic computation toolKkit,
showcasing a promising way to combine machine learning with established mathematical algorithms.

Limitations and future work. This study focuses on 0-dimensional ideals over finite fields. The
extension to positive-dimensional and infinite fields is left to our future work. We note that our
setup still covers the essential cases. First, any positive-dimensional ideal over finite fields can be
reduced to O-dimensional ones by including the field equations (e.g., z(x — 1) and y(y — 1) when
K[X] = Fy[z,y]), which restricts the solution spaces to K. Nevertheless, addressing the sampling
of positive-dimensional ideals (and their Grobner /border bases) is an independent, interesting open
problem from an algebraic perspective. Second, all our technical contributions except for those about
border bases are compatible with infinite fields; we selected finite fields as a well-known hard case.
For example, learning the parity function (i.e., the sum of binary bits with modular 2) has been
theoretically and empirically known to be hard to learn [22| |37, 57]. Besides, the finite field case
allows us to avoid introducing extra number embedding techniques [[11}169}70]] to address unbounded
coefficients. It is also worth noting that infinite-field cases have often been reduced to finite fields
through modular techniques [6] for efficient computation. For the practical utility, a scale-up to larger
systems is required, although, to the best of our knowledge, our experiments handled the largest and
most general class of systems among the related studies [35| 54], see Appendix[E.2]

10

Acknowledgments. This research was partially supported by the DFG Cluster of Excellence
MATH+ (EXC-2046/1, project id 390685689) funded by the Deutsche Forschungsgemeinschaft
(DFG) as well as by the German Federal Ministry of Education and Research (fund number
011S23025B). Hiroshi Kera was supported by JST PRESTO Grant Number JPMJPR24K4, JST
BOOST Program Grant Number JPMJIBY24C6, JSPS KAKENHI Grant Number JP23KK0208, Mit-
subishi Electric Information Technology R&D Center, and JSPS Program for Forming Japan’s Peak
Research Universities (J-PEAKS) Grant Number JPJS00420230002. Yuki Ishihara was supported
by JSPS KAKENHI Grant Number JP22K13901 and Institute of Mathematics for Industry, Joint
Usage/Research Center in Kyushu University (FY2025 Short-term Joint Research “Speeding up
of symbolic computation and its application to solving industrial problems 3” (2025a012)). Yuki
Ishihara would like to thank Kazuhiro Yokoyama and Yuta Kambe for their helpful comments about
backward transforms.

References

[1] J. Abbott, C. Fassino, and M.-L. Torrente. Stable border bases for ideals of points. Journal of
Symbolic Computation, 43(12):883—-894, 2008.

[2] J. Abbott, M. Kreuzer, and L. Robbiano. Computing zero-dimensional schemes. Journal of
Symbolic Computation, 39(1):31-49, 2005.

[3] M. Abril Bucero and B. Mourrain. Border basis relaxation for polynomial optimization. Journal
of Symbolic Computation, 74:378-399, 2016.

[4] A. Alfarano, F. Charton, and A. Hayat. Global Lyapunov functions: a long-standing open
problem in mathematics, with symbolic transformers, 2024.

[5] A. M. Alvarez, Q. Louveaux, and L. Wehenkel. A machine learning-based approximation of
strong branching. INFORMS Journal on Computing, 29(1):185-195, 2017.

[6] E. Arnold. Modular algorithms for computing Grobner bases. Journal of Symbolic Computation,
35:403-419, 2003.

[71 M. F. Atiyah and I. G. MacDonald. Introduction To Commutative Algebra. Addison-Wesley
series in mathematics. Avalon Publishing, 1994.

[8] T. Becker, V. Weispfenning, and H. Kredel. Grobner Bases: A Computational Approach to
Commutative Algebra. Graduate texts in mathematics. Springer-Verlag, 1993.

[9] G. Braun and S. Pokutta. A polyhedral characterization of Border Bases. SIAM Journal on
Discrete Mathematics, 30(1):239-265, 2016.

[10] B. Buchberger. Ein Algorithmus zum Auffinden der Basiselemente des Restklassenringes nach
einem nulldimensionalen Polynomideal (An Algorithm for Finding the Basis Elements in the
Residue Class Ring Modulo a Zero Dimensional Polynomial Ideal). PhD thesis, Mathematical
Institute, University of Innsbruck, Austria, 1965. English translation in J. of Symbolic Com-
putation, Special Issue on Logic, Mathematics, and Computer Science: Interactions. Vol. 41,
Number 3-4, Pages 475-511, 2006.

[11] F. Charton. Linear algebra with transformers. Transactions on Machine Learning Research,
2022.

[12] D. Cox, J. Little, and D. O’shea. Ideals, varieties, and algorithms, volume 3. Springer, 1992.

[13] D. A. Cox, J. Little, and D. O’Shea. Ideals, Varieties, and Algorithms: An Introduction
to Computational Algebraic Geometry and Commutative Algebra. Undergraduate Texts in
Mathematics. Springer International Publishing, 2015.

[14] R. S. Datta. Using computer algebra to find nash equilibria. In Proceedings of the 2003
International Symposium on Symbolic and Algebraic Computation, ISSAC *03, page 74-79,
New York, NY, USA, 2003. Association for Computing Machinery.

[15] T. W. Dubé. The structure of polynomial ideals and Grobner bases. SIAM Journal on Computing,
19(4):750-773, 1990.

11

[16] C. Fassino. Almost vanishing polynomials for sets of limited precision points. Journal of
Symbolic Computation, 45(1):19-37, 2010.

[17] J.-C. Faugere. A new efficient algorithm for computing Grobner bases (F4). Journal of Pure
and Applied Algebra, 139(1):61-88, 1999.

[18] J.-C. Faugere. A new efficient algorithm for computing Grobner bases without reduction to
zero (FS). In Proceedings of the 2002 International Symposium on Symbolic and Algebraic
Computation, ISSAC 02, page 75-83, New York, NY, USA, 2002. Association for Computing
Machinery.

[19] D.J. Foster, A. Block, and D. Misra. Is behavior cloning all you need? understanding horizon
in imitation learning. In A. Globerson, L. Mackey, D. Belgrave, A. Fan, U. Paquet, J. Tomczak,
and C. Zhang, editors, Advances in Neural Information Processing Systems, volume 37, pages
120602-120666. Curran Associates, Inc., 2024.

[20] A. Giovini, T. Mora, G. Niesi, L. Robbiano, and C. Traverso. “one sugar cube, please” or
selection strategies in the buchberger algorithm. In Proceedings of the 1991 International
Symposium on Symbolic and Algebraic Computation, ISSAC *91, page 49-54, New York, NY,
USA, 1991. Association for Computing Machinery.

[21] G.-M. Gruel and G. Pfister. A Singular Introduction to Commutative Algebra, 2nd Edition.
Sringer Verlag, 2008.

[22] M. Hahn and M. Rofin. Why are sensitive functions hard for transformers? In Proceedings
of the Annual Meeting of the Association for Computational Linguistics, pages 14973—-15008,
2024.

[23] D. Heldt, M. Kreuzer, S. Pokutta, and H. Poulisse. Approximate computation of zero-
dimensional polynomial ideals. Journal of Symbolic Computation, 44(11):1566-1591, 2009.

[24] J. Horadcek, M. Kreuzer, and A. S. M. Ekossono. Computing boolean border bases. In 2016
18th International Symposium on Symbolic and Numeric Algorithms for Scientific Computing
(SYNASC), pages 465-472, 2016.

[25] C.Hou, F. Nie, and D. Tao. Discriminative vanishing component analysis. In Proceedings of the
Thirtieth AAAI Conference on Artificial Intelligence, pages 1666—1672, Palo Alto, California,
2016. AAAI Press.

[26] Z. Huang, M. England, D. J. Wilson, J. Bridge, J. H. Davenport, and L. C. Paulson. Using
machine learning to improve cylindrical algebraic decomposition. Mathematics in Computer
Science, 13:461-488, 2019.

[27] Y. Ikematsu, R. Perlner, D. Smith-Tone, T. Takagi, and J. Vates. HFERP-a new multivariate
encryption scheme. In Post-Quantum Cryptography: 9th International Conference, PQCrypto
2018, Fort Lauderdale, FL, USA, April 9-11, 2018, Proceedings 9, pages 396—416. Springer,
2018.

[28] A. Kehrein and M. Kreuzer. Characterizations of border bases. Journal of Pure and Applied
Algebra, 196(2):251-270, 2005.

[29] A. Kehrein and M. Kreuzer. Computing border bases. Journal of Pure and Applied Algebra,
205(2):279-295, 2006.

[30] H. Kera. Border basis computation with gradient-weighted normalization. In Proceedings of
the 2022 International Symposium on Symbolic and Algebraic Computation, pages 225-234,
New York, 2022. Association for Computing Machinery.

[31] H. Kera and Y. Hasegawa. Approximate vanishing ideal via data knotting. In Proceedings
of the Thirty-Second AAAI Conference on Artificial Intelligence, pages 3399-3406, Palo Alto,
California, 2018. AAAI Press.

[32] H. Kera and Y. Hasegawa. Spurious vanishing problem in approximate vanishing ideal. /IEEE
Access, 7:178961-178976, 2019.

12

[33] H. Kera and Y. Hasegawa. Gradient boosts the approximate vanishing ideal. In Proceedings
of the Thirty-Fourth AAAI Conference on Artificial Intelligence, pages 4428-4425, Palo Alto,
California, 2020. AAAI Press.

[34] H. Kera and Y. Hasegawa. Monomial-agnostic computation of vanishing ideals. Journal of
Computational Algebra, 11:100022, 2024.

[35] H. Kera, Y. Ishihara, Y. Kambe, T. Vaccon, and K. Yokoyama. Learning to compute Grobner
bases, 2024.

[36] E. Khalil, P. Le Bodic, L. Song, G. Nemhauser, and B. Dilkina. Learning to branch in
mixed integer programming. In Proceedings of the AAAI conference on artificial intelligence,
volume 30, 2016.

[37] J. Kim and T. Suzuki. Transformers provably solve parity efficiently with chain of thought. In
The Thirteenth International Conference on Learning Representations, 2025.

[38] A. Kipnis, J. Patarin, and L. Goubin. Unbalanced oil and vinegar signature schemes. In
International Conference on the Theory and Applications of Cryptographic Techniques, pages
206-222. Springer, 1999.

[39] F. J. Kirdly, M. Kreuzer, and L. Theran. Dual-to-kernel learning with ideals. arXiv,
abs/1402.0099, 2014.

[40] M. Kreuzer and L. Robbiano. Computational Commutative Algebra 2, volume 2 of Algorithms
and Computation in Mathematics. Springer, 2005.

[41] G.Lample and F. Charton. Deep learning for symbolic mathematics. In International Conference
on Learning Representations, 2020.

[42] J. B. Lasserre. Global optimization with polynomials and the problem of moments. SIAM
Journal on Optimization, 11(3):796-817, 2001.

[43] R. Laubenbacher and B. Stigler. A computational algebra approach to the reverse engineering
of gene regulatory networks. Journal of Theoretical Biology, 229(4):523-537, 2004.

[44] R. Laubenbacher and B. Sturmfels. Computer algebra in systems biology. American Mathemat-
ical Monthly, 116(10):882-891, 2009.

[45] R. Lidl and H. Niederreiter. Finite Fields. Encyclopedia of Mathematics and its Applications.
Cambridge University Press, 2 edition, 1996.

[46] J. Limbeck. Computation of approximate border bases and applications. PhD thesis, Passau,
Universitit Passau, 2013.

[47] R. Livni, D. Lehavi, S. Schein, H. Nachliely, S. Shalev-Shwartz, and A. Globerson. Vanishing
component analysis. In Proceedings of the 30th International Conference on Machine Learning,
volume 28(1) of Proceedings of Machine Learning Research, pages 597-605, Atlanta, Georgia,
USA, June 2013. PMLR.

[48] E. N. Lorenz. Deterministic nonperiodic flow. Journal of Atmospheric Sciences, 20(2):130 —
141, 1963.

[49] I. Loshchilov and F. Hutter. Decoupled weight decay regularization. In International Conference
on Learning Representations, 2019.

[50] E. W. Mayr and A. R. Meyer. The complexity of the word problems for commutative semigroups
and polynomial ideals. Advances in Mathematics, 46(3):305-329, 1982.

[51] M. Mitzenmacher and S. Vassilvitskii. Algorithms with predictions, 2020.

[52] H. M. Moller and B. Buchberger. The construction of multivariate polynomials with preassigned
zeros. In Computer Algebra. EUROCAM 1982. Lecture Notes in Computer Science, pages
24-31. Springer Berlin Heidelberg, 1982.

13

[53] H. Park and G. Regensburger, editors. Grobner Bases in Control Theory and Signal Processing.
De Gruyter, 2007.

[54] D. Peifer, M. Stillman, and D. Halpern-Leistner. Learning selection strategies in buchberger’s
algorithm. In Proceedings of the 37th International Conference on Machine Learning, ICML 20.
JMLR.org, 2020.

[55] N. Pelleriti, M. Zimmer, E. Wirth, and S. Pokutta. Approximating latent manifolds in neural
networks via vanishing ideals, 2025.

[56] S.Ross, G. Gordon, and D. Bagnell. A reduction of imitation learning and structured prediction
to no-regret online learning. In G. Gordon, D. Dunson, and M. Dudik, editors, Proceedings of
the Fourteenth International Conference on Artificial Intelligence and Statistics, volume 15 of
Proceedings of Machine Learning Research, pages 627-635, Fort Lauderdale, FL, USA, 11-13
Apr 2011. PMLR.

[57] S. Shalev-Shwartz, O. Shamir, and S. Shammabh. Failures of gradient-based deep learning. In
Proceedings of the 34th International Conference on Machine Learning - Volume 70, ICML’ 17,
page 3067-3075. IMLR.org, 2017.

[58] H. Stewenius. Grobner Basis Methods for Minimal Problems in Computer Vision. PhD thesis,
Mathematics (Faculty of Engineering), 2005.

[59] W. Sun, A. Venkatraman, G. J. Gordon, B. Boots, and J. A. Bagnell. Deeply AggreVaTeD:
Differentiable imitation learning for sequential prediction. In D. Precup and Y. W. Teh, edi-
tors, Proceedings of the 34th International Conference on Machine Learning, volume 70 of
Proceedings of Machine Learning Research, pages 3309-3318. PMLR, 06-11 Aug 2017.

[60] A. Suzuki and Y. Sato. A simple algorithm to compute comprehensive grobner bases using
grobner bases. In Proceedings of the 2006 International Symposium on Symbolic and Algebraic
Computation, ISSAC 06, page 326-331, New York, NY, USA, 2006. Association for Computing
Machinery.

[61] W. Vasconcelos, D. Eisenbud, D. Grayson, J. Herzog, and M. Stillman. Computational Methods
in Commutative Algebra and Algebraic Geometry. Algorithms and Computation in Mathematics.
Springer Berlin Heidelberg, 2004.

[62] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, L. u. Kaiser, and
I. Polosukhin. Attention is all you need. In Advances in Neural Information Processing Systems,
volume 30. Curran Associates, Inc., 2017.

[63] E. Wenger, M. Chen, F. Charton, and K. E. Lauter. SALSA: Attacking lattice cryptography
with Transformers. In Advances in Neural Information Processing Systems, volume 35, pages
34981-34994, 2022.

[64] E. S. Wirth, H. Kera, and S. Pokutta. Approximate vanishing ideal computations at scale. In
International Conference on Learning Representations, 2023.

[65] E. S. Wirth and S. Pokutta. Conditional gradients for the approximately vanishing ideal. In
Proceedings of The 25th International Conference on Artificial Intelligence and Statistics,
volume 151, pages 2191-2209, 28-30 Mar 2022.

[66] W. Xu, L. Hu, M. C. Tsakiris, and L. Kneip. Online stability improvement of grobner basis
solvers using deep learning. In 2019 International Conference on 3D Vision (3DV), pages
544-552. IEEE, 2019.

[67] T. Yasuda, X. Dahan, Y.-J. Huang, T. Takagi, and K. Sakurai. MQ challenge: hardness evaluation
of solving multivariate quadratic problems. Cryptology ePrint Archive, 2015.

[68] M. Zare, P. M. Kebria, A. Khosravi, and S. Nahavandi. A survey of imitation learning: Algo-
rithms, recent developments, and challenges. IEEE Transactions on Cybernetics, 54(12):7173—
7186, 2024.

14

[69] J. Zausinger, L. Pennig, K. Chlodny, V. Limbach, A. Ketteler, T. Prein, V. M. Singh, M. Danziger,
and J. Born. Augmenting language models with regression loss on number tokens for arithmetic
reasoning. In The 4th Workshop on Mathematical Reasoning and Al at NeurlPS 24, 2024.

[70] T. Zhou, D. Fu, M. Soltanolkotabi, R. Jia, and V. Sharan. Fone: Precise single-token number
embeddings via fourier features, 2025.

15

A Theory of Oracle Border Basis Algorithm

In this section we provide proofs to lemmas and theorem in Section [3] We begin by providing the full
algorithm.

Algorithm 2: Border Bases Algorithm (BBA and OBBA , simplified)
Input : Polynomial system F' = {f1,..., fr} C K[X]

1 d+ max{deg(fi) | 1 <i <r}; Lo« (T, Vo < VectorSpaceBasis((F));

L =BE--REEN B R

10

12
13
14
15
16
17
18
19
20

while true do

C; < Oracle(L;,V;)

Vi4+1 < BasisExtension(V;,C;, L;)

if V;11 # V; then

Vi< Vi

continue

end

if not BorderBasisCheck(L;, V;) then
d<—d+1

Liy1 + (T,=N), // Update universe
continue

end

else

‘ Lit1 + L;
end

break

end
return FinalReduction(V;, £;)

The oracle is restricted to k£ consecutive non-full expansions, after which we fall back to one final full
expansion to ensure correctness. We continue by stating the correctness theorem of the oracle-guided
border basis algorithm.

BorderBasisCheck corresponds to the check if the border of the tentative order ideal £ \ LT(V) is
already in £. FinalReduction refers to the algorithm with the same name introduced by [28]].

Theorem A.1. The oracle-guided border basis algorithm terminates and the output is a border basis.

Proof. There are two techniques to ensure the correctness of the oracle-guided border basis algorithm,
one of which will be stated here. After the oracle has been invoked k times, we make one more full
expansion. If BasisExtension yields additional generators, we fall back to the standard border basis
algorithm. This ensures that the output is a border basis, as we could have started with the current
iterate V and applied the standard border basis algorithm. For this we know correctness, so we are
done. O

A.1 Alternative termination criteria

To avoid computing a full expansion all the time, we may rely on the Buchberger Criterion for Border
Basis from [29]]. This criteria is often a lightweight alternative to the full expansion. We can directly
apply it to the result of the Algorithm[2] If it yields that we have a border basis, we are done. If it fails,
we go back to the last iterate V; and obtain termination by the standard BBA. In practice, we may
combine this approach with a learned heuristic, that decides based on the size of the tentative order
ideal, whether a full expansion is necessary or we can directly proceed to check for the Buchberger
Criterion.

Lemma A.2. Assume L needs no further expansion and let O be the order ideal of the border basis
ultimately produced by BBA in Algorithm[I} If |L| — |V| = |O|, then no additional expansions are
necessary.

16

Proof. Assume towards a contradiction, a further expansion of V is required for termination. Thus,
in particular it holds we can add at least one element to V), increasing its cardinality by 1. But this
contradicts the assumption that |£| — |V| = |O].

Setup. Throughout this section we analyse the final stage of computation, where the computational
universe L is fixed. Let Vy be the first generator set in this stage and assume the vanilla BBA
terminates after 7" full expansions, yielding Vr.

Definition A.3 (Border distance). The border distance between L and a generator set) is
d(L,V) = “# of full BBA expansions still required for V.
Hence d(L£,Vy) =T and d(L,Vr) = 0.

Why conditional error? A k-order oracle may cut the border distance by any amount s <
min{k, d(L,V)}. If s < min{k, d(L,Vs)} the oracle has missed necessary expansions; if s = 0
it has made no progress at all. To separate progress from waste we introduce a conditional error
measure.

Definition A.4 (Conditional prediction error). Invoke a k-order oracle at iteration ¢t € {0,...,T}.
After its k calls let the border distance have dropped by s and denote by @ the minimal number of
expansions that suffice for an s order oracle to make progress s. The s-progress prediction error is

k—1
e(s) = Z‘ Oracle(L, Viyi)| — Q.
i=0
An oracle is ideal if s = k and e(s) = 0.

Benchmark: the optimal expansion sequence. Let OPT be the cost (number of polynomial
reductions) of an omniscient algorithm that, starting from V;, chooses the minimal set of expansions
for s subsequent expansions, decreasing the border distance by s.

Theorem A.5 (Cost gap to optimal). Consider a final-stage instance with universe L, order ideal O,
and invoke a k-order oracle at iteration t. If it achieves progress s with conditional error e(s), then

cost(OBBA) — OPT < e(s) + nmax{T —t—s, 0} (|£] —|0]).

Proof. We analyse the overhead by distinguishing two components: The first component is directly
given by the prediction error as it determines how many more expansions were done than necessary.
By definition, the prediction error is e(s) = Zf;ol |Oracle(L£, Viy;)| — @ and Q is the cost of the
optimal expansion sequence. This covers cost difference for the first s iterations. Suppose now, that
T —t — s = 0. Then, the algorithm terminates and no further error is incurred. Otherwise, we might
incur an additional cost for having expanded the generator set)V too much without reducing the
border distance beyond s. The size of constructed generator set is at most |£| — |O]. We know that
from the optimal s expansions, after £ — s expansions, the set)V has at least the size of the generator
set that was predicted by the oracle. Therefore, there are at most 7" — ¢ — s remaining iterations that
incur the higher cost which are upper bounded by n(|£| — |O]) times per expansion. O

The overhead therefore consists of two terms: the first grows linearly with the prediction error, while
the second reflects a hidden cost for making only progress s. Specifically, if the oracle expands the
generator set)V too much without reducing the border distance beyond s, we incur additional cost in
the following T — ¢ — s iterations. This theorem is practically relevant, as it further justifies the use
of the k-order oracle in the final stage of computation. Being conservative with the use of the oracle
(i.e. such that T is smaller than k), avoids the worst case additional cost.

B Border basis sampling

B.1 Order ideal sampling
We introduced the overview of order ideal sampling in Section This section presents the formal

algorithm of the order ideal sampling given . The extension to general n-dimensional case is based
on the same idea, but it requires a more careful formalization than one may expect.

17

Recall our idea. A finite set of terms O is called an order ideal if for any ¢ € O, its divisors are also
all included in O. Importantly, for any terms ¢1, 2 € 7, the term set O;, := {all the divisors of ¢;}
is an order ideal for each ¢, and their union Oy, 1, = O, U O, is also an order ideal. We sample
order ideals based on this observation. During the iterative process, we maintain a list Q of cells. At
each iteration, we pop out a cell C' from (), and split it to generate new cells. The cells with sufficient
size are appended to (), and this process iterates until () becomes empty.

We now formalize this idea. From now on, we work on the exponent vectors of terms. We denote a
vector v € N with a replacement of the i-th entry with a scalar p € N by v[*“ 7. A cell is a tuple of
n segments and an intersecting point p € N™.

Definition B.1. Let a,b € N™. The following set is called the segment of them.

A(a,b) = {r = (r1,...,mn) " € N" | min(ay, b;) < r; < max(ag,b;), i=1,.. .,n}. (B.1)

The maximum point of the segment is defined by A(a, b) := (max(ay,by), ..., max(an,b,)) ,and
the minimum point A(a, b) is defined similarly.

Definition B.2. Let Ay,..., A, be some segments such that Ay = --- = A, = 1. The cell is a
tuple C' = ({A;}7_4,1), and U is called the intersecting point. Further, the maximum point of the cell
isu = (ul, ‘e ,Un)T S Nn, where U; = min(Ali, ceey Ai—1i7 Ai-l‘li? ‘e Ani) fori = 1, oy
The cell is called valid if I and w has at least two different entries, and max;e(q,... n) i —l; > 2.
Letd = (di,...,d,)" € N" be the vector of the maximum degree of variables. The initial cell

is defined by Cyp = ({A(0,d;e;)}1,0), and let @ = [Cp], R = [] be lists. Then, we repeat the
following until @ becomes empty or the number of iterations reaches the predesignated limit (if any).
1. Selectacell C = ({A;}",,1) € Q and remove it from the list.
2. Sample a vector p = (p1,...,p,) " € N* withp; € [l;,u;] fori=1,...,n.
3. Append a tuple (I, p) to R.
4. Fori = 1,...,n, obtain a new cell C*V = ({A;‘-ew}ﬁ ,l[i“pi]), where A%V =
7 j=1 J
A(Ag»ﬂ_p"],zj) for j # i and otherwise AJ*™ = A(l,p). Append C7°V to Q if it is

a valid cell.

‘We then have an order ideal

O=<Sa*lac |J Xlipil,. (B.2)

(L,p)eR =1

Theorem B.3. The order ideal sampling algorithm terminates within a finite number of steps.

Proof. Termination. We prove that the order ideal sampling algorithm terminates after a finite
number of iterations.

Let C = ({A;},,1) be acell, and denote its maximum point as w = (u1, . .., uy). In each iteration,
the algorithm pops one such cell from the queue (), samples a point p € X?Zl [1;,u;], and generates
at most n new valid cells C}V, ..., Chev.

Case 1: p # . For any i, the new cell C}*" contains at least one segment that is strictly smaller than
the corresponding one in C'. In particular, its i-th segment is A" = A(l, p), which has length zero
in coordinate j if p; = [;, and is strictly shorter otherwise. Therefore, the total number of exponent
vectors in CJ¢V is strictly less than that in C'.

Case 2: p = L. For any 17, the new cell CI*" becomes invalid. Indeed, let v’ = (u},...,u,,) beits
maximum point. Since A}*" = [by construction, and for all £ # ¢ the k-th segment has lower and
upper bounds both equal to [, we have u) = [}, for all k. This violates the validity condition, which
requires that I # w and max;(u; — I;) > 2.

Therefore, in either case, the number of valid cells does not increase: Case 1 generates strictly smaller
valid cells, and Case 2 generates no valid cells. Moreover, since the exponent space [0, d;] X - - - X

18

[0, d,] is finite, and each valid cell corresponds to a distinct subregion defined by its segments, the
total number of distinct valid cells is finite.

Hence, the queue) becomes empty after finitely many iterations, and the algorithm terminates.
O

Empirical results. Figure [5] shows a gallery of randomly sampled order ideals in the two-
dimensional case. As can be seen, it involves diverse order ideals.

B.2 Border basis construction from order ideals: Proof of Theorem

Definition B.4. Given a set of points P = {py,...,p,} C K", with gentle abuse of notation, the
evaluation vector of a polynomial h € K[X] is defined by

h(X) = (h(py) -+ hipy)" € K.
For a set of polynomials H = {hi,...,h,} C K[X], the evaluation matrix is defined as

H(P) = (hi(P) -+ h,(P)) € K**".

The proof of Theorem {.2]immediately follows from the following lemma.

Lemma B.5. Let O = {01,...,0,} C T, and G C K[X] be an order ideal and its O-border
prebasis, respectively. Let P C K™ be a set of s points. If the following hold,

1L <01(P)a-~~a0V(P)>k = K"
2. GCI(P).

then, G is the O-border basis of the vanishing ideal Z(P).

Proof. We first show that G is the O-border basis of (G). The set G is a border prebasis and
(obviously) generates (G), so we only need to show that K[X] = (G) ® (O)}, holds. The border
basis division algorithm [28]] allows us to represent any polynomial f € K[X]as f = g+ h
with some g € (G) and h € (O)}, which implies K[X] = (G) + (O). Note that this algorithm
only requires G to be a border prebasis (not necessarily a border basis). From the first assumption,
01(P),...,0,(P) form a basis of K”, and thus, h € (O)k has h(P) = 0 only when h = 0.
Noting that Vg € (G), g(P) = 0 from the second assumption, we have (G) N (O)x = {0}. Thus,
we have K[X] = (G) & (O), and G is the O-border basis of (G). Furthermore, the fact that
Z(P)N{O), = {0} implies Z(P) C (G). With the second assumption, we have Z(P) = (G, and
thus, G is the O-border basis of Z(P). O

Theorem 4.2. Let O = {o1,...,0,} and 0O = {by,...,b,} be an order ideal and its border,
respectively. Let P = {p1,...,p,} C K" be a set of v distinct points. Let

bi(p1) -+ bu(p1) o1(p1) -+ ou(p1)
M(P):=[00(P) O(P)]:= | : : : ; € KV 4.2)
bl(pu) bu(pu) Ol(pu) Ou(pu)

If O(P) is full-rank, the nullspace of M(P) is u-dimensional and spanned by {v;}_,, where
v, = (0,...,1,...,0,¢i1,..., CZ-,,)T, with the first p entries being zero except for a 1 in the i-th
position. The set {g; = b; — Z?Zl ¢ij0; Yh_ is the O-border basis of the vanishing ideal Z(P).

Proof of Theorem The existence of such basis set {v; }:__, readily follows from the assumption
that O(P) is full-rank. The second statement follows from Lemma O

19

B.3 Comparison with Buchberger-Moller-family algorithms

The Buchberger—-Moller (BM) algorithm [2,152] is a method that takes as input a set of points P and
computes a Grobner basis of the vanishing ideal Z(P). This algorithm has been extensively studied
and adapted to a variety of scenarios, not only in computer algebra [1} 2} 9l [16} 23] 29/ 30} 134} i46]],
but also in machine learning [25} 31433} 139,147, 155! 164, [65]].

Border basis variants of the BM algorithm allow us to sample border bases from randomly generated
sets of points and a term order <. However, only a restricted class of border bases can be sampled in
this way. Recall that a border basis G = {¢1,...,gs} is associated with an order ideal O, and for
each border term b; € 0O, the corresponding border basis polynomial takes the form

gi:bi—thtEK[X], where ¢; € K. (B.3)
teO

Remark B.6. The O-border basis G = {g1, ..., gs } produced by BM-type algorithms with a term
order < is a special case satisfying LT(g;) = b; forall¢ = 1, ..., s. Thatis, the coefficients ¢; vanish
for any ¢ € O such that ¢ > b;. Due to this algebraic constraint, the collection of such border bases
forms a Zariski-closed (i.e., measure-zero) subset in the set of all border bases.

Such special border bases can also be characterized as those admitting some order ideal O for which
there exists an “O-Grobner basis” G’ generating the same ideal, satisfying LT(K[X])\LT((G")) = O.
While border bases are defined with respect to an order ideal O, Grobner bases are defined with
respect to a term ordering. The former is a strictly more general notion in the zero-dimensional
case. For instance, one can find examples of border bases for which no corresponding Grobner basis
exists [9].

C Backward transform

C.1 Proof of Theorem.[4.3]

Theorem 4.5. Let K be a field of characteristic 0, T a zero-dimensional radical ideal of K[X],
and d a positive integer. Let G € K[X]® be a generating set of T and F = AG € K[X]" a set of

rXSs

polynomials given by a generic matrix A € K[X]|_°.

1. Ifr < nand G is a Grébner basis, we have (F) # (G).
2. Ifr > n, we have (F') = (G).

Proof. We write an outline of the proof (see below for details). When r < n, the codimension of
(AG) is less than n and thus (F) # (G) holds for any A € K[X|Z3*. Whenr > n, (F) = (G) N J
for some ideal J. If 7 = n, then J # K[X] for a generic matrix A € K[X|Z3® and thus (F) # (G).
If 7 > n, then J = K[X] for a generic matrix A € K[X]_}" and thus (F) = (G). O

To prove (AG) = (G) for a generic matrix A € K[X]”}°, we consider a parametric matrix A.
Let h;; = 2\04 <4 0a,ij X" be a parametric polynomial of total degree d with parameters Gq,i; and
A = (hij) an 7 x s matrix with h;; as (4,7) entry. Let A = {aq;;} be the set of all parameters
of A and D the cardinality of A. For a generating set G = {gi,...,gs} of a zero-dimensional
radical ideal Z, let f; = Y7 _, hjrgx for j € {1,...,r}, thatis, AG = {f1,...,f,}. Fora
subset S in a ring R, we also write (S)zr when we emphasize that (S) is an ideal of R. Obviously,
(AG)kia,x] C (G)kpa,x)- For a point ¢ € K, we denote by o, the substitution map from
K[A,X] — K[X], where 04(f(A, X)) = f(g,X). Then, A := 0,(A4) := (0,(hij)) € K[X]Z
is a generic matrix for a generic ¢ € K. Thus, it is enough to show that there exists a dense set C'
of KP such that (0,(A)G) = (G) for any q € C. As (0,(A)G) C (G) always holds, the inverse
inclusion implies the equality. First, we recall some fundamental notions of Commutative Algebra as
follows.

20

Definition C.1 (Primary Decomposition). Let Z be an ideal. A finite set of primary ideals
{Q1,...,Q,} is a primary decomposition of Z if Z = @ N --- N Q,;. A primary decomposition
{Q1,...,Q} of Z is said to be minimal if the length [is minimum among all primary decompositions
of Z. For a minimal primary decomposition {Q1, ..., Q;} of Z, each element Q; is called a primary
component of Z. In addition, a primary component (Q; is said to be isolated if v/@Q; ¢ \/673 for any
j # i, where 4/Q); is the radical ideal of Q;.

Remark C.2 ([[7], Corollary 4.11). The isolated primary components of Z are uniquely determined
from Z. In other words, they are independent of a particular primary decomposition of Z.

Independent sets are a useful tool to compute the dimension of a polynomial ideal.

Definition C.3 (Independent Set). Let U be a subset of A U X. For an ideal Z of K[A, X|, U is
called an independent set mod Z if Z N K[U] = {0}.

Remark C.4 ([21]], Theorem 3.5.1 (6)). The cardinality of an independent set mod Z is less than or

equal to the dimension of Z. In other words, if |U| > dim(Z) then U is not an independent set mod
Z.

Let ¢ be the inclusion map ¢ : K[A, X] — K(X)[A] such that «(f) = f. For a prime ideal Z of
K (X)[A], the inverse image :~*(Z) = Z N K[A, X] is also prime as follows.

Lemma C.5 ([8]], Lemma 1.123). Let Z be a prime ideal of K (X)[A]. Then, ZN KA, X] is a prime
ideal of K[A, X].

The following lemma is a simple method for determining Grobner bases under a certain condition.

Lemma C.6 ([8], Lemma 5.66 and Theorem 5.68). Let > be a term ordering and G = {g1,...,9s}-
If LM(g;) and LM(g;) are disjoint for any i # j € {1,...,r}, then G is a Grobner basis of (G) with
respect 1o >.

Recallthat Z : h = {f € K[A,X] | fh € T} is the ideal quotient of an ideal Z with respect to a
polynomial of K[A, X]. The ideal quotient can be used to break the ideal Z into two ideals as
follows.

Lemma C.7 ([21]], Lemma 3.3.6 (Splitting tool)). Let Z be an ideal of K[A, X] and h a polynomial
of K|A,X]. IfT:h=1T:h% thenT = (Z : h) N (+ (h)).

Lemma|C.7]is often used in conjunction with the following lemma, i.e., Z = (Z : k™) N (Z + (h™))
for a sufficiently large integer m.

Lemma C.8 ([21]], Proposition 4.3.1 (2)). Let Z be an ideal of K[A, X] and U a maximal independent
set mod Z, that is, U is an independent set mod T with |U| = dim(Z). Let S = {m,..., 1} CZ C
K[A, X] be a Grobner basis of ZK (U)[(AU X) \ U] and let h = lem(LCy(11),...,LCx (7)) €
K|U]. Then, ZK (U)[(AU X)\ U] N K[A, X]| =T : k™ for a sufficiently large integer m.

Let P7T p be the set of all terms of K[A]. Then, PTp x T, := {A*XP | A* € PTp,X? ¢
T.} is the set of all terms of K[A, X]. For a term ordering >x on 7, and >4 on PT p, the
product ordering > x » 4 is the ordering such that A% X5 =y 4 A2 X2 if X1~y XP2 or
"XA = XP2 and A =4 A", In contrast, the product ordering = 4 x is the ordering such
that A% X5 = 4, x A2 X2 if A =4 A% or "A* = A*2 and X®' =y X", For a product
ordering >y, xy,, we denote by LCy, (f) € K[Y3] the leading coefficient of f in K (Y3)[Y:] with
respect to >y, for f € K[Y7,Y3]. We also say that >y, xy, is a block ordering with Y; => Y5. Let
V(J)={qe KP | f(q) =0,Vf € J} be the variety of an ideal .J of K[A]. The following lemma
is useful when considering Grobner bases for specialized parametric ideals.

Lemma C.9 ([60], Lemma 2.2). Let G be a Grobner basis of an ideal (F) in K[A, X] with
respect to a product ordering =xx . If 04(LCA(g)) # O for each g € G \ K|[A], then for any
q € V{GNK[A])) C KP, 0,(G) is a Grobner basis of (0,(F)) in K[X] with respect to = x.

We recall that the codimension of an ideal Z of K [Y], denoted by codim(Z), is equal to |Y'| — dim(Z).
The following lemma can be used to check the radicalness of an unmixed ideal over a field of
characteristic 0.

Lemma C.10 ([61]] Proposition 3.65). Let K be a field of characteristic 0 and T = (g1, . ..,gs) an
unmixed ideal of K[A, X], i.e., all the primary components of a minimal primary decomposition of T

21

have the same codimension. Let ¢ be the codimension of T and Jac(g1, . ..,gs) = (%) the
Jacobian matrix of {g1, . . ., gs } with respect to X U A. Then, the following conditions are equivalent.

1. T is radical,

2. there exists a ¢ X ¢ minor determinant f of Jac(g,...,gs) suchthatT : f = T.

The parametric ideal (AG) = (f1, ..., f.) satisfies the following properties.
Proposition C.11. Let (AG)¢ = (AG) k(x)4) and (AG)*c = (AG)* N K[A, X]. Then,

1. (AG)¢ is a prime ideal of K[A, X],
2. AG is a Grobner basis of (AG)¢ with respect to an arbitrary term ordering on K (X)[A],

3. Fix a term ordering > on K(X)[A]. For h =1lem(LC.(f1),...,LC.(f)) € K[X] and a
sufficiently large integer m . .
(AGY*° = (AG) : A",

4. codim((AG)) < n and codim((AG)*) = r. If r > n, then (AG)*° ¢ (G) k| x]-

Proof. 1. Since AG is a set of linear polynomials over K(X), (AG)¢ is a prime ideal of
K(X)[A]. By Lemma (AG)* N K[A, X] is a prime ideal of K[A, X].

2. Since f; and f; do not have common variables except X, LM(f;) and LM(f;) are disjoint
for any i # j € {1,...,r} with respect to any term ordering on K(X)[|.A]. Thus, by
Lemma|C.6, AG is a Grobner basis of (AG)¢ with respect to an arbitrary term ordering on
K(X)[A

3. Since X is a maximal independent set mod (AG) and (AG)¢ = (AG)g(x)a =
(AG)K (X)[A], we obtain the equation from Lemma|C.8}

4. Since (G) g [x] is a zero-dimensional ideal of K[X],
codim((G) k4, x]) = codim({G) k[x]) = n.

As <ZG>i([A,X] C <G>K[A,)ﬁ’ COdim(<§G>K[A7X]) < COdim(<G>)K[A’X] = n. Since
codim({AG)¢¢) = codim({AG)¢) and AG consists of independent r-linear polynomi-
als over K(X)[A], codim({AG)*¢) = codim({AG)¢) = r. Assume r > n. Then
codim((AG)*°) > codim((G)ka,x)). If (AG)*® C (G)k[a,x) then (AG)* =
(G)k1a,x) since (AG)°® is a prime ideal by (1). However, this implies (AG)® contains
aunit g; € G in K(X) and thus (AG)¢ = K(A)[X], which contradicts (1). Therefore,
(AG) Z (G) k1A, x]-

O

The parametric ideal (AG) can be decomposed into two ideals as follows.
Proposition C.12. If r > n, then there exists an ideal J of K|A, X] such that

(AG) = (G)nJ
and codim(J) > min(r,n + 1). Moreover, if r > n, then J N K[A] # {0}.

Proof. Let P = (AG)*® = (AG)k(x)4 N K[A X]. Consider the parameter ag;; with
respect to @ = 0 of aq,;; X* in h;;. For ¢ € {1,...,s}, let =; be a block ordering
{ao,h—, ap,2is - - - 7(J,()’”'} =i A \ {(10’11', ap,2is -« - ao,m-} on K(X)[A} For each j € {1, . ,T},
the leading term of f; = Y7 _, hjkgs is giao j; in K(X)[A] with respect to ; since g;ag,j; is
the only term of f; that includes ag j;. Thus, LC.,(f;) = g¢; with respect to >; for each j and
lem(LCy, (f1),...,LCx,(fr)) = lem(gs, ..., 9:) = ¢i- By Proposition(B) and Lemma P
is a prime ideal of K'[A, X] and, for each i,

P = (AG) : g/ and (AG) = P N ((AG) + (g))

22

for a sufficiently large integer m. Here, P # 1/ ({AG))) since otherwise P = 1/ (AG) C \/(G) =

(G) (as (G) is radical), which contradicts Proposition (4). Thus, (AG) + (g") contains at
least one isolated component of (AG). Let (AG) + (g7*) = Q1 N -+ N Q; be a minimal primary
decomposition of (AG) + (gi"). Without loss of generality, we may assume that Q1, ..., Qj are
isolated primary components of (AG) and Q. 1, ..., Q, are not for some k > 1. Since isolated
primary components are uniquely determined by Remark [C.2] Q1, ..., Qj are also isolated primary
components of ({(AG) + (g5")), ..., ((AG) + (g™)). As Q1 N ---NQx D (AG) + (gi"*) for each i,
Q1N---NQ D (G)*™. Since (AG) =PNQ1N---NQ; C(GYand PN Qp11N---NQ; ¢ (G),
it follows that Q1 N --- N Q C (G). Thus, (G) = /(G) = (G)*™ C V@1 N - NQj =
VO1N---N/Qy C (G), thatis, (G) = /Q1N- - -N/Q is a minimal primary decomposition of (G).

Let H = Q1 N--- N Qy and show that H is radical. As (G) [x] is a zero-dimensional radical ideal
of K[X], (G) is a n-codimensional unmixed radical ideal of K [A, X]. By Lemma|C.10] there exists
an x n minor determinant f of Jac(gi, ..., gs) such that (G) : f = (G). Since (AG) C H, there
exists a generating set G of H such that Gy = {f1,..., fs,71,..., 7y} for some 71, ..., 7, € H.

Then, Jac(Gg) = (JQC(BAG)) for some B € K[A, X]**("*P) As ¢,(AG) D G for some

q € KP, there exists an n x n minor determinant g of Jac(Gy) such that o,(g) = f. If H : g # H,
then g € /Q; for some i € {1,...,k}. However, this implies o4(g) = f € 0,(v/Qi) = v/Q; and
(Gy: f=Q1N-Qi—1 NQix1 N---NQk # (G), which contradicts (G) : f = (G). Therefore,
H : g = H. Since H is an n-codimensional unmixed ideal of K [A, X], H is radical by Lemma [C.10}
Then, H = vVH = /Q1 N ---N/Qr = (G). Letting J = P N Qpy1 N--- N Qy, it follows that
(AG) = (G)nJ. By Proposition(4), codim(P) = r > n. Since Qy1, . . ., Q; are not isolated
primary components of (AG), codim(Qg1), .. .,codim(Q,) > n + 1. Therefore, the codimension
of J is min(codim(P), codim(Qg+1), - - . , codim(Q;)) > min(r,n + 1).

If > n, then min(r,n+1) = n+1and dim(J) < (D+n) — (n+1) = D — 1. Thus, Ais not an
independent set of J since |A] = D > D—1 = dim(.J) by Remark[C.4] thatis, JNK[A] # {0}. O

Recall that V(J) = {g € KP | f(q) = 0,Vf € J} is the variety of an ideal J of K[A]. If J is a
nonzero ideal, V'(.J) is a variety of dimension D — 1 at most and thus K2 \ V/(J) is a dense set of
KP. Finally, we obtain the proof of Theore as follows.

proof of Theorenf.3] In case r < n, (AG) # (G) since codim((AGii =r < n = codim((G)) for

any A € K[X]gf’ Thus, we assume that » > n. By Proposition |C.12} there exists an ideal J of
K[A, X] such that
(AG) = (G)n J.

1. Assume that » = n and G is a Grobner basis with respect to a term ordering > x on
K[X]. Then, for each i € {1,...,n}, there exists gy, € G such that LC , (gx,) = =%
for some positive integer d;. For simplicity, we may assume that k; = 1,...,k, = n.
Let w; = (0,...,1,...,0) be the i-th unit vector in K™. Consider the parameter
a5 With respect to X“* = x; in hy; for each ¢. Fix a term ordering - 4 such that
{@uy 115+ Gup onn} == AN\ {@u, 11, - - - 5 Gy, un t 00 K[A]. Let > be the product order-
ing > 4xx. Then, LT, (h“) = LTy (aumimigi) = aui’iim?"'ﬂ for each i € {1, S ,TL}.
Since LT, (h11),...,LTs (hy,y) are disjoint, AG is a Grobner basis of (AG) with respect
to = by Lemma For any non-zero polynomial w(A) € K[A], w(A)g1 € (AG)
as LT, (w(A)g1) = LTy (w(A)LTs(g1) = LTy (w(A))zd is not divided by any
LT(h11),...,LT(hpy). Thus, such non-zero polynomial w(.A) is not in J; otherwise
w(A)g1 € J-{(G) C (GYNJ = (AG). Hence, JN K[A] = (PN Qkt1 N ---N
Q) N K[A] = {0}, where P, Qk+1, - . ., Q; are ideals in the proof Proposition Since
codim(Qx+1), - - -, codim(Q;) > n, Q; N K[A] # {0} foreachi € {k+1,...,l}. There-
fore, (PNQr+1N---NQ)NK[A] = {0} implies PNK[A] = {0}. Let G’ = {g},...,q,}
be the reduced Grobner basis of P with respect to a block ordering X >'>" A. Obviously,
G’ N K[A] = {0}. Then, letting H = lem(LC4(g1) - - -LCa(g1)) # 0, 04(G’) is a Grobner
basis of 0, (P) forany ¢ € V(G' N K[A]) \ V(H) = KP \ V(H) by Lemma Fix

23

q € KP\ V(H). Since (AG) C P,
(04(A)G) C 04(P) # K[X].
As P 2 (G)kx). there exists g € (G)kx) \ P such that LT,/ (g) & LT,/ ((G")). This
implies LT (g) = LT, (04(g)) & LTr((04(G")) = LT (0,(P)) since g = o,(g)
and o, (G’) is a Grobner basis of o,(P) with respect to -'. Thus, g € (G) \ o4(P) and
G

(G) ¢ 04(P). As (04(A)G) C 04(P), we obtain (0,(A)G) # (G). With H # 0,
KP\ V(H) is a dense set of K.

2. Assume that r > n. Then we can take J with .J N K [A] # {0} by Proposition[C.12} Fix
q € KP\V(JNK|A]). Then, for0 # f(A) € JNK|[A, it follows that 0 # f(q) € o4(J),

that is, o,(J) = K[X]. Since (G) - J C (G) N J = (AG) and 0, ((G)) = (G),
(04(A)G) = 04({AG)) D 74((G) - J) = 04((G)) - 74(J) = (G).

Since (04(A)G) C (G) always holds, we obtain (0,(A)G) = (G). As J N K[A] # 0,
KP\V(JN K|A])is adense set of K.

O

Corollary 4.6. Let d and dp,ax be positive integers. Let K = T, be a finite field of order p for a
prime number p and let G be a subset of F,[X <a,,... such that (G) is a 0-dimensional radical ideal
of Fp[X]. Assume r > n andlet G = {A € Fp[X|Z)° | (AG) = (G)}. Then, a generically sampled
A € Fy[X|ZY° satisfies (AG) = (G) with probability

U
o,

Pr(p) = TXs -
|]FP[X]§{ p

4.4)

for some positive integer d', which is determined by d and d ., independent of any specific p.

proof of Corollary[.6] Without loss of generality, we may assume that G = {g1,...,gs} C Z[X],
A€ ZIA X", AG = {f1,..., fr} C Z[A, X], and (G)q(a, x] is a O-dimensional radical ideal
of Q[A, X]. By Proposition [C.12} there exists an ideal J of Q[A, X]| such that <ZG>Q[A’X] =
(G)ora,x)NJ and JNQ[A] # {0}. For a subset L of Z[A, X, we simply write (L)g = (L)g[4,x]
and (L), = (¢,(L))r, 4, x) respectively, where ¢, : Z[A, X]| — F}[A, X] is the canonical projec-
tion. Let P, Qp+1, - - . , @; be ideals in the proof of Proposition[C.12} that is, J = PNQr1N---NQ;.
Then

(AG)g : (G)g = ((G)gNJ) : (G)g = ((G)eN (PN Qrt1---NQ1)) : (G)g
= ((G)o : (G)) N (P : (G)a) N (Qr+1: (Gg) N+ N (Qr: (G)a)
=P N (Qr+1:(G))N---N(Qr:(G)o)
Fix a block ordering X > A. For new variables T' = {t1,...,ts_1} and y, let w = g1 + got1 +

cegsts—1 €QIT, A X, S ={yf1,-. -, yfr, 1 —y)w} C Qy, T, A, X], and G a Grobner basis
of (S)qy,r,.4,x] With respect to an extended block ordering {y} > T =~ X > A. Itis known
that G’ = ((GsNQIT, A, X])-w~1)NQ[A, X]is a Grobner basis of (AG)q : (G)g with respect to =
(see Lemma 1.8.12 in [21])). Since an upper bound of degrees of reduced Grobner bases can be decided
from degrees of the generator, there exists d’ such that d’ > deg(g) for any g € G’ derived from any
G € Z|A, X]<a,,.. and A € Z[X]¢°. In other words, d’ is determined by d and dy,ax, independent

of any specific p. Let f € ((AG)q : (G)q) N (Z[A] \ pZ[A]) then deg f < d’ and ¢, (f) # 0. Since
{Q1,...,Q:} is a minimal primary decomposition of (AG)g + (g7)q, foreachi € {k +1,...,1},
(GYg =Q1N---NQy ¢ Q; and thus Q; : (G)q is a primary ideal with /Q; : (G)g = /Q;. Hence,

(AG)q : (G)o = PNV (Qr1: (G)o)N---N/(Qr: (G)a) = PN/ QraN---NVQi = VI
and f € V/J, ie., fM € J N Z[A] for some positive integer M. Let f, = ¢,(f) € F,[A] and
Jz = JNZ[A, X], then)1 € ¢,(JzNZ[A]). Here, (AG), D (G)p- ¢p(Jz) since (AG)q D (G)q-
J D (G)q-Jz. Forq € FY with f,(q) # 0, 04(¢p(Jz)) = Fp[X]as 0 #) (q) € 04(¢p(Jz)), and

24

thus Uq(<ZG>p) D 0 ((G)yp - p(Jz)) = aq((G)p) 'Eq(¢p(JZ)) = <G>1Fp[X] FplX] = <G>Fp[X]'
As the inverse inclusion is obvious, we obtain o4 ((AG),) = (G)g,[x] for any ¢ € F \ V(f,).
Since f;, has at most deg(f,)p” ! < deg(f)p”~" < d'pP~! solutions in F2’ (see Theorem 6.13 in

D , Do ,
[45]), Pr(p) > o ‘\F‘gﬂfp)‘ > 22 _g[?D L1 d; and this goes 1 for a sufficiently large p. O

C.2 Empirical results

We conduct a numerical experiment to justify our backward transform based on Theorem[4.5] The
border basis generation and sampling A for backward transform follows the main experiment of
training the Transformer oracle. See Section[5.2] Figure[6]shows the success rate of having F' = AG
such that (F') = (G). As Theorem[4.5|and Corollary M.suggest, the success rate is zero for |F'| = n
and for | F'| > n improves with larger n, p, and | F|.

D Monomial embedding

D.1 Implementation details

We here elaborate the implementation details of monomial embedding method. First, recall the
definition.

Definition 4.7. (Monomial embedding) Let X be the set of all tokens. Let (¢, <*>) be a pair consisting
of a monomial ¢t = cx® € 7T, with coefficient ¢ € K, exponent vector a € ZZ,, and a follow-up
token <*> € 3. Let ., e, and ¢ denote embeddings of the coefficient, exponent vector, and follow-
up token into a d-dimensional space, respectively. The monomial embedding ¢y, : 7, x ¥ — R% is
given by

om(t, <*>) = @c(c) + pe(a) + @r(<*>). (4.6)

Embedding maps. The embedding maps ¢, and ¢y are standard token embeddings implemented
using trainable embedding matrices. The former is used for coefficient tokens, while the latter is used
for special tokens such as [SEP] or [PAD].

The embedding map ¢, is designed to handle exponent vectors and is conceptually realized using
n independent embedding maps, one for each variable. Specifically, the ¢-th embedding map

wgi) processes the exponent token corresponding to the variable z;. Given an exponent vector
a = (ay,...,a,), its embedding is computed as

I~
pela) =~ o (as). (D.1)
i=1

Unembedding. After processing the input embeddings, the Transformer outputs are passed through
an unembedding layer before reaching the classification head. Since our tokenization scheme based on
monomial embeddings reduces the number of tokens to approximately 1/(n+1) of that in the standard
representation, the unembedding layer restores the original token structure prior to classification.
Concretely, the unembedding can be implemented by a linear transformation 1) : R4 — R(n+1)xd,
which is applied to each embedding vector to expand it back to a sequence of (n + 1) vectors. This
operation reconstructs the original token alignment, making it compatible with downstream tasks
such as sequence classification or generation.

The <bos> token. The Transformer decoder requires the right-shift operation. To this end, we
append, e.g., <bos>, to the input sequence before monomial-tokenized. As a consequence, we have
n + 1 redundant tokens; these token can be simply eliminated.

D.2 Empirical validations of monomial embedding

Task. Given a list of polynomials f1,..., f, € Fy[z1,. .., 2,], the task is to compute their cumula-
tive products f1, fifa, ..., [[i—y fi-

25

Table 3: Comparison between baseline (infix tokenization) and proposed (monomial tokenization and
embedding) methods across different numbers of variables. The success rate measures the successful
generation of complete cumulative products.

Variables =~ Method Success rate (%) GPU memory (MB)
n—9 infix 33.9 4,302
monomial 39.7 1,678
n—3 infix 37.5 11,296
monomial 44.6 2,408
n—4 infix 38.8 23,632
monomial 47.3 3,260
=5 infix 22.0 27,442
monomial 53.7 3,424

The polynomial product task requires the model to understand addition and product, and thus this
is a basic symbolic computation over a ring. Several studies have reported that learning symbolic
tasks over finite fields is difficult 33, [63]]. Even learning a simple parity function f : (21, ...,2m) €
{-1,1}™ — [I*, =;, which corresponds to a scalar product over F», is theoretically known to
be hard [57]]. However, recent work has shown that auto-regressive generation can overcome this
challenge [37]], motivating our adoption of a sequential formulation.

Setup. The Transformer architecture and training setup follow Section[5.2] Transformer models
were trained on 100,000 samples and evaluated on 1,000 samples. For each sample, the num-
ber of polynomials r was uniformly sampled from {2,3,4}. Then, polynomials fi,...,f, €
Fr[z1,...,z,]) were sampled with a maximum degree dy,,x = 4 and a maximum number of terms
tmax = 9. The sampling follows the strategy given in Appendix except that the polynomial
degree was uniformly sampled from U[1, d;ax] to exclude the zero polynomial and avoid trivially
easy product computations. We tested cases with n = 2,3,4,5. We adopted the standard infix
representation as a baseline (Equation (@.3))). Note that the Transformer model with the proposed
monomial embedding predicts target sequences in the same representation via the unembedding layer.
Thus, this baseline setup allows us to directly assess the impact of the proposed tokenization and
embedding strategy.

Results. Figure|/|shows the average number of tokens in test samples for both the baseline method
and the proposed method. The shaded region indicates the range from minimum to maximum. A
large gap in both the average and maximum number of tokens between the infix and monomial
embeddings can be observed. This gap is also reflected in the GPU memory consumption in Table 3]
Notably, the memory consumption of the monomial embedding with n = 5 is lower than that of
the infix embedding with n = 2. The monomial embedding is further advantageous for learning,
as indicated by its success rate (i.e., the proportion of samples for which a complete sequence of
cumulative products is successfully generated). The improvement in success rate becomes even
more pronounced for larger values of n. Considering the correspondence between monomials is
essential in symbolic computation. With infix embedding, the model must establish attention between
(n + 1) tokens and another (n + 1) tokens, resulting in increased complexity. In contrast, monomial
embedding reduces this to a one-to-one correspondence, which benefits both memory efficiency and
success rate.

D.3 Reduction profile of the input sequences.

Figure [§|completes Figure[2] We analyze the input sequence reduction in the test samples used in our
main experiments. As mentioned in Section we used a minimal subset £’ € L that allows us to
retrieve the universe £, which is an order ideal. Particularly, we used the corner terms [40], which
we define next.

Definition D.1 (Divisibility of Monomials). Let

ay a2 An

— . b1 ,.bo b
t=x'xy” -,

and s=x'zy’ - T,
be monomials in the polynomial ring K [X]. We say that ¢ divides s, written t | s, if and only if

a; < b foralli=1,...,n,

26

equivalently, if there exists a monomial « such that s = tu.

Definition D.2 (Corner Terms). Let £ be an order ideal in K[X]. The corner terms of L are
its maximal monomials, i.e. those ¢ € L such that whenever ¢ | s with s € L, one has s = t.
Equivalently,

L= {teL|(VseLl)(t|s = s=t)}

Geometrically, each ¢ € L' is the “corner” of an axis-aligned hyper-box in N™ whose lattice points
are precisely the divisors of ¢, and the union of these boxes is the entire order ideal.

E Experiment setup and additional results

E.1 Sampling polynomials.

Random sampling a polynomial from IF,,[X|<g,,.. with some degree bound dy,ax is a basic operation
in our experiments. Here, random sampling can be defined in several ways. The mathematically
generic way is uniformly sampling the coefficients of polynomial f = Za:\la\ll Zdypay Ca®®. IS

worth noting that in such as case, f almost always dense and of degree dyax.-
However, this approach is not always reasonable from the practical scenario. The maximum degree

dmax can only mean the limit of the highest acceptable degree, and the user-input polynomial can
vary between constant to degree-dy,,x ones dynamically.

Taking into account this, random sampling in this paper is performed by first uniformly samlping the
degree and the number of terms of polynomial. Namely, given the predesgianated maximum degree
dmax and the maximum number of terms ¢y, @ polynomial is sampled with d ~ U[0, dpax] and

timax ~ U[0, Finax], Where fmax = min (tmm ("ﬁmax)), and Ufa, b] is a uniform distribution with

range [a, b] C Z.

E.2 Comparisons of polynomial systems in literature.

To the best of our knowledge, our experiments cover the largest and the most general class of
polynomial systems in the literature of deep-learning based Grobner/border basis computation [35}
54].

* The experiments in [54] mostly focus on n = 3 variables and binomials (for both input
systems F’ and Grobner bases G).

* The experiments in [35]] handle up to n = 5, but for n > 1, the mixing matrix A of F' = AG
is sparsified to keep the input system size moderate (i.e., to keep the number of tokens
< 5000). The design of A only supports an input system of size |F'| > |G|. Besides, the
ideals are restricted to those in shape position, where G is restricted to size |G| = n.

Table [d] compares the scale and class of systems and ideals (n = 5, numbers are rounded).

E.3 Learning successful expansions

Computational resources. Training was performed on a system with 48-core CPUs, 768 GB of
RAM, and NVIDIA RTX A6000 Ada GPUs. Each run completed in less than a day on a single GPU.

Datasets. To construct the training set, we first generated one million border bases {G,}; as
described in Section These were then transformed into an equal number of non-bases { F; };
using the backward generator transform from Section[d.1.2] Subsequently, the Improved Border Basis

Table 4: Comparison of the scale and class of systems and ideals (n = 5).

Reference Input system size |F'| Avg. #terms in F Class of ideals/systems

[54] 10 20 binomial

[35] 5-7 42 shape position (|F'| > |G| = n)

Ours 6-10 130 vanishing ideal (|G| > n, |F| < |G| allowed)

27

Table 5: Evaluation results of Transformer predictions over polynomial rings F,,[x1, . . . , 2,,]. Metrics
are reported for different values of /.

Field Variables [Precision (%) Recall (%) F1 Score (%) No Expansion
Acc. (%)
1 79.4 81.2 80.3 96.3
n=3 3 84.1 86.1 85.1 96.0
5 85.6 87.6 86.6 96.6
1 85.1 86.6 85.8 98.8
F~ n=4 3 88.4 89.1 88.8 98.8
5 89.8 91.1 90.4 98.8
1 91.4 91.9 91.7 99.1
n=>5 3 93.0 93.3 93.1 99.1
5 93.9 94.6 94.2 98.7
1 84.4 86.8 85.6 99.7
n=3 3 89.4 90.0 89.7 99.7
5 91.6 93.2 92.4 99.7
1 90.7 91.6 91.1 98.8
F3q n=4 3 92.9 93.7 93.3 98.8
5 94.2 94.7 94.4 98.8
1 92.7 93.1 92.9 99.6
n=>5 3 94.3 94.6 94.4 99.6
5 94.8 95.3 95.1 99.6
1 87.8 88.3 88.1 99.7
n=3 3 91.3 91.8 91.5 99.7
5 93.6 93.7 93.7 99.7
1 92.0 93.2 92.6 99.6
Fio7 n=4 3 94.5 94.9 94.7 99.6
5 94.9 95.5 95.2 99.6
1 93.1 94.7 93.9 99.6
n=>5 3 94.4 95.8 95.1 99.6
5 94.8 96.0 95.4 99.6

(IBBA; [29]) algorithm was executed on each F;. From each run, we collected samples only from
the last five expansion calls in the final loop (cf. Algorithm[I)). This process yielded approximately
five million samples, from which we randomly selected one million without replacement to form the
training set. The test set of 1,000 samples was constructed in the same manner.

Additional Results. Table|5|is the complete version of Table |1l The overall trend is the same.

E.4 Out of Distribution Experiments

We report our results on the out-of-distribution performance of our approach. In Figure [0] and
Figure[I0] we compare the number of fallbacks and the achieved speedup, respectively, across different
configurations for n = 3 variables. The columns correspond to the degree of the transformation
matrix A (ranging from 2 to 4), while the rows represent the total degree, increasing from 4 in the top
row to 6 in the bottom row. Comprehensive results on the out-of-distribution performance for varying
degrees are further provided in Tables[7]to[9]

E.5 Border Basis Bottleneck

To characterize the computational bottleneck of the border-basis algorithm, we measure the fraction
of the total runtime spent in the final stage (i.e., the phase after the last universe enlargement) and,
within that stage, the fraction attributable to the last k& € {1, 2, 3,4, 5} Gaussian-elimination steps.
Our empirical results in Table|10|indicate that the final stage overwhelmingly dominates execution
time—on average consuming about 95 % of the total runtime. Moreover, the last five Gaussian
eliminations alone account for roughly 70 %-95 % of the final-stage runtime.

28

Table 6: Mean =+ standard deviation of the number of zero reductions for IBBA vs. OBBA. Here we
see an up to 3.5 improvement in the number of zero reductions for the in distribution setting with
total degree 4 and degree of transformation 1 for n = 5.

Field Total Degree Degree Transformation IBBA OBBA

F- 2 1 1369.31+61327 380.15+ 14033
F- 3 1 1854.63+111423 638.124 50561
F~ 4 1 3177.67+205036 1746.99+ 199224
Fio7 2 1 1409.02ts9612 390.36+ 15547
Fio7 3 1 2224254147350 1025.64 4 78564
Fio7 4 1 2510.42+200656 1112.15+ 119061
Faq 2 1 1324.05+6751 361.224 15587
F3q 3 1 2010.02+ 136468 797.14+ 69537
F3q 4 1 3167.66+25005 1672.20+ 1555.12

Table 7: Wall-clock runtime in seconds (mean = standard deviation over 100 random zero-
dimensional systems of total degree d < 4 and max degree 1 of A) for five algorithms over polynomial
rings F7, Fy27, and F3; in n = 5 variables. “Baseline” comprises BBA and IBBA; “Ours” comprises
OBBA, IBBA+FGE, and OBBA+FGE. OBBA+FGE is the fastest in every setting.

Baseline Ours

Field d BBA IBBA OBBA IBBA+FGE OBBA+FGE
2 10.49 4+ 7.37 7.16 £ 4.55 243 +1.24 0.86 £+ 0.46 0.59 +£0.31

Fr 3 2645434.13 19.61 £ 27.10 8.30 £+ 12.60 1.88 & 2.12 1.30 - 1.45

4 156.64 £ 581.66 101.22 £ 365.21 67.82 £ 282.15 7.44 +24.82 5.51 £+ 19.41

2 13.44 £ 8.52 9.04 £5.34 3.06 + 1.49 1.01 +0.49 0.67 £ 0.31

Fi27 3 49.90 + 74.57 33.86 £47.53 20.97 + 34.87 275+ 3.14 2.09 +2.53
4 77.89 4+ 132.87 53.57 £ 93.82 39.91 £ 87.16 4.62 £7.55 3.47 £6.23

2 11.44 £+ 8.25 7.60 +5.13 2.58 +1.37 0.88 +0.49 0.60 + 0.32

Fs1 3 40.65 4 76.90 27.36 & 47.71 13.87 £ 26.07 2.38 +3.32 1.66 £ 2.35
4 136.68 +=244.07 97.84 £ 173.36 68.77 £ 158.72 7.42 +12.01 5.63 +9.34

E.6 Border Gap vs Border Distance

Detecting the final stage of Border Basis computation is critical for the efficiency of the proposed
method. We empirically investigate the relationship between border distance, which is unknown in
practice, and border gap, which can be an input parameter as we can measure it. To make the border
gap independent of the scale of the problem, we consider the relative border gap defined as % Our
results are summarised in Figures [IT]to[T3] indicating that the border gap is a suitable proxy for the

border distance.

29

Table 8: Wall-clock runtime in seconds (mean =+ standard deviation over 100 random zero-
dimensional systems of total degree d < 4 and max degree 1 for each variable) for five algorithms
over polynomial rings 97, F31, and F7 in n = 4 variables. “Baseline” comprises BBA and IBBA;
“Ours” comprises OBBA, IBBA+FGE, and OBBA+FGE. OBBA+FGE is the fastest in almost every
setting.

Baseline Ours

Field d BBA IBBA OBBA IBBA+FGE OBBA+FGE
2 0.43 +£0.42 0.33 +£0.24 0.20 £0.11 0.09 £ 0.05 0.09 + 0.04

Fi27 3 1.71 +2.35 1.29 + 1.61 0.62 + 0.64 0.23 +£0.21 0.24 +0.25
4 2.28 + 3.66 1.76 + 2.56 0.81 £ 1.00 0.29 + 0.33 0.29 £+ 0.33

2 0.46 +0.43 0.35+0.25 0.22 +0.13 0.09 + 0.05 0.09 + 0.05

Fs1 3 1.39 + 1.59 1.07 = 1.18 0.54 £ 0.53 0.21 £0.18 0.21 +£0.18
4 4.65 +7.77 3.64 £ 6.10 2.12 £ 3.61 0.51 &+ 0.66 0.50 + 0.59

2 0.36 +£0.27 0.29 +£0.17 0.19 £+ 0.09 0.08 £+ 0.03 0.08 + 0.03

Fr 3 1.25 &+ 1.68 094 +1.19 0.48 + 0.57 0.18 £ 0.17 0.18 +0.18
4 489 +1142 411 £9.94 2.13 £ 5.71 0.55 +0.94 0.52 +£0.84

Table 9: Wall-clock runtime in seconds (mean =+ standard deviation over 100 random zero-
dimensional systems of total degree 4 < d < 6 and max degree 1) for five algorithms over polynomial
rings F31, F7, and Fy57 for n = 3 variables. “Baseline” comprises BBA and IBBA; “Ours” comprises
OBBA, IBBA+FGE, and OBBA+FGE. OBBA+FGE (last column) is the fastest in every setting.

Baseline Ours

Field d BBA IBBA OBBA IBBA+FGE OBBA+FGE
4 0.07 £0.11 0.06 + 0.09 0.06 + 0.08 0.03 £ 0.03 0.03 £ 0.03

F31 5 0.30 £ 0.76 0.24 + 0.56 0.19 + 045 0.07 & 0.12 0.07 +0.11
6 0.42 +0.77 0.36 + 0.69 0.28 £ 0.53 0.10 £ 0.15 0.10 £ 0.14

4 0.09 +0.14 0.07 & 0.09 0.06 + 0.07 0.03 +0.03 0.03 £+ 0.03

F; 5 0.18 £ 0.41 0.15+0.34 0.13 £ 0.26 0.05 £+ 0.08 0.05 + 0.08
6 0.28 +0.54 0.24 +£0.45 0.20 +0.37 0.07 £0.11 0.07 £0.11

4 0.06 + 0.08 0.05 £+ 0.07 0.05 £+ 0.07 0.02 +£0.02 0.02 +0.02

Fi27 5 0.14 £ 0.25 0.12 £ 0.18 0.10 £ 0.16 0.04 £ 0.05 0.04 £+ 0.05
6 0.45+0.70 0.35 £ 0.51 0.27 +£0.39 0.10 £0.11 0.10 £ 0.11

30

deg(y)
-
onNso b
s

deg(y) deg(y) deg(y) deg(y) deg(y) deg(y) deg(y) deg(y) deg(y) deg(y)
oN s oo oNs o onNs o oN s oo oNs o on s o onNs o oNso oN s oo

oN & o o

deg(y)
onNso®

10

10

10

10

10

1

0

10

10

10

10

10

Order Ideal #1
3

0246 810
deg(x)

Order Ideal #6
3

sessesdl
0246810
deg(x)

Order Ideal #1

Order Ideal #1

o

02 4 6 810

deg(x)

Order Ideal #21
.

el
0246 810
deg(x)

Order Ideal #2

0246810
deg(x

Ideal #3

0246810
deg(x)

Order Ideal #3
3

eodl
0246810
deg(x)

Order Ideal #4

0246810
deg(x)

Order Ideal #5
3

el
0246810
deg(x)

Order Ideal #5

+
0246 810
deg(x)

deg(y)
—
onvso®b5

deg(y) deg(y) deg(y) deg(y) deg(y) deg(y) deg(y) deg(y) deg(y)
on s o ® on s o ® on s o onvso® on s o ® onvsoa®b

deg(y)

deg(y)
onvso®

Order Ideal #2

0246 810
deg(x)

Order Ideal #7
3
o

Order Ideal #1.
10

Order Ideal #17

10

geql
0246 810
deg(x)

Order Ideal #2.
10

024 6 810
deg(x)

Order Ideal #27
10

024 6 810
deg(x)

o

0246 810

deg(x)

Order Ideal #37
3

10

3
8
6
a
2
0

10

deg(x)
Ideal #47

0246 810
deg(x)

Order Ideal #5
3

10

8
6
3
2
0

Order Ideal #57

10

*
0246 810
deg(x)

deg(y)
o
onso b

deg(y) deg(y) deg(y) deg(y) deg(y) deg(y) deg(y) deg(y) deg(y)
onv s o ®b onso®b on s oS on s o on s oS onvso®b

deg(y)

deg(y)

Order Ideal #3

0246 810
deg(x)

Order Ideal #8
03

b
0246810
deg(x)

Order Ideal #1.
0@

0246 810
deg(x)

Order Ideal #2.
v

0246810
deg(x)

Order Ideal #2.
3

10

8

6

)

2

0 o
0246 810

deg(x)

Order Ideal #3.

10

0246810
deg(x)

Order Ideal #3:
]

0246810
deg(x)

Order Ideal #4.

o
0246 810
deg(x)

Order Ideal #4

0246810
deg(x)

Order Ideal #5.
0

0246 810
deg(x)

deg(y) deg(y) degly) degl(y) deg(y) degly) degl(y) deg(y) deg(y) deg(y) deg(y)
oN s oo oNs O oNs o on s o oNs o oN s oS

oN & o o
®

deg(y)
onNs o

Order Ideal #4

0246 810
deg(x)

Order Ideal #9
3
o

sessoedl
0246810
deg(x)

Order Ideal #14

10

024 6 810
deg(x

Order Ideal #1

0246 810
deg(x)

Order Ideal #24
v

10

0246 810
deg(x)

Order Ideal #2
10

024 6 810
deg(x

Order Ideal #34

0246810
deg(x)

Order Ideal #3!
o

10

8

6

4

2

0 [YXYYXY)
0246 810

deg(x)

Order Ideal #44
10

0246 810
deg(x)

Order Ideal #4

10

0246810
deg(x)

Order Ideal #54
o

10

024 6 810
deg(x

Order Ideal #5
10

0246 810
deg(x)

deg(y)
.
onsoa b

degl(y) deg(y) deg(y) deg(y) deg(y) deg(y) degl(y) deg(y) deg(y) deg(y)
onvso® on s o ® on s o onvso® on s o ® on s o onvso®

oN s o

deg(y)
onsow®

10

10

10

10

10

10

10

10

10

10

Order Ideal #5

0246 810
deg(x)

Order Ideal #1
3
o

0246 810
deg(x)

Order Ideal #15

0246 810
deg(x)

Order Ideal #2.

0246 810
deg(x)

Order Ideal #30

0246 810
deg(x)

Order Ideal #3

0246 810
deg(x)

Order Ideal #4t

H
0246 810
deg(x)

Order Ideal #45

0246 810
deg(x)

Order Ideal #5

.
0246 810
deg(x)

Order Ideal #55

H
0246 810
deg(x)

Order Ideal #60
3

0246 810
deg(x)

Figure 5: The gallery of randomly sampled order ideals for n = 2 and d = (10, 10).

31

1.0
208
&
., 0.6
w0
Joa —_—5
S
»n 0.2 U
—= P27
0.0
3 4 5 6 5 6 7 8 9 10
Size of F Size of F Size of F

Figure 6: The empirical success rate of the backward transform from G to F' without changing ideals.
As Theorem [4.5]and Corollary [4.6] suggest, the success rate is zero for |F| = n and close to one for
|F'| > n, and larger field order and number of variables increase the success rate.

Token Count vs Number of Variables

3500
-#- Infix Representation
30001 Monomial Representation
2500
w
=
2 2000 1
e
G
2 15001
€
=]
Z 1000
500 A
__________ ®---mmmmmm=-—m——=®
___________ Crmemm==
———
0,
2.0 25 30 35 40 45 5.0

Number of Variables (n)

Figure 7: The average number of tokens with infix and the proposed embeddings.

32

Figure 8: Reduction of the maximum number of tokens of input sequences with [-leading term and

All Terms L (Infix)
All Terms V (Infix)

| Terms L (Infix)
| Terms V (Infix)

| Terms L (Monomial)
| Terms V (Monomial)

Number of Variables (n)

monomial representation.

Max Degree of A = 2

Number of Variables (n)

Max Degree of A = 3

A, I=1 A, 1=3 A, 1=5
-
S 10° 60353 60353 60353
o
10007 10007 10007
‘\é 104 381 6341
T, 5] 1354 1273 1354 1223 1354 021 906
<10 407 489 489 389 489 489 546 634 337 489 489
L 129 209 209 182 209 209 204 127 209 209
x 1074 49 49 88 70 49 a9 ° 70 49 49 70
5 26 35 35 35
=0 10 10 10
n=3 n=4 n=5 n=3 n=4 n=5 n=3 n=4 n=5
Number of Variables (n) Number of Variables (n) Number of Variables (n)
By, =1 F1,1=3 F31,1=5
-
S 108 72372 72372 72372
o
11243 11243 11243
‘é 104 3821 6348
Q5] 1434 1273 1434 1223 1434 2021 907
Z10 407 489 489 389 489 489 546 629 337 489 489
i) 129 209209 182 209 209 204 126 209 209
%1071 49 49 5 R 70 49 a9 8 = 70 49 49 35 7
=01 10 10 10
n=3 n=4 n=5 n=3 n=4 n=5 n=3 n=4 n=5
Number of Variables (n) Number of Variables (n) Number of Variables (n)
FA27,1=1 F27,1=3 F27,1=5
-
S 10° 64637 64637 64637
o
11981 11981 11981
Lé 104 2842 6383
S 1574 1280 1574 1223 1574 2021 012
X 10° 407 489 489 389 489 489 549 634 337 489 489
IS 129 209 209 68 183 28 209 209 204 127 209 209
2 70 70 70
é 10 49 49 56 35 49 49 35 49 49 35
=0 10 10 10
n=3 n=4 n=5 n=3 n=4 n=5 n=3 n=4 n=>5

Number of Variables (n)

Max Degree of A = 4

80
< "
@ -
60 1 —— Az
8
L
¥ 40
©
2
= 20
£
#* —t—t—t—e__ , . .
0
Total Degree = 5
80
<
o
@ 60
o
2
L
¥ 40
©
=
= 20
£
#
0
Total Degree = 6
80
<
o
2 60
o
2
L
¥ 40
©
2
= 20
£
#
0

0.90
M
Te]

O.‘BD 0‘85
Border Gap

0.90 0.95
M
Tzl

0.‘80 O.‘85
Border Gap

R —— 127

—m— 31

0.90
M
Tzl

0. ‘80 0. ‘85
Border Gap

0.95 14

Of

0

Figure 9: Out-of-distribution (OOD) experiment for n = 3, measured by the number of fallbacks
plotted against the relative border gap. Columns correspond to the degree of the transformation
matrix A (left: degree 2, middle: degree 3, right: degree 4), while rows indicate the total polynomial
degree, increasing from 4 in the top row to 6 in the bottom row. As the degree of the polynomials
increases—moving further from the training distribution—the number of fallbacks also rises. Invoking
the oracle at a lower relative border gap increases the number of fallbacks, as the oracle must make
more progress to achieve termination.

33

Max Degree of A = 2 Max Degree of A = 3 Max Degree of A = 4

e
o

speed-up (x)
speed-up (x)

speed-up (x)

4
4
L

Total Degree = 5

o

speed-up (x)
5 5 %
;
speed-up (x)
)
speed-up (x)

Total Degree = 6

0.70 0.75 0.80 0.85 0.90 0.95 1.00 0.70 0.75 0.80 0.85 0.90 0.95 1.00 0.70 0.75 0.80 0.85 0.90 0.95 1.00

o

speed-up (x)
O VN
speed-up (x)
;

speed-up (x)

Border gap % Border gap % Border gap %
Ho o B —e— F7

Figure 10: Out-of-distribution (OOD) experiment for n = 3, measured by the speedup of the
proposed method over the baseline. Columns correspond to the degree of the transformation matrix
A (left: degree 2, middle: degree 3, right: degree 4), while rows indicate the total polynomial degree,
increasing from 4 in the top row to 6 in the bottom row. Even a moderate number of fallbacks still
allows for a significant speedup. For the more challenging settings, the speedup peaks around a
relative border gap of 0.95, indicating sensitivity to this parameter and reduced oracle performance in
harder configurations, while still providing a moderate overall speedup.

Border Gap vs Border Distance

Quartiles
—— Whisker/Cap
0.9 —— Median
T i e Mean
0.8
0.7
°
)
8
=206 i
Q
e L °
(U]
=
[}
2
S 05 o
o

0.4

I

0.2 o
8
o

@6

2 3
Border Distance 6(£, V)

Figure 11: Border gap vs border distance for n = 3 over Fs;.

34

Table 10: Proportion of total runtime spent in the final stage (FS) of Border Basis computation, and
cumulative share of the last k£ expansions (Lk) within FS, averaged over 100 runs. The final stage
typically dominates runtime (>70%, often >95%), with the last 5 expansions accounting for 70-90%
of FS across all settings. Interestingly, the very last expansion already account for about 30% of the
final stage.

Field n Deg FS L1 L2 L3 L4 L5

0986 0.270 0.516 0.646 0.699 0.721
0979 0.279 0.511 0.624 0.678 0.694
0982 0.741 0.893 0922 0.937 0.944

0976 0318 0.594 0.738 0.780 0.800
0972 0275 0.513 0.664 0.750 0.793
0986 0.321 0.558 0.687 0.757 0.785

0969 0.244 0481 0.678 0.805 0.880
0970 0.270 0.514 0.704 0.806 0.862
0963 0301 0.573 0.768 0.852 0.889

0986 0.285 0.527 0.652 0.705 0.721
0973 0309 0.532 0.638 0.683 0.693
0.726 0.448 0.649 0.738 0.781 0.800

0964 0303 0.563 0.717 0.794 0.831
0980 0.274 0.520 0.669 0.749 0.792
0963 0313 0.569 0.713 0.780 0.815

0960 0.326 0.588 0.736 0.826 0.877
0970 0.275 0.524 0.714 0.805 0.858
0.568 0.289 0.560 0.744 0.852 0.895

0981 0.287 0.525 0.655 0.708 0.727
0979 0.284 0.523 0.649 0.702 0.726
0983 0.569 0.759 0.821 0.844 0.857

0992 0346 0.591 0.709 0.758 0.789
0977 0317 0.613 0.773 0.819 0.842
0982 0.284 0.546 0.692 0.760 0.786

0992 0311 0.580 0.745 0.830 0.878
0978 0.279 0.520 0.692 0.797 0.866
0.956 0.290 0.558 0.746 0.841 0.891

~

Fia7

=
w
—
N
PLOND| PO N ER|PRPLWNDIPLOND DR | RLWONDRRLWND OOV A

35

1.0

Border Gap vs Border Distance

e Quartiles |
* — —— Whisker/Cap
: Median

e Mean

0.8

o
o

Border Gap %

I
>

2
Border Distance 6(¢, V)

Figure 12: Border gap vs border distance for n = 4 over Fs;.

1.0

0.8

]
1]
o
[}

Border Gap

0.2

Border Gap vs Border Distance

s Quartiles

—— Whisker/Cap
Median
e Mean

Border Distance 6(2, V)

Figure 13: Border gap vs border distance for n = 5 over [F3;.

36

NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: The abstract and introduction present the scope of the study and its contribu-
tions.

Guidelines:

* The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We present current limitations in Sections and|[6]
Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate "Limitations" section in their paper.

* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

* If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]

37

Justification: All the assumptions and complete proofs are provided in the main text and
appendix, particularly, Sections [3]and [and Appendices[A]to[Cl

Guidelines:

The answer NA means that the paper does not include theoretical results.

All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

All assumptions should be clearly stated or referenced in the statement of any theorems.

The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We provide the detailed description of the experiment setups both in the main
text and appendix.

Guidelines:

The answer NA means that the paper does not include experiments.

If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

38

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]
Justification: We provide the link to the code.
Guidelines:

* The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https !
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

 Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.
6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: All the training and test details to follow the results are provided in Section[3]
and Appendix [E]

Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

 The full details can be provided either with the code, in appendix, or as supplemental
material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer:

Justification: Error bars are not provided for all cases; however, one of the main results,
Table 2] reports the runtime along with standard deviations.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

39

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

8.

10.

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

e It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

* It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

» For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.
Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]
Justification: Information about our computational resources can be found in Appendix [E]
Guidelines:

* The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines]?

Answer: [Yes]
Justification: We have confirmed the present study meets the NeurIPS Code of Ethics.
Guidelines:

e The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA] .

Justification: This paper focuses on the learnability of a mathematical task, and we cannot
see any urgent social impact.

Guidelines:

* The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

40

https://neurips.cc/public/EthicsGuidelines

11.

12.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

« If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
Justification: This paper does not have an evident risk of misuse.
Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [NA] .
Justification: This paper does not use existing assets.
Guidelines:

* The answer NA means that the paper does not use existing assets.

* The authors should cite the original paper that produced the code package or dataset.

 The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

* If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

41

paperswithcode.com/datasets

13.

14.

15.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

« If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA] .
Justification: The paper does not release new assets.
Guidelines:

* The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: This paper does not involve crowdsourcing nor research
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: This paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

42

16. Declaration of LLLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]
Justification: LLMs were used solely as assistants for coding and manuscript editing.
Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

* Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.

43

https://neurips.cc/Conferences/2025/LLM

	Introduction
	Preliminaries
	Defining border bases
	Computing border bases

	The Oracle Border Basis Algorithm
	Termination of the algorithm
	Allocating the k oracle calls

	Designing the transformer oracle
	Dataset generation
	Border basis sampling
	Ideal-invariant generator transform

	Efficient input sequence representation

	Experimental results
	Fast Gaussian elimination
	Learning successful expansions
	Transformer oracle
	In-distribution performance
	Out-of-distribution performance

	Conclusion
	Theory of Oracle Border Basis Algorithm
	Alternative termination criteria

	Border basis sampling
	Order ideal sampling
	Border basis construction from order ideals: Proof of Theorem 4.2
	Comparison with Buchberger–Möller-family algorithms

	Backward transform
	Proof of Theorem. 4.5
	Empirical results

	Monomial embedding
	Implementation details
	Empirical validations of monomial embedding
	Reduction profile of the input sequences.

	Experiment setup and additional results
	Sampling polynomials.
	Comparisons of polynomial systems in literature.
	Learning successful expansions
	Out of Distribution Experiments
	Border Basis Bottleneck
	Border Gap vs Border Distance

