
Computational Algebra with Attention:
Transformer Oracles for Border Basis Algorithms

Hiroshi Kera∗123 Nico Pelleriti∗3 Yuki Ishihara4 Max Zimmer3 Sebastian Pokutta3
1Chiba University 2National Institute of Informatics 3Zuse Institute Berlin 4Nihon University

Abstract

Solving systems of polynomial equations, particularly those with finitely many
solutions, is a crucial challenge across many scientific fields. Traditional methods
like Gröbner and Border bases are fundamental but suffer from high computa-
tional costs, which have motivated recent Deep Learning approaches to improve
efficiency, albeit at the expense of output correctness. In this work, we introduce
the ORACLE BORDER BASIS ALGORITHM, the first Deep Learning approach
that accelerates Border basis computation while maintaining output guarantees.
To this end, we design and train a Transformer-based oracle that identifies and
eliminates computationally expensive reduction steps, which we find to dominate
the algorithm’s runtime. By selectively invoking this oracle during critical phases
of computation, we achieve substantial speedup factors of up to 3.5x compared to
the base algorithm, without compromising the correctness of results. To generate
the training data, we develop a sampling method and provide the first sampling
theorem for border bases. We construct a tokenization and embedding scheme
tailored to monomial-centered algebraic computations, resulting in a compact and
expressive input representation, which reduces the number of tokens to encode an
n-variate polynomial by a factor of O(n). Our learning approach is data efficient,
stable, and a practical enhancement to traditional computer algebra algorithms and
symbolic computation.

1 Introduction

Polynomial equation systems serve as a fundamental model in a wide range of fields, including
dynamical systems (such as those arising from the Lorenz attractor [48] or from digitalized gene-
regulatory networks [43, 44]), cryptography where multivariate systems [27, 38] form the basis
of signature schemes [67], in data-manifold representation [55], camera-pose estimation [58], or
optimization [3, 42]. Solving these systems, even with a small probability of success, reveals
critical properties such as stationary points [14] and optimal control strategies [53], highlighting the
fundamental importance of polynomial system solving. Many of these applications involve so-called
zero-dimensional systems with finitely many solutions, which are the focus of this work.

However, solving polynomial systems is notoriously hard: Even for zero-dimensional systems with
finitely many solutions, the worst-case complexity is exponential in the number of variates [15, 50]
and becomes practically intractable with as few as five variables. A most fundamental tool for their
solution is the computation of Gröbner bases [10, 13] or Border bases [28, 29, 40], the former being
interpretable as a nonlinear analogue of Gaussian elimination and the latter being a generalization of
the former in the zero-dimensional case.

This work focuses on border basis computation, which is essentially an iterative process that extends
a polynomial basis set: at each step, new candidate polynomials are generated from the current basis
and reduced to determine whether they extend the basis span. Crucially, reducing candidates that

∗Equal contribution.
Correspondence to kera@chiba-u.jp or pelleriti@zib.de.

39th Conference on Neural Information Processing Systems (NeurIPS 2025).

mailto:kera@chiba-u.jp
mailto:pelleriti@zib.de

fail to extend the basis set is computationally wasteful and leads to long runtime of the algorithm.
While several computer-algebraic techniques, including heuristics, address this [24, 29], the advances
in the field of Deep Learning (DL) suggest new directions for symbolic computation [4, 35, 41]: A
seminal work [54] introduced a Reinforcement Learning approach to optimize candidate polynomial
construction in Gröbner basis computation, though their method was limited to binomial Gröbner
bases and inputs. A recent work [35] used a Transformer [62] to directly predict Gröbner bases from
input systems, but lacks output guarantees - verifying the predicted basis requires a full Gröbner
computation, nullifying any efficiency gains.

In this study, we address this problem from the Algorithms with Predictions perspective - enhancing
algorithms with predictions for better performance, without sacrificing the correctness of the output.
To that end, we propose the ORACLE BORDER BASIS ALGORITHM, the first output-certified
algorithm for solving zero-dimensional polynomial systems using DL. Precisely, we develop a
supervised training framework of a Transformer-based oracle that eliminates unnecessary reduction
candidates, thereby significantly improving the efficiency of border basis computation.

Contributions. Our contributions can be summarized as follows:

1. Algorithm for supervised data generation: To generate the oracle’s training data, we
develop a sampling method for diverse polynomial sets, realizing the random generation of
diverse generators of zero-dimensional ideals. We present the first sampling theorem for
border bases and also generalize the ideal-invariant transformation theorem [35].

2. Efficient monomial-level token embedding: We propose a tokenization and embedding
scheme tailored to monomial-centered algebraic computations, resulting in a compact and
expressive input representation. For n-variate polynomials, it reduces token count by O(n)
and attention memory by O(n2) while improving predictive accuracy.

3. Efficient oracle-guided algorithm with correctness guarantees: Finally, we propose a
Transformer oracle specialized to the final stage of border basis computation, along with
an effective heuristic for determining when to invoke the oracle. The resulting ORACLE
BORDER BASIS ALGORITHM eliminates unnecessary reduction candidates and significantly
improves the efficiency of border basis computation, validated across diverse parameter
settings and prediction tasks.

A key insight is that border basis computation proceeds degree-by-degree, enabling us to collect
labeled training examples by recording which reductions extend the basis at each degree. In contrast,
Gröbner basis computation lacks this natural decomposition, which is why the previous study [54] had
to rely on reinforcement learning - a less data-efficient and less stable approach than our supervised
learning framework [19, 56, 59, 68]. Since border bases generalize Gröbner bases in the zero-
dimensional case, we can efficiently recover Gröbner bases from border bases when they exist.

Further related work. Buchberger’s algorithm [10] computes Gröbner bases by iteratively forming
and reducing S-polynomials until achieving closure under a monomial order [13]. Faugère’s F4/F5
algorithms [17, 18] improve upon this via sparse linear algebra and signature-based redundancy
detection. Various heuristics [20] help mitigate combinatorial explosion. Border bases do not require
a fixed variable ordering and are a term-order-free [9], numerically stable alternative to Gröbner
bases, defined relative to a chosen monomial set O with leading terms on its border [28, 29].

Apart from the previously mentioned works on using machine learning for symbolic computation,
[26] enhanced cylindrical algebraic decomposition, while [66] improved the stability of Gröbner
basis solvers. Our work further connects to the broader field of learning-guided algorithms, where
predictions have proven effective at steering heuristic decisions across combinatorial optimization
problems [51]. For example, in the context of mixed integer programming, [5] and [36] demonstrated
the effectiveness of learning-based approaches to improve branching decisions.

2 Preliminaries

We introduce the necessary notation as well as the core concepts of border bases and their computation.
For comprehensive treatments, see [28, 29] on border bases and [12] on ideals and polynomials.

An n-variate term or monomial xa := xa1
1 · · ·xan

n is defined by an exponent vector a ∈ Zn
≥0. We

denote by Tn the set of all such terms and by K[X] = K[x1, . . . , xn] the polynomial ring over a

2

1

y1

y2

x1

x1y1

(a) Border Basis (b) Naïve BB expansions (c) Oracle-guided expansions
 LT() Extension Discarded

Figure 1: Border basis concepts: (a) A border basis with order ideal {1, y} and border terms
{y2, xy, x}. (b) BBA’s iterative expansion of V , showing leading terms: two initial polynomials yield
four expansions, then eight more - though only two out of twelve were necessary. (c) The oracle
approach achieves the same result with just four targeted expansions.

field K. We use K[X]≤d for its restriction to polynomials of degree at most d. We use ≺ to denote a
term ordering on K[X]. The leading term LT(f) of a polynomial f is its largest term under ≺. For a
polynomial set F = {f1, . . . , fr}, LT(F) = {LT(f1) . . . , LT(fr)} denotes its leading terms. The set
of polynomials I = ⟨f1, . . . , fr⟩ = {f1h1 + · · ·+ frhr | h1, . . . , hr ∈ K[X]} is called the ideal
generated by F in K[X]. If LT(K[X]) \ LT(I) is a finite set, the ideal is called zero-dimensional.
The cardinality of the set denoted is by | · |. For an ideal I ⊂ K[X], the quotient ring K[X]/I
denotes the factor ring of K[X] modulo I . Its elements are equivalence classes of polynomials under
the relation f ∼ g ⇐⇒ f − g ∈ I. The symbol ⊕ denotes the direct sum of vector spaces: for
subspaces V,W ⊂ K[X], V ⊕W means every element can be uniquely written as v+w with v ∈ V ,
w ∈W , and V ∩W = {0}.

2.1 Defining border bases

A border basis of ideal I is a set of polynomials {g1, . . . , gs} that generates I with specific properties
and is defined relative to an order ideal O, a subset of monomials that is closed under division.
Definition 2.1. A finite set O ⊂ n is an order ideal if whenever t ∈ Tn divides any o ∈ O, then
t ∈ O. Its border ∂O = (

⋃n
k=1 xkO)\O consists of terms obtained by multiplying elements of O

by variables which are not in O itself.
Definition 2.2. Let O ⊂ Tn be an order ideal with border ∂O = {b1, . . . , bs}. A set of polynomials
G = {g1, . . . , gs} is an O-border prebasis if for all i = 1, . . . , s,

gi = bi −
∑
t∈O

ctt, (2.1)

with ct ∈ K. If O forms a basis of K[X]/⟨G⟩, then G is the O-border basis of ⟨G⟩. In other words,
with the span of vector space ⟨O⟩K := {

∑
t∈I ctt | ct ∈ K}, we have K[X] = I ⊕ ⟨O⟩K .

To illustrate, consider a simple polynomial system over Q with polynomials x2 + y2 − 1 and x− 1.
Taking the order ideal O = {1, y}, we obtain the border ∂O = {x, yx, y2}. The corresponding
border basis is {y2, x− 1, xy − y}. It generates the original ideal ⟨x2 + y2 − 1, x− 1⟩ and has the
required structure: each polynomial’s leading term lies in ∂O while its remaining terms are in O.

2.2 Computing border bases

For clarity, we defer the full border basis algorithm to the appendix and focus on its most important
component: the L-stable-span step [29]. This step is central to the Border Basis Algorithm (BBA),
and accelerating it is the primary objective of our work.

The L-stable-span step operates as follows. We begin with a finite set L = {xα : ∥α∥1 ≤ d}, which
serves as our computational universe of monomials up to degree d. We are also given an initial set of
polynomials V0 ⊆ span(L), each with a distinct leading term.

At each iteration, we expand the current set V by multiplying every polynomial v ∈ V by each
variable xj , for j = 1, . . . , n. This produces the set V+ = {xjv | v ∈ V, j = 1, . . . , n}. Next,

3

we perform a linear algebra operation called BasisExtension: we compute a basis for the span of
the expanded set, and then restrict this basis to those polynomials whose terms lie within L. If this
process does not yield any new elements, the routine terminates.

Algorithm 1: L-Stable Span computa-
tion in BBA and OBBA
Input :Polynomials V0, universe L;

1 i← 0
2 repeat
3 Ci ← V+

i

4 Ci ← Oracle(L,Vi)
5 Vi+1 ← BasisExtension(Vi, Ci,L)
6 i← i+ 1
7 until Vi = Vi+1

To clarify the algorithmic process, consider again
V = {x−1, x2+y2−1} and the initial computational
universe L = {1, x, y, x2, xy, y2}. Multiplying each
v ∈ V by each variable yields four candidates (cf.
Figure 1 b)). After reduction modulo V , two candi-
dates have leading terms in L: x · (x− 1) = x2 − x
and y · (x−1) = yx−y. Reducing x2−x modulo V
gives x2 − x− (x2 + y2 − 1) = −x− y2 +1. Thus,
V is extended to include y2 + x− 1 and yx− y.

Most importantly for our setting, BBA identifies the
successful candidates for the border basis only in
hindsight. To address this, we introduce an oracle that
predicts these key polynomials in advance, reducing
unnecessary iterations and improving efficiency.

3 The Oracle Border Basis Algorithm

In practice, most elements of Ci are redundant—they vanish after reduction modulo Vi. To eliminate
this inefficiency, we introduce an expansion oracle that selects a much smaller subset Ci ⊆ V+

i ; only
these polynomials proceed to the reduction step. We refer to the resulting algorithm as the Oracle
Border Basis Algorithm (OBBA). The difference to BBA is highlighted in Algorithm 1: instead of
setting Ci ← V+

i as BBA does, we use the oracle Ci ← Oracle(Li,Vi) .

The oracle is a lightweight Transformer model (detailed in the next section) that takes a tokenized
version of the current computational universe Li and generator set Vi as input, and outputs a set of
pairs (xℓ, vm), where xℓ is a variable and vm = LT(pm) is a distinct leading term in Vi. Each pair
corresponds to a candidate polynomial xℓpm ∈ V+

i .

3.1 Termination of the algorithm

We allow the oracle to propose a reduced candidate set up to k times. After the k-th invocation, the
algorithm defaults to the standard BBA expansion, i.e., Ci = V+

i . This strict cap ensures correctness:
the oracle can override the vanilla expansion at most k times, after which the algorithm reverts to the
standard procedure, preserving both termination and exactness:

Theorem 3.1. OBBA terminates and returns a correct border basis.

Limiting the oracle to k non-standard expansions prevents repeated expansion in the same direction
indefinitely and guarantees termination. For brevity, we present only our main conclusions here and
defer detailed empirical and theoretical results to the appendix.

3.2 Allocating the k oracle calls

As the algorithm progresses, the generator set V expands, increasing the number of polynomials to
reduce each iteration. Empirically (cf. Table 10), we find that between 70% to 95% of the runtime
is spent in the final stage, i.e., the iterations that follow the last enlargement of the computational
universe L. Since the final iterations dominate the runtime, we aim to spend the oracle budget
exclusively there, where every avoided reduction yields the greatest benefit.

A simple yet effective heuristic for recognizing this final stage is to monitor the gap g := |L| − |V|.
When g approaches the size of the (unknown) order ideal O of the target border basis, no further
universe expansion is required (cf. Lemma A.2) and the relative version of this gap, |V||L| has a strong
relationship with the remaining required expansions (cf. Figures 11–13)).

4

Invoking the oracle too early can be counterproductive: an inaccurate prediction may enlarge V while
still leaving many expansions to run, so the algorithm ends up performing more reductions on a
bigger set. Reserving the k-oracle calls for the final stage prevents these costs (cf. Theorem A.5).

4 Designing the transformer oracle

This section presents the architecture and training of the Transformer oracle
ORACLE : (L,V) 7→ S, where L ⊂ Tn, V ⊂ K[X], S ⊂ {x1, . . . , xn} × V. (4.1)

We assume a standard encoder–decoder Transformer [62], a general model for sequence-to-sequence
tasks. We collect a large number of training samples ((L,V),S) by running the border basis algorithm.
Collecting diverse samples is non-trivial, and we develop new techniques to address this task. Since
input sequences to the Transformer oracle are often extremely long (typically tens of thousands of
tokens), we also develop methods to substantially reduce their length. All proofs are provided in
Appendices B and C.

4.1 Dataset generation

Our overall goal is to collect many input–output instances to train the Transformer oracle on, which we
could achieve by running the BBA over many sets of polynomials. A crucial challenge is to generate
diverse sets of polynomials as the following observation highlights. Recall that we are interested
in zero-dimensional ideals and let F ⊂ K[X] be a collection of randomly sampled polynomials
(see Appendix E.1 regarding the sampling from K[X]). If |F | < n, ⟨F ⟩ is not zero-dimensional. If
however |F | > n, ⟨F ⟩ is generally the unit ideal, i.e., ⟨F ⟩ = K[X]. Thus, random sampling only
works for |F | = n, which is a strong restriction.

We will now address this issue in two steps. First, instead of sampling polynomial systems at random,
we propose border basis sampling to generate diverse border bases {Gi}i—a problem that, to the best
of our knowledge, has not been explored in the literature. Secondly, generalizing the results in [35],
our ideal-invariant generator transform converts each Gi into a non-basis Fi such that ⟨Gi⟩ = ⟨Fi⟩.
This backward approach not only yields a diverse set of polynomial systems with |F | > n, but
also provides direct control over the complexity of the corresponding border bases, as the sizes and
degrees of the border bases (particularly, the order ideals) can be predetermined.

4.1.1 Border basis sampling

Our algorithm first samples order ideals, and then constructs border bases supported by them. Recall
that a finite setO ⊂ Tn is called an order ideal if for any t ∈ O, its divisors are all included inO. Thus,
for t ∈ Tn, Ot := {all the divisors of t} is an order ideal, and the union

⋃q
i=1Oti for t1 . . . , tq ∈ Tn

is also an order ideal. The latter observation provides a strategy for the sampling of order ideals,
requiring refinement of this approach, with the formal algorithm deferred to Appendix B.1.

Now that we can sample order ideals, letO = {o1, . . . , oν} be an order ideal and ∂O = {b1, . . . , bµ}
its border. A border prebasisG = {g1, . . . , gµ} takes the form gi = bi−

∑ν
j=1 cijoj for i = 1, . . . , µ,

with arbitrary coefficients cij ∈ K. To obtain a true border basis, these coefficients must satisfy
algebraic conditions ensuring that O spans the K-vector space K[X]/⟨G⟩.
In consequence, random coefficients do not produce border bases. A crucial observation is that the
coefficients of G can be readily obtained via simple linear algebra for so-called vanishing ideals,
which we introduce next.
Definition 4.1. Let P = {p1, . . . ,pν} ⊂ Kn be a set of points. The vanishing ideal of P is the set
of all polynomials that vanish on P , namely, I(P) = {g ∈ K[X] | g(pi) = 0, i = 1, . . . , ν}.

The following theorem formalizes the construction of a border basis from an order ideal.
Theorem 4.2. Let O = {o1, . . . , oν} and ∂O = {b1, . . . , bµ} be an order ideal and its border,
respectively. Let P = {p1, . . . ,pν} ⊂ Kn be a set of ν distinct points. Let

M(P) := [∂O(P) O(P)] :=

b1(p1) · · · bµ(p1) o1(p1) · · · oν(p1)
...

...
...

...
b1(pν) · · · bµ(pν) o1(pν) · · · oν(pν)

 ∈ Kν×(µ+ν). (4.2)

5

If O(P) is full-rank, the nullspace of M(P) is µ-dimensional and spanned by {vi}µi=1, where
vi = (0, . . . , 1, . . . , 0, ci1, . . . , ciν)

⊤, with the first µ entries being zero except for a 1 in the i-th
position. The set {gi = bi −

∑ν
j=1 cijoj}

µ
i=1 is the O-border basis of the vanishing ideal I(P).

Remark 4.3. Several algorithms [23, 30, 46, 64] can compute a border basis of a vanishing ideal
I(P) from a set of points P . However, it only leads to a special type of border bases, which are
Zariski-closed (i.e., zero-measure set). Our method covers more general ones, refer to Appendix B.3.
Remark 4.4. Non-trivial ideals from random generators are generically radical, and any radical
ideal I = ⟨f1, . . . , fr⟩ is vanishing ideal I(P) if the solution set P of f1(X) = · · · = fr(X) = 0 is
a finite subset of Kn. A previous work [35] assumes ideals in shape position, and vanishing ideals
involve them in this setup. Further generalization to non-radical, positive dimensional ideals is still
an open problem.

4.1.2 Ideal-invariant generator transform

Now, we are able to obtain a border basis G = {g1, . . . , gs} of a vanishing ideal I(P). Next, we
design the following matrix A ∈ K[X]r×s to transform a border basis G = {g1, . . . , gs}:

F = AG, s.t. ⟨F ⟩ = ⟨G⟩. (4.3)

This effectively allows us to sample generating sets of I(P). [35] recently identified a sufficient
condition: if A has a left inverse then the ideal-invariant condition ⟨F ⟩ = ⟨G⟩ holds. A subset of such
matrices is given by a Bruhat decomposition A = U1P

[
U⊤2 O

]⊤
with unimodular upper-triangular

matrices U1 ∈ K[X]r×r, U2 ∈ K[X]s×s and a permutation matrix P of size r. However, the key
assumption |F | ≥ |G| fails in our case, as typically |G| ≫ n.

We therefore propose a more general construction of A satisfying the ideal invariance condition.
Theorem 4.5. Let K be a field of characteristic 0, I a zero-dimensional radical ideal of K[X],
and d a positive integer. Let G ∈ K[X]s be a generating set of I and F = AG ∈ K[X]r a set of
polynomials given by a generic matrix A ∈ K[X]r×s≤d .

1. If r ≤ n and G is a Gröbner basis, we have ⟨F ⟩ ≠ ⟨G⟩.

2. If r > n, we have ⟨F ⟩ = ⟨G⟩.

This suggests that for r > n and a field K of characteristic 0, the probability that a random A satisfies
⟨AG⟩ = ⟨G⟩ is almost 1.2 The probability is also very close to 1 when K is a finite field Fp with a
large prime number p.
Corollary 4.6. Let d and dmax be positive integers. Let K = Fp be a finite field of order p for a
prime number p and let G be a subset of Fp[X]≤dmax

such that ⟨G⟩ is a 0-dimensional radical ideal
of Fp[X]. Assume r > n and let G = {A ∈ Fp[X]r×s≤d | ⟨AG⟩ = ⟨G⟩}. Then, a generically sampled
A ∈ Fp[X]r×s≤d satisfies ⟨AG⟩ = ⟨G⟩ with probability

Pr(p) =
|G|

|Fp[X]r×s≤d |
≥ 1− d′

p
(4.4)

for some positive integer d′, which is determined by d and dmax, independent of any specific p.

Therefore, for sufficiently large p, the success rate of the ideal-invariant transform is almost 1
(note that the vanishing ideal I(P) is a 0-dimensional radical ideal). See Figure 6 for a numerical
experiment. In summary, sampling a randomA with more than n rows, which is arguably the simplest
approach, works.

4.2 Efficient input sequence representation

The input (L,V) and output S are respectively regarded as sequences of polynomials (in the fully
expanded form), and tokenized into sequences of tokens. For example, with L = {1, x, y} and

2Note that in this paper, a generically (or randomly) sampled polynomial f ∈ K[X] refers to a linear
combination of all monomials whose degrees are up to an (implicit) upper bound d. The combination coefficients
are sampled uniformly and independently from the field K.

6

V = [x+ 2, y], the input sequence in the infix representation is

(C1, E0, E0, <sep>, C1, E1, E0, <sep>, C1, E0, E1, <supsep>,
C1, E1, E0, +, C2, E0, E0, <sep>, C1, E0, E1, <eos>),

(4.5)

where Cn and En represent coefficient and exponent of values n. The token <sep> separates elements
in a set, and <supsep> separates sets. The token <eos> represents the end of the sequence.

In standard Transformers, the computational cost of self-attention grows quadratically with the input
size. The sizes of L,V are often large, and V contains polynomials with many terms. We introduce
two methods that, when combined, significantly reduce input size as shown in Figure 2.

Simplification of in- and output. We replace L with its minimal identifying subset L′ ⊂ L (cf.
Appendix D.3). Since the basis extension step in the BBA primarily relies on leading terms, we
truncate each polynomial in V to its l leading terms, which we found to have minimal impact on
the predictive performance of the oracle (cf. Table 1). The target sequence is a list of pairs like
S = {(x, v)}x∈X,v∈V . Since the polynomials in V have mutually distinct leading terms, we can
replace each v ∈ V with LT(v).

Monomial embedding. A fully expanded n-variate degree-d polynomial (e.g., xy + y instead of
(x+ 1)y) typically contains on the order of

(
n+d
n

)
monomials. Standard representations (e.g., infix)

tokenize each monomial using n+ 1 tokens—one for the coefficient and n for the exponents. Each
monomial is followed by a token like + or <sep>, so a polynomial set F = {f1, . . . , fr} yields
a sequence of the order of (n + 2)s ·

(
n+d
n

)
. We introduce an efficient embedding scheme for

polynomials, representing each monomial with a single token. By combining a monomial and its
follow-up token into one vector, this approach removes the (n+ 2) factor from the input size.

Definition 4.7. (Monomial embedding) Let Σ be the set of all tokens. Let (t, <*>) be a pair consisting
of a monomial t = cxa ∈ Tn with coefficient c ∈ K, exponent vector a ∈ Zn

≥0, and a follow-up
token <*> ∈ Σ. Let φc, φe, and φf denote embeddings of the coefficient, exponent vector, and follow-
up token into a d-dimensional space, respectively. The monomial embedding φm : Tn × Σ→ Rd is
given by

φm(t, <*>) = φc(c) + φe(a) + φf(<*>). (4.6)

Symbolic computations are fundamentally monomial-centric: monomials are compared, added, or
divided. Without monomial embedding, attention-based models must connect (n + 1) tokens per
monomial; this is reduced to a simple one-to-one mapping, substantially improving success rates in
cumulative polynomial product tasks (cf. Table 3). See Appendix D.1 for the exact implementation.

5 Experimental results

We empirically evaluate our approach;3 dataset generation, training details, and additional results are
in Appendix E.

5.1 Fast Gaussian elimination

7

Figure 2: (F31, k = 5). The term trun-
cation and monomial embedding signifi-
cantly reduce input size. See also Figure 8.

As an additional contribution, we present a fast Gaus-
sian elimination (FGE) kernel that replaces the standard
elimination in BasisExtension (see Algorithm 1). FGE
maintains the active reducer set in a balanced search
tree, enabling O(log(m)) look-ups and insertions; find-
ing a reducer with a matching leading monomial is thus
logarithmic, not linear. Combined with on-the-fly nor-
malization and an index map for immediate reuse of new
reducers, our kernel makes the entire BasisExtension
step quasi-linear. This yields an ≈ 10× wall-clock
speedup in data generation (cf. Table 7–9), enabling
to create an order of magnitude more training samples.

3Our code is available at https://github.com/HiroshiKERA/OracleBorderBasis.

7

https://github.com/HiroshiKERA/OracleBorderBasis

Table 1: Evaluation results of Transformer predictions over polynomial ring F31[x1, . . . , xn]. Trans-
former successfully learns the expansion directions. The input polynomials are truncated to their
first l leading terms. The No Expansion Accuracy column shows that the Transformer model can
determinate the termination with high accuracy. Refer to Table 5 for the complete version.

Field Variables l Precision (%) Recall (%) F1 Score (%) No Expansion Acc.
(%)

F31

1 84.4 86.8 85.6 99.7
n = 3 3 89.4 90.0 89.7 99.7

5 91.6 93.2 92.4 99.7
1 90.7 91.6 91.1 98.8

n = 4 3 92.9 93.7 93.3 98.8
5 94.2 94.7 94.4 98.8
1 92.7 93.1 92.9 99.6

n = 5 3 94.3 94.6 94.4 99.6
5 94.8 95.3 95.1 99.6

Importantly, FGE is orthogonal to the Transformer ora-
cle: while the oracle eliminates unnecessary reductions,
FGE accelerates all necessary ones, and their benefits compound.

5.2 Learning successful expansions

We begin by demonstrating that the Transformer model can learn to predict successful expansion.

Dataset. Datasets were generated as described in Section 4.1, with one million training and one
thousand evaluation samples. We setG ⊂ K[x1, . . . , xn]≤2 andA ∈ K[x1, . . . , xn]

r×s for r ∈ {n+
1, . . . , 2n}, collecting samples only from the final five expansions of each border basis computation.
Each polynomial in A has at most ten terms, sampled as detailed in Appendix E.1. In total, 27
datasets were constructed by varying the number of variables n ∈ {3, 4, 5}, coefficient field Fp with
p ∈ {7, 31, 127}, and truncation to the l leading terms with l ∈ {1, 3, 5}.
Setup. Experiments used a standard Transformer with 6 encoder and decoder layers, 8 attention
heads, and our monomial embedding. Embedding and feedforward dimensions were (dmodel, dffn) =
(512, 2048). We set dropout to 0.1. The positional embeddings were randomly initialized and
trained throughout the epochs. The model was trained for 8 epochs with AdamW [49] (β1 = 0.9,
β2 = 0.999), a linearly decaying learning rate from 10−4, and batch size 16.

Results. Table 1 summarizes our results. The Transformer predicts a set S = {(xi, vj)} of expansion
direction and target polynomial pairs. For non-empty predictions, we report precision, recall, and
F1 score against ground truth; for empty predictions (indicating algorithm termination), we report
accuracy. The Transformer consistently learns both expansion directions and target polynomials
across all (n, p, k) settings. Notably, it achieves near-perfect accuracy in the No Expansion case,
reliably identifying termination and avoiding at least the final unnecessary expansion step. Overall,
the performance improves with larger n and p, likely due to the higher success rate of the ideal-
invariant generator transform (as suggested by Corollary 4.6 and Figure 6). It is also noteworthy
that truncation to the l leading terms has only a minor effect on predictive performance, despite
significantly reducing input size (cf. Figure 8).

5.3 Transformer oracle

We now demonstrate that integrating the Transformer accelerates the improved border basis algorithm.
We also evaluate the Transformer oracle’s out-of-distribution performance on higher-degree systems,
which are more challenging to predict.

5.3.1 In-distribution performance

We assess the Transformer oracle’s in-distribution performance, i.e., the performance on systems
drawn from the same distribution as the training data.

8

Table 2: Wall-clock runtime in seconds (mean ± standard deviation over 100 random zero-
dimensional systems of total degree ≤ 4) for five algorithms over polynomial ring F31[x1, . . . , xn]
and variable counts n = 3, 4, 5 variables. BBA is the classical border basis algorithm; IBBA is the
incremental BBA baseline; OBBA is our oracle-augmented BBA, reducing runtime by about 3×
versus IBBA. IBBA+FGE and OBBA+FGE add fast Gaussian elimination (FGE), an orthogonal linear
algebra speedup; OBBA+FGE is the fastest, reaching up to two orders of magnitude improvement
over IBBA. A 3.5× speedup in terms of unneccessary expansions is shown in the appendix in Table 6.

Baseline Ours

Field n BBA IBBA OBBA IBBA+FGE OBBA+FGE

F31

3 0.07 ± 0.11 0.06 ± 0.09 0.06 ± 0.08 0.03 ± 0.03 0.03 ± 0.03
4 0.46 ± 0.43 0.35 ± 0.25 0.22 ± 0.13 0.09 ± 0.05 0.09 ± 0.05
5 11.44 ± 8.25 7.60 ± 5.13 2.58 ± 1.37 0.88 ± 0.49 0.60 ± 0.32

0.7 0.8 0.9 1.0
Border gap | |/| |

0

10

20

30

40

Fa

llb
ac

ks
 to

 B
BA

Degree = 4

0.7 0.8 0.9 1.0
Border gap | |/| |

0

10

20

30

40

Fa

llb
ac

ks
 to

 B
BA

Degree = 8

0.7 0.8 0.9 1.0
Border gap | |/| |

1.0

1.2

1.4

1.6

1.8

2.0

2.2

Sp
ee

d
up

 (×
)

Degree = 4

0.7 0.8 0.9 1.0
Border gap | |/| |

1.0

1.2

1.4

1.6

1.8

2.0

2.2

Sp
ee

d
up

 (×
)

Degree = 8

7 31 127

Figure 3: Speed-up of OBBA over IBBA on OOD systems with n = 4 variables and increased degree.
Each point averages 100 random instances per field. The relative border-gap |V||L| is the threshold that
decides when the oracle is invoked; a ratio of 1 corresponds to IBBA, where the oracle is never used.
Although the oracle is trained only on systems of total degree 2 for n = 4, it generalizes to degrees 4
and 8, achieving up to 1.8× speed-up even for degree 8. The average runtime for IBBA on the OOD
systems is two orders of magnitude higher than for the in distribution case.

Setup. We compare five algorithmic variants: the classical BBA, the Improved Border Basis
Algorithm (IBBA), IBBA with fast Gaussian elimination (IBBA+FGE), and the oracle-guided
versions OBBA and OBBA+FGE. For oracle-augmented variants, the oracle is called at most five
times, consistent with our training on the final five expansions. We invoke the oracle at ratios of
0.7, 0.75, 0.8, 0.85, 0.9, 0.95, 0.975 of the relative border gap |V||L| .

Results. Table 2 shows that the oracle-guided algorithm achieves up to a 3× speedup over the
state-of-the-art IBBA for systems with five variables, with smaller gains for three and four variables.
Notably, none of the oracle-guided variants required reverting to standard iterations, indicating that
the Transformer oracle successfully predicts expansion directions and target polynomials for all cases.

5.3.2 Out-of-distribution performance

We assess the Transformer oracle’s out-of-distribution performance by evaluating on higher-degree
systems, which are more challenging for both the oracle to predict and the IBBA to solve. The goal is
to test whether the Transformer, trained on easy instances, can generalize to harder ones, where we
defer full results to Appendix E.4.

Setup. We introduce 27 new datasets (i.e., three variables, three degrees, and three field orders). We
increase the total degree of the sampled input system F and transformation matrix A by 1 at each
step, limiting ourselves to F7,F31,F127. This produces systems of total degree 3, 4, 6, and 8. To
isolate the oracle’s impact, we compare IBBA and OBBA without FGE. The average IBBA runtimes
(in seconds) on these out-of-distribution instances are: 1.17, 3.21, 20.54, and 40.28 for total degree
3, 4, 6, and 8, respectively, averaged over the three fields.

9

2 3 4
Total degree d

100

101

102
Ru

nt
im

e
(s

)
7

2 3 4
Total degree d

127

2 3 4
Total degree d

31

BBA IBBA OBBA IBBA+FGE OBBA+FGE

Figure 4: Runtime comparison (log scale) across increasing total degrees d for polynomial systems
over F7,F127, and F31 with n = 5 variables. Bars show mean wall-clock runtimes of 100 instaces for
two baselines (BBA, IBBA) and three versions of our method (OBBA, IBBA+FGE, and OBBA+FGE).
Note the logarithmic y-axis, which reveals that higher-degree out-of-distribution systems are orders
of magnitude harder than the degree-2 systems used for training. Despite never being trained on such
hard instances, our method,particularly OBBA+FGE, maintains dramatically lower runtimes, showing
strong generalization beyond the training distribution to problems that are magnitudes harder.

Results. Figure 3 shows that the oracle generalizes to systems with n = 4 and total degrees d = 4
and d = 8, achieving speedup factors of up to 1.8× even for the hardest case (d = 8). Despite being
trained only on systems of total degree d = 2, it generalizes to these substantially more difficult
out-of-distribution systems. Figure 4 further illustrates this effect for n = 5; OBBA with FGE
achieves significant speedups on out-of-distribution systems that are an order of magnitude harder
than those encountered during training. For the hardest instances, IBBA took on average 101.22
seconds, while our method reduces this to 5.51 seconds. Notably, the Transformer was trained only
on degree-2 instances, for which IBBA has an average runtime of 7.16 seconds (cf. Table 7). This
highlights the model’s strong ability to generalize beyond its training distribution, solving problems
that are magnitudes more difficult than those in training. See Appendix E.4 for the full results.

6 Conclusion

We introduced a transformer-enhanced border basis algorithm that allows for efficiently solving
systems of polynomial equations. Our approach is the first to integrate deep learning into border
basis computation, achieving up to 3.5x speedup while fully preserving solution correctness. The
development of this oracle-guided method was based on a detailed analysis of algorithmic costs, a new
framework for generating diverse training data specific to border bases, and an efficient task-specific
polynomial representation, investigated both empirically and theoretically. We believe our work
thus provides a practical, data-efficient, and stable enhancement to the symbolic computation toolkit,
showcasing a promising way to combine machine learning with established mathematical algorithms.

Limitations and future work. This study focuses on 0-dimensional ideals over finite fields. The
extension to positive-dimensional and infinite fields is left to our future work. We note that our
setup still covers the essential cases. First, any positive-dimensional ideal over finite fields can be
reduced to 0-dimensional ones by including the field equations (e.g., x(x− 1) and y(y − 1) when
K[X] = F2[x, y]), which restricts the solution spaces to K. Nevertheless, addressing the sampling
of positive-dimensional ideals (and their Gröbner /border bases) is an independent, interesting open
problem from an algebraic perspective. Second, all our technical contributions except for those about
border bases are compatible with infinite fields; we selected finite fields as a well-known hard case.
For example, learning the parity function (i.e., the sum of binary bits with modular 2) has been
theoretically and empirically known to be hard to learn [22, 37, 57]. Besides, the finite field case
allows us to avoid introducing extra number embedding techniques [11, 69, 70] to address unbounded
coefficients. It is also worth noting that infinite-field cases have often been reduced to finite fields
through modular techniques [6] for efficient computation. For the practical utility, a scale-up to larger
systems is required, although, to the best of our knowledge, our experiments handled the largest and
most general class of systems among the related studies [35, 54], see Appendix E.2.

10

Acknowledgments. This research was partially supported by the DFG Cluster of Excellence
MATH+ (EXC-2046/1, project id 390685689) funded by the Deutsche Forschungsgemeinschaft
(DFG) as well as by the German Federal Ministry of Education and Research (fund number
01IS23025B). Hiroshi Kera was supported by JST PRESTO Grant Number JPMJPR24K4, JST
BOOST Program Grant Number JPMJBY24C6, JSPS KAKENHI Grant Number JP23KK0208, Mit-
subishi Electric Information Technology R&D Center, and JSPS Program for Forming Japan’s Peak
Research Universities (J-PEAKS) Grant Number JPJS00420230002. Yuki Ishihara was supported
by JSPS KAKENHI Grant Number JP22K13901 and Institute of Mathematics for Industry, Joint
Usage/Research Center in Kyushu University (FY2025 Short-term Joint Research “Speeding up
of symbolic computation and its application to solving industrial problems 3” (2025a012)). Yuki
Ishihara would like to thank Kazuhiro Yokoyama and Yuta Kambe for their helpful comments about
backward transforms.

References
[1] J. Abbott, C. Fassino, and M.-L. Torrente. Stable border bases for ideals of points. Journal of

Symbolic Computation, 43(12):883–894, 2008.

[2] J. Abbott, M. Kreuzer, and L. Robbiano. Computing zero-dimensional schemes. Journal of
Symbolic Computation, 39(1):31–49, 2005.

[3] M. Abril Bucero and B. Mourrain. Border basis relaxation for polynomial optimization. Journal
of Symbolic Computation, 74:378–399, 2016.

[4] A. Alfarano, F. Charton, and A. Hayat. Global Lyapunov functions: a long-standing open
problem in mathematics, with symbolic transformers, 2024.

[5] A. M. Alvarez, Q. Louveaux, and L. Wehenkel. A machine learning-based approximation of
strong branching. INFORMS Journal on Computing, 29(1):185–195, 2017.

[6] E. Arnold. Modular algorithms for computing Gröbner bases. Journal of Symbolic Computation,
35:403–419, 2003.

[7] M. F. Atiyah and I. G. MacDonald. Introduction To Commutative Algebra. Addison-Wesley
series in mathematics. Avalon Publishing, 1994.

[8] T. Becker, V. Weispfenning, and H. Kredel. Gröbner Bases: A Computational Approach to
Commutative Algebra. Graduate texts in mathematics. Springer-Verlag, 1993.

[9] G. Braun and S. Pokutta. A polyhedral characterization of Border Bases. SIAM Journal on
Discrete Mathematics, 30(1):239–265, 2016.

[10] B. Buchberger. Ein Algorithmus zum Auffinden der Basiselemente des Restklassenringes nach
einem nulldimensionalen Polynomideal (An Algorithm for Finding the Basis Elements in the
Residue Class Ring Modulo a Zero Dimensional Polynomial Ideal). PhD thesis, Mathematical
Institute, University of Innsbruck, Austria, 1965. English translation in J. of Symbolic Com-
putation, Special Issue on Logic, Mathematics, and Computer Science: Interactions. Vol. 41,
Number 3-4, Pages 475–511, 2006.

[11] F. Charton. Linear algebra with transformers. Transactions on Machine Learning Research,
2022.

[12] D. Cox, J. Little, and D. O’shea. Ideals, varieties, and algorithms, volume 3. Springer, 1992.

[13] D. A. Cox, J. Little, and D. O’Shea. Ideals, Varieties, and Algorithms: An Introduction
to Computational Algebraic Geometry and Commutative Algebra. Undergraduate Texts in
Mathematics. Springer International Publishing, 2015.

[14] R. S. Datta. Using computer algebra to find nash equilibria. In Proceedings of the 2003
International Symposium on Symbolic and Algebraic Computation, ISSAC ’03, page 74–79,
New York, NY, USA, 2003. Association for Computing Machinery.

[15] T. W. Dubé. The structure of polynomial ideals and Gröbner bases. SIAM Journal on Computing,
19(4):750–773, 1990.

11

[16] C. Fassino. Almost vanishing polynomials for sets of limited precision points. Journal of
Symbolic Computation, 45(1):19–37, 2010.

[17] J.-C. Faugère. A new efficient algorithm for computing Gröbner bases (F4). Journal of Pure
and Applied Algebra, 139(1):61–88, 1999.

[18] J.-C. Faugère. A new efficient algorithm for computing Gröbner bases without reduction to
zero (F5). In Proceedings of the 2002 International Symposium on Symbolic and Algebraic
Computation, ISSAC ’02, page 75–83, New York, NY, USA, 2002. Association for Computing
Machinery.

[19] D. J. Foster, A. Block, and D. Misra. Is behavior cloning all you need? understanding horizon
in imitation learning. In A. Globerson, L. Mackey, D. Belgrave, A. Fan, U. Paquet, J. Tomczak,
and C. Zhang, editors, Advances in Neural Information Processing Systems, volume 37, pages
120602–120666. Curran Associates, Inc., 2024.

[20] A. Giovini, T. Mora, G. Niesi, L. Robbiano, and C. Traverso. “one sugar cube, please” or
selection strategies in the buchberger algorithm. In Proceedings of the 1991 International
Symposium on Symbolic and Algebraic Computation, ISSAC ’91, page 49–54, New York, NY,
USA, 1991. Association for Computing Machinery.

[21] G.-M. Gruel and G. Pfister. A Singular Introduction to Commutative Algebra, 2nd Edition.
Sringer Verlag, 2008.

[22] M. Hahn and M. Rofin. Why are sensitive functions hard for transformers? In Proceedings
of the Annual Meeting of the Association for Computational Linguistics, pages 14973–15008,
2024.

[23] D. Heldt, M. Kreuzer, S. Pokutta, and H. Poulisse. Approximate computation of zero-
dimensional polynomial ideals. Journal of Symbolic Computation, 44(11):1566–1591, 2009.

[24] J. Horácek, M. Kreuzer, and A. S. M. Ekossono. Computing boolean border bases. In 2016
18th International Symposium on Symbolic and Numeric Algorithms for Scientific Computing
(SYNASC), pages 465–472, 2016.

[25] C. Hou, F. Nie, and D. Tao. Discriminative vanishing component analysis. In Proceedings of the
Thirtieth AAAI Conference on Artificial Intelligence, pages 1666–1672, Palo Alto, California,
2016. AAAI Press.

[26] Z. Huang, M. England, D. J. Wilson, J. Bridge, J. H. Davenport, and L. C. Paulson. Using
machine learning to improve cylindrical algebraic decomposition. Mathematics in Computer
Science, 13:461–488, 2019.

[27] Y. Ikematsu, R. Perlner, D. Smith-Tone, T. Takagi, and J. Vates. HFERP-a new multivariate
encryption scheme. In Post-Quantum Cryptography: 9th International Conference, PQCrypto
2018, Fort Lauderdale, FL, USA, April 9-11, 2018, Proceedings 9, pages 396–416. Springer,
2018.

[28] A. Kehrein and M. Kreuzer. Characterizations of border bases. Journal of Pure and Applied
Algebra, 196(2):251–270, 2005.

[29] A. Kehrein and M. Kreuzer. Computing border bases. Journal of Pure and Applied Algebra,
205(2):279–295, 2006.

[30] H. Kera. Border basis computation with gradient-weighted normalization. In Proceedings of
the 2022 International Symposium on Symbolic and Algebraic Computation, pages 225–234,
New York, 2022. Association for Computing Machinery.

[31] H. Kera and Y. Hasegawa. Approximate vanishing ideal via data knotting. In Proceedings
of the Thirty-Second AAAI Conference on Artificial Intelligence, pages 3399–3406, Palo Alto,
California, 2018. AAAI Press.

[32] H. Kera and Y. Hasegawa. Spurious vanishing problem in approximate vanishing ideal. IEEE
Access, 7:178961–178976, 2019.

12

[33] H. Kera and Y. Hasegawa. Gradient boosts the approximate vanishing ideal. In Proceedings
of the Thirty-Fourth AAAI Conference on Artificial Intelligence, pages 4428–4425, Palo Alto,
California, 2020. AAAI Press.

[34] H. Kera and Y. Hasegawa. Monomial-agnostic computation of vanishing ideals. Journal of
Computational Algebra, 11:100022, 2024.

[35] H. Kera, Y. Ishihara, Y. Kambe, T. Vaccon, and K. Yokoyama. Learning to compute Gröbner
bases, 2024.

[36] E. Khalil, P. Le Bodic, L. Song, G. Nemhauser, and B. Dilkina. Learning to branch in
mixed integer programming. In Proceedings of the AAAI conference on artificial intelligence,
volume 30, 2016.

[37] J. Kim and T. Suzuki. Transformers provably solve parity efficiently with chain of thought. In
The Thirteenth International Conference on Learning Representations, 2025.

[38] A. Kipnis, J. Patarin, and L. Goubin. Unbalanced oil and vinegar signature schemes. In
International Conference on the Theory and Applications of Cryptographic Techniques, pages
206–222. Springer, 1999.

[39] F. J. Király, M. Kreuzer, and L. Theran. Dual-to-kernel learning with ideals. arXiv,
abs/1402.0099, 2014.

[40] M. Kreuzer and L. Robbiano. Computational Commutative Algebra 2, volume 2 of Algorithms
and Computation in Mathematics. Springer, 2005.

[41] G. Lample and F. Charton. Deep learning for symbolic mathematics. In International Conference
on Learning Representations, 2020.

[42] J. B. Lasserre. Global optimization with polynomials and the problem of moments. SIAM
Journal on Optimization, 11(3):796–817, 2001.

[43] R. Laubenbacher and B. Stigler. A computational algebra approach to the reverse engineering
of gene regulatory networks. Journal of Theoretical Biology, 229(4):523–537, 2004.

[44] R. Laubenbacher and B. Sturmfels. Computer algebra in systems biology. American Mathemat-
ical Monthly, 116(10):882–891, 2009.

[45] R. Lidl and H. Niederreiter. Finite Fields. Encyclopedia of Mathematics and its Applications.
Cambridge University Press, 2 edition, 1996.

[46] J. Limbeck. Computation of approximate border bases and applications. PhD thesis, Passau,
Universität Passau, 2013.

[47] R. Livni, D. Lehavi, S. Schein, H. Nachliely, S. Shalev-Shwartz, and A. Globerson. Vanishing
component analysis. In Proceedings of the 30th International Conference on Machine Learning,
volume 28(1) of Proceedings of Machine Learning Research, pages 597–605, Atlanta, Georgia,
USA, June 2013. PMLR.

[48] E. N. Lorenz. Deterministic nonperiodic flow. Journal of Atmospheric Sciences, 20(2):130 –
141, 1963.

[49] I. Loshchilov and F. Hutter. Decoupled weight decay regularization. In International Conference
on Learning Representations, 2019.

[50] E. W. Mayr and A. R. Meyer. The complexity of the word problems for commutative semigroups
and polynomial ideals. Advances in Mathematics, 46(3):305–329, 1982.

[51] M. Mitzenmacher and S. Vassilvitskii. Algorithms with predictions, 2020.

[52] H. M. Möller and B. Buchberger. The construction of multivariate polynomials with preassigned
zeros. In Computer Algebra. EUROCAM 1982. Lecture Notes in Computer Science, pages
24–31. Springer Berlin Heidelberg, 1982.

13

[53] H. Park and G. Regensburger, editors. Gröbner Bases in Control Theory and Signal Processing.
De Gruyter, 2007.

[54] D. Peifer, M. Stillman, and D. Halpern-Leistner. Learning selection strategies in buchberger’s
algorithm. In Proceedings of the 37th International Conference on Machine Learning, ICML’20.
JMLR.org, 2020.

[55] N. Pelleriti, M. Zimmer, E. Wirth, and S. Pokutta. Approximating latent manifolds in neural
networks via vanishing ideals, 2025.

[56] S. Ross, G. Gordon, and D. Bagnell. A reduction of imitation learning and structured prediction
to no-regret online learning. In G. Gordon, D. Dunson, and M. Dudík, editors, Proceedings of
the Fourteenth International Conference on Artificial Intelligence and Statistics, volume 15 of
Proceedings of Machine Learning Research, pages 627–635, Fort Lauderdale, FL, USA, 11–13
Apr 2011. PMLR.

[57] S. Shalev-Shwartz, O. Shamir, and S. Shammah. Failures of gradient-based deep learning. In
Proceedings of the 34th International Conference on Machine Learning - Volume 70, ICML’17,
page 3067–3075. JMLR.org, 2017.

[58] H. Stewenius. Gröbner Basis Methods for Minimal Problems in Computer Vision. PhD thesis,
Mathematics (Faculty of Engineering), 2005.

[59] W. Sun, A. Venkatraman, G. J. Gordon, B. Boots, and J. A. Bagnell. Deeply AggreVaTeD:
Differentiable imitation learning for sequential prediction. In D. Precup and Y. W. Teh, edi-
tors, Proceedings of the 34th International Conference on Machine Learning, volume 70 of
Proceedings of Machine Learning Research, pages 3309–3318. PMLR, 06–11 Aug 2017.

[60] A. Suzuki and Y. Sato. A simple algorithm to compute comprehensive gröbner bases using
gröbner bases. In Proceedings of the 2006 International Symposium on Symbolic and Algebraic
Computation, ISSAC ’06, page 326–331, New York, NY, USA, 2006. Association for Computing
Machinery.

[61] W. Vasconcelos, D. Eisenbud, D. Grayson, J. Herzog, and M. Stillman. Computational Methods
in Commutative Algebra and Algebraic Geometry. Algorithms and Computation in Mathematics.
Springer Berlin Heidelberg, 2004.

[62] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, L. u. Kaiser, and
I. Polosukhin. Attention is all you need. In Advances in Neural Information Processing Systems,
volume 30. Curran Associates, Inc., 2017.

[63] E. Wenger, M. Chen, F. Charton, and K. E. Lauter. SALSA: Attacking lattice cryptography
with Transformers. In Advances in Neural Information Processing Systems, volume 35, pages
34981–34994, 2022.

[64] E. S. Wirth, H. Kera, and S. Pokutta. Approximate vanishing ideal computations at scale. In
International Conference on Learning Representations, 2023.

[65] E. S. Wirth and S. Pokutta. Conditional gradients for the approximately vanishing ideal. In
Proceedings of The 25th International Conference on Artificial Intelligence and Statistics,
volume 151, pages 2191–2209, 28–30 Mar 2022.

[66] W. Xu, L. Hu, M. C. Tsakiris, and L. Kneip. Online stability improvement of gröbner basis
solvers using deep learning. In 2019 International Conference on 3D Vision (3DV), pages
544–552. IEEE, 2019.

[67] T. Yasuda, X. Dahan, Y.-J. Huang, T. Takagi, and K. Sakurai. MQ challenge: hardness evaluation
of solving multivariate quadratic problems. Cryptology ePrint Archive, 2015.

[68] M. Zare, P. M. Kebria, A. Khosravi, and S. Nahavandi. A survey of imitation learning: Algo-
rithms, recent developments, and challenges. IEEE Transactions on Cybernetics, 54(12):7173–
7186, 2024.

14

[69] J. Zausinger, L. Pennig, K. Chlodny, V. Limbach, A. Ketteler, T. Prein, V. M. Singh, M. Danziger,
and J. Born. Augmenting language models with regression loss on number tokens for arithmetic
reasoning. In The 4th Workshop on Mathematical Reasoning and AI at NeurIPS’24, 2024.

[70] T. Zhou, D. Fu, M. Soltanolkotabi, R. Jia, and V. Sharan. Fone: Precise single-token number
embeddings via fourier features, 2025.

15

A Theory of Oracle Border Basis Algorithm

In this section we provide proofs to lemmas and theorem in Section 3. We begin by providing the full
algorithm.

Algorithm 2: Border Bases Algorithm (BBA and OBBA , simplified)

Input :Polynomial system F = {f1, . . . , fr} ⊂ K[X]
1 d← max{deg(fi) | 1 ≤ i ≤ r}; L0 ← ⟨T ≤dn ⟩k; V0 ← VectorSpaceBasis(⟨F ⟩k);
2 while true do
3 Ci ← V+

i

4 Ci ← Oracle(Li,Vi)
5 Vi+1 ← BasisExtension(Vi, Ci,Li)
6 if Vi+1 ̸= Vi then
7 Vi ← Vi+1

8 continue
9 end

10 if not BorderBasisCheck(Li,Vi) then
11 d← d+ 1

12 Li+1 ← ⟨T ≤dn ⟩k // Update universe
13 continue
14 end
15 else
16 Li+1 ← Li

17 end
18 break
19 end
20 return FinalReduction(Vi,Li)

The oracle is restricted to k consecutive non-full expansions, after which we fall back to one final full
expansion to ensure correctness. We continue by stating the correctness theorem of the oracle-guided
border basis algorithm.

BorderBasisCheck corresponds to the check if the border of the tentative order ideal L \ LT(V) is
already in L. FinalReduction refers to the algorithm with the same name introduced by [28].
Theorem A.1. The oracle-guided border basis algorithm terminates and the output is a border basis.

Proof. There are two techniques to ensure the correctness of the oracle-guided border basis algorithm,
one of which will be stated here. After the oracle has been invoked k times, we make one more full
expansion. If BasisExtension yields additional generators, we fall back to the standard border basis
algorithm. This ensures that the output is a border basis, as we could have started with the current
iterate V and applied the standard border basis algorithm. For this we know correctness, so we are
done.

A.1 Alternative termination criteria

To avoid computing a full expansion all the time, we may rely on the Buchberger Criterion for Border
Basis from [29]. This criteria is often a lightweight alternative to the full expansion. We can directly
apply it to the result of the Algorithm 2. If it yields that we have a border basis, we are done. If it fails,
we go back to the last iterate Vi and obtain termination by the standard BBA. In practice, we may
combine this approach with a learned heuristic, that decides based on the size of the tentative order
ideal, whether a full expansion is necessary or we can directly proceed to check for the Buchberger
Criterion.
Lemma A.2. Assume L needs no further expansion and let O be the order ideal of the border basis
ultimately produced by BBA in Algorithm 1. If |L| − |V| = |O|, then no additional expansions are
necessary.

16

Proof. Assume towards a contradiction, a further expansion of V is required for termination. Thus,
in particular it holds we can add at least one element to V , increasing its cardinality by 1. But this
contradicts the assumption that |L| − |V| = |O|.

Setup. Throughout this section we analyse the final stage of computation, where the computational
universe L is fixed. Let V0 be the first generator set in this stage and assume the vanilla BBA
terminates after T full expansions, yielding VT .
Definition A.3 (Border distance). The border distance between L and a generator set V is

d(L,V) = “# of full BBA expansions still required for V”.

Hence d(L,V0) = T and d(L,VT) = 0.

Why conditional error? A k-order oracle may cut the border distance by any amount s ≤
min{k, d(L,Vt)}. If s < min{k, d(L,Vt)} the oracle has missed necessary expansions; if s = 0
it has made no progress at all. To separate progress from waste we introduce a conditional error
measure.
Definition A.4 (Conditional prediction error). Invoke a k-order oracle at iteration t ∈ {0, . . . , T}.
After its k calls let the border distance have dropped by s and denote by Q the minimal number of
expansions that suffice for an s order oracle to make progress s. The s-progress prediction error is

e(s) =

k−1∑
i=0

∣∣ Oracle(L,Vt+i)
∣∣ − Q.

An oracle is ideal if s = k and e(s) = 0.

Benchmark: the optimal expansion sequence. Let OPT be the cost (number of polynomial
reductions) of an omniscient algorithm that, starting from Vt, chooses the minimal set of expansions
for s subsequent expansions, decreasing the border distance by s.
Theorem A.5 (Cost gap to optimal). Consider a final-stage instance with universe L, order ideal O,
and invoke a k-order oracle at iteration t. If it achieves progress s with conditional error e(s), then

cost
(
OBBA

)
− OPT ≤ e(s) + n max{T − t− s, 0}

(
|L| − |O|

)
.

Proof. We analyse the overhead by distinguishing two components: The first component is directly
given by the prediction error as it determines how many more expansions were done than necessary.
By definition, the prediction error is e(s) =

∑k−1
i=0 |Oracle(L,Vt+i)| −Q and Q is the cost of the

optimal expansion sequence. This covers cost difference for the first s iterations. Suppose now, that
T − t− s = 0. Then, the algorithm terminates and no further error is incurred. Otherwise, we might
incur an additional cost for having expanded the generator set V too much without reducing the
border distance beyond s. The size of constructed generator set is at most |L| − |O|. We know that
from the optimal s expansions, after k − s expansions, the set V has at least the size of the generator
set that was predicted by the oracle. Therefore, there are at most T − t− s remaining iterations that
incur the higher cost which are upper bounded by n(|L| − |O|) times per expansion.

The overhead therefore consists of two terms: the first grows linearly with the prediction error, while
the second reflects a hidden cost for making only progress s. Specifically, if the oracle expands the
generator set V too much without reducing the border distance beyond s, we incur additional cost in
the following T − t− s iterations. This theorem is practically relevant, as it further justifies the use
of the k-order oracle in the final stage of computation. Being conservative with the use of the oracle
(i.e. such that T is smaller than k), avoids the worst case additional cost.

B Border basis sampling

B.1 Order ideal sampling

We introduced the overview of order ideal sampling in Section 4.1.1. This section presents the formal
algorithm of the order ideal sampling given . The extension to general n-dimensional case is based
on the same idea, but it requires a more careful formalization than one may expect.

17

Recall our idea. A finite set of terms O is called an order ideal if for any t ∈ O, its divisors are also
all included in O. Importantly, for any terms t1, t2 ∈ Tn, the term set Oti := {all the divisors of ti}
is an order ideal for each i, and their union Ot1,t2 = Ot1 ∪ Ot2 is also an order ideal. We sample
order ideals based on this observation. During the iterative process, we maintain a list Q of cells. At
each iteration, we pop out a cell C from Q, and split it to generate new cells. The cells with sufficient
size are appended to Q, and this process iterates until Q becomes empty.

We now formalize this idea. From now on, we work on the exponent vectors of terms. We denote a
vector v ∈ Nn with a replacement of the i-th entry with a scalar p ∈ N by v[i←p]. A cell is a tuple of
n segments and an intersecting point p ∈ Nn.
Definition B.1. Let a, b ∈ Nn. The following set is called the segment of them.

∆(a, b) =
{
r := (r1, . . . , rn)

⊤ ∈ Nn | min(ai, bi) ≤ ri ≤ max(ai, bi), i = 1, . . . , n
}
. (B.1)

The maximum point of the segment is defined by ∆(a, b) := (max(a1, b1), . . . ,max(an, bn))
⊤, and

the minimum point ∆(a, b) is defined similarly.

Definition B.2. Let ∆1, . . . ,∆n be some segments such that ∆1 = · · · = ∆n = l. The cell is a
tuple C = ({∆i}ni=1, l), and l is called the intersecting point. Further, the maximum point of the cell
is u = (u1, . . . , un)

⊤ ∈ Nn, where ui = min(∆1i, . . . ,∆i−1i,∆i+1i, . . .∆ni) for i = 1, . . . , n.
The cell is called valid if l and u has at least two different entries, and maxi∈{1,...,n} ui − li ≥ 2.

Let d = (d1, . . . , dn)
⊤ ∈ Nn be the vector of the maximum degree of variables. The initial cell

is defined by C0 = ({∆(0, diei)}ni=1,0), and let Q = [C0], R = [] be lists. Then, we repeat the
following until Q becomes empty or the number of iterations reaches the predesignated limit (if any).

1. Select a cell C = ({∆i}ni=1, l) ∈ Q and remove it from the list.

2. Sample a vector p = (p1, . . . , pn)
⊤ ∈ Nn with pi ∈ [li, ui] for i = 1, . . . , n.

3. Append a tuple (l,p) to R.

4. For i = 1, . . . , n, obtain a new cell Cnew
i =

({
∆new

j

}n

j=1
, l[i←pi]

)
, where ∆new

j =

∆
(
∆

[j←pj]
j ,∆j

)
for j ̸= i and otherwise ∆new

j = ∆(l,p). Append Cnew
i to Q if it is

a valid cell.

We then have an order ideal

O =

xa | a ∈ ⋃
(l,p)∈R

n×
i=1

[li, pi]

. (B.2)

Theorem B.3. The order ideal sampling algorithm terminates within a finite number of steps.

Proof. Termination. We prove that the order ideal sampling algorithm terminates after a finite
number of iterations.

LetC = ({∆i}ni=1, l) be a cell, and denote its maximum point as u = (u1, . . . , un). In each iteration,
the algorithm pops one such cell from the queue Q, samples a point p ∈×n

i=1
[li, ui], and generates

at most n new valid cells Cnew
1 , . . . , Cnew

n .

Case 1: p ̸= l. For any i, the new cell Cnew
i contains at least one segment that is strictly smaller than

the corresponding one in C. In particular, its i-th segment is ∆new
i = ∆(l,p), which has length zero

in coordinate j if pj = lj , and is strictly shorter otherwise. Therefore, the total number of exponent
vectors in Cnew

i is strictly less than that in C.

Case 2: p = l. For any i, the new cell Cnew
i becomes invalid. Indeed, let u′ = (u′1, . . . , u

′
n) be its

maximum point. Since ¯∆new
i = l by construction, and for all k ̸= i the k-th segment has lower and

upper bounds both equal to lk, we have u′k = l′k for all k. This violates the validity condition, which
requires that l ̸= u and maxi(ui − li) ≥ 2.

Therefore, in either case, the number of valid cells does not increase: Case 1 generates strictly smaller
valid cells, and Case 2 generates no valid cells. Moreover, since the exponent space [0, d1]× · · · ×

18

[0, dn] is finite, and each valid cell corresponds to a distinct subregion defined by its segments, the
total number of distinct valid cells is finite.

Hence, the queue Q becomes empty after finitely many iterations, and the algorithm terminates.

Empirical results. Figure 5 shows a gallery of randomly sampled order ideals in the two-
dimensional case. As can be seen, it involves diverse order ideals.

B.2 Border basis construction from order ideals: Proof of Theorem 4.2

Definition B.4. Given a set of points P = {p1, . . . ,pν} ⊂ Kn, with gentle abuse of notation, the
evaluation vector of a polynomial h ∈ K[X] is defined by

h(X) = (h(p1) · · · h(pν))
⊤ ∈ Kν .

For a set of polynomialsH = {h1, . . . , hµ} ⊂ K[X], the evaluation matrix is defined as

H(P) = (h1(P) · · · hµ(P)) ∈ Kν×µ.

The proof of Theorem 4.2 immediately follows from the following lemma.

Lemma B.5. Let O = {o1, . . . , oν} ⊂ Tn and G ⊂ K[X] be an order ideal and its O-border
prebasis, respectively. Let P ⊂ Kn be a set of s points. If the following hold,

1. ⟨o1(P), . . . , oν(P)⟩k = Kν .

2. G ⊂ I(P).

then, G is the O-border basis of the vanishing ideal I(P).

Proof. We first show that G is the O-border basis of ⟨G⟩. The set G is a border prebasis and
(obviously) generates ⟨G⟩, so we only need to show that K[X] = ⟨G⟩ ⊕ ⟨O⟩k holds. The border
basis division algorithm [28] allows us to represent any polynomial f ∈ K[X] as f = g + h
with some g ∈ ⟨G⟩ and h ∈ ⟨O⟩k, which implies K[X] = ⟨G⟩ + ⟨O⟩. Note that this algorithm
only requires G to be a border prebasis (not necessarily a border basis). From the first assumption,
o1(P), . . . , oν(P) form a basis of Kν , and thus, h ∈ ⟨O⟩K has h(P) = 0 only when h = 0.
Noting that ∀g ∈ ⟨G⟩, g(P) = 0 from the second assumption, we have ⟨G⟩ ∩ ⟨O⟩K = {0}. Thus,
we have K[X] = ⟨G⟩ ⊕ ⟨O⟩, and G is the O-border basis of ⟨G⟩. Furthermore, the fact that
I(P) ∩ ⟨O⟩k = {0} implies I(P) ⊂ ⟨G⟩. With the second assumption, we have I(P) = ⟨G⟩, and
thus, G is the O-border basis of I(P).

Theorem 4.2. Let O = {o1, . . . , oν} and ∂O = {b1, . . . , bµ} be an order ideal and its border,
respectively. Let P = {p1, . . . ,pν} ⊂ Kn be a set of ν distinct points. Let

M(P) := [∂O(P) O(P)] :=

b1(p1) · · · bµ(p1) o1(p1) · · · oν(p1)
...

...
...

...
b1(pν) · · · bµ(pν) o1(pν) · · · oν(pν)

 ∈ Kν×(µ+ν). (4.2)

If O(P) is full-rank, the nullspace of M(P) is µ-dimensional and spanned by {vi}µi=1, where
vi = (0, . . . , 1, . . . , 0, ci1, . . . , ciν)

⊤, with the first µ entries being zero except for a 1 in the i-th
position. The set {gi = bi −

∑ν
j=1 cijoj}

µ
i=1 is the O-border basis of the vanishing ideal I(P).

Proof of Theorem 4.2. The existence of such basis set {vi}µi=1 readily follows from the assumption
that O(P) is full-rank. The second statement follows from Lemma B.5.

19

B.3 Comparison with Buchberger–Möller-family algorithms

The Buchberger–Möller (BM) algorithm [2, 52] is a method that takes as input a set of points P and
computes a Gröbner basis of the vanishing ideal I(P). This algorithm has been extensively studied
and adapted to a variety of scenarios, not only in computer algebra [1, 2, 9, 16, 23, 29, 30, 34, 46],
but also in machine learning [25, 31–33, 39, 47, 55, 64, 65].

Border basis variants of the BM algorithm allow us to sample border bases from randomly generated
sets of points and a term order ≺. However, only a restricted class of border bases can be sampled in
this way. Recall that a border basis G = {g1, . . . , gs} is associated with an order ideal O, and for
each border term bi ∈ ∂O, the corresponding border basis polynomial takes the form

gi = bi −
∑
t∈O

ctt ∈ K[X], where ct ∈ K. (B.3)

Remark B.6. The O-border basis G = {g1, . . . , gs} produced by BM-type algorithms with a term
order ≺ is a special case satisfying LT(gi) = bi for all i = 1, . . . , s. That is, the coefficients ct vanish
for any t ∈ O such that t ≻ bi. Due to this algebraic constraint, the collection of such border bases
forms a Zariski-closed (i.e., measure-zero) subset in the set of all border bases.

Such special border bases can also be characterized as those admitting some order ideal O for which
there exists an “O-Gröbner basis”G′ generating the same ideal, satisfying LT(K[X])\LT(⟨G′⟩) = O.
While border bases are defined with respect to an order ideal O, Gröbner bases are defined with
respect to a term ordering. The former is a strictly more general notion in the zero-dimensional
case. For instance, one can find examples of border bases for which no corresponding Gröbner basis
exists [9].

C Backward transform

C.1 Proof of Theorem. 4.5

Theorem 4.5. Let K be a field of characteristic 0, I a zero-dimensional radical ideal of K[X],
and d a positive integer. Let G ∈ K[X]s be a generating set of I and F = AG ∈ K[X]r a set of
polynomials given by a generic matrix A ∈ K[X]r×s≤d .

1. If r ≤ n and G is a Gröbner basis, we have ⟨F ⟩ ≠ ⟨G⟩.

2. If r > n, we have ⟨F ⟩ = ⟨G⟩.

Proof. We write an outline of the proof (see below for details). When r < n, the codimension of
⟨AG⟩ is less than n and thus ⟨F ⟩ ≠ ⟨G⟩ holds for any A ∈ K[X]r×s≤d . When r ≥ n, ⟨F ⟩ = ⟨G⟩ ∩ J
for some ideal J . If r = n, then J ̸= K[X] for a generic matrix A ∈ K[X]r×s≤d and thus ⟨F ⟩ ≠ ⟨G⟩.
If r ≥ n, then J = K[X] for a generic matrix A ∈ K[X]r×s≤d and thus ⟨F ⟩ = ⟨G⟩.

To prove ⟨AG⟩ = ⟨G⟩ for a generic matrix A ∈ K[X]r×s≤d , we consider a parametric matrix A.
Let hij =

∑
|α|≤d aα,ijX

α be a parametric polynomial of total degree d with parameters aα,ij and
A = (hij) an r × s matrix with hij as (i, j) entry. Let A = {aα,ij} be the set of all parameters
of A and D the cardinality of A. For a generating set G = {g1, . . . , gs} of a zero-dimensional
radical ideal I, let fj =

∑s
k=1 hjkgk for j ∈ {1, . . . , r}, that is, AG = {f1, . . . , fr}. For a

subset S in a ring R, we also write ⟨S⟩R when we emphasize that ⟨S⟩ is an ideal of R. Obviously,
⟨AG⟩K[A,X] ⊂ ⟨G⟩K[A,X]. For a point q ∈ KD, we denote by σq the substitution map from
K[A, X] → K[X], where σq(f(A, X)) = f(q,X). Then, A := σq(A) := (σq(hij)) ∈ K[X]r×s≤d
is a generic matrix for a generic q ∈ KD. Thus, it is enough to show that there exists a dense set C
of KD such that ⟨σq(A)G⟩ = ⟨G⟩ for any q ∈ C. As ⟨σq(A)G⟩ ⊂ ⟨G⟩ always holds, the inverse
inclusion implies the equality. First, we recall some fundamental notions of Commutative Algebra as
follows.

20

Definition C.1 (Primary Decomposition). Let I be an ideal. A finite set of primary ideals
{Q1, . . . , Ql} is a primary decomposition of I if I = Q1 ∩ · · · ∩ Ql. A primary decomposition
{Q1, . . . , Ql} of I is said to be minimal if the length l is minimum among all primary decompositions
of I. For a minimal primary decomposition {Q1, . . . , Ql} of I, each element Qi is called a primary
component of I. In addition, a primary component Qi is said to be isolated if

√
Qi ̸⊂

√
Qj for any

j ̸= i, where
√
Qi is the radical ideal of Qi.

Remark C.2 ([7], Corollary 4.11). The isolated primary components of I are uniquely determined
from I. In other words, they are independent of a particular primary decomposition of I.

Independent sets are a useful tool to compute the dimension of a polynomial ideal.
Definition C.3 (Independent Set). Let U be a subset of A ∪X . For an ideal I of K[A, X], U is
called an independent set mod I if I ∩K[U] = {0}.
Remark C.4 ([21], Theorem 3.5.1 (6)). The cardinality of an independent set mod I is less than or
equal to the dimension of I. In other words, if |U | > dim(I) then U is not an independent set mod
I.

Let ι be the inclusion map ι : K[A, X] → K(X)[A] such that ι(f) = f . For a prime ideal I of
K(X)[A], the inverse image ι−1(I) = I ∩K[A, X] is also prime as follows.
Lemma C.5 ([8], Lemma 1.123). Let I be a prime ideal of K(X)[A]. Then, I ∩K[A, X] is a prime
ideal of K[A, X].

The following lemma is a simple method for determining Gröbner bases under a certain condition.
Lemma C.6 ([8], Lemma 5.66 and Theorem 5.68). Let ≻ be a term ordering and G = {g1, . . . , gs}.
If LM(gi) and LM(gj) are disjoint for any i ̸= j ∈ {1, . . . , r}, then G is a Gröbner basis of ⟨G⟩ with
respect to ≻.

Recall that I : h = {f ∈ K[A, X] | fh ∈ I} is the ideal quotient of an ideal I with respect to a
polynomial h of K[A, X]. The ideal quotient can be used to break the ideal I into two ideals as
follows.
Lemma C.7 ([21], Lemma 3.3.6 (Splitting tool)). Let I be an ideal of K[A, X] and h a polynomial
of K[A, X]. If I : h = I : h2, then I = (I : h) ∩ (I + ⟨h⟩).

Lemma C.7 is often used in conjunction with the following lemma, i.e., I = (I : hm) ∩ (I + ⟨hm⟩)
for a sufficiently large integer m.
Lemma C.8 ([21], Proposition 4.3.1 (2)). Let I be an ideal ofK[A, X] andU a maximal independent
set mod I, that is, U is an independent set mod I with |U | = dim(I). Let S = {τ1, . . . , τl} ⊂ I ⊂
K[A, X] be a Gröbner basis of IK(U)[(A ∪X) \ U] and let h = lcm(LC≻(τ1), . . . , LC≻(τl)) ∈
K[U]. Then, IK(U)[(A ∪X) \ U] ∩K[A, X] = I : hm for a sufficiently large integer m.

Let PT D be the set of all terms of K[A]. Then, PT D × Tn := {AαXβ | Aα ∈ PT D, X
β ∈

Tn} is the set of all terms of K[A, X]. For a term ordering ≻X on Tn and ≻A on PT D, the
product ordering ≻X×A is the ordering such that Aα1Xβ1 ≻X×A Aα2Xβ2 if Xβ1 ≻X Xβ2 or
"Xβ1 = Xβ2 and Aα1 ≻A Aα2". In contrast, the product ordering ≻A×X is the ordering such
that Aα1Xβ1 ≻A×X Aα2Xβ2 if Aα1 ≻A Aα2 or "Aα1 = Aα2 and Xβ1 ≻X Xβ2". For a product
ordering ≻Y1×Y2

, we denote by LCY2
(f) ∈ K[Y2] the leading coefficient of f in K(Y2)[Y1] with

respect to ≻Y1
for f ∈ K[Y1, Y2]. We also say that ≻Y1×Y2

is a block ordering with Y1 ≻≻ Y2. Let
V (J) = {q ∈ KD | f(q) = 0,∀f ∈ J} be the variety of an ideal J of K[A]. The following lemma
is useful when considering Gröbner bases for specialized parametric ideals.
Lemma C.9 ([60], Lemma 2.2). Let G be a Gröbner basis of an ideal ⟨F ⟩ in K[A, X] with
respect to a product ordering ≻X×A. If σq(LCA(g)) ̸= 0 for each g ∈ G \ K[A], then for any
q ∈ V (⟨G ∩K[A]⟩) ⊂ KD, σq(G) is a Gröbner basis of ⟨σq(F)⟩ in K[X] with respect to ≻X .

We recall that the codimension of an ideal I ofK[Y], denoted by codim(I), is equal to |Y |−dim(I).
The following lemma can be used to check the radicalness of an unmixed ideal over a field of
characteristic 0.
Lemma C.10 ([61] Proposition 3.65). Let K be a field of characteristic 0 and I = ⟨g1, . . . , gs⟩ an
unmixed ideal of K[A, X], i.e., all the primary components of a minimal primary decomposition of I

21

have the same codimension. Let c be the codimension of I and Jac(g1, . . . , gs) = (∂(g1,...,gs)∂(X,A)) the
Jacobian matrix of {g1, . . . , gs} with respect to X ∪A. Then, the following conditions are equivalent.

1. I is radical,

2. there exists a c× c minor determinant f of Jac(g1, . . . , gs) such that I : f = I.

The parametric ideal ⟨AG⟩ = ⟨f1, . . . , fr⟩ satisfies the following properties.

Proposition C.11. Let ⟨AG⟩e = ⟨AG⟩K(X)[A] and ⟨AG⟩ec = ⟨AG⟩e ∩K[A, X]. Then,

1. ⟨AG⟩ec is a prime ideal of K[A, X],

2. AG is a Gröbner basis of ⟨AG⟩e with respect to an arbitrary term ordering on K(X)[A],

3. Fix a term ordering ≻ on K(X)[A]. For h = lcm(LC≻(f1), . . . , LC≻(fr)) ∈ K[X] and a
sufficiently large integer m

⟨AG⟩ec = ⟨AG⟩ : hm,

4. codim(⟨AG⟩) ≤ n and codim(⟨AG⟩ec) = r. If r ≥ n, then ⟨AG⟩ec ̸⊂ ⟨G⟩K[A,X].

Proof. 1. Since AG is a set of linear polynomials over K(X), ⟨AG⟩e is a prime ideal of
K(X)[A]. By Lemma C.5, ⟨AG⟩e ∩K[A, X] is a prime ideal of K[A, X].

2. Since fi and fj do not have common variables except X , LM(fi) and LM(fj) are disjoint
for any i ̸= j ∈ {1, . . . , r} with respect to any term ordering on K(X)[A]. Thus, by
Lemma C.6, AG is a Gröbner basis of ⟨AG⟩e with respect to an arbitrary term ordering on
K(X)[A]

3. Since X is a maximal independent set mod ⟨AG⟩ and ⟨AG⟩e = ⟨AG⟩K(X)[A] =

⟨AG⟩K(X)[A], we obtain the equation from Lemma C.8.

4. Since ⟨G⟩K[X] is a zero-dimensional ideal of K[X],

codim(⟨G⟩K[A,X]) = codim(⟨G⟩K[X]) = n.

As ⟨AG⟩K[A,X] ⊂ ⟨G⟩K[A,X], codim(⟨AG⟩K[A,X]) ≤ codim(⟨G⟩)K[A,X] = n. Since
codim(⟨AG⟩ec) = codim(⟨AG⟩e) and AG consists of independent r-linear polynomi-
als over K(X)[A], codim(⟨AG⟩ec) = codim(⟨AG⟩e) = r. Assume r ≥ n. Then
codim(⟨AG⟩ec) ≥ codim(⟨G⟩K[A,X]). If ⟨AG⟩ec ⊂ ⟨G⟩K[A,X] then ⟨AG⟩ec =

⟨G⟩K[A,X] since ⟨AG⟩ec is a prime ideal by (1). However, this implies ⟨AG⟩e contains
a unit g1 ∈ G in K(X) and thus ⟨AG⟩e = K(A)[X], which contradicts (1). Therefore,
⟨AG⟩ec ̸⊂ ⟨G⟩K[A,X].

The parametric ideal ⟨AG⟩ can be decomposed into two ideals as follows.
Proposition C.12. If r ≥ n, then there exists an ideal J of K[A, X] such that

⟨AG⟩ = ⟨G⟩ ∩ J
and codim(J) ≥ min(r, n+ 1). Moreover, if r > n, then J ∩K[A] ̸= {0}.

Proof. Let P = ⟨AG⟩ec = ⟨AG⟩K(X)[A] ∩ K[A, X]. Consider the parameter a0,ij with
respect to α = 0 of aα,ijXα in hij . For i ∈ {1, . . . , s}, let ≻i be a block ordering
{a0,1i, a0,2i, . . . , a0,ri} ≻i≻i A \ {a0,1i, a0,2i, . . . , a0,ri} on K(X)[A]. For each j ∈ {1, . . . , r},
the leading term of fj =

∑s
k=1 hjkgk is gia0,ji in K(X)[A] with respect to ≻i since gia0,ji is

the only term of fj that includes a0,ji. Thus, LC≻i(fj) = gi with respect to ≻i for each j and
lcm(LC≻i(f1), . . . , LC≻i(fr)) = lcm(gi, . . . , gi) = gi. By Proposition C.11 (3) and Lemma C.7, P
is a prime ideal of K[A, X] and, for each i,

P = ⟨AG⟩ : gmi and ⟨AG⟩ = P ∩ (⟨AG⟩+ ⟨gmi ⟩)

22

for a sufficiently large integer m. Here, P ≠
√

(⟨AG⟩⟩) since otherwise P =
√
⟨AG⟩ ⊂

√
⟨G⟩ =

⟨G⟩ (as ⟨G⟩ is radical), which contradicts Proposition C.11 (4). Thus, ⟨AG⟩ + ⟨gmi ⟩ contains at
least one isolated component of ⟨AG⟩. Let ⟨AG⟩ + ⟨gm1 ⟩ = Q1 ∩ · · · ∩ Ql be a minimal primary
decomposition of ⟨AG⟩ + ⟨gm1 ⟩. Without loss of generality, we may assume that Q1, . . . , Qk are
isolated primary components of ⟨AG⟩ and Qk+1, . . . , Qr are not for some k ≥ 1. Since isolated
primary components are uniquely determined by Remark C.2, Q1, . . . , Qk are also isolated primary
components of (⟨AG⟩+ ⟨gm2 ⟩), . . . , (⟨AG⟩+ ⟨gms ⟩). As Q1 ∩ · · · ∩Qk ⊃ ⟨AG⟩+ ⟨gmi ⟩ for each i,
Q1 ∩ · · · ∩Qk ⊃ ⟨G⟩sm. Since ⟨AG⟩ = P ∩Q1 ∩ · · · ∩Ql ⊂ ⟨G⟩ and P ∩Qk+1 ∩ · · · ∩Ql ̸⊂ ⟨G⟩,
it follows that Q1 ∩ · · · ∩ Qk ⊂ ⟨G⟩. Thus, ⟨G⟩ =

√
⟨G⟩ =

√
⟨G⟩sm ⊂

√
Q1 ∩ · · · ∩Qk =√

Q1∩· · ·∩
√
Qk ⊂ ⟨G⟩, that is, ⟨G⟩ =

√
Q1∩· · ·∩

√
Qk is a minimal primary decomposition of ⟨G⟩.

Let H = Q1 ∩ · · · ∩Qk and show that H is radical. As ⟨G⟩K[X] is a zero-dimensional radical ideal
of K[X], ⟨G⟩ is a n-codimensional unmixed radical ideal of K[A, X]. By Lemma C.10, there exists
a n× n minor determinant f of Jac(g1, . . . , gs) such that ⟨G⟩ : f = ⟨G⟩. Since ⟨AG⟩ ⊂ H , there
exists a generating set GH of H such that GH = {f1, . . . , fs, τ1, . . . , τu} for some τ1, . . . , τu ∈ H .

Then, Jac(GH) =

(
Jac(AG)

B

)
for some B ∈ K[A, X]u×(n+D). As σq(AG) ⊃ G for some

q ∈ KD, there exists an n×n minor determinant g of Jac(GH) such that σq(g) = f . If H : g ̸= H ,
then g ∈

√
Qi for some i ∈ {1, . . . , k}. However, this implies σq(g) = f ∈ σq(

√
Qi) =

√
Qi and

⟨G⟩ : f = Q1 ∩ · · ·Qi−1 ∩Qi+1 ∩ · · · ∩Qk ̸= ⟨G⟩, which contradicts ⟨G⟩ : f = ⟨G⟩. Therefore,
H : g = H . Since H is an n-codimensional unmixed ideal of K[A, X], H is radical by Lemma C.10.
Then, H =

√
H =

√
Q1 ∩ · · · ∩

√
Qk = ⟨G⟩. Letting J = P ∩ Qk+1 ∩ · · · ∩ Ql, it follows that

⟨AG⟩ = ⟨G⟩∩J . By Proposition C.11 (4), codim(P) = r ≥ n. SinceQk+1, . . . , Ql are not isolated
primary components of ⟨AG⟩, codim(Qk+1), . . . , codim(Qr) ≥ n+ 1. Therefore, the codimension
of J is min(codim(P), codim(Qk+1), . . . , codim(Ql)) ≥ min(r, n+ 1).

If r > n, then min(r, n+1) = n+1 and dim(J) < (D+n)− (n+1) = D− 1. Thus,A is not an
independent set of J since |A| = D > D−1 = dim(J) by Remark C.4, that is, J∩K[A] ̸= {0}.

Recall that V (J) = {q ∈ KD | f(q) = 0,∀f ∈ J} is the variety of an ideal J of K[A]. If J is a
nonzero ideal, V (J) is a variety of dimension D − 1 at most and thus KD \ V (J) is a dense set of
KD. Finally, we obtain the proof of Theorem4.5 as follows.

proof of Theorem4.5. In case r < n, ⟨AG⟩ ≠ ⟨G⟩ since codim(⟨AG⟩) = r < n = codim(⟨G⟩) for
any A ∈ K[X]r×s≤d . Thus, we assume that r ≥ n. By Proposition C.12, there exists an ideal J of
K[A, X] such that

⟨AG⟩ = ⟨G⟩ ∩ J.

1. Assume that r = n and G is a Gröbner basis with respect to a term ordering ≻X on
K[X]. Then, for each i ∈ {1, . . . , n}, there exists gki

∈ G such that LC≻X
(gki

) = xdi
i

for some positive integer di. For simplicity, we may assume that k1 = 1, . . . , kn = n.
Let ui = (0, . . . , 1, . . . , 0) be the i-th unit vector in Kn. Consider the parameter
aui,ii with respect to Xui = xi in hii for each i. Fix a term ordering ≻A such that
{au1,11, . . . , aun,nn} ≻≻ A \ {au1,11, . . . , aun,nn} on K[A]. Let ≻ be the product order-
ing ≻A×X . Then, LT≻(hii) = LT≻(aui,iixigi) = aui,iix

di+1
i for each i ∈ {1, . . . , n}.

Since LT≻(h11), . . . , LT≻(hnn) are disjoint, AG is a Gröbner basis of ⟨AG⟩ with respect
to ≻ by Lemma C.6. For any non-zero polynomial w(A) ∈ K[A], w(A)g1 ̸∈ ⟨AG⟩
as LT≻(w(A)g1) = LT≻(w(A))LT≻(g1) = LT≻(w(A))xd1

1 is not divided by any
LT(h11), . . . , LT(hnn). Thus, such non-zero polynomial w(A) is not in J ; otherwise
w(A)g1 ∈ J · ⟨G⟩ ⊂ ⟨G⟩ ∩ J = ⟨AG⟩. Hence, J ∩ K[A] = (P ∩ Qk+1 ∩ · · · ∩
Ql) ∩K[A] = {0}, where P, Qk+1, . . . , Ql are ideals in the proof Proposition C.12. Since
codim(Qk+1), . . . , codim(Ql) > n, Qi ∩K[A] ̸= {0} for each i ∈ {k+ 1, . . . , l}. There-
fore, (P∩Qk+1∩· · ·∩Ql)∩K[A] = {0} implies P∩K[A] = {0}. LetG′ = {g′1, . . . , g′l}
be the reduced Gröbner basis of P with respect to a block ordering X ≻′≻′ A. Obviously,
G′ ∩K[A] = {0}. Then, letting H = lcm(LCA(g1) · · · LCA(gl)) ̸= 0, σq(G′) is a Gröbner
basis of σq(P) for any q ∈ V (G′ ∩K[A]) \ V (H) = KD \ V (H) by Lemma C.9. Fix

23

q ∈ KD \ V (H). Since ⟨AG⟩ ⊂ P ,

⟨σq(A)G⟩ ⊂ σq(P) ̸= K[X].

As P ̸⊃ ⟨G⟩K[X], there exists g ∈ ⟨G⟩K[X] \ P such that LT≻′(g) ̸∈ LT≻′(⟨G′⟩). This
implies LT≻′(g) = LT≻′(σq(g)) ̸∈ LT≻′(⟨σq(G′)⟩) = LT≻′(σq(P)) since g = σq(g)
and σq(G′) is a Gröbner basis of σq(P) with respect to ≻′. Thus, g ∈ ⟨G⟩ \ σq(P) and
⟨G⟩ ̸⊂ σq(P). As ⟨σq(A)G⟩ ⊂ σq(P), we obtain ⟨σq(A)G⟩ ≠ ⟨G⟩. With H ̸= 0,
KD \ V (H) is a dense set of KD.

2. Assume that r > n. Then we can take J with J ∩K[A] ̸= {0} by Proposition C.12. Fix
q ∈ KD\V (J∩K[A]). Then, for 0 ̸= f(A) ∈ J∩K[A], it follows that 0 ̸= f(q) ∈ σq(J),
that is, σq(J) = K[X]. Since ⟨G⟩ · J ⊂ ⟨G⟩ ∩ J = ⟨AG⟩ and σq(⟨G⟩) = ⟨G⟩,

⟨σq(A)G⟩ = σq(⟨AG⟩) ⊃ σq(⟨G⟩ · J) = σq(⟨G⟩) · σq(J) = ⟨G⟩.

Since ⟨σq(A)G⟩ ⊂ ⟨G⟩ always holds, we obtain ⟨σq(A)G⟩ = ⟨G⟩. As J ∩ K[A] ̸= 0,
KD \ V (J ∩K[A]) is a dense set of KD.

Corollary 4.6. Let d and dmax be positive integers. Let K = Fp be a finite field of order p for a
prime number p and let G be a subset of Fp[X]≤dmax such that ⟨G⟩ is a 0-dimensional radical ideal
of Fp[X]. Assume r > n and let G = {A ∈ Fp[X]r×s≤d | ⟨AG⟩ = ⟨G⟩}. Then, a generically sampled
A ∈ Fp[X]r×s≤d satisfies ⟨AG⟩ = ⟨G⟩ with probability

Pr(p) =
|G|

|Fp[X]r×s≤d |
≥ 1− d′

p
(4.4)

for some positive integer d′, which is determined by d and dmax, independent of any specific p.

proof of Corollary 4.6. Without loss of generality, we may assume that G = {g1, . . . , gs} ⊂ Z[X],
A ∈ Z[A, X]r×s, AG = {f1, . . . , fr} ⊂ Z[A, X], and ⟨G⟩Q[A,X] is a 0-dimensional radical ideal
of Q[A, X]. By Proposition C.12, there exists an ideal J of Q[A, X] such that ⟨AG⟩Q[A,X] =
⟨G⟩Q[A,X] ∩ J and J ∩Q[A] ̸= {0}. For a subset L of Z[A, X], we simply write ⟨L⟩Q = ⟨L⟩Q[A,X]

and ⟨L⟩p = ⟨ϕp(L)⟩Fp[A,X] respectively, where ϕp : Z[A, X]→ Fp[A, X] is the canonical projec-
tion. Let P, Qk+1, . . . , Ql be ideals in the proof of Proposition C.12, that is, J = P∩Qk+1∩· · ·∩Ql.
Then

⟨AG⟩Q : ⟨G⟩Q = (⟨G⟩Q ∩ J) : ⟨G⟩Q = (⟨G⟩Q ∩ (P ∩Qk+1 · · · ∩Ql)) : ⟨G⟩Q
= (⟨G⟩Q : ⟨G⟩Q) ∩ (P : ⟨G⟩Q) ∩ (Qk+1 : ⟨G⟩Q) ∩ · · · ∩ (Ql : ⟨G⟩Q)
= P ∩ (Qk+1 : ⟨G⟩Q) ∩ · · · ∩ (Ql : ⟨G⟩Q).

Fix a block ordering X ≻≻ A. For new variables T = {t1, . . . , ts−1} and y, let ω = g1 + g2t1 +
· · · gsts−1 ∈ Q[T,A, X], S = {yf1, . . . , yfr, (1− y)ω} ⊂ Q[y, T,A, X], and GS a Gröbner basis
of ⟨S⟩Q[y,T,A,X] with respect to an extended block ordering {y} ≻≻ T ≻≻ X ≻≻ A. It is known
thatG′ = ((GS∩Q[T,A, X])·ω−1)∩Q[A, X] is a Gröbner basis of ⟨AG⟩Q : ⟨G⟩Q with respect to≻
(see Lemma 1.8.12 in [21]). Since an upper bound of degrees of reduced Gröbner bases can be decided
from degrees of the generator, there exists d′ such that d′ > deg(g) for any g ∈ G′ derived from any
G ∈ Z[A, X]≤dmax

and A ∈ Z[X]r×s≤d . In other words, d′ is determined by d and dmax, independent
of any specific p. Let f ∈ (⟨AG⟩Q : ⟨G⟩Q)∩ (Z[A] \ pZ[A]) then deg f < d′ and ϕp(f) ̸= 0. Since
{Q1, . . . , Ql} is a minimal primary decomposition of ⟨AG⟩Q + ⟨gm1 ⟩Q, for each i ∈ {k + 1, . . . , l},
⟨G⟩Q = Q1∩· · ·∩Qk ̸⊂ Qi and thusQi : ⟨G⟩Q is a primary ideal with

√
Qi : ⟨G⟩Q =

√
Qi. Hence,√

⟨AG⟩Q : ⟨G⟩Q = P∩
√
(Qk+1 : ⟨G⟩Q)∩· · ·∩

√
(Ql : ⟨G⟩Q) = P∩

√
Qk+1∩· · ·∩

√
Ql =

√
J

and f ∈
√
J , i.e., fM ∈ J ∩ Z[A] for some positive integer M . Let fp = ϕp(f) ∈ Fp[A] and

JZ = J∩Z[A, X], then fMp ∈ ϕp(JZ∩Z[A]). Here, ⟨AG⟩p ⊃ ⟨G⟩p ·ϕp(JZ) since ⟨AG⟩Q ⊃ ⟨G⟩Q ·
J ⊃ ⟨G⟩Q ·JZ. For q ∈ FD

p with fp(q) ̸= 0, σq(ϕp(JZ)) = Fp[X] as 0 ̸= fMp (q) ∈ σq(ϕp(JZ)), and

24

thus σq(⟨AG⟩p) ⊃ σq(⟨G⟩p · ϕp(JZ)) = σq(⟨G⟩p) · σq(ϕp(JZ)) = ⟨G⟩Fp[X] · Fp[X] = ⟨G⟩Fp[X].
As the inverse inclusion is obvious, we obtain σq(⟨AG⟩p) = ⟨G⟩Fp[X] for any q ∈ FD

p \ V (fp).
Since fp has at most deg(fp)pD−1 ≤ deg(f)pD−1 ≤ d′pD−1 solutions in FD

p (see Theorem 6.13 in

[45]), Pr(p) ≥ |F
D
p \V (fp)|
|FD

p |
≥ pD−d′pD−1

pD = 1− d′

p and this goes 1 for a sufficiently large p.

C.2 Empirical results

We conduct a numerical experiment to justify our backward transform based on Theorem 4.5. The
border basis generation and sampling A for backward transform follows the main experiment of
training the Transformer oracle. See Section 5.2. Figure 6 shows the success rate of having F = AG
such that ⟨F ⟩ = ⟨G⟩. As Theorem 4.5 and Corollary 4.6 suggest, the success rate is zero for |F | = n
and for |F | > n improves with larger n, p, and |F |.

D Monomial embedding

D.1 Implementation details

We here elaborate the implementation details of monomial embedding method. First, recall the
definition.

Definition 4.7. (Monomial embedding) Let Σ be the set of all tokens. Let (t, <*>) be a pair consisting
of a monomial t = cxa ∈ Tn with coefficient c ∈ K, exponent vector a ∈ Zn

≥0, and a follow-up
token <*> ∈ Σ. Let φc, φe, and φf denote embeddings of the coefficient, exponent vector, and follow-
up token into a d-dimensional space, respectively. The monomial embedding φm : Tn × Σ→ Rd is
given by

φm(t, <*>) = φc(c) + φe(a) + φf(<*>). (4.6)

Embedding maps. The embedding maps φc and φf are standard token embeddings implemented
using trainable embedding matrices. The former is used for coefficient tokens, while the latter is used
for special tokens such as [SEP] or [PAD].

The embedding map φe is designed to handle exponent vectors and is conceptually realized using
n independent embedding maps, one for each variable. Specifically, the i-th embedding map
φ
(i)
e processes the exponent token corresponding to the variable xi. Given an exponent vector

a = (a1, . . . , an), its embedding is computed as

φe(a) =
1

n

n∑
i=1

φ(i)
e (ai). (D.1)

Unembedding. After processing the input embeddings, the Transformer outputs are passed through
an unembedding layer before reaching the classification head. Since our tokenization scheme based on
monomial embeddings reduces the number of tokens to approximately 1/(n+1) of that in the standard
representation, the unembedding layer restores the original token structure prior to classification.
Concretely, the unembedding can be implemented by a linear transformation ψ : R1×d → R(n+1)×d,
which is applied to each embedding vector to expand it back to a sequence of (n+ 1) vectors. This
operation reconstructs the original token alignment, making it compatible with downstream tasks
such as sequence classification or generation.

The <bos> token. The Transformer decoder requires the right-shift operation. To this end, we
append, e.g., <bos>, to the input sequence before monomial-tokenized. As a consequence, we have
n+ 1 redundant tokens; these token can be simply eliminated.

D.2 Empirical validations of monomial embedding

Task. Given a list of polynomials f1, . . . , fr ∈ Fp[x1, . . . , xn], the task is to compute their cumula-
tive products f1, f1f2, . . . ,

∏r
i=1 fi.

25

Table 3: Comparison between baseline (infix tokenization) and proposed (monomial tokenization and
embedding) methods across different numbers of variables. The success rate measures the successful
generation of complete cumulative products.

Variables Method Success rate (%) GPU memory (MB)

n = 2
infix 33.9 4,302

monomial 39.7 1,678

n = 3
infix 37.5 11,296

monomial 44.6 2,408

n = 4
infix 38.8 23,632

monomial 47.3 3,260

n = 5
infix 22.0 27,442

monomial 53.7 3,424

The polynomial product task requires the model to understand addition and product, and thus this
is a basic symbolic computation over a ring. Several studies have reported that learning symbolic
tasks over finite fields is difficult [35, 63]. Even learning a simple parity function f : (x1, . . . , xm) ∈
{−1, 1}m 7→

∏m
i=1 xi, which corresponds to a scalar product over F2, is theoretically known to

be hard [57]. However, recent work has shown that auto-regressive generation can overcome this
challenge [37], motivating our adoption of a sequential formulation.

Setup. The Transformer architecture and training setup follow Section 5.2. Transformer models
were trained on 100,000 samples and evaluated on 1,000 samples. For each sample, the num-
ber of polynomials r was uniformly sampled from {2, 3, 4}. Then, polynomials f1, . . . , fr ∈
F7[x1, . . . , xn] were sampled with a maximum degree dmax = 4 and a maximum number of terms
tmax = 5. The sampling follows the strategy given in Appendix E.1, except that the polynomial
degree was uniformly sampled from U[1, dmax] to exclude the zero polynomial and avoid trivially
easy product computations. We tested cases with n = 2, 3, 4, 5. We adopted the standard infix
representation as a baseline (Equation (4.5)). Note that the Transformer model with the proposed
monomial embedding predicts target sequences in the same representation via the unembedding layer.
Thus, this baseline setup allows us to directly assess the impact of the proposed tokenization and
embedding strategy.

Results. Figure 7 shows the average number of tokens in test samples for both the baseline method
and the proposed method. The shaded region indicates the range from minimum to maximum. A
large gap in both the average and maximum number of tokens between the infix and monomial
embeddings can be observed. This gap is also reflected in the GPU memory consumption in Table 3.
Notably, the memory consumption of the monomial embedding with n = 5 is lower than that of
the infix embedding with n = 2. The monomial embedding is further advantageous for learning,
as indicated by its success rate (i.e., the proportion of samples for which a complete sequence of
cumulative products is successfully generated). The improvement in success rate becomes even
more pronounced for larger values of n. Considering the correspondence between monomials is
essential in symbolic computation. With infix embedding, the model must establish attention between
(n+ 1) tokens and another (n+ 1) tokens, resulting in increased complexity. In contrast, monomial
embedding reduces this to a one-to-one correspondence, which benefits both memory efficiency and
success rate.

D.3 Reduction profile of the input sequences.

Figure 8 completes Figure 2. We analyze the input sequence reduction in the test samples used in our
main experiments. As mentioned in Section 4.2, we used a minimal subset L′ ∈ L that allows us to
retrieve the universe L, which is an order ideal. Particularly, we used the corner terms [40], which
we define next.
Definition D.1 (Divisibility of Monomials). Let

t = xa1
1 x

a2
2 · · ·xan

n and s = xb11 x
b2
2 · · ·xbnn

be monomials in the polynomial ring K[X]. We say that t divides s, written t | s, if and only if
ai ≤ bi for all i = 1, . . . , n,

26

equivalently, if there exists a monomial u such that s = tu.
Definition D.2 (Corner Terms). Let L be an order ideal in K[X]. The corner terms of L are
its maximal monomials, i.e. those t ∈ L such that whenever t | s with s ∈ L, one has s = t.
Equivalently,

L′ =
{
t ∈ L

∣∣ (∀s ∈ L) (t | s ⇒ s = t)
}
.

Geometrically, each c ∈ L′ is the “corner” of an axis-aligned hyper-box in Nn whose lattice points
are precisely the divisors of c, and the union of these boxes is the entire order ideal.

E Experiment setup and additional results

E.1 Sampling polynomials.

Random sampling a polynomial from Fp[X]≤dmax
with some degree bound dmax is a basic operation

in our experiments. Here, random sampling can be defined in several ways. The mathematically
generic way is uniformly sampling the coefficients of polynomial f =

∑
a:∥a∥1≤dmax

cax
a. It is

worth noting that in such as case, f almost always dense and of degree dmax.

However, this approach is not always reasonable from the practical scenario. The maximum degree
dmax can only mean the limit of the highest acceptable degree, and the user-input polynomial can
vary between constant to degree-dmax ones dynamically.

Taking into account this, random sampling in this paper is performed by first uniformly samlping the
degree and the number of terms of polynomial. Namely, given the predesgianated maximum degree
dmax and the maximum number of terms tmax, a polynomial is sampled with d ∼ U[0, dmax] and
tmax ∼ U[0, t̄max], where t̄max = min

(
tmax,

(
n+dmax

n

))
, and U[a, b] is a uniform distribution with

range [a, b] ⊂ Z.

E.2 Comparisons of polynomial systems in literature.

To the best of our knowledge, our experiments cover the largest and the most general class of
polynomial systems in the literature of deep-learning based Gröbner/border basis computation [35,
54].

• The experiments in [54] mostly focus on n = 3 variables and binomials (for both input
systems F and Gröbner bases G).

• The experiments in [35] handle up to n = 5, but for n > 1, the mixing matrix A of F = AG
is sparsified to keep the input system size moderate (i.e., to keep the number of tokens
< 5000). The design of A only supports an input system of size |F | ≥ |G|. Besides, the
ideals are restricted to those in shape position, where G is restricted to size |G| = n.

Table 4 compares the scale and class of systems and ideals (n = 5, numbers are rounded).

E.3 Learning successful expansions

Computational resources. Training was performed on a system with 48-core CPUs, 768 GB of
RAM, and NVIDIA RTX A6000 Ada GPUs. Each run completed in less than a day on a single GPU.

Datasets. To construct the training set, we first generated one million border bases {Gi}i as
described in Section 4.1.1. These were then transformed into an equal number of non-bases {Fi}i
using the backward generator transform from Section 4.1.2. Subsequently, the Improved Border Basis

Table 4: Comparison of the scale and class of systems and ideals (n = 5).

Reference Input system size |F | Avg. #terms in F Class of ideals/systems
[54] 10 20 binomial
[35] 5–7 42 shape position (|F | ≥ |G| = n)
Ours 6–10 130 vanishing ideal (|G| ≥ n, |F | < |G| allowed)

27

Table 5: Evaluation results of Transformer predictions over polynomial rings Fp[x1, . . . , xn]. Metrics
are reported for different values of l.

Field Variables l Precision (%) Recall (%) F1 Score (%) No Expansion
Acc. (%)

F7

1 79.4 81.2 80.3 96.3
n = 3 3 84.1 86.1 85.1 96.0

5 85.6 87.6 86.6 96.6
1 85.1 86.6 85.8 98.8

n = 4 3 88.4 89.1 88.8 98.8
5 89.8 91.1 90.4 98.8
1 91.4 91.9 91.7 99.1

n = 5 3 93.0 93.3 93.1 99.1
5 93.9 94.6 94.2 98.7

F31

1 84.4 86.8 85.6 99.7
n = 3 3 89.4 90.0 89.7 99.7

5 91.6 93.2 92.4 99.7
1 90.7 91.6 91.1 98.8

n = 4 3 92.9 93.7 93.3 98.8
5 94.2 94.7 94.4 98.8
1 92.7 93.1 92.9 99.6

n = 5 3 94.3 94.6 94.4 99.6
5 94.8 95.3 95.1 99.6

F127

1 87.8 88.3 88.1 99.7
n = 3 3 91.3 91.8 91.5 99.7

5 93.6 93.7 93.7 99.7
1 92.0 93.2 92.6 99.6

n = 4 3 94.5 94.9 94.7 99.6
5 94.9 95.5 95.2 99.6
1 93.1 94.7 93.9 99.6

n = 5 3 94.4 95.8 95.1 99.6
5 94.8 96.0 95.4 99.6

(IBBA; [29]) algorithm was executed on each Fi. From each run, we collected samples only from
the last five expansion calls in the final loop (cf. Algorithm 1). This process yielded approximately
five million samples, from which we randomly selected one million without replacement to form the
training set. The test set of 1,000 samples was constructed in the same manner.

Additional Results. Table 5 is the complete version of Table 1. The overall trend is the same.

E.4 Out of Distribution Experiments

We report our results on the out-of-distribution performance of our approach. In Figure 9 and
Figure 10, we compare the number of fallbacks and the achieved speedup, respectively, across different
configurations for n = 3 variables. The columns correspond to the degree of the transformation
matrix A (ranging from 2 to 4), while the rows represent the total degree, increasing from 4 in the top
row to 6 in the bottom row. Comprehensive results on the out-of-distribution performance for varying
degrees are further provided in Tables 7 to 9.

E.5 Border Basis Bottleneck

To characterize the computational bottleneck of the border-basis algorithm, we measure the fraction
of the total runtime spent in the final stage (i.e., the phase after the last universe enlargement) and,
within that stage, the fraction attributable to the last k ∈ {1, 2, 3, 4, 5} Gaussian-elimination steps.
Our empirical results in Table 10 indicate that the final stage overwhelmingly dominates execution
time—on average consuming about 95% of the total runtime. Moreover, the last five Gaussian
eliminations alone account for roughly 70%–95% of the final-stage runtime.

28

Table 6: Mean ± standard deviation of the number of zero reductions for IBBA vs. OBBA. Here we
see an up to 3.5 improvement in the number of zero reductions for the in distribution setting with
total degree 4 and degree of transformation 1 for n = 5.

Field Total Degree Degree Transformation IBBA OBBA

F7 2 1 1369.31± 613.27 380.15± 140.33

F7 3 1 1854.63± 1114.23 638.12± 505.61

F7 4 1 3177.67± 2930.36 1746.99± 1992.24

F127 2 1 1409.02± 596.12 390.36± 155.47

F127 3 1 2224.25± 1478.50 1025.64± 785.64

F127 4 1 2510.42± 2006.56 1112.15± 1190.61

F31 2 1 1324.05± 647.51 361.22± 155.87

F31 3 1 2010.02± 1364.68 797.14± 695.37

F31 4 1 3167.66± 2592.95 1672.20± 1555.12

Table 7: Wall-clock runtime in seconds (mean ± standard deviation over 100 random zero-
dimensional systems of total degree d ≤ 4 and max degree 1 ofA) for five algorithms over polynomial
rings F7, F127, and F31 in n = 5 variables. “Baseline” comprises BBA and IBBA; “Ours” comprises
OBBA, IBBA+FGE, and OBBA+FGE. OBBA+FGE is the fastest in every setting.

Baseline Ours

Field d BBA IBBA OBBA IBBA+FGE OBBA+FGE

F7

2 10.49 ± 7.37 7.16 ± 4.55 2.43 ± 1.24 0.86 ± 0.46 0.59 ± 0.31
3 26.45 ± 34.13 19.61 ± 27.10 8.30 ± 12.60 1.88 ± 2.12 1.30 ± 1.45
4 156.64 ± 581.66 101.22 ± 365.21 67.82 ± 282.15 7.44 ± 24.82 5.51 ± 19.41

F127

2 13.44 ± 8.52 9.04 ± 5.34 3.06 ± 1.49 1.01 ± 0.49 0.67 ± 0.31
3 49.90 ± 74.57 33.86 ± 47.53 20.97 ± 34.87 2.75 ± 3.14 2.09 ± 2.53
4 77.89 ± 132.87 53.57 ± 93.82 39.91 ± 87.16 4.62 ± 7.55 3.47 ± 6.23

F31

2 11.44 ± 8.25 7.60 ± 5.13 2.58 ± 1.37 0.88 ± 0.49 0.60 ± 0.32
3 40.65 ± 76.90 27.36 ± 47.71 13.87 ± 26.07 2.38 ± 3.32 1.66 ± 2.35
4 136.68 ± 244.07 97.84 ± 173.36 68.77 ± 158.72 7.42 ± 12.01 5.63 ± 9.34

E.6 Border Gap vs Border Distance

Detecting the final stage of Border Basis computation is critical for the efficiency of the proposed
method. We empirically investigate the relationship between border distance, which is unknown in
practice, and border gap, which can be an input parameter as we can measure it. To make the border
gap independent of the scale of the problem, we consider the relative border gap defined as |V||L| . Our
results are summarised in Figures 11 to 13, indicating that the border gap is a suitable proxy for the
border distance.

29

Table 8: Wall-clock runtime in seconds (mean ± standard deviation over 100 random zero-
dimensional systems of total degree d ≤ 4 and max degree 1 for each variable) for five algorithms
over polynomial rings F127, F31, and F7 in n = 4 variables. “Baseline” comprises BBA and IBBA;
“Ours” comprises OBBA, IBBA+FGE, and OBBA+FGE. OBBA+FGE is the fastest in almost every
setting.

Baseline Ours

Field d BBA IBBA OBBA IBBA+FGE OBBA+FGE

F127

2 0.43 ± 0.42 0.33 ± 0.24 0.20 ± 0.11 0.09 ± 0.05 0.09 ± 0.04
3 1.71 ± 2.35 1.29 ± 1.61 0.62 ± 0.64 0.23 ± 0.21 0.24 ± 0.25
4 2.28 ± 3.66 1.76 ± 2.56 0.81 ± 1.00 0.29 ± 0.33 0.29 ± 0.33

F31

2 0.46 ± 0.43 0.35 ± 0.25 0.22 ± 0.13 0.09 ± 0.05 0.09 ± 0.05
3 1.39 ± 1.59 1.07 ± 1.18 0.54 ± 0.53 0.21 ± 0.18 0.21 ± 0.18
4 4.65 ± 7.77 3.64 ± 6.10 2.12 ± 3.61 0.51 ± 0.66 0.50 ± 0.59

F7

2 0.36 ± 0.27 0.29 ± 0.17 0.19 ± 0.09 0.08 ± 0.03 0.08 ± 0.03
3 1.25 ± 1.68 0.94 ± 1.19 0.48 ± 0.57 0.18 ± 0.17 0.18 ± 0.18
4 4.89 ± 11.42 4.11 ± 9.94 2.13 ± 5.71 0.55 ± 0.94 0.52 ± 0.84

Table 9: Wall-clock runtime in seconds (mean ± standard deviation over 100 random zero-
dimensional systems of total degree 4 ≤ d ≤ 6 and max degree 1) for five algorithms over polynomial
rings F31, F7, and F127 for n = 3 variables. “Baseline” comprises BBA and IBBA; “Ours” comprises
OBBA, IBBA+FGE, and OBBA+FGE. OBBA+FGE (last column) is the fastest in every setting.

Baseline Ours

Field d BBA IBBA OBBA IBBA+FGE OBBA+FGE

F31

4 0.07 ± 0.11 0.06 ± 0.09 0.06 ± 0.08 0.03 ± 0.03 0.03 ± 0.03
5 0.30 ± 0.76 0.24 ± 0.56 0.19 ± 0.45 0.07 ± 0.12 0.07 ± 0.11
6 0.42 ± 0.77 0.36 ± 0.69 0.28 ± 0.53 0.10 ± 0.15 0.10 ± 0.14

F7

4 0.09 ± 0.14 0.07 ± 0.09 0.06 ± 0.07 0.03 ± 0.03 0.03 ± 0.03
5 0.18 ± 0.41 0.15 ± 0.34 0.13 ± 0.26 0.05 ± 0.08 0.05 ± 0.08
6 0.28 ± 0.54 0.24 ± 0.45 0.20 ± 0.37 0.07 ± 0.11 0.07 ± 0.11

F127

4 0.06 ± 0.08 0.05 ± 0.07 0.05 ± 0.07 0.02 ± 0.02 0.02 ± 0.02
5 0.14 ± 0.25 0.12 ± 0.18 0.10 ± 0.16 0.04 ± 0.05 0.04 ± 0.05
6 0.45 ± 0.70 0.35 ± 0.51 0.27 ± 0.39 0.10 ± 0.11 0.10 ± 0.11

30

0 2 4 6 8 10
deg(x)

0
2
4
6
8

10

de
g(

y)

Order Ideal #1

0 2 4 6 8 10
deg(x)

0
2
4
6
8

10

de
g(

y)

Order Ideal #2

0 2 4 6 8 10
deg(x)

0
2
4
6
8

10

de
g(

y)

Order Ideal #3

0 2 4 6 8 10
deg(x)

0
2
4
6
8

10

de
g(

y)

Order Ideal #4

0 2 4 6 8 10
deg(x)

0
2
4
6
8

10

de
g(

y)

Order Ideal #5

0 2 4 6 8 10
deg(x)

0
2
4
6
8

10
de

g(
y)

Order Ideal #6

0 2 4 6 8 10
deg(x)

0
2
4
6
8

10

de
g(

y)

Order Ideal #7

0 2 4 6 8 10
deg(x)

0
2
4
6
8

10

de
g(

y)

Order Ideal #8

0 2 4 6 8 10
deg(x)

0
2
4
6
8

10

de
g(

y)

Order Ideal #9

0 2 4 6 8 10
deg(x)

0
2
4
6
8

10

de
g(

y)

Order Ideal #10

0 2 4 6 8 10
deg(x)

0
2
4
6
8

10

de
g(

y)

Order Ideal #11

0 2 4 6 8 10
deg(x)

0
2
4
6
8

10

de
g(

y)

Order Ideal #12

0 2 4 6 8 10
deg(x)

0
2
4
6
8

10

de
g(

y)

Order Ideal #13

0 2 4 6 8 10
deg(x)

0
2
4
6
8

10

de
g(

y)

Order Ideal #14

0 2 4 6 8 10
deg(x)

0
2
4
6
8

10

de
g(

y)

Order Ideal #15

0 2 4 6 8 10
deg(x)

0
2
4
6
8

10

de
g(

y)

Order Ideal #16

0 2 4 6 8 10
deg(x)

0
2
4
6
8

10

de
g(

y)

Order Ideal #17

0 2 4 6 8 10
deg(x)

0
2
4
6
8

10

de
g(

y)

Order Ideal #18

0 2 4 6 8 10
deg(x)

0
2
4
6
8

10

de
g(

y)

Order Ideal #19

0 2 4 6 8 10
deg(x)

0
2
4
6
8

10

de
g(

y)

Order Ideal #20

0 2 4 6 8 10
deg(x)

0
2
4
6
8

10

de
g(

y)

Order Ideal #21

0 2 4 6 8 10
deg(x)

0
2
4
6
8

10

de
g(

y)

Order Ideal #22

0 2 4 6 8 10
deg(x)

0
2
4
6
8

10

de
g(

y)
Order Ideal #23

0 2 4 6 8 10
deg(x)

0
2
4
6
8

10

de
g(

y)

Order Ideal #24

0 2 4 6 8 10
deg(x)

0
2
4
6
8

10

de
g(

y)

Order Ideal #25

0 2 4 6 8 10
deg(x)

0
2
4
6
8

10

de
g(

y)

Order Ideal #26

0 2 4 6 8 10
deg(x)

0
2
4
6
8

10

de
g(

y)

Order Ideal #27

0 2 4 6 8 10
deg(x)

0
2
4
6
8

10

de
g(

y)

Order Ideal #28

0 2 4 6 8 10
deg(x)

0
2
4
6
8

10

de
g(

y)

Order Ideal #29

0 2 4 6 8 10
deg(x)

0
2
4
6
8

10

de
g(

y)

Order Ideal #30

0 2 4 6 8 10
deg(x)

0
2
4
6
8

10

de
g(

y)

Order Ideal #31

0 2 4 6 8 10
deg(x)

0
2
4
6
8

10

de
g(

y)

Order Ideal #32

0 2 4 6 8 10
deg(x)

0
2
4
6
8

10

de
g(

y)

Order Ideal #33

0 2 4 6 8 10
deg(x)

0
2
4
6
8

10

de
g(

y)

Order Ideal #34

0 2 4 6 8 10
deg(x)

0
2
4
6
8

10

de
g(

y)

Order Ideal #35

0 2 4 6 8 10
deg(x)

0
2
4
6
8

10

de
g(

y)

Order Ideal #36

0 2 4 6 8 10
deg(x)

0
2
4
6
8

10

de
g(

y)

Order Ideal #37

0 2 4 6 8 10
deg(x)

0
2
4
6
8

10

de
g(

y)

Order Ideal #38

0 2 4 6 8 10
deg(x)

0
2
4
6
8

10

de
g(

y)

Order Ideal #39

0 2 4 6 8 10
deg(x)

0
2
4
6
8

10

de
g(

y)

Order Ideal #40

0 2 4 6 8 10
deg(x)

0
2
4
6
8

10

de
g(

y)

Order Ideal #41

0 2 4 6 8 10
deg(x)

0
2
4
6
8

10

de
g(

y)

Order Ideal #42

0 2 4 6 8 10
deg(x)

0
2
4
6
8

10

de
g(

y)

Order Ideal #43

0 2 4 6 8 10
deg(x)

0
2
4
6
8

10

de
g(

y)

Order Ideal #44

0 2 4 6 8 10
deg(x)

0
2
4
6
8

10

de
g(

y)

Order Ideal #45

0 2 4 6 8 10
deg(x)

0
2
4
6
8

10

de
g(

y)

Order Ideal #46

0 2 4 6 8 10
deg(x)

0
2
4
6
8

10

de
g(

y)

Order Ideal #47

0 2 4 6 8 10
deg(x)

0
2
4
6
8

10

de
g(

y)

Order Ideal #48

0 2 4 6 8 10
deg(x)

0
2
4
6
8

10

de
g(

y)

Order Ideal #49

0 2 4 6 8 10
deg(x)

0
2
4
6
8

10

de
g(

y)

Order Ideal #50

0 2 4 6 8 10
deg(x)

0
2
4
6
8

10

de
g(

y)

Order Ideal #51

0 2 4 6 8 10
deg(x)

0
2
4
6
8

10

de
g(

y)

Order Ideal #52

0 2 4 6 8 10
deg(x)

0
2
4
6
8

10

de
g(

y)

Order Ideal #53

0 2 4 6 8 10
deg(x)

0
2
4
6
8

10

de
g(

y)

Order Ideal #54

0 2 4 6 8 10
deg(x)

0
2
4
6
8

10

de
g(

y)

Order Ideal #55

0 2 4 6 8 10
deg(x)

0
2
4
6
8

10

de
g(

y)

Order Ideal #56

0 2 4 6 8 10
deg(x)

0
2
4
6
8

10

de
g(

y)

Order Ideal #57

0 2 4 6 8 10
deg(x)

0
2
4
6
8

10

de
g(

y)

Order Ideal #58

0 2 4 6 8 10
deg(x)

0
2
4
6
8

10

de
g(

y)

Order Ideal #59

0 2 4 6 8 10
deg(x)

0
2
4
6
8

10

de
g(

y)

Order Ideal #60

Figure 5: The gallery of randomly sampled order ideals for n = 2 and d = (10, 10).

31

3 4 5 6
Size of F

0.0

0.2

0.4

0.6

0.8

1.0

Su
cc

es
s R

at
e

n = 3

4 5 6 7 8
Size of F

n = 4

5 6 7 8 9 10
Size of F

n = 5

7
31
127

Figure 6: The empirical success rate of the backward transform from G to F without changing ideals.
As Theorem 4.5 and Corollary 4.6 suggest, the success rate is zero for |F | = n and close to one for
|F | > n, and larger field order and number of variables increase the success rate.

2.0 2.5 3.0 3.5 4.0 4.5 5.0
Number of Variables (n)

0

500

1000

1500

2000

2500

3000

3500

Nu
m

be
r o

f T
ok

en
s

Token Count vs Number of Variables
Infix Representation
Monomial Representation

Figure 7: The average number of tokens with infix and the proposed embeddings.

32

n = 3 n = 4 n = 5
Number of Variables (n)

101

102

103

104

105
M

ax
 To

ke
n

Co
un

t

49
209

489
1354

10007
60353

49
209

489
129

407
1273

10
35 7026
68

182

7, l = 1

n = 3 n = 4 n = 5
Number of Variables (n)

49
209

489
1354

10007
60353

49
209

489389
1223

3821

10
35 7078

204
546

7, l = 3

n = 3 n = 4 n = 5
Number of Variables (n)

49
209

489
1354

10007
60353

49
209

489634
2021

6341

10
35 70127

337
906

7, l = 5

n = 3 n = 4 n = 5
Number of Variables (n)

101

102

103

104

105

M
ax

 To
ke

n
Co

un
t

49
209

489
1434

11243

72372

49
209

489
129

407
1273

10
35 7026
68

182

31, l = 1

n = 3 n = 4 n = 5
Number of Variables (n)

49
209

489
1434

11243

72372

49
209

489389
1223

3821

10
35 7078

204
546

31, l = 3

n = 3 n = 4 n = 5
Number of Variables (n)

49
209

489
1434

11243

72372

49
209

489629
2021

6348

10
35 70126

337
907

31, l = 5

n = 3 n = 4 n = 5
Number of Variables (n)

101

102

103

104

105

M
ax

 To
ke

n
Co

un
t

49
209

489
1574

11981
64637

49
209

489
129

407
1280

10
35 7026
68

183

127, l = 1

n = 3 n = 4 n = 5
Number of Variables (n)

49
209

489
1574

11981
64637

49
209

489389
1223

3842

10
35 7078

204
549

127, l = 3

n = 3 n = 4 n = 5
Number of Variables (n)

49
209

489
1574

11981
64637

49
209

489634
2021

6383

10
35 70127

337
912

127, l = 5

All Terms L (Infix)
All Terms V (Infix)

l Terms L (Infix)
l Terms V (Infix)

l Terms L (Monomial)
l Terms V (Monomial)

Figure 8: Reduction of the maximum number of tokens of input sequences with l-leading term and
monomial representation.

0

20

40

60

80

Fa

llb
ac

ks
 to

 B
BA

Max Degree of A = 2
7
31
127

Max Degree of A = 3 Max Degree of A = 4

0

20

40

60

80

Fa

llb
ac

ks
 to

 B
BA

Total Degree = 5

0.70 0.75 0.80 0.85 0.90 0.95 1.00

Border Gap | |
| |

0

20

40

60

80

Fa

llb
ac

ks
 to

 B
BA

Total Degree = 6

0.70 0.75 0.80 0.85 0.90 0.95 1.00

Border Gap | |
| |

0.70 0.75 0.80 0.85 0.90 0.95 1.00

Border Gap | |
| |

7 31 127

Figure 9: Out-of-distribution (OOD) experiment for n = 3, measured by the number of fallbacks
plotted against the relative border gap. Columns correspond to the degree of the transformation
matrix A (left: degree 2, middle: degree 3, right: degree 4), while rows indicate the total polynomial
degree, increasing from 4 in the top row to 6 in the bottom row. As the degree of the polynomials
increases—moving further from the training distribution—the number of fallbacks also rises. Invoking
the oracle at a lower relative border gap increases the number of fallbacks, as the oracle must make
more progress to achieve termination.

33

1.0

1.2

1.4

1.6

sp
ee

d-
up

 (x
)

Max Degree of A = 2

sp
ee

d-
up

 (x
)

Max Degree of A = 3

sp
ee

d-
up

 (x
)

Max Degree of A = 4

1.0

1.2

1.4

1.6

sp
ee

d-
up

 (x
)

Total Degree = 5

sp
ee

d-
up

 (x
)

sp
ee

d-
up

 (x
)

0.70 0.75 0.80 0.85 0.90 0.95 1.00

Border gap | |
| |

1.0

1.2

1.4

1.6

sp
ee

d-
up

 (x
)

Total Degree = 6

0.70 0.75 0.80 0.85 0.90 0.95 1.00

Border gap | |
| |

sp
ee

d-
up

 (x
)

0.70 0.75 0.80 0.85 0.90 0.95 1.00

Border gap | |
| |

sp
ee

d-
up

 (x
)

7 31 127

Figure 10: Out-of-distribution (OOD) experiment for n = 3, measured by the speedup of the
proposed method over the baseline. Columns correspond to the degree of the transformation matrix
A (left: degree 2, middle: degree 3, right: degree 4), while rows indicate the total polynomial degree,
increasing from 4 in the top row to 6 in the bottom row. Even a moderate number of fallbacks still
allows for a significant speedup. For the more challenging settings, the speedup peaks around a
relative border gap of 0.95, indicating sensitivity to this parameter and reduced oracle performance in
harder configurations, while still providing a moderate overall speedup.

0 1 2 3 4 5
Border Distance (,)

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Bo
rd

er
 G

ap
 |

|
|

|

Border Gap vs Border Distance
Quartiles
Whisker/Cap
Median
Mean

Figure 11: Border gap vs border distance for n = 3 over F31.

34

Table 10: Proportion of total runtime spent in the final stage (FS) of Border Basis computation, and
cumulative share of the last k expansions (Lk) within FS, averaged over 100 runs. The final stage
typically dominates runtime (>70%, often >95%), with the last 5 expansions accounting for 70–90%
of FS across all settings. Interestingly, the very last expansion already account for about 30% of the
final stage.

Field n Deg FS L1 L2 L3 L4 L5

4 0.986 0.270 0.516 0.646 0.699 0.721
3 5 0.979 0.279 0.511 0.624 0.678 0.694

6 0.982 0.741 0.893 0.922 0.937 0.944

2 0.976 0.318 0.594 0.738 0.780 0.800
F7 4 3 0.972 0.275 0.513 0.664 0.750 0.793

4 0.986 0.321 0.558 0.687 0.757 0.785

2 0.969 0.244 0.481 0.678 0.805 0.880
5 3 0.970 0.270 0.514 0.704 0.806 0.862

4 0.963 0.301 0.573 0.768 0.852 0.889

4 0.986 0.285 0.527 0.652 0.705 0.721
3 5 0.973 0.309 0.532 0.638 0.683 0.693

6 0.726 0.448 0.649 0.738 0.781 0.800

2 0.964 0.303 0.563 0.717 0.794 0.831
F31 4 3 0.980 0.274 0.520 0.669 0.749 0.792

4 0.963 0.313 0.569 0.713 0.780 0.815

2 0.960 0.326 0.588 0.736 0.826 0.877
5 3 0.970 0.275 0.524 0.714 0.805 0.858

4 0.568 0.289 0.560 0.744 0.852 0.895

4 0.981 0.287 0.525 0.655 0.708 0.727
3 5 0.979 0.284 0.523 0.649 0.702 0.726

6 0.983 0.569 0.759 0.821 0.844 0.857

2 0.992 0.346 0.591 0.709 0.758 0.789
F127 4 3 0.977 0.317 0.613 0.773 0.819 0.842

4 0.982 0.284 0.546 0.692 0.760 0.786

2 0.992 0.311 0.580 0.745 0.830 0.878
5 3 0.978 0.279 0.520 0.692 0.797 0.866

4 0.956 0.290 0.558 0.746 0.841 0.891

35

0 1 2 3 4 5
Border Distance (,)

0.2

0.4

0.6

0.8

1.0

Bo
rd

er
 G

ap
 |

|
|

|

Border Gap vs Border Distance
Quartiles
Whisker/Cap
Median
Mean

Figure 12: Border gap vs border distance for n = 4 over F31.

0 1 2 3 4 5
Border Distance (,)

0.2

0.4

0.6

0.8

1.0

Bo
rd

er
 G

ap
 |

|
|

|

Border Gap vs Border Distance
Quartiles
Whisker/Cap
Median
Mean

Figure 13: Border gap vs border distance for n = 5 over F31.

36

NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: The abstract and introduction present the scope of the study and its contribu-
tions.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We present current limitations in Sections 4.1.1 and 6.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [Yes]

37

Justification: All the assumptions and complete proofs are provided in the main text and
appendix, particularly, Sections 3 and 4 and Appendices A to C.

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We provide the detailed description of the experiment setups both in the main
text and appendix.

Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

38

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [Yes]
Justification: We provide the link to the code.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: All the training and test details to follow the results are provided in Section 5
and Appendix E.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [No]
Justification: Error bars are not provided for all cases; however, one of the main results,
Table 2, reports the runtime along with standard deviations.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

39

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: Information about our computational resources can be found in Appendix E.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: We have confirmed the present study meets the NeurIPS Code of Ethics.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA] .

Justification: This paper focuses on the learnability of a mathematical task, and we cannot
see any urgent social impact.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.

40

https://neurips.cc/public/EthicsGuidelines

• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: This paper does not have an evident risk of misuse.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [NA] .
Justification: This paper does not use existing assets.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

41

paperswithcode.com/datasets

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA] .
Justification: The paper does not release new assets.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: This paper does not involve crowdsourcing nor research
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: This paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

42

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: LLMs were used solely as assistants for coding and manuscript editing.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.

43

https://neurips.cc/Conferences/2025/LLM

	Introduction
	Preliminaries
	Defining border bases
	Computing border bases

	The Oracle Border Basis Algorithm
	Termination of the algorithm
	Allocating the k oracle calls

	Designing the transformer oracle
	Dataset generation
	Border basis sampling
	Ideal-invariant generator transform

	Efficient input sequence representation

	Experimental results
	Fast Gaussian elimination
	Learning successful expansions
	Transformer oracle
	In-distribution performance
	Out-of-distribution performance

	Conclusion
	Theory of Oracle Border Basis Algorithm
	Alternative termination criteria

	Border basis sampling
	Order ideal sampling
	Border basis construction from order ideals: Proof of Theorem 4.2
	Comparison with Buchberger–Möller-family algorithms

	Backward transform
	Proof of Theorem. 4.5
	Empirical results

	Monomial embedding
	Implementation details
	Empirical validations of monomial embedding
	Reduction profile of the input sequences.

	Experiment setup and additional results
	Sampling polynomials.
	Comparisons of polynomial systems in literature.
	Learning successful expansions
	Out of Distribution Experiments
	Border Basis Bottleneck
	Border Gap vs Border Distance

