
Few-Shot Fast-Adaptive Anomaly Detection

Ze Wang
⇤ †

, Yipin Zhou
‡
, Rui Wang

‡
, Tsung-Yu Lin

‡
, Ashish Shah

‡
, and Ser-Nam Lim

‡
†Purdue University ‡Meta AI

Abstract

The ability to detect anomaly has long been recognized as an inherent human
ability, yet to date, practical AI solutions to mimic such capability have been
lacking. This lack of progress can be attributed to several factors. To begin with,
the distribution of “abnormalities” is intractable. Anything outside of a given
normal population is by definition an anomaly. This explains why a large volume
of work in this area has been dedicated to modeling the normal distribution of
a given task followed by detecting deviations from it. This direction is however
unsatisfying as it would require modeling the normal distribution of every task that
comes along, which includes tedious data collection. In this paper, we report our
work aiming to handle these issues. To deal with the intractability of abnormal
distribution, we leverage Energy Based Model (EBM). EBMs learn to associate
low energies to correct values and higher energies to incorrect values. At its core,
the EBM employs Langevin Dynamics (LD) in generating these incorrect samples
based on an iterative optimization procedure, alleviating the intractable problem
of modeling the world of anomalies. Then, in order to avoid training an anomaly
detector for every task, we utilize an adaptive sparse coding layer. Our intention is
to design a plug and play feature that can be used to quickly update what is normal
during inference time. Lastly, to avoid tedious data collection, this mentioned
update of the sparse coding layer needs to be achievable with just a few shots. Here,
we employ a meta learning scheme that simulates such a few shot setting during
training. We support our findings with strong empirical evidence.

1 Introduction

Anomaly detection is an important area of study in the field of artificial intelligence. It has found utility
in computer vision applications such as industrial inspection [6] and video surveillance [28, 61, 39],
in the context of abuse prevention such as misinformation, fraud and network intrusion detection
[60, 8, 35], and others such as system health monitoring and fault detection [4, 42]. In this paper, we
propose an approach for detecting anomaly in images, where we have carefully designed steps to
handle some of the bigger issues that have prevented the deployment of image anomaly detection in
the real-world.

Image anomaly detection can generally be defined as the identification of abnormalities in a given
image. An exact definition of abnormality in this case is elusive because abnormality can be derived
from any unknown distribution outside of a normal population. Many studies have hence focused on
modeling the normal population instead of learning irregularities, where the goal is to capture the
shared concept among all of the normal data as one or several reference models. This process usually
requires investing significant efforts in curating a large set of normal samples for each task, after
which anomaly is detected as deviations from the reference model(s) [1, 58]. Recent work from [50]
provides algorithms that utilize only a few normal samples to train models from scratch. However,
the models still have to be provisioned for each new task, which requires considerable human efforts
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and expertise, and thus lack the fast deployment criterion that is often time critical for real-world
applications. In view of these challenges, our goals for this work are threefold. We are interested
in designing an anomaly detection system that is capable of: (G1) modeling the normal population
while at the same time has a principled approach towards modeling the abnormalities; (G2) quickly
adapting to a new task at inference time; and (G3) requiring only a few normal shots to update itself
to the new task at hand.

For (G1), we introduce the class of Energy Based Model (EBM), which is an important family
of generative models [62, 17, 57]. EBMs have been shown to demonstrate superior capability on
modeling data density and localizing anomaly [20]. For our purpose, the EBM we adopted learns to
assign low energy to normal samples but high energy to abnormal samples. More importantly, the
abnormal samples are generated with a procedure known as Langevin Dynamics (LD) [54], which,
in its original form, starts with a noise image and gradually samples from the distribution along the
direction of lower energy. This lends itself gracefully to utilizing the generated intermediate samples
as negative/abnormal. The LD procedure is then coupled with maximum likelihood loss [24] that
aims to maximize the energy differences between the normal and abnormal samples.

To achieve (G2), we propose an adaptive sparse coding layer that is attached to the deep feature
extractor in the EBM as Figure 1 shows. The extracted deep feature is forwarded to the sparse coding
layer, where the dictionary is constructed with the features of a few normal samples of the given
task. In essence, the input representation has been decomposed into a linear combination of normal
features with the sparsity constraint imposed. The final energy score is measured by the distance
between the original and the reconstructed features (after the sparse coding layer). Under this scheme,
the dictionary for a particular task is not obtained by learning, but instead is constructed by the feature
representations of a few normal samples during inference. As a result, this simple “plug-and-play”
trick allows the model to be adapted to novel tasks promptly without re-training. Further, we expect
that the dictionary, which is formed by normal features, will not be able to explain the abnormal
samples well, causing relatively high reconstruction error that lends itself for subsequent detection.
As a bonus, a backward pass of energy score minimization can be used for localizing abnormal
regions. We show that using gradient to localize anomalies yields superior robustness.

Towards (G3), we utilize meta learning [52, 18] to simulate the scenario of being given a new task
with a few normal shots to update the dictionary, followed by training the EBM. This is accomplished
by episodic training, where in each episode the model is adapted to a held back task that is given
a few normal samples. To accelerate the EBM training, we introduce “learning from inpainting”,
a simple yet effective strategy for synthesizing hard abnormal samples quicker by starting the LD
procedure with a synthesized image that is simply a normal sample with a noise patch injected as
opposed to a noise image that is traditionally what is used.

We show the proposed few-shot fast-adaptive anomaly detection and localization framework is able
to efficiently adapt to a novel task (e.g., a new object category or scenes from a new camera) with a
few normal samples without training on both industrial inspection and video surveillance. Compared
with previous methods that adapts to new task through either from scratch training in few shots
[50, 55] or few-shot with few steps of gradient descent [32], the proposed framework is the first that
performs task adaptation with a single forward pass and without any gradient descent. Despite the
fast adaptation, we provide both qualitative and quantitative results to demonstrate that our method
outperforms other adaptive frameworks and is comparable to methods that rely on large amount of
normal samples.

2 Backgrounds

In this section, we briefly introduce two key ingredients of the proposed method: EBMs and sparse
coding.

Energy-based Model. In EBMs, the goal is to learn an energy function E✓(x) : Rd ! R which
parametrizes the data density p✓(x) as:

p✓(x) =
exp(�E✓(x))R
x exp(�E✓(x))

, (1)

where ✓ is the parameter of the energy function and Z✓ =
R
x exp(�E✓(x)) is the partition function.

Approximating the true data distribution pdata(x) is equivalent to minimizing the expected negative

2



log-likelihood function over the data distribution, defined by the loss function:

LML = Ex⇠pdata(x)[� log p✓(x)] = Ex⇠pdata(x)[E✓(x) + logZ✓]. (2)

As the computation of LML involves an intractable term Z✓, the common practice is to represent the
gradient of LML as,

r✓LML = Ex+⇠pdata(x)[r✓E✓(x+)] � Ex�⇠p✓(x)[r✓E✓(x�)]. (3)

This objective decreases the energy of positive data samples x+ from the true distribution (normal
samples in our use case) and increases the energy of negative samples x� from the model p✓
(synthesized abnormal samples). In practice, the synthesized negative samples are achieved through
Langevin dynamics [54], which a J-steps sampling along the direction of energy minimization is
given by:

x̃j = x̃j�1 � �

2
rxE✓(x̃

j�1) + !k, !k ⇠ N (0,�I), j = {1, . . . , J} (4)

where � is the step size, and the initialization x0 is sampled from a predefined prior distribution.
The synthesizing ability of EBMs enables generating abnormal samples to help in learning a more
accurate data density, and is often touted as the one of the advantages of using an EBM.

Sparse coding. Approximating a signal z 2 Rd with the sparse linear combination over a dictionary
D 2 Rd⇥k can be expressed as:

min
↵

1

2
||z�D↵||22 + �||↵||1, (5)

where ↵ is the sparse coefficients, with its sparsity (l1 norm) and � is the weight of the sparsity
constraint. D↵ is a sparse approximation to the original signal z. In practice, finding the dictionary
atoms and the sparse coefficients is usually formulated as an optimization problem.

In this paper, we adopt Iterative Soft Thresholding Continuation (ISTC) [25] to convert this optimiza-
tion problem into linear operations with a non-linear shrinkage function, which allows sparse coding
to be seamlessly integrated into the deep neural networks. To compute a sparse coefficient ↵, ISTC
performs iterations of gradient steps on reconstruction ||z�D↵||2 and a proximal projection step to
increase coefficient sparsity.

Formally, initializing the coefficients at the first step ↵0 with all zeros, each step of ISTC refines the
sparse code with descending values of � from �max to �?: each step of ISTC is expressed as:

↵n+1 = �(↵n +D>(z�D↵n),�n), with �n = �max
�max

�?

�n/N

, (6)

where �(·, ·) here is a shrinkage function that truncates small values (lower than �) of the coefficients
to 0 to enforce sparsity, and can be easily implemented by a customized ReLU activation function:

�(z,�) = sgn(z)(max(|z|� �, 0)) = sgn(z)ReLU(|z|� �). (7)

3 Proposed Method

In this section, we describe the proposed fast adaptive anomaly detection framework in details. In
Section 3.1, we introduce the adaptive EBM which consists of a deep feature extractor followed
by an adaptive sparse coding layer. From there, we further show that utilizing larger receptive
field in the sparse coding could improve training robustness (Section 3.1.1), and applying smoothed
shrinkage functions could help speed up convergence (Section 3.1.2). In Section 3.2, we describe
the episodic training regime on various anomaly detection tasks that mimics few-shot adaptation
in the meta-testing stage while learning common knowledge across tasks. Instead of synthesizing
negative samples (anomaly) directly from noise, we introduce a simple but effective “learning from
inpainting” operation to accelerate the training in Section 3.3. Finally, we summarize training steps
of the proposed method in Algorithm 1, and inference steps in Algorithm 2.
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Figure 1: Overview of the inference stage on a new task. (a) Adapting the task-specific dictionary
with K normal samples. (b) Three iterations of sparse coding based on Eqn. 6. We also show a
backward pass from the reconstruction error to localize the abnormal regions

3.1 Adaptive Energy-based Model

An EBM is a form of generative model and it is widely used for modeling data density and sampling.
While there has been recent work [20] applying EBM to anomaly detection, it still requires re-
training for each new task. To efficiently adapt the EBM to novel tasks, we introduce an adaptive
sparse coding layer which is conditioned on the dictionary constructed by the features of normal
samples. Specifically, as illustrated in Fig 1, given an input image, x 2 R3⇥h⇥w, we first obtain the
corresponding feature z 2 Rd⇥h0⇥w0

from the deep feature extractor with parameters ✓, so that
z =  (x; ✓). All feature vectors along spatial axes of z are then sparsely decomposed through the
sparse coding layer over a task-specific dictionary D 2 Rd⇥Kh0w0

, which contains the features of
K normal samples of the current task as shown in the Fig 1(a). Each feature vector of the normal
sample features is then directly used as an atom in the task dictionary. The decomposed coefficients
are ↵ = S(z;D), where ↵ 2 RKh0w0⇥h0⇥w0

and S denotes the iterative sparse decomposition
process of (6). By multiplying the coefficient ↵ with the dictionary D, we obtain the reconstructed
features z0 = D↵. The sparsity regularization to ↵ is important, as it encourages input features to
be reconstructed by simple combinations of dictionary atoms (normal features), so that it would
be difficult for features of abnormal samples to be well-approximated, therefore producing higher
reconstruction errors that make it conducive for detecting anomalies. From here, the final energy
score is formulated as the mean squared error (MSE) between the original and the reconstructed
features:

E✓(x;D) = MSE(z, z0) = || (x; ✓)�DS
�
 (x; ✓);D

�
||2. (8)

In effect, Eqn. 8 depicts a conditional EBM, which is conditioned on the task-specific D formed by
normal features. With the energy score, we can obtain pixel-wise anomaly localization maps through
rx � E✓(x;D), i.e., the gradients of pixels along the direction of minimization. High gradient
magnitudes indicate regions that cannot be well explained by the dictionary D. Modifications to
these regions can potentially remove the anomaly and reduce the energy as in Eqn. 4. In Section 4.1
and Appendix Section B.5, we show that using the gradient (as a natural ingredient of EBMs with
LD) is more robust compared with auto-encoder and reconstruction based methods to generalize well
to unseen tasks (Appendix Figure C). In the following sections, we will discuss how to make the
training of this adaptive structure more robust.

3.1.1 Sparse Coding with Receptive Field.

As discussed in Section 3.1, the input feature z is represented as h0 ⇥ w0 of d-dim feature vectors
and they are treated independently while passing through the sparse coding layer. The region of
the input image that affects one feature vector is determined by the receptive field of the feature
extractor. The trade-off is that a small receptive field may not capture enough contextual information,
while applying a large receptive field would make feature maps spatially coarse and make it hard to
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Figure 2: Illustration of episodic training and (a) “learning by inpainting”. In each episode, a support
set is constructed with normal samples. The features of the normal samples are plugged into the
adaptive sparse coding layer as the dictionary. Synthesized abnormal samples are corrected by
performing gradient corrections with the gradient obtained by the direction of energy minimization.

spot small anomaly regions. To solve this dilemma, instead of carefully tuning the receptive field
of each layer of the feature extractor, we introduce a simple yet effective technique of applying the
receptive field on the sparse coding layer. Specifically, as illustrated in Appendix Fig A, rather than
performing sparse coding to each individual d-dim feature vectors, we apply it on d⇥ l ⇥ l volumes
centered around each feature vector, where l is the receptive field. This is equivalent to applying a
l ⇥ l, sliding window on spatial axes of the feature map and can be easily implemented by image

to column (Im2Col) operation. Then we flatten the feature volumes into dl2-dim vectors and adjust
the shape of the dictionary accordingly. In this way, we are able to capture contextual information
without needing to carefully tune the architecture of the feature extractor and we show in the later
experiments that this technique improves the robustness of the network on different types of objects.

3.1.2 Shrinkage Function

The effectiveness of training the EBM for localizing anomaly regions heavily depends on the gradient
propagation from later to earlier layers. It is shown in [15] that smooth activation functions like
Swish [45] could be beneficial here. Notably, the gradients of the dictionary D are determined by the
sparse coding coefficients ↵ as shown in Eqn. 6. However, the sparsity constraint of ↵ would turn off
the gradient computation of many elements in D and this could be detrimental during the early stage
of the training. To alleviate the sparse gradient issue, we replace the RELU-like shrinkage function
in Eqn. 7 with its smoothed counterparts by introducing the Sigmoid based shrinkage functions
(SigShrink). The SigShrink function is originally proposed for non-parametric signal estimation in
[3], and can be defined as:

�⌧ (z,�) =
z

1 + exp(�⌧(|z|� �))
, (9)

where ⌧ is the hyperparameter of smoothness. We present visualizations of the hard shrinkage
function Eqn. 7 and SigShrink with different values of ⌧ in Fig B. Comparing to the hard shrinkage
function which truncates small values into zeros, the SigShrink with a large ⌧ can sharply force small
values to near-zeros. Therefore, the SigShrink will guarantee non-zero gradients everywhere.

3.2 Episodic Training

To train the proposed adaptive EBM, we perform episodic training that is widely adopted by meta-
learning few-shot learners [18, 51]. Following the terminology of few-shot learning, in each training
episode, the model is adapted and tested with a task sampled from the underlying task distribution.
Specifically, the model is adapted to a support set of the given task, then a query set with ground
truth labels is applied to evaluate the adaptation, which is used to update the model parameters. As
shown in Fig 2, the support set of the i-th episode task contains a small number of K normal samples
{sik}Kk=1. The features zik =  (xi

k; ✓) of these normal samples are plugged into the dictionary
Di 2 Rd⇥Kh0w0

corresponding to the i-th task to adapt the dictionary. After that, the adapted model
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is measured by a query set consisting of M normal samples {qi
m}Mm=1 and M abnormal samples

{q̂i
m}Mm=1. Note that there is no actual abnormal samples given during training, instead, they are

iteratively sampled from the EBM and the sampling will be discussed in details in Section 3.3. Recall
that the training of EBM with contrastive divergence as in Eqn. 3 requires the estimation of energy
scores of both positive samples from the true data distribution and negative samples from the modeled
distribution. The positive energy can be estimated empirically with normal query set samples. The
negative energy can be estimated by performing the MCMC-based sampling technique [37, 54],
typically Langevin Dynamics as described in Eqn. 4. Denoting the output of Langevin dynamics
(sampled abnormal samples) initialized with q̂i

m as LD(q̂i
m), we have the empirical estimation of the

contrastive divergence of the i-th episode as:

Lcd =
1

m

MX

m=1

⇥
E✓(q

i
m;Di)� E✓(LD

�
q̂i
m);Di�⇤. (10)

With the energy score equivalent to the feature reconstruction error in Eqn. 8, minimizing Lcd
encourages normal features to be well-reconstructed by a sparse linear combination of dictionary
atoms while the features from abnormal samples tend to produce relatively higher reconstruction
errors so that they can be easily spotted.

3.3 Synthesizing Negative Samples

Typical EBM training with contrastive divergence conducts negative sampling from the modeled
density using techniques such as Langevin Dynamics, which applies gradient descent to a noise
initialization with small step size and large number of steps [17]. Such negative sampling steps can be
costly and we argue that it is unnecessary in our case. Instead, we introduce a new strategy of “learning
by inpainting”. Starting from a positive query sample qi

m, we synthesize the corresponding negative
sample q̂i

m by randomly placing a small uniform noise patch on the image. The Langevin Dynamics
procedure is then initialized with the resulting image instead of a noise image. As the Langevin
Dynamics proceeds, synthesized abnormal samples LD(q̂i

m) are inpainted along the direction of
“normal”, qi

m, and we introduce the following reconstruction loss:

Lrec =
1
m

MX

m=1

MSE(LD(q̂i
m),qi

m). (11)

We show in Fig 2(a) that, starting from a synthesized abnormal sample, only 5 steps of Langevin
dynamic would be sufficient to make it visually close to the corresponding normal sample during
training, serving as “hard negatives” that further facilitates the learning. The final loss of the episodic
training is simply:

L = ⌘0Lrec + ⌘1Lcd, (12)
where ⌘0 and ⌘1 are balance two loss terms. We summarize the overall training and inference
procedure in Alg. 1 and Alg. 2 respectively.

4 Experiments

In this section, we conduct evaluation on the industrial inspection task with the MVTec-AD dataset
[5, 6] (Section 4.1). Even though our proposed framework is image-based, we further demonstrate
it’s efficacy on the video anomaly detection task in Section 4.2. In Section 4.3, we show ablations and
insights relating to the adaptive sparse coding components. We show additional ablations including
the superiority of using gradient of EBMs over pixel-wise reconstruction to localize anomalies in
App. B and we provide implementation details in App. A.

4.1 Industrial Inspection

The goal of this anomaly detection task is to predict whether a manufactured component contains any
defects. The MVTec-AD dataset includes 15 categories of object. To demonstrate the fast adaptation
capability of the proposed method, we adopt a leave-one-out training strategy. Specifically, samples
of each target category are reserved for testing only, and the episodic training is performed on the
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Algorithm 1 Training procedure.
1: Given: A feature extractor with parameter ✓; a training dataset of multiple tasks with positive (normal)

samples only.
2: Given: Number of shots K; number of query samples Q; step size � of Langevin dynamics; total training

episodes I; and learning rate ✏.
3: Initialize the feature extractor .
4: for Episode i = 1 : I do

5: Sample the i-th task from the dataset, and randomly pick K+M samples to form the support set {sik}Kk=1

and the query set {qi
m}Mm=1.

6: Generate corrupted query samples {q̂i
m}Mm=1 by placing random patches to {qi

m}Mm=1.
7: Extract the support and query sample features with and update the adaptive sparse coding layer with

i-th task dictionary Di, which is constructed by support sample features. The energy function of the i-th
task is now parametrized by E✓(·,Di).

8: Obtain synthesized negative samples {LD(q̂i
m)}Mm=1 with the updated energy function using Langevin

dynamic in (4).
9: Obtain the final loss L with Lcd (10) and Lrec (11).

10: Update parameters ✓  ✓ � ✏r✓L.
11: end for

12: Return with parameter ✓.

Algorithm 2 Inference procedure on a task indexed by i.
1: Given: Feature extractor with trained parameter ✓.
2: Given: The support set {sik}Kk=1 and query samples {qi

m}Mm=1 to be tested.
3: Extract normal feature tensor Zi 2 RK⇥d⇥h0⇥w0

.
4: Reshape the normal feature tensor into a matrix, and use it as the task-specific dictionary Di 2 Rd⇥Kh0w0

.
5: Estimate the anomaly score of a test sample qi

m by its energy score using Eqn 8, with E✓(q
i
m;Di) =

|| (qi
m; ✓)�DiS

�
 (qi

m; ✓);Di
�
||2, where a higher energy score indicates that qi

m is more likely to be
an abnormal sample.

6: The pixel-wise anomaly map of a test sample qi
m can be obtain by visualizingrqi

m
� E✓(q

i
m;Di), where

abnormal regions show higher magnitude.

remaining categories. During the training stage, the model will not see any samples from the target
category. During testing, we first adapt the model to the target category with 10 randomly selected

normal samples, then measure the performance with the entire testing set. We run the test 5 times,
each time the model is adapted to random sets of 10 normal samples from the target category.

In Table 1, we first show performance of “upper-bound” methods, which train each category from
scratch with massive normal samples. Specifically, [7, 6] train auto-encoders (AE) with normal
samples and measure the reconstruction errors during the inference; AnoGAN [48] adopts a generative
adversarial network (GAN) to learn the manifold of normal; VE-VAE [29] presents a visually
explainable variational auto-encoder through gradient-based attention. For apple-to-apple comparison,
we create a strong baseline by applying model-agnostic meta-learning [18] on an AE (denoted as
MAML-AE, more details in App. Sec. A.3). To the best of our knowledge, the proposed method is
the first that is capable of producing strong performance on new tasks, using just a single forward

pass and no further training. This strongly suggests that the learned parameters are effectively
shared across tasks, greatly helping to accelerate the model deployment process that is typically
cumbersome otherwise. All results from our methods are obtained with flipping and 90o rotation
as augmentations. The proposed method outperforms MAML-AE by a large margin. Our results
are even competitive with the “upper-bounds” in some categories. We show the localized anomaly
regions from our method in Fig 3. Additional visualizations are in the App. Fig D.

4.2 Video Surveillance

In video anomaly detection, a common goal is to detect abnormal events captured by surveillance
cameras (e.g., a motorcycle on the sidewalk). A model trained on videos from one camera might not
generalize well on other cameras due to different locations / mounting heights / lightning conditions,
and it is not feasible to train one model for every new camera in practice. The ability to quickly adapt
to new scenes is a significant contribution to the task of video surveillance. We are only aware of the
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Input GT Prediction

Figure 3: Visualizations of localized
anomaly by our method.

Category AE (SSIM) AE (MSE) AnoGAN VE-VAE MAML-AE Ours

Carpet 0.69 0.38 0.34 0.1 0.20 0.26
0.87 0.59 0.54 0.78 0.68 0.84

Grid 0.88 0.83 0.04 0.02 0.01 0.12
0.94 0.90 0.58 0.73 0.53 0.82

Leather 0.71 0.67 0.34 0.74 0.12 0.40
0.78 0.75 0.64 0.87 0.77 0.95

Tile 0.04 0.23 0.08 0.14 0.14 0.26
0.59 0.51 0.50 0.93 0.52 0.76

Wood 0.36 0.29 0.14 0.47 0.11 0.23
0.73 0.73 0.62 0.91 0.68 0.78

Bottle 0.15 0.22 0.05 0.07 0.02 0.23
0.93 0.86 0.86 0.78 0.56 0.82

Cable 0.01 0.05 0.01 0.18 0.04 0.18
0.82 0.86 0.78 0.90 0.74 0.80

Capsule 0.09 0.11 0.04 0.11 0.03 0.10
0.94 0.88 0.84 0.74 0.68 0.90

Hazelnut 0.00 0.41 0.02 0.44 0.11 0.40
0.97 0.95 0.87 0.98 0.72 0.94

Metal nut 0.01 0.26 0.00 0.49 0.10 0.28
0.89 0.86 0.76 0.94 0.78 0.78

Pill 0.07 0.25 0.17 0.18 0.10 0.11
0.91 0.85 0.87 0.83 0.62 0.88

Screw 0.03 0.34 0.01 0.17 0.02 0.08
0.96 0.96 0.80 0.97 0.55 0.86

Toothbrush 0.08 0.51 0.07 0.14 0.06 0.18
0.92 0.93 0.90 0.94 0.80 0.85

Transistor 0.01 0.22 0.08 0.30 0.02 0.18
0.90 0.86 0.80 0.93 0.76 0.80

zipper 0.10 0.13 0.01 0.06 0.04 0.15
0.88 0.77 0.78 0.78 0.68 0.86

Table 1: Numerical evaluation of anomaly localization on MVTec-AD.
We report both mIoU (top rows) and AUC-ROC (bottom rows) values.
Col 2-5 are upper-bound methods trained with massive normal samples.

work in [32] (r-GAN) that has such adaptation capability. Specifically, the model adapts to a new
scene using gradient descent with several beginning frames of a query video, after which a GAN is
applied to generate future frames. Anomaly is then detected via the discrepancy between predicted
future frames and the original frames. Note that the MAML-AE baseline we conducted in Section 4.1
can be seen as an ablation of r-GAN on the single-frame without temporal information.

We follow the same evaluation regime as r-GAN by training with normal samples in all 13 scenes
from SH-Tech [28] and testing on UCSD Pedestrian 1, UCSD Pedestrian 2 [34], and CUHK Avenue
[30]. Note that since our method is image-based, it predicts the video frames independently without
leveraging any temporal information as in r-GAN. In each episode, we adapt our model with a support
set containing a few normal frames randomly sampled from the target scenes. In Table 2, we compare
our method against r-GAN pre-trained on SH-Tech only (r-GAN Pre-train), fine-tuned on target
datasets (r-GAN Fine-tune), and with one step gradient descent with meta-learning (r-GAN MAML).
We also show the performance of MAML-AE as a baseline for image-based meta-learning method. In
the last section of Table 2, we present intra-dataset results as well by training with 6 scenes of SH-Tech
and testing on remaining 7. We follow common evaluation protocol and measure the frame-level
AUC-ROC. Without leveraging temporal information and re-training (gradient descent), our method
achieves comparable results to r-GAN MAML and outperforms image-based meta-learning method
by a large margin. In App B.4, we show that incorporating simple temporal information can further
improve the performance.

4.3 Ablation Studies

Sparse coding receptive fields. To evaluate the effectiveness of using large receptive fields in the
sparse coding layer, we conduct additional experiments on the MVTec-AD dataset, and select 5
representative categories with different levels of difficulties to present the comparisons with l = 1 and
l = 3 (Sec. 3.1.1) in Table 3. Sparse coding with large receptive field clearly benefits more complex
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Figure 4: Visualizations of anomaly localization
with video anomaly detection.

Target datasets Methods 1-shot 5-shot 10-shot

UCSD Ped 1

r-GAN Pre-train 73.10 73.10 73.10
r-GAN Fine-tune 76.99 77.85 78.23
r-GAN MAML 80.60 81.42 82.38

MAML-AE 64.12 66.88 67.34
Ours 77.42 78.12 78.65

UCSD Ped 2

r-GAN Pre-train 81.95 81.95 81.95
r-GAN Fine-tune 85.64 89.66 91.11
r-GAN MAML 91.19 91.80 92.80

MAML-AE 78.24 82.04 83.30
Ours 91.22 92.00 92.45

CUHK Avenue

r-GAN Pre-train 71.43 71.43 71.43
r-GAN Fine-tune 75.43 76.52 77.77
r-GAN MAML 76.58 77.10 78.79

MAML-AE 68.72 69.67 70.01
Ours 80.68 83.41 84.46

Sh-Tech

r-GAN Pre-train 70.11 70.11 70.11
r-GAN Fine-tune 71.61 70.47 71.59
r-GAN MAML 74.51 75.28 77.36

MAML-AE 66.62 67.12 68.04
Ours 75.32 79.64 81.28

Table 2: Frame-level AUC-ROC for the video anomaly detec-
tion tasks.

Figure 5: Loss curves with smooth
(SigShrink) and non-smooth (hard-
shrink RELU-like) shrinkage func-
tions.

Category Leather Grid Hazelnut Cable Zipper

l = 1 0.40 0.95 0.11 0.80 0.36 0.91 0.17 0.76 0.12 0.84
l = 3 0.40 0.95 0.12 0.81 0.40 0.94 0.18 0.80 0.15 0.86

Table 3: Comparison of different sparse coding receptive fields. We
report both mIoU (left) and AUC-ROC (right) values.

Category Leather Hazelnut Cable

Ours 0.40 0.95 1.6e-4 0.40 0.94 2.4e-4 0.18 0.80 2.0e-4
No sparsity 0.32 0.90 0.9e-4 0.24 0.80 1.7e-4 0.12 0.68 1.5e-4

Table 4: Performance w/ and w/o sparsity constraint. From left to
right: mIoU; AUC-ROC; the difference of averaged reconstruction
errors between abnormal/normal samples.

structural objects (hazelnut, cable, and capsule), while the improvements are limited for the texture
objects (leather and grid), where contextual regularization is intuitively less important.

Shrinkage functions. To show the benefits of smooth shrinkage function, we plot the loss curves
of models trained with smooth SigShrink (Eqn. 9) and non-smooth RELU-like shrinkage (Eqn. 7)
functions in Fig 5. The model with smooth shrinkage function converges notably faster in the early
training stage and achieves lower loss.

Sparsity constraint. As discussed in Section 3.1, we impose sparsity constraint to the feature
decomposition in the adaptive sparse coding layer, in order to prevent abnormal features from being
well-approximated by the linear combinations of normal features, so that the reconstruction errors
are effective for detecting anomaly. To validate this, we conduct experiments by removing the
shrinkage function � in the sparse coding stage (Eqn. 6). We show comparison in Table 4 with
mIoU, AUC-ROC, and the difference of averaged reconstruction errors between abnormal and normal
samples. Without sparsity, the performance drops dramatically, and reconstruction errors of normal
and abnormal samples become closer.
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5 Related Work

Anomaly detection with sparse coding. Early efforts on adopting sparse coding in anomaly
detection are based on optimization (with L1 penalty) [30, 61]. Recent advances on iterative sparse
thresholding algorithms [11, 25] allow seamless integration of online sparse coding with deep neural
networks, and [33] formulates the sparse coding as stack RNNs for video anomaly detection.

Anomaly detection with generative models. One of the core challenges in anomaly detection is
that abnormal samples are usually unavailable in the training stage. Generative models are widely
utilized in anomaly detection due to the capability in modeling the density of desired data distribution.
Early efforts on variational autoencoders (VAE) based methods [1, 58] are arguably having hard
time calibrating uncertainties in novel samples [36], accurately localizing abnormal regions through
reconstruction errors [12]. Recent efforts have explored variant generative architectures like energy-
based models (EBM) [20], GANs [50], and combining VAE with EBM [12]. Various methods
also exploit intra-image structures [10, 7], cross-frame consistency [31], and motion-appearance
consistency in videos [39] while detecting anomaly.

Few-shot learning. Few-shot learning is extensively explored in classification tasks. It leverages
common knowledge extracted from a distribution of tasks, and induces an adaptive model that fits
to a new classification task with as few as one sample per class. Proposed methods are based on
optimization [18, 47, 19, 59, 46], learning metric [51, 53] and parameter prediction [22, 43, 21]. These
technologies are further applied in other tasks like image generation [9, 27] and out-of-distribution
detection [49].

Energy-based models. As a family of generative models, studies on EBMs [26] are mainly focused
on probabilistic modeling and sampling over data, either unconditionally [38, 44, 40, 17, 15, 63, 57,
56, 2], or conditionally [13, 14]. This has been recently followed by extensions to other applications
that include reasoning [16], latent space modeling of generative models [41], and anomaly detection
[12].

6 Conclusion

In this paper, we introduced few-shot fast-adaptive anomaly detection. We formulated our model as an
energy-based model with an adaptive sparse coding layer, of which the dictionary is directly formed
by normal features of a target task. We adopted episodic meta-learning to learn common knowledge
across tasks, which enables few shots adaptation. We further introduced smooth shrinkage functions,
sparse coding with large receptive fields, and learning by inpainting to improve and accelerate the
training. Notably, when evaluating our method’s performance on industrial inspection and video
anomaly detection, our method is comparable and even boasts better performance than methods
trained with a large amount of normal samples. Through this work, we hope to have made a significant
contribution to the important problem of anomaly detection by shedding light on our findings that
anomaly detection can indeed be generalized to new tasks with a few normal samples only.

Social Impact and Ethics. As a general framework for few-shot anomaly detection, the proposed
method does not suffer from particular ethical concerns or negative social impacts. All datasets used
are public, and we have blurred all human faces in the qualitative visualizations.
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