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ABSTRACT

Tri-Planar NeRFs enable the application of powerful 2D vision models for 3D
tasks, by representing 3D objects using 2D planar structures. This has made
them the prevailing choice to model large collections of 3D objects. However,
training Tri-Planes to model such large collections is computationally intensive
and remains largely inefficient. This is because the current approaches indepen-
dently train one Tri-Plane per object, hence overlooking structural similarities in
large classes of objects. In response to this issue, we introduce Fused-Planes,
a novel object representation that improves the resource efficiency of Tri-Planes
when reconstructing object classes, all while retaining the same planar structure.
Our approach explicitly captures structural similarities across objects through a
latent space and a set of globally shared base planes. Each individual Fused-
Planes is then represented as a decomposition over these base planes, augmented
with object-specific features. Fused-Planes showcase state-of-the-art efficiency
among planar representations, demonstrating 7.2 faster training and 3.2x lower
memory footprint than Tri-Planes while maintaining rendering quality. An ultra-
lightweight variant further cuts per-object memory usage by 1875 x with minimal
quality loss.
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Figure 1: Comparison of planar representations under the same budget. Our method achieves
the best rendering quality and the best memory footprint among planar representations when training
large classes of 3D objects under a fixed time budget (7 minutes per object in this illustration).
Fused-Planes-ULW designates the ultra-lightweight variant of Fused-Planes.

1 INTRODUCTION

Tri-planar representations (Chan et al., 2022; Fridovich-Keil et al., 2023) have recently driven sig-
nificant progress in 3D computer vision, offering a unique advantage: they model 3D objects while
remaining interpretable as 2D structures due to their planar format. This planarity makes them
compatible with standard image-based models (e.g. CNNs), thereby unlocking new ways 2D vi-
sion models can be used for 3D tasks (Hong et al., 2024; Anciukevicius et al., 2023; Mercier et al.,
2025). Given that such applications are inherently data-intensive, the need to train large collections
of Tri-Planes for 3D reconstruction has become increasingly prevalent (Cardace et al., 2024; Shue
et al., 2023; Ju & Li, 2025), and a costly preliminary step in 3D research (Liu et al., 2024; Wang
et al., 2023, Sections 4.1 and 5). Yet, most existing methods overlook this costly 3D reconstruction
step, focusing instead on the downstream tasks that planar representations enable. As such, using
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planar representations for large-scale 3D reconstruction remains largely suboptimal in terms of re-
source efficiency, since existing methods train each Tri-Plane independently, ignoring the structural
similarities that often exist across large object classes. This oversight leads to redundant compu-
tations and inefficient memory usage. As a result, constructing a dataset of Tri-Planes is currently
unnecessarily computationally intensive.

In this work, we address the challenges associated with the computationally expensive task of large-
scale 3D reconstruction using planar methods. We introduce Fused-Planes, a novel tri-planar rep-
resentation that efficiently models large classes of 3D objects. Fused-Planes effectively reduces the
resource costs associated with Tri-Planes by leveraging the structural similarities shared across mul-
tiple objects. Additionally, Fused-Planes retains the planar property of Tri-Planes that has enabled
their integration into existing pipelines, and thus retains their compatibility with recent approaches.

First, our Fused-Planes split an object representation into two separate components: the first “Mi-
cro” component learns features specific to the object at hand; the second “Macro” component is
a learned decomposition over a set of base planes, where each base plane encapsulates structural
similarities across the class of objects we want to reconstruct. Second, we train Fused-Planes with a
3D-aware latent space (Schnepf et al., 2025), which provides a continuous and structured represen-
tation of objects, and accelerates the rendering and training of Fused-Planes.

The combination of these two cost-reducing components is essential. On the one hand, the latent
space provides a more effective representation for disentangling object-specific details from class-
level structural similarities, making it easier to capture these similarities with the set of base planes.
On the other hand, the micro-macro decomposition is essential to eliminate the quality losses asso-
ciated with using a latent space.

We conduct extensive experiments justifying these design choices and comparing our method with
current planar representations when training on large classes of objects. Fused-Planes presents 7.2 %
faster training than Tri-Planes, while requiring 3.2x less memory footprint and retaining a similar
rendering quality, thus establishing a new state-of-the-art in efficiency for planar scene representa-
tions. Moreover, an ultra-lightweight variant of Fused-Planes trades off minor rendering quality for
substantial gains in memory footprint: 1875x less than Tri-Planes. To the best of our knowledge,
our work is the first to improve upon the resource efficiency of Tri-Planes.

2 RELATED WORK

Tri-Planes. Tri-Planes (Chan et al., 2022) are widely used for modeling large collections of 3D
objects and have attracted considerable attention due to their seamless integration with standard
image-based models. In recent works, Tri-Planes are commonly used within a framework that in-
volves solving two main tasks (Shue et al., 2023; Ju & Li, 2025). The first task is large-scale 3D
reconstruction, which consists of training Tri-Planes to properly model a large set of 3D objects.
Once this prerequisite task is completed, the Tri-Planes can be reshaped into 2D image-like tensors,
an operation made possible by their planar structure, making them easily integrable with image-
based models. Once trained and reshaped, Tri-Planes are applied to a second, targeted task, in
conjunction with a chosen image-based model. While recent studies have focused heavily on ex-
ploring diverse targeted tasks such as editing (Ki et al., 2025), classification (Cardace et al., 2024),
generation (Liu et al., 2024), and feed-forward reconstruction (Wang et al., 2023), the first large-
scale reconstruction task itself remains inefficient and sub-optimal, which has inspired our research
direction. A more detailed discussion of works using Tri-Planes for downstream tasks can be found
in appendix (Section A).

Compatibility of NeRF methods with image-based models. Since NeRF (Mildenhall et al.,
2020), methods such as Instant-NGP (Miiller et al., 2022), TensoRF (Chen et al., 2022), and 3D
Gaussian Splatting (Kerbl et al., 2023, 3DGS) have greatly advanced single-scene reconstruction.
However, unlike Tri-Planes, these representations cannot be directly reshaped into image-like ten-
sors. Recent works attempt to work around this by converting 3DGS scenes into 2D maps using
various parametrization techniques (e.g. encoding a gaussian per pixel (Li et al., 2024)). However,
this explicit parameterization either (i) requires 3D-to-2D unwrapping techniques (e.g., UV maps
(Hu et al., 2024; Pang et al., 2024) or Morton-order mappings (Jiang et al., 2025)) to preserve spa-
tial semantics across different sides of an object, or (ii) damage image-like spatial semantics, since
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adjacent pixels may correspond to spatially distant Gaussians (Szymanowicz et al., 2024). In con-
trast, Tri-Planes require no such preprocessing. They are fixed-size, fully structured, and consistent
across scenes, making them directly compatible with standard image-based architectures. These
properties have made them the most adopted approach in large-scale 3D reconstruction, and moti-
vate our focus on adopting purely planar representations, without introducing auxiliary non-planar
components (Wu et al., 2024a).

Our work aims to address the inefficiencies of large-scale 3D reconstruction with Tri-Planes. First,
we design Fused-Planes to be a tri-planar shared representation that captures the structural similar-
ities in object classes. Second, we train Fused-Planes as latent NeRF's, facilitating the learning of
our shared representations. These design choices lead to substantial reductions in both training time
and memory footprint.

Shared representations. Shared representations denote approaches that model multiple objects
by utilizing common components. These representations encode an abstraction of a set of objects,
effectively capturing dataset-level information such as structural similarities and differences among
objects. For example, Jang & Agapito (2021) represent multiple objects of the same class within a
single NeRF (MLP) by conditioning it on distinct latent codes for shape and appearance, which al-
lows shape and appearance to be edited independently. Similarly, Schwarz et al. (2021); Niemeyer &
Geiger (2021) adopt a shared representation implemented within a GAN framework, which enables
the generation of novel objects and scenes. Notably, shared representations have been employed
to reduce memory footprint when modeling multiple 3D objects. For instance, Singh et al. (2024)
encode multiple scenes into a single NeRF using learned pseudo-labels, thereby reducing memory
footprint. However, their method cannot scale beyond 20 scenes. Our work also utilizes shared
representations for resource efficiency, but remains scalable to thousands of objects while reducing
both memory footprint and training time. To the best of our knowledge, our method is the first to
explicitly integrate shared representations with planar structures.

Latent NeRFs. Latent NeRFs involve training neural scene representations within the latent space
of an image autoencoder, rather than directly using raw RGB images. Several recent works have
utilized Latent NeRFs for 3D generation (Metzer et al., 2023; Seo et al., 2023; Ye et al., 2023;
Chan et al., 2023), scene editing (Khalid et al., 2023; Park et al., 2024), and scene reconstruction
(Aumentado-Armstrong et al., 2023) with improved quality. Recently, Schnepf et al. (2025) em-
ployed latent NeRFs to accelerate NeRF training. Their approach enables training various NeRF
architectures within a 3D-aware latent space, resulting in substantial speed-ups but at the expense
of a notable degradation in rendering quality. Our work builds upon Schnepf et al. (2025) by train-
ing our proposed Fused-Planes representation in a 3D-aware latent space. However, unlike Schnepf
et al. (2025) who pre-train a generic latent space for all NeRF representations, we train the 3D-aware
latent space jointly with our scene representations, which proves essential for preserving rendering
quality. This improvement enables us to achieve substantial speed-ups without quality compromises.

3 METHOD

Our method efficiently reconstructs large collections of 3D objects using tri-planar representations.
Section 3.1 presents our novel Fused-Planes representation, which splits an object representation
into an object-specific “micro” component and a “macro” component derived from shared base
representations. These base representations are trained on the entire dataset, allowing to capture
global structural patterns shared by the objects being reconstructed. To achieve this, we train the
set of Fused-Planes in a jointly learned 3D-aware latent space, which encodes the target objects in
a compact and well-structured space, thereby facilitating the learning of shared patterns with our
base planes. Section 3.2 describes our training procedure for Fused-Planes and the 3D-aware latent
space. Figure 2 presents an overview of our method.

Notation. We denote O = {04, ..., Oy} a large set of N objects drawn from a common distribu-
tion. Each object O; = {(x;5,¢; ;) };—; consists of V posed views. Here, x; ; and ¢; ; respectively
denote the j-th view and camera pose of the i-th object O;. We denote T = {71, ..., T } the set of
Fused-Planes representations modeling the objects in O.
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Figure 2: Method overview. A set of Fused-Planes {7;} reconstructs a class of 3D objects {O;}
from their GT views {x; ;}, where ¢ and j respectively denote the object and the view indices.
For clarity, only one Fused-Planes is shown. (a) Each Fused-Planes 7; is formed from a micro
plane 7™ which captures object-specific information, and a macro plane 7*¢ computed via a
weighted summation over a set of shared base planes 3. This base captures class-level information
like structural similarities across objects. (b) View synthesis is performed in the latent space of an
auto-encoder (&g, D) via classical volume rendering. The rendered latent image Z; ; (low resolu-
tion) is decoded to obtain the output RGB view (high resolution). (¢) The Fused-Planes components
(i.e. Timic, B, W;) and the autoencoder are supervised with three reconstructive losses.

3.1 FUSED-PLANES ARCHITECTURE.

Pre-requisite: Tri-Planes.  Tri-Plane representations (Chan et al., 2022) are explicit-implicit
scene representations enabling scene modeling in three axis-aligned orthogonal feature planes, each
of resolution K x K with feature dimension F. To query a 3D point x € R3, it is projected onto
each of the three planes to retrieve bilinearly interpolated feature vectors. These feature vectors are
then aggregated via summation and passed into a small neural network with parameters « to retrieve
the color and density, which are then used for volume rendering (Kajiya & Von Herzen, 1984).

Notably, Tri-Planes can be represented as 2D structures by reshaping them into K x K images with
3F channels. As such, they can be seamlessly integrated in image-based pipelines. This planar
property has been fundamental for their widespread adoption, and it is preserved in Fused-Planes.

Architecture of a Fused-Planes. Fused-Planes is a novel planar 3D representation that builds
upon Tri-Planes. A Fused-Planes splits a planar representation into object-specific features, and
class-level features, which allows to learn common structures across the large set of objects. Specif-
ically, a Fused-Planes representation 7; of object O; is composed of a “micro” plane T integrating
object-level information, and a “macro” plane 7;"%¢ that encompasses class-level information:

E — ilwimic oy T:imac , (1)

where @ concatenates two planar structures along the feature dimension. We denote by F™ic the
dimensionality of local features in T;™¢ and by F"™¢ the dimensionality of global features in 7;"%¢,
with the total dimensionality of features in 7; being F' = F™'°¢ 4 F™ac,

The micro planes 7™ are object-specific, and are hence independently learned for every object. The
macro planes 7" represent globally captured information that is relevant for the current object.
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They are computed for each object from shared base planes B = { B}, by the weighted sum:

M
I =WiB=> wkBy, 2)
k=1

where W; are learned coefficients for object O;. The base of planes {Bj}L, is shared among
objects and capture class-level structural similarities. With this approach, the number of micro
planes is equal to the number of objects N, while the number of macro planes M is a constant
hyper-parameter. We take M > 1 in order to capture diverse information, which our experiments
showed to be beneficial for maintaining rendering quality, and M < N. Overall, decomposing
Fused-Planes into micro and macro components reduces the number of trainable features per-object
compared to traditional Tri-Planes, thus accelerating training and reducing total memory footprint.

Fused-Planes-ULW. We propose an ultra-lightweight (ULW) variant of our method with F™i¢ =
0 (only macro planes), where we achieve substantial savings in memory footprint at the expense of
a slight reduction in rendering quality.

3D-aware latent space. While Tri-Planes are traditionally used to model objects in the RGB
space, we train Fused-Planes in the latent space of an image autoencoder, defined by an encoder
Ey and a decoder D,,. This is because a high-dimensional RGB space lacks structure, making it
poorly suited for effectively capturing structural similarities. In contrast, a 3D-aware latent space
(Schnepf et al., 2025) provides a structured and continuous encoding of the objects, which is, as
proven by our ablations, more suited for disentangling structural similarities from object-specific
details. Additionally, this latent space allows for a reduced rendering resolution, which alleviates
the cost of volume rendering and contributes to accelerating our training. In practice, we train our
3D-aware latent space jointly with our Fused-Planes, which tailors it specifically for our decomposed
object representation.

Atinference, given a camera pose c;, we render a latent Fused-Plane T as follows:
Zij = Ra(T3,¢5) , Ti5 = Dy(Zi) , 3)

where R, is the Fused-Plane renderer with trainable parameters «, Z; ; is the rendered latent image,
and z; ; is the corresponding RGB decoded rendering.

3.2 TRAINING A LARGE SET OF FUSED-PLANES

This section outlines our training strategy to learn a large set of objects. In brief, we jointly train the
set of Fused-Planes and the 3D-aware latent space. Figure 2 provides an overview of our pipeline.

Training a set of Fused-Planes jointly with the 3D-aware latent space. We train the set of
Fused-Planes 7 to reconstruct the set of objects O from posed views. As described above, we
conduct this training in a 3D-aware latent space in a joint manner. To do so, we adapt the 3D
regularization losses from Schnepf et al. (2025). Note that our 3D-aware latent space differs from
the one in (Schnepf et al., 2025), as it is subject to an additional training constraint coming from our
micro-macro decomposition. This allows us to obtain a latent space that is not only 3D-aware, but
also adapted to our Fused-Planes representations.

We supervise a Fused-Planes T; and the encoder E in the latent space with the loss L (1atent).
latent ~
£33 Te) = 2y — 2413 )

where z; ; = Ey(x; ;) is the encoded ground truth image, Z; ; = R (T, ¢; ;) is the rendered latent
image, and T; = T/™¢ @ Ta°. This loss optimizes the encoder parameters and the Fused-Planes
parameters to align the encoded latent images z; ; and the rendering z; ;. We also supervise 7; and
the decoder D, in the RGB space via LRGB).

RGB ~
LB, T) = |2y — T3 5)

where x; ; is the ground truth image, and Z; ; = Dy(Z; ;) is the decoded rendering. This loss
ensures a good rendering quality when decoded to the RGB space, and finds the optimal decoder for
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Figure 3: Qualitative comparison. We show comparisons of our method with other planar scene
representations for NVS on held-out test views. Our method achieves the fastest training with the
lowest memory footprint, while maintaining a comparable rendering quality.

this task. Finally, we adopt the reconstructive objective £(*) supervising the auto-encoder:
£ (69) = llwiy — 1,41 ©)
where &; j = Dy,(Ey(x;,;)) is the reconstructed ground truth image.

Overall, our full training objective is composed of the three previous losses summed over O to
optimize the set of Fused-Planes 7, the encoder E, and the decoder D:

N VvV

71}1(;1}/) Z Z )\(latent)ﬁg?tent) (d), T;) + )‘(RGB)‘CEE’GB) (,(/}7 T‘z) + )\(ae) Egze) (¢; ¢) , (7)
PVT1 =1

where \(1atent)  \(RGB) “and A\(2¢) are hyper-parameters.

By the end of this training, the set of Fused-Planes 7 including the base planes B are learned
and effectively model the objects in . Additional object representations could still be trained by
utilizing the frozen shared components. For more implementation details, we refer the reader to the
appendix (Section B and Algorithm 1).

4 EXPERIMENTS

Task. As discussed in Section 2, our goal is to reduce the resource costs of planar representations
in large-scale 3D modeling. To establish the practical utility of our representation, it must satisfy
two criteria: (i) accurately represent the types of 3D objects typically modeled with Tri-Planes,
and (ii) demonstrate competitive resource efficiency relative to the Tri-Planes baseline. Regarding
3D modeling performance, we adopt the standard evaluation protocol for 3D representations and
assess our method on the task of 3D reconstruction via Novel View Synthesis (NVS). For resource
efficiency, we measure the per-object training time and memory footprint when modeling large
object classes.

Evaluation Protocol To evaluate the NVS quality of the learned objects, we compute the PSNR
(1), SSIM (1) and LPIPS (Zhang et al., 2018, |) between never-seen reference views and corre-
sponding NVS views. To evaluate the resource requirements, we report per-object training time,
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per-object memory footprint (excluding shared components), and total memory footprint. Training
times are measured using a single NVIDIA L4 GPU.

Table 1: Comparison with planar methods. Fused-Planes reduces the quality gap between Tri-
Planes and K-Planes, while requiring three orders of magnitude less memory footprint, and having a
significantly faster training, thus establishing a new state-of-the-art in efficiency for modeling large
object classes with planar representations.

Training Size ShapeNet datasets Basel Faces
Planar .

(min) (MB) PSNR SSIM LPIPS PSNR SSIM  LPIPS
K-Planes (Fridovich-Keil et al., 2023) 75.35 410.17 30.88 0956 0.043 4023 0991  0.005
Tri-Planes (Chan et al., 2022) 64.32 1.50 28.15 0919 0.121 3647 0980 0.013
Fused-Planes-ULW (ours) 7.16 0.0008 2902 0937 0.092 3396 0955 0.010
Fused-Planes (ours) 8.96 0.48 3047 0957  0.042 3724 0973 0.006

Table 2: Comparison with methods using shared representations. Fused-Planes demonstrates
more favorable NVS quality and per-object resources requirements compared to CodeNeRF.

Training Size ShapeNet datasets (avg) Basel Faces
Planar . MB
(min) (MB) PSNR SSIM LPIPS PSNR SSIM  LPIPS
CodeNeRF (Jang & Agapito, 2021) X 14.96 0.0026 28.34 0930 0.121 3546 0972  0.010
CodeNeRF-A (our adaptation) X 9.54 0.0026 2699 0915 0.126 3544 0971 0.010
Fused-Planes-ULW (ours) 7.16 0.0008 29.02 0937 0.092 3396 0955 0.010
Fused-Planes (ours) 8.96 0.48 3047 0.957  0.042 37.24 0973  0.006

Table 3: Report of standard NeRF methods. To provide the reader with a broader perspective,
we report the metrics of other well-established NeRF methods. As discussed, these methods do not
share the same architectural versatility as planar methods and are designed for different objectives.

Training Size ShapeNet datasets (avg) Basel Faces
Planar . MB
(min) (MB) PSNR SSIM LPIPS PSNR SSIM  LPIPS
Vanilla-NeRF (Mildenhall et al., 2020) X 636.8 22.00 3585 0977 0.027 4291 0996  0.001
Instant-NGP (Miiller et al., 2022) X 7.52 189.13 3406 0973 0.022 36.54 0981  0.009
TensoRF (Chen et al., 2022) X 68.93 208.32 3674 0985  0.013 40.66 0991  0.004
3DGS (Kerbl et al., 2023) X 9.37 27.66 3295 0975 0.043 43.06 0995  0.002
Fused-Planes-ULW 7.16 0.0008 2902 0937  0.092 3396 0955 0.010
Fused-Planes 8.96 0.48 3047 0957  0.042 3724 0973 0.006

Baselines. We compare Fused-Planes with three distinct lines of work. First, the central compar-
ison is with planar scene representations, specifically Tri-Planes (Chan et al., 2022) and K-Planes
(Fridovich-Keil et al., 2023), the only current works having planar structures. Tri-Planes is our base-
line architecture and hence is our main point of comparison. K-Planes extend Tri-Planes to improve
rendering quality by utilizing multi-scale planes, sacrificing on memory footprint, and most impor-
tantly the explicit 2D structure, as multi-scale planes cannot be directly reshaped into a single 2D
structure. Second, we compare Fused-Planes with works utilizing shared representations. From this
category, we consider CodeNeRF (Jang & Agapito, 2021), a recent non-planar method utilizing a
shared NeRF conditioned by latent vectors. We also compare with CodeNeRF-A, our adaptation of
CodeNeRF designed to improve efficiency (more details in Section F). Note that we do not compare
with C3-NeRF (Singh et al., 2024) as their approach does not scale beyond 20 scenes. Third, and
to provide the reader with a larger perspective, we report the performance of other well-established
non-planar scene representations (Mildenhall et al., 2020; Miiller et al., 2022; Chen et al., 2022;
Kerbl et al., 2023), using their Nerfstudio (Tancik et al., 2023) implementations. While these meth-
ods are designed to model scenes individually with high fidelity, they are not as readily integrable
with image-based models as planar methods, and therefore lack their architectural versatility. As
such, they are not our primary point of comparison, but are included to provide broader context.

Datasets & Experimental Details. We evaluate our method on large-scale 3D data. Consistently
with Tri-Planes and CodeNeRF, we use ShapeNet (Chang et al., 2015), from which we take four
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Table 4: Multi-class training. The first three rows correspond to single-class training, where a sep-
arate Fused-Planes model is trained for each individual class. The remaining rows report the results
of multi-class training, where a single Fused-Planes model is trained jointly on multiple classes.
The results show that Fused-Planes is applicable to multi-class data and continues to outperform
Tri-Planes in this setting.

4l Speakers Sofas Furniture Cars
asses

PSNR SSIM  LPIPS PSNR SSIM  LPIPS PSNR  SSIM  LPIPS PSNR  SSIM  LPIPS
Fused-Planes 1 29.99 0953 0.053 3092 0958  0.028 30.72 0960  0.053 30.27  0.960  0.033
Fused-Planes-ULW 1 2922 0941 0.087 29.02 0931 0.084 29.14 0933 0.142 2871 0.943  0.055
Tri-Planes 1 27.02 0909 0.134 2848 0.921 0.103 2742  0.894 0210 29.69 0.953  0.036
Fused-Planes 2 30.03 0.953 0.053 30.37 0953 0.033 — — — — — —
Fused-Planes-ULW 2 28.63 0925 0.108 2893 0931  0.085 — — — — — —
Fused-Planes-ULW 3 2930 0.937  0.088 2933 0937  0.064 2947 0942 0.118 — — —
Fused-Planes 3 29.84 0952  0.053 30.08  0.950  0.034 3031 0955  0.064 — — —
Fused-Planes 4 29.72 0951  0.055 29.70  0.948  0.038 29.79 0951  0.073 29.15 0952 0.040
Fused-Planes-ULW 4 28.12 0924 0.110 2834 0923  0.084 2854 0927 0.154 27.73 0933  0.074

categories: Cars, Furniture, Speakers and Sofas. Additionally, we adopt the large-scale front-facing
Basel-Face dataset (Paysan et al., 2009). More dataset details can be found in the Section C. In our
experiments, we train a set of Fused-Planes to reconstruct N = 2000 objects. We use planes of
dimensionality K x K x F', where K = 64 and F' = 32 for all planar representations. For Fused-
Planes, we take F™i¢ = 10, F™a¢ = 22 and M = 50. For Fused-Planes-ULW, we take F™i¢ = (,
Fmac = 32, and M = 50. We detail our hyper-parameters in Section G. We adopt the pre-trained
VAE from Stable Diffusion (Rombach et al., 2022) as initialization for our VAE.

4.1 MAIN RESULTS

Main results appear in Tables 1 to 3 and Figures 1 and 3. Detailed results are available in Section D.

Compared to other planar scene representations (Figure 1 and Table 1), Fused-Planes exhibits a
significant reduction in resource costs, demonstrating 7.2x faster training and 3.2 less memory
footprint than Tri-Planes, and 8.4 x faster training and 854 x less memory footprint than K-Planes.
It improves rendering quality over Tri-Planes while reducing the gap with K-Planes, but without
K-Planes’ orders-of-magnitude higher memory cost or multi-scale complexity. Fused-Planes-ULW
trades off minor rendering quality for substantial gains in memory footprint: one object requires
1875 % less memory footprint than Tri-Planes, and 512 000x less memory footprint than K-Planes.
Furthermore, Figure 4 illustrates the evolution of the resource requirements as the number of objects
increases. Moreover, a detailed breakdown of the memory footprint of Fused-Planes can be found
in the appendix (Table 15). All in all, Fused-Planes establishes a new state-of-the-art in terms of
resource efficiency for planar scene representations.

As for other methods utilizing shared representations (Table 2), Fused-Planes and Fused-Planes-
ULW showcase up to 2x faster training times, and an improved rendering quality. Fused-Planes-
ULW also requires less memory footprint per-object.

For broader context, we report results on other well-established non-planar NeRF methods (Table 3
and Figure 5). Fused-Planes, like all other planar representations, showcases lower rendering quality,
which is an acceptable trade-off as planar methods have a different primary objective (Section 2).

4.2 RESULTS ON MULTI-CLASS TRAINING

Table 4 reports a set of experiments in which Fused-Planes and Fused-Planes-ULW are trained
on datasets containing scenes from multiple object classes. Specifically, we introduce three new
datasets that combine two, three, and four object classes, composed from our initial object cat-
egories. Specific details about the construction of these datasets are available in Section C. The
results demonstrate that Fused-Planes is applicable to multi-class data and continues to outperform
Tri-Planes in this setting. Furthermore, a minor reduction in quality appears as more classes are
included, reflecting the increased scene diversity that shared base planes must capture. Importantly,
this effect is small, and the resulting quality remains on par with or above that of Tri-Planes. Note
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Table 5: Ablation study. Comparison of NVS quality and per-object resource costs for different
ablations of our method on ShapeNet Cars. Fused-Planes outperforms all of its ablations. Fused-
Planes-ULW trades off minor NVS quality for substantial savings in memory footprint.

Latent Micro Macro Training Size
Space Planes Planes (min) (MB) EEALS SSIM LEIFS
Fused-Planes (M = 1) 8.48 0.48 27.69 0.942 0.042
Fused-Planes (Micro) X 12.84 1.50 27.64 0.941 0.040
Fused-Planes (RGB) X 63.52 0.48 27.71 0.942 0.044
Tri-Planes X X 64.08 1.50 28.56 0.953 0.035
Fused-Planes-ULW X 7.16 0.0008 27.51 0.935 0.063
Fused-Planes 8.92 0.48 28.64 0.950 0.037
= Fused-Planes
— 4000 = 1000.0 Fused-Planes-ULW
:-a;/ =) K-Planes
5 5 Tri-Planes
£ 2000 & 5000
E 1247 Zg 360.75 1
0.0% — ‘ - ‘ 0.0 : ‘ . ‘
0 Np =500 1000 1500 2000 0 500 1000 1500 2000
N N

Figure 4: Scaling the number of objects using planar methods. Evolution of the total training
time (left) and total memory footprint (right) when scaling the number of objects (V). As K-Planes
is barely visible (right), we present in Figure 6 a magnified version of the memory cost plot.

that training speed and memory usage remain unchanged in multi-class training with respect to the
single-category models.

4.3 ADDITIONAL RESULTS

In the appendix, Figure 10 illustrates a subset of our large-scale results for completeness. Sec-
tion D.3 provides an ablation study on the number of base planes, in which we show that M = 50 is
the most effective option for Fused-Planes. Section D.4 presents a rendering speed analysis show-
ing that Fused-Planes achieves substantially faster rendering than Tri-Planes, while being compet-
itive with the other baselines. Section D.5 provides experiments utilizing a low-budget VAE with
Fused-Planes, showing that our method exhibits low-sensitivity to the specific VAE initialization.
Section D.6 presents a comparison of the total resource costs across our baselines, which shows
that Fused-Planes presents competetitve training times, and is the fastest planar method. In terms of
memory, Fused-Planes and Fused-Planes-ULW are the most lightweight methods. Section E anal-
yses our base-planes and the representations they learn. In brief, our base planes can be grouped
into two categories: semantic planes that clearly encode object-level structures, and residual planes
that capture finer intra-class variability. Moreover, we visualize the values of the weights W; for
two different objects, which shows that for each object, a few base planes are dominantly activated,
while other planes contribute minor adjustments. Finally, we also present an experiment in which
we interpolate between two learned weights in Figure 9, showing that we can transition smoothly
from one scene to another. Per-object NVS results and visualizations are available in Tables 17 to 21
and Figures 11 to 15.

4.4  ABLATIONS

To justify our design choices, we present an ablation study of our method (Table 5). “Fused-Planes
(M = 1)” reduces the shared base planes B to a single plane. It demonstrates a slight degradation
of quality compared to Fused-Planes, highlighting the necessity for a set of base planes. “Fused-
Planes (Micro)” eliminates the Macro component of Fused-Planes (i.e. F™#¢ = 0), and therefore
the shared components. It exhibits lower quality compared to Tri-Planes, which is in line with the
degradations seen in Schnepf et al. (2025) for latent NeRFs. In contrast, our full model avoids such
issues, underscoring the benefits of shared representations within the latent space, both in quality and
memory efficiency. “Fused-Planes (RGB)” ablates the latent space and trains Fused-Planes in RGB
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Figure 5: Resource costs overview. To reconstruct a large class of objects, one would consider
three options: many per-scene models (e.g. INGP, 3DGS, or planar methods), a multi-scene method
(e.g. CodeNeRF), or Fused-Planes. Our method presents the lowest per-object training time and
memory footprint among all planar representations, while maintaining a similar rendering quality.
Circle sizes represent the NVS quality.

space. It exhibits lower quality compared to Tri-Planes, and to our full model. Therefore, it shows
the necessity of the latent space for making shared representations work effectively. It also highlights
the speed improvements enabled by the latent space. “Tri-Planes” is equivalent to ablating both the
latent space and macro planes, which presents significantly higher resource costs and similar quality.
In summary, our ablations show that both the latent space and shared representations are needed
concurrently to avoid quality degradations and minimize resource costs.

4.5 LIMITATIONS

Tri-Planes are well-suited for object-centric scenes. However, they exhibit limitations in capturing
fine details and handling unbounded scenes, which are characteristic of real-world environments.
As such, Tri-Planes cannot be used to reconstruct scenes such as the ones used in the NeRF paper
(Mildenhall et al., 2020) or in the Mip-NeRF 360 dataset (Barron et al., 2022). More precisely, to
capture fine details, one would need to greatly increase the resolution of each of the Tri-Planes fea-
ture grids, leading to significant increases in memory footprint and computation, which undermines
the compactness that makes Tri-Planes attractive. Moreover, Tri-Planes assume that the scene fits
in a bounded volume, which complicates the modeling of distant backgrounds often present in real
scenes. Some methods (Wu et al., 2024b; Lee et al., 2024; Yan et al., 2024) sidestep these limitations
by using tricks like utilizing multiple Tri-Planes for large scenes or by modeling only density and
relying on other tools for textures. These approaches are beyond this paper’s scope.

Since our method adopts the same architecture as Tri-Planes, it also inherits their limitations. Even
so, Tri-Planes have been widely adopted (Section 2), as their planar design provides practical ad-
vantages despite these drawbacks. Our contribution advances this line of work by proposing a more
efficient way to train planar methods at large-scales, while improving the quality of Tri-Planes.

5 CONCLUSION

In this work, we introduced Fused-Planes, a novel planar object representation that advances the
state of the art in resource-efficient planar 3D modeling and reconstruction of large object classes.
This is achieved by shifting away from the traditional approach of reconstructing each object in
isolation, and instead exploiting the shared structural similarities within object classes using shared
base representations in a specially designed latent space. We showed that Fused-Planes significantly
reduces required resources compared to current planar representation, while maintaining rendering
quality. Given the recurrent challenges associated with training large-scale planar scene represen-
tations, we hope that our contribution will facilitate this task, and make research in image-based
models for 3D applications more accessible.

10
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REPRODUCIBILITY STATEMENT

We have taken several measures to ensure the reproducibility of our findings. The paper includes
the necessary implementation details and hyperparameter settings in order to reproduce our results.
Additionally, the complete source code is included in the supplementary materials of this submis-
sion and will be released as open-source upon publication. Together, these resources should allow
researchers to fully reproduce and extend our findings.
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A WORKS UTILIZING TRI-PLANES FOR TARGETED TASKS
In this section, we highlight representative works that utilize Tri-Planes for varied targeted tasks.

Editing. Bilecen et al. (2025); Ki et al. (2025) use Tri-Planes to perform 3D-aware editing, based
on conditioning images. Such editing allows to combine the overall appearance of one object with
selected characteristics of a different object.

Feed-forward reconstruction. Hong et al. (2024); Wang et al. (2023); Sun et al. (2024) propose
feed-forward image-to-3D pipelines: they infer Tri-Planes from single images by switching the
output modality of image-based models to Tri-Planes.

Generation. Shue et al. (2023); Chen et al. (2023); Anciukevicius et al. (2023) build a diffusion
framework around Tri-Planes, treating them as if they were images with more channels, which
enables 3D object generation using image generative models.

Classification. Cardace et al. (2024) leverage Tri-Planes to classify neural fields without re-
creating the explicit signal (i.e. without rendering), and highlight the rich semantic signal present in
Tri-Planes, as well as their ease of use with standard neural architectures.

B ADDITIONAL IMPLEMENTATION DETAILS

This section presents some additional details regarding the training of Fused-Planes, namely its
warm-up stage and the early stopping of the encoder.

In practice, we use two regimes of optimization to gain some computational efficiency. In fact, we
notice that the encoder Fy4 converges before the set of N = 2000 Fused-Planes. Hence, continuing
to optimize it would be unnecessary. As such, we jointly train the encoder only with a subset
Ti = {T1,...,Tn, } of Fused-Planes (regime 1), before learning the remaining Fused-Planes 7z =
{TN,+1,...Tn} with a frozen encoder (regime 2). We set N; = 500. For completeness, we also
detail the warm-up stage of the Fused-Planes (at the start of regimes 1 and 2). This warm-up stage
is necessary just after the random initialization of Fused-Planes, to avoid back-propagating random
gradients into the auto-encoder.

Regime 1. We start by warming-up 7; with the following objective:

min Z Z L (6, T3, a) . (8)

11]1

We then optimize the Fused-Planes in 73, the encoder Ey4 and the decoder Dy, using Equation (7),
recalled here:
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Regime 2. Similarly to the first regime we start by warming-up 75 with the following objective:

min Z Zﬁ(men“ (6, T}, ) . (10)

Tz2,0
i=N1+1 j=1

We then optimize the Fused-Planes in 73, but only £(RGB) is needed, as the encoder no longer
requires training. We keep ﬁne-tuning the decoder D,,. The objective is:

min Z ZARGB LBy, Ty ) (1n

T2,
Q(sz N;+1j5=1
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Practically, we achieve the previous objective using mini-batch gradient descent. Details can be
found in Algorithm 1. The rendering quality remains the same between the two regimes, as illus-
trated in Tables 6 and 7.

C DATASET DETAILS

We use ShapeNet (Chang et al., 2015) and Basel-Face (Paysan et al., 2009) to evaluate the novel
view synthesis performance of the object representations.

The ShapeNet dataset is a large-scale, annotated collection of 3D models covering various object
categories, widely used for 3D applications. We use four distinct object categories to evaluate our
method: Cars, Furniture, Speakers and Sofas. For each ShapeNet object, we render V' = 160 views,
sampled from the upper hemisphere surrounding the object.

The Basel-Face dataset contains more than 1000 distinct face models. The faces are generated from
a 3D morphable face model with 199 principle components. For faces, we take V' = 50 front-facing
views.

All views are rendered at a resolution of 128 x 128. In all our experiments, we use 90% of the views
for training and 10% for evaluation.

Multi-class datasets.  To assess our method in multi-class settings, we construct four new datasets
that combine two, three, and four object categories from our original collection. Each dataset con-
tains 2,000 objects. The first dataset, Speakers & Sofas, includes 1,000 speakers and 1,000 sofas.
The second dataset, Speakers, Sofas & Furniture, is composed of 667 speakers, 667 sofas, and 667
furniture objects. The final dataset, Speakers, Sofas, Furniture & Cars, contains 500 objects from
each of the four categories. We ensure that the scenes used for evaluations are the same across
datasets, in order to have rigorous comparisons.

D SUPPLEMENTARY RESULTS

D.1 QUALITATIVE RESULTS

We showcase a subset of our large-scale results on ShapeNet cars in Figure 10.

Additionally, we present in Figures 11 to 15 additional qualitative comparisons across all the meth-
ods discussed in our experiments (Section 4). Fused-Plane demonstrates similar visual quality to
state-of-the-art methods.

D.2 QUANTITATIVE RESULTS

Regarding rendering quality, we present per-scene NVS metrics in Tables 17 to 21.

Regarding resource costs, the shared components (i.e. encoder, decoder and base planes) of Fused-
Planes and Fused-Planes-ULW respectively require a total of 360.75 MB and 384.19 MB of storage
capacity. Note that we do not include the memory footprint of these components in our analysis,
as this overhead is constant regardless of the number of objects, and hence negligible in large-scale
settings. This memory cost is illustrated in Figure 4 and magnified in Figure 6, focusing on the range
[0,100].
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Table 6: Quantitative comparison. NVS performances on ShapeNet Cars in both regimes of our
training.

ShapeNet Cars
Regime 1 Regime 2
PSNRT SSIMt  LPIPS| PSNRT SSIMt  LPIPS|
Tri-Planes (RGB)  28.49  0.9539  0.0291 28.58 09505  0.0360
Fused-Planes 28.14 09505 0.0301 28.77 09496  0.0383

Table 7: Quantitative comparison. NVS performances on Basel Faces in both regimes of our
training.

Basel Faces

Regime 1 Regime 2
PSNRt  SSIMt LPIPS| PSNRt  SSIMt  LPIPS|
Tri-Planes (RGB)  36.82  0.9807  0.0122 36.35 09787  0.0129
Fused-Planes 36.17 09678  0.0062 36.99 09712  0.0056

= Fused-Planes
\E/ 1000.0 Fused-Planes-ULW
= = K-Planes
OO Tri-Planes
B 500.0 A
S 360.75
=)
<
=
0.0 y '
0 50 100
N

Figure 6: Memory costs. This figure presents the memory costs depicted in Figure 4 within the
range N € [0, 100].

D.3 ABLATION STUDY ON THE NUMBER OF BASE PLANES

Table 8 presents a study of the effect of the number of base planes M on the resource costs and
rendering quality of Fused-Planes. The reported NVS quality metrics are averaged on ShapeNet
Cars scenes. The table shows that rendering quality varies only minimally across different values of
M. We select M = 50 because it offers the best quality while maintaining similar training time and
memory usage. Table 9 presents an extension of this study in the context of datasets mixing multiples
objet classes. The results show that Fused-Planes shows similar performances when increasing the
number of classes, indicating that class diversity can be effectively captured with 50 base planes, as
increasing M beyond 50 does not provide additional benefit.

D.4 ANALYSIS OF RENDERING SPEED

Table 10 presents the computational costs of computing one Fused-Planes (Equations (1) and (2))
and compares it relative to rendering times. As this operation only needs to be done once when
loading a Fused-Planes representation, it is largely negligeable compared to the overall rendering
time.

Table 11 presents a comparative study of the rendering speed of our method and its baselines, in
terms of frames per second (FPS). Fused-Planes achieve significantly better rendering speeds com-
pared to its planar baselines.

17



Under review as a conference paper at ICLR 2026

Table 8: Study on the number of base planes /. We select M/ = 50 as it offers the best quality
while maintaining similar training time and memory usage.

Per-Scene Total Memory
M Training Time for 2000 Scenes ~ PSNR
(min) (MB)
5 8.60 1276 29.89
Fused-Planes 20 8.61 1291 30.02
50 8.92 1322 30.27
75 8.99 1348 29.62

Table 9: Effect of M on multi-class reconstruction. We report PSNR values for NVS evaluation,
averaged over multiple scenes of the same category (cars and speakers), when jointly learning one
or four classes. Increasing M beyond 50 does not provide additional benefit, indicating that class
diversity can be effectively captured with M = 50 base planes.

M One class Four classes
Cars  Speakers Cars  Speakers
Fused-Planes 50 30.27 29.99 29.15 29.72
4 75 29.62 29.46 28.58 29.20

Note that in both tables, the reported rendering time for Fused-Planes includes (i) the volume-
rendering step and (ii) the decoding step that converts the rendered latent representation into an
RGB image.

Table 10: Computational overhead & rendering speed analysis. We compare the computational
cost of Fused-Planes against RGB Tri-Planes for rendering a single frame and multiple frames.
Rendering with Fused-Planes is approximately twice as fast. Moreover, the overhead introduced by
the Fused-Planes computation (Equations (1) and (2)), which only needs to be done once, is largely
negligible compared to the overall rendering time.

Compute Fused-Planes Render Render 30s video
(Eq- 1 &2; ) 1 frame () @ 30 fps (1)
Tri-Planes — 23.30 ms 20.97 s
Fused-Planes 0.65 ms 10.95 ms 985 s

Table 11: Rendering speed comparison (FPS). We compare the rendering FPS of our method with
the baselines during inference. The Nerfstudio implementations are used for all baseline models.
Fused-Planes showcases significantly faster rendering speed than all baselines except 3DGS.

FPS (1)

Vanilla-NeRF 0.85
Instant-NGP 48.7

TensoRF 13.6
3DGS 176.0
K-Planes 14.3
Tri-Planes 429

Fused-Planes 91.3
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D.5 RESULTS USING A LOW-BUDGET VAE

Table 12 reports results where we train Fused-Planes with a VAE that has been reset (all weights are
randomly initialized) and trained on our scenes with a low budget. In order to avoid backpropagating
random gradients to the modules in Fused-Planes at initialization, we allocate 15% of training time
to warm up the VAE after its reset, using the images of the scenes. This is necessary as training
Fused-Planes with a non-functional VAE makes it impossible for Fused-Planes to learn the scenes.

This experiment is conducted on 2000 scenes from ShapeNet Cars. The results indicate that employ-
ing a VAE trained on a smaller dataset and with lower budget introduces only minor degradation in
output quality. This suggests that our framework exhibits low sensitivity to the specific initialization
of the VAE.

Table 12: Results using a low-budget VAE. Using a low-budget VAE with Fused-Planes leads to
only minor quality degradation, showing that our mehthod is robust to VAE initialization.

PSNR SSIM LPIPS

Fused-Planes (low-budget VAE)  29.22  0.953  0.035
Fused-Planes 30.27  0.960 0.033

D.6 TOTAL COST COMPARISON ACROSS DIFFERENT VALUES OF N

For completeness, we report total training time (Table 13) and total memory footprint (Table 14)
when varying the number of object N being learned. The results show that Fused-Planes presents
competitive training times, and is the fastest planar method. In terms of memory, Fused-Planes and
Fused-Planes-ULW are the most lightweight methods

Table 13: Total training time across different values of N. Fused-Planes is the fastest planar
method, and present competitive training times compared to other non-planar baselines. All training
times are reported in days.

Total training time (days)

Planar
N =1000 N =2000 N =5000 N =10000 N = 20000
Vanilla-NeRF X 442.2 884.4 2211.1 4422.2 8844.4
Instant-NGP X 5.2 104 26.1 52.2 104.4
TensoRF X 47.9 95.7 239.3 478.7 957.4
3DGS X 6.5 13.0 32.5 65.1 130.1
K-Planes v 52.3 104.7 261.6 523.3 1046.5
Tri-Planes v 44.7 89.3 2233 446.7 893.3
Fused-Planes-ULW v 7.2 12.2 27.1 52.0 101.7
Fused-Planes v 8.3 14.5 33.2 64.3 126.5

D.7 MEMORY BREAKDOWN

Table 15 provides a breakdown of the memory footprint of the different components used. The
memory cost required by a single object is notably low compared to our baselines in the main paper.
The memory cost required by our shared components can be considered as an acceptable entry cost,
as its value is less than a single K-Planes representation.

E BASE PLANES ANALYSIS

To further investigate the learned representations in our base planes, we visualize their contents,
analyze the values in the weights W, and interpolate between different weights. We present our
analysis below.
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Table 14: Total memory cost across different values of N. Fused-Planes is the most lightweight
method among all baselines. Sizes are reported in GB.

Total memory footprint (GB)

Planar
N =1000 N =2000 N =5000 N =10000 N = 20000
Vanilla-NeRF X 21.5 43.0 107.4 214.8 429.7
Instant-NGP X 184.7 369.4 923.5 1847.0 3694.0
TensoRF X 203.4 406.9 1017.2 2034.4 4068.7
3DGS X 27.0 54.0 135.1 270.1 540.2
K-Planes v 400.6 801.1 2002.8 4005.6 8011.1
Tri-Planes v 1.5 2.9 7.3 14.6 29.3
Fused-Planes-ULW v 0.4 0.4 0.4 0.4 0.4
Fused-Planes v 0.8 1.3 2.7 5.0 9.7

Table 15: Memory breakdown. This table breaks down the memory footprints of the different
components in our pipeline. Note that the memory usage of shared components remains constant
and does not depend on the number of objects. In contrast, the memory footprint for storing objects
increases linearly with the number of objects. Therefore, in large-scale settings, the dominant factor
is the memory that increases with the number of objects, as illustrated in Figure 4.

Module Shared? Size
Encoder Ey v 130.38 MB
Decoder D, v 178.86 MB
50x base planes B (F™?¢ = 22) v 51.5 MB
1x tiny MLP (renderer R,,) v 14.27 KB
1x micro plane TimiC (F™ic = 10) X 480 KB
1x weight W; X 811 B
Memory footprint of shared components v 360.75 MB
Memory footprint of a single object X 0.481 MB

Protocol for base planes visualizations. Recall that, in our standard pipeline, we render a learned
Fused-Planes-ULW representation 7; (corresponding to scene ¢) using volume rendering followed
by a decoder, where each fused representation is defined as:

M
k
Ti = ZUQ Bk s
k=1

where T; is the ultra-lightweight variant of our method (i.e. no micro planes).

(12)

To visualize our base planes, we do not render 7;. Instead, we directly render individual base planes
By, using our Fused-Planes-ULW model trained on ShapeNet Cars and Basel Faces datasets. This
is indeed possible for our Fused-Planes-ULW model, as each By, has the same dimensionality as 7;.

Using this protocol, we visualize 10 different base planes in Figure 7. As illustrated in the figure,
the base planes can be grouped into two categories: (i) semantic: some base planes clearly encode
object-level structures (e.g. faces, cars), (ii) residual: other base planes capture finer intra-class
variability relative to the semantic base planes. Together, these base planes contribute to each object
representation.

Moreover, we visualize the values of the weights W, for two different cars. The results are presented
in Figure 8. We observe that a few base planes dominate the final fused representation, and the
dominant planes vary across scenes, while other base planes contribute only minor adjustments.

Finally, we illustrate in Figure 9 the Fused-Planes-ULW resulting from a weight interpolation.
Specifically, we first choose two weights W7 and W5 corresponding to two scenes. We then compute
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Wy =tWi + (1 —t)Wy for t € {0,0.25,0.5,0.75, 1}. Injecting W; into Equation (12) yields a set
of Fused-Planes-ULW, which we render and visualize.

We observe that interpolating between weights yield coherent scenes, where we transition smoothly
from one scene to another (e.g. the mouth closes gradually across the different faces).

RVRVRLVSPDT 2L TS

(a) Cars

A A AR AR A A A

(b) Faces

Figure 7: Base planes visualizations. We observe that some base planes clearly encode object-level
structures, while other encode finer intra-class variability. Together, these base planes contribute to
each object representation.

| 1 1' Irhhjl 11 |

[

Weight Value
o
o
o

-0.05 ]
-0.10 . Wo |
. Wy "
' 10 20 30 40 50
Base Plane Index
(a) Weight values. (b) Corresponding objects.

Figure 8: Learned weights 1V; for two scenes of our ULW model. The weight W; € RM is learned
to linearly decompose a Fused-Planes T; on the set of base planes { By } using Equation (12). In this
figure, we show the learned weights (left) corresponding to two objects (right). We notice that a few
base planes dominate the final fused representation, and the dominant planes vary across scenes,
while other base planes only contribute to minor adjustments
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A A A A

Figure 9: Interpolation between base planes weights. We linearly interpolate between the weights
of two scenes (leftmost and rightmost). We observe that this interpolation leads to coherent struc-
tures, where we transition smoothly from one scene to another.

F CoDENERF-A

CodeNeRF. CodeNeRF (Jang & Agapito, 2021) learns a set of scenes with a single neural rep-
resentation fy which is conditioned on scene-specific latent codes. Specifically, for each scene, a
shape code z; and an appearance code z, is learned, such that fy(zs, z,) models the current scene.
Once the conditional NeRF fy is trained on a large set of scenes, it can learn new scenes using
test-time optimization. This test-time optimization consists of learning a new scene by optimizing
only the codes (zs, z,), while keeping fp fixed. By reducing the number of trainable parameters,
test-time-optimization offers increased training speed. Furthermore, the memory required to store
an additional scene on disk is very low, since only (zs, 2, ) need to be stored.

CodeNeRF-A. In our experiments, we introduce CodeNeRF-A as a new comparative baseline.
CodeNeRF-A employs a novel training procedure inspired by ours, which leverages the test-time
optimization method originally proposed by CodeNeRF to improve efficiency for learning multiple
scenes. Specifically, we first train the shared neural representation fy of CodeNeRF on a subset O
of O composed of N7 scenes. Subsequently, we employ test-time-optimization with the previously
trained representation to learn the remaining scenes O2, with lowered training times.

We present in Table 16 a comparison of CodeNeRF-A performances when taking N; = 500 and
N; = 1000. CodeNeRF-A showcases better performances with N; = 1000, which we set through-
out the paper for this method.

Table 16: Choice of N; for CodeNeRF-A. CodeNeRF-A showcases better performances when
taking /N7 = 1000, which we set throughout the paper for this method.

ShapeNet datasets Basel Faces
PSNR SSIM  LPIPS PSNR SSIM LPIPS
CodeNeRF-A 500 26.81 09108 0.1281 34.15 0964 0.011
CodeNeRF-A 1000 2699 09154 0.1257 3544 0971 0.010

G HYPERPARAMETERS

For reproducibility purposes, Tables 22 and 23 expose our hyperparameter settings respectively for
the first and second regimes of our training. A more detailed list of our hyperparameters can be
found in the configuration files of our open-source code.
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Figure 10: Large-scale results. = We qualitatively show a subset of our large-scale results on
ShapeNet cars.
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Table 17: Per-object quantitative comparison on Basel Faces.

Pl Face 1 Face 2 Face 3 Face 4
anar
SNR  SSIM  LPIPS PSNR SSIM  LPIPS PSNR SSIM  LPIPS PSNR SSIM  LPIPS
Vanilla-NeRF X 43.44 0996  0.001 4390 0.997  0.001 42.65 0996  0.001 41.64 0994  0.003
Instant-NGP X 37.79 0987  0.004 40.01  0.990  0.002 3538 0977 0.013 3296 0.969 0.016
TensoRF X 40.80 0993  0.003 4272 0995  0.001 4096  0.993  0.003 38.16 0982 0.011
3DGS X 43.69 0998  0.001 4541  0.998  0.001 4322 0997  0.001 3993  0.986  0.007
CodeNeRF X 3549 0974  0.009 3635 0974  0.006 3442 0970 0.012 3560 0971 0.012
CodeNeRF-A X 36.25 0974  0.008 37.14 0977  0.005 3249 0961 0.015 3587 0972 0.013
K-Planes 40.68 0.993  0.003 3946 0988 0.010 41.11 0.993  0.004 39.68 0.990 0.004
Tri-Planes 36.05 0978 0.015 3746 0982 0.011 36.78 0980 0.014 3559 0977 0.012
Fused-Planes-ULW 33.84 0950 0.013 35.00 0958 0.007 3341 0959 0.011 33.58 0954 0.010
Fused-Planes 36.24 0970 0.007 38.63 0975 0.004 37.04 0975 0.006 37.04 0971 0.006
Table 18: Per-object quantitative comparison on ShapeNet Cars.
Pl Car 1 Car2 Car3 Car 4
anar
SNR SSIM  LPIPS PSNR SSIM  LPIPS PSNR SSIM  LPIPS PSNR SSIM  LPIPS
Vanilla-NeRF X 3843 0995  0.003 4120  0.995  0.005 3743 0994  0.005 39.53  0.995 0.003
Instant-NGP X 3531 0986 0.008 37.88  0.990 0.010 3406 0987 0.013 36.33 0.989  0.007
TensoRF X 38.66 0.994  0.003 40.55  0.995  0.005 37.80 0995  0.004 40.00 0995  0.003
3DGS X 32.00 0966 0.057 38.74 0.993 0.010 3541 0985  0.024 37.51  0.994  0.006
CodeNeRF X 27.87 0950 0.055 28.05 0.937  0.097 26.19 0929  0.088 27.07 0930 0.075
CodeNeRF-A X 27.10 0946  0.055 26.86 0929 0.103 2525 0921  0.092 27.10 0932 0.074
K-Planes 30.51 0966  0.029 33.84 0976  0.027 29.73 0968  0.037 30.57 0967 0.031
Tri-Planes 30.11 0962  0.024 30.13  0.949  0.043 28.86  0.949 0.040 29.67 0.950 0.039
Fused-Planes-ULW 27.60 0938 0.054 2991 0.948  0.064 2844 0945 0.050 28.87 0.942  0.051
Fused-Planes 30.15 0964  0.021 31.20 0961  0.043 29.69 0958  0.035 30.05 0954 0.033
Table 19: Per-object quantitative comparison on ShapeNet Sofas.
PL Sofa 1 Sofa 2 Sofa 3 Sofa 4
anar
PSNR SSIM  LPIPS PSNR SSIM  LPIPS PSNR SSIM  LPIPS PSNR SSIM  LPIPS
Vanilla-NeRF X 31.06  0.966 0.034 31.83  0.965 0.032 3358 0940 0.122 36.82 0984 0.013
Instant-NGP X 2991 0969  0.031 33.60 0975 0.027 3542 0974 0.013 3554 0977 0.016
TensoRF X 3292 0987 0.011 37.17 0992  0.010 37.47 0987  0.009 3798 0987 0.013
3DGS X 30.85 0986 0.020 3395 0989 0.025 34.60 0982 0.023 3346 0984  0.047
CodeNeRF X 2547 0938 0.113 29.80  0.938  0.068 29.18 0919  0.139 30.14  0.944  0.100
CodeNeRF-A X 2461 0928 0.121 29.67 0936  0.067 28.05 0.899 0.130 2939 0.938  0.092
K-Planes 2584 0947 0.054 3228 0974 0.028 3290 0968 0.028 3259  0.964  0.037
Tri-Planes 2634 0929  0.082 29.24 0930 0.091 28.89 0903  0.121 2943 0922 0.118
Fused-Planes-ULW 2472 0921  0.130 3029 0938  0.047 29.99 0917  0.091 31.06 0947  0.069
Fused-Planes 27.83 0964  0.020 3175 0958  0.024 31.71 0945  0.032 3239  0.963  0.038
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Table 20: Per-object quantitative comparison on ShapeNet Speakers.

Pl Speaker 1 Speaker 2 Speaker 3 Speaker 4
anar

PSNR  SSIM  LPIPS PSNR  SSIM  LPIPS PSNR  SSIM  LPIPS PSNR  SSIM  LPIPS
Vanilla-NeRF X 3595 0962  0.065 3097  0.980  0.021 3541 0970 0.032 33.65 0977 0015
Instant-NGP X 36.56 0983  0.016 2731 0955 0.043 3475 0980  0.024 31.16 0966  0.022
TensoRF X 3873 0.989  0.012 29.74 0978 0.024 37.57 0988 0.017 33.60 0976 0.016
3DGS X 3445 0981  0.059 2421 0870  0.095 31.70 0979  0.071 28.11  0.940 0.071
CodeNeRF X 2981 0.894 0.133 2491 0931 0.106 2885 0925 0178 2826 0935 0.126
CodeNeRF-A X 2373 0.875  0.167 2432 0922 0.114 27.31 0905 0.184 26.11 0918  0.129
K-Planes 33.80 0.969 0.034 21.84 0905 0.102 3233 0963  0.046 27.19 0923  0.069
Tri-Planes 2925 0911  0.147 23.11 0903  0.098 2930 0914  0.160 2641 0907 0.132
Fused-Planes-ULW 3038 0932 0.134 2675 0948  0.049 2993 0940 0.104 29.83 0942  0.063
Fused-Planes 3289  0.966 0.042 2640 0.949  0.046 30.63  0.951  0.066 30.04 0.947  0.057

Table 21: Per-object quantitative comparison on ShapeNet Furnitures.

- Furniture 1 Furniture 2 Furniture 3 Furniture 4
anar

SNR SSIM  LPIPS PSNR SSIM LPIPS PSNR SSIM  LPIPS PSNR SSIM LPIPS
Vanilla-NeRF X 38.42 0976 0.014 3556 0.985 0.015 38.01 0978 0.018 35.75 0965 0.028
Instant-NGP X 35.12 0951  0.032 33.64 0977 0.023 3391 0954  0.035 3449 0959 0.031
TensoRF X 38.03 0974 0.018 3623 0.989 0.013 36.22 0973 0.021 3523 0964 0.031
3DGS X 3449 0991  0.033 31.14 0989  0.051 33.15 0975  0.050 3349 0998 0.052
CodeNeRF X 29.82 0909 0.157 2722 0928 0.139 3020 0932 0.224 30.68 0944  0.139
CodeNeRF-A X 28.65 0.868 0.156 26.18 0914 0.148 2847 0.899 0.234 29.11 0918  0.146
K-Planes 3441 0951 0.028 30.72 0960 0.044 33.01 0949 0.045 32,51 0941 0.055
Tri-Planes 2688 0.875 0.175 27.17 0913  0.180 28.05 0.902 0237 27.58 0.886  0.250
Fused-Planes-ULW 2580 0.891 0219 2991 0947 0.073 29.67 0938 0.173 3120 0958 0.102
Fused-Planes 30.19  0.962  0.030 30.54 0957 0.039 2981 0947 0.102 3234 0972 0.042
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we aim to improve upon the resource costs

Table 22: Fused-Planes regime 1 hyperparameters.

Parameter Value
General
Number of scenes N 2000
Number of scenes for regime 1 Ny 500
Pretraining epochs 50
Number of epochs N, e(;lch 50
Fused-Planes
Number of micro feature Fjy ;. 10
Number of macro feature Fly, . 22
Number of base plane M 50
Tri-Planes resolution 64
Loss
/\(latent) 1
A\(RGB) 1
A(@e) 0.1
Optimization (warm-up)
Optimizer Adam
Batch size 512
Learning rate (Micro planes 7)) 1072
Learning rate (Renderer R,,) 1072
Learning rate (Weights ;) 102
Learning rate (Base planes By) 1072
Scheduler Multistep
Decay factor 0.3
Decay milestones [20, 40]
Optimization (training)
Optimizer Adam
Batch size 32
Learning rate (encoder) 10~4
Learning rate (decoder) 1074
Learning rate (Micro planes Ti(mlc)) 10~*
Learning rate (Renderer R,,) 10~4
Learning rate (Weights ;) 1072
Learning rate (Base planes By) 1072
Scheduler Multistep
Decay factor 0.3
Decay milestones [20, 40]
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Table 23: Fused-Planes regime 2 hyperparameters.

Parameter Value
General

Number of scenes IV 2000

Number of epochs N, és())ch 30

Number of warm-up epochs N é;’ZCUh) 30

Fused-Planes

Number of micro feature Fj;c 10
Number of macro feature F, ¢ 22
Number of base plane M 50
Tri-Planes resolution 64
Loss
)\(latent) 1
)\(RGB) 1
Optimization (Warm-up)
Optimizer Adam
Batch size 32
Learning rate (Micro planes Ti(mlc)) 1072
Learning rate (Renderer R,,) 10—2
Learning rate (Weights W;) 1072
Learning rate (Base planes B},) 10—2
Scheduler Exponential decay
Decay factor 0.941
Optimization (Training)
Optimizer Adam
Batch size 32
Learning rate (decoder) 1074
Learning rate (Micro planes Ti(mlc)) 1073
Learning rate (Renderer R,,) 10—3
Learning rate (Weights W;) 1072
Learning rate (Base planes B},) 10~2
Scheduler Exponential decay
Decay factor 0.941
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Algorithm 1 Training a large set of scenes.

1: Input: O, N, Ny, V, Ey, Dy, Rep, N NG NOVO) N Qatent) | \(RGB) | )(1€)  optimizer

epoch’ * Yepoch’ * Yepoch

2: Random initialization: 7™ W, B

3:

4: // First N1 = 500 objects (regime 1)

5: for N (pz,ch steps do

6:  for (4,7) in shuffle([1, N1] x [1,V]) do
7: // Compute Micro-Macro Planes

g T, T TR WiB

0. T, ,Ti(mlc) ® 71i(maLc)

10: // Encode, Render & Decode

11: xij, ¢ < O[i][J]

12: Zig 4 Ey(xi ;)

13: Zw — Ra(Ti, ¢ 5)

14: i, %5 < Dy(zi5), Dy(Zi )

15: // Compute losses

latent -
16: LI 1z s — 24113
RGB ~
17: LEE iy — 345113
. (ae) 5|12

18: L7 < llway — i3

19: Li,j — /\(latent)Ll(_f;_ltent) + )\(RGB)LZ(-’I;GB) + /\(ae)LZ(_Z_e)
20: // Backpropagate
21: Ti(mw), Wi, B, «, ¢, 1) < optimizer.step(L; ;)
22:  end for
23: end for
24:

25: // Remaining objects (regime 2)
26: Ey.freeze()

27: epoch=1
28: for N ép())ch steps do
29:  for (7, j) in shuffle([Ny + 1, N] x [1,V]) do
30: // Compute Micro-Macro Planes
31: (II]lC) T(mac) P T mic [ ] WB
32 Tz . ,Ti(mlc) EB,Ti(ma»c)
33: // Encode, Render & Decode
34: Ti g, Cig < Olil[]]
35: Zij 4 Ey(xi ;)
36: z” — Ra(Ti,cij)
37: Ty j < Dy(Zi ;)
38:
39: if epoch < N, e(;zgh) then
40: // Warm-up
latent -
41: L5 ™ lzag — 2113
42: T(mlc , Wi, B, o < optimizer. step(L(latem))
43: else
44 // Training
RGB ~
45 L gy — 74503
46: T(mlC , Wi, B, a, ) < optimizer. step(L(RGB))
47: end lf
48:  end for
49:  epoch < epoch + 1
50: end for
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