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ABSTRACT

Tri-Planar NeRFs enable the application of powerful 2D vision models for 3D
tasks, by representing 3D objects using 2D planar structures. This has made
them the prevailing choice to model large collections of 3D objects. However,
training Tri-Planes to model such large collections is computationally intensive
and remains largely inefficient. This is because the current approaches indepen-
dently train one Tri-Plane per object, hence overlooking structural similarities in
large classes of objects. In response to this issue, we introduce Fused-Planes,
a novel object representation that improves the resource efficiency of Tri-Planes
when reconstructing object classes, all while retaining the same planar structure.
Our approach explicitly captures structural similarities across objects through a
latent space and a set of globally shared base planes. Each individual Fused-
Planes is then represented as a decomposition over these base planes, augmented
with object-specific features. Fused-Planes showcase state-of-the-art efficiency
among planar representations, demonstrating 7.2× faster training and 3.2× lower
memory footprint than Tri-Planes while maintaining rendering quality. An ultra-
lightweight variant further cuts per-object memory usage by 1875× with minimal
quality loss.

K-Planes Tri-Planes Fused-Planes-ULW Fused-Planes
Size: 410.1 MB
PSNR: 26.78

Size: 1.5 MB
PSNR: 25.97

Size: 0.0008 MB
PSNR: 28.44

Size: 0.48 MB
PSNR: 29.69

Figure 1: Comparison of planar representations under the same budget. Our method achieves
the best rendering quality and the best memory footprint among planar representations when training
large classes of 3D objects under a fixed time budget (7 minutes per object in this illustration).
Fused-Planes-ULW designates the ultra-lightweight variant of Fused-Planes.

1 INTRODUCTION

Tri-planar representations (Chan et al., 2022; Fridovich-Keil et al., 2023) have recently driven sig-
nificant progress in 3D computer vision, offering a unique advantage: they model 3D objects while
remaining interpretable as 2D structures due to their planar format. This planarity makes them
compatible with standard image-based models (e.g. CNNs), thereby unlocking new ways 2D vi-
sion models can be used for 3D tasks (Hong et al., 2024; Anciukevičius et al., 2023; Mercier et al.,
2025). Given that such applications are inherently data-intensive, the need to train large collections
of Tri-Planes for 3D reconstruction has become increasingly prevalent (Cardace et al., 2024; Shue
et al., 2023; Ju & Li, 2025), and a costly preliminary step in 3D research (Liu et al., 2024; Wang
et al., 2023, Sections 4.1 and 5). Yet, most existing methods overlook this costly 3D reconstruction
step, focusing instead on the downstream tasks that planar representations enable. As such, using
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planar representations for large-scale 3D reconstruction remains largely suboptimal in terms of re-
source efficiency, since existing methods train each Tri-Plane independently, ignoring the structural
similarities that often exist across large object classes. This oversight leads to redundant compu-
tations and inefficient memory usage. As a result, constructing a dataset of Tri-Planes is currently
unnecessarily computationally intensive.

In this work, we address the challenges associated with the computationally expensive task of large-
scale 3D reconstruction using planar methods. We introduce Fused-Planes, a novel tri-planar rep-
resentation that efficiently models large classes of 3D objects. Fused-Planes effectively reduces the
resource costs associated with Tri-Planes by leveraging the structural similarities shared across mul-
tiple objects. Additionally, Fused-Planes retains the planar property of Tri-Planes that has enabled
their integration into existing pipelines, and thus retains their compatibility with recent approaches.

First, our Fused-Planes split an object representation into two separate components: the first “Mi-
cro” component learns features specific to the object at hand; the second “Macro” component is
a learned decomposition over a set of base planes, where each base plane encapsulates structural
similarities across the class of objects we want to reconstruct. Second, we train Fused-Planes with a
3D-aware latent space (Schnepf et al., 2025), which provides a continuous and structured represen-
tation of objects, and accelerates the rendering and training of Fused-Planes.

The combination of these two cost-reducing components is essential. On the one hand, the latent
space provides a more effective representation for disentangling object-specific details from class-
level structural similarities, making it easier to capture these similarities with the set of base planes.
On the other hand, the micro-macro decomposition is essential to eliminate the quality losses asso-
ciated with using a latent space.

We conduct extensive experiments justifying these design choices and comparing our method with
current planar representations when training on large classes of objects. Fused-Planes presents 7.2×
faster training than Tri-Planes, while requiring 3.2× less memory footprint and retaining a similar
rendering quality, thus establishing a new state-of-the-art in efficiency for planar scene representa-
tions. Moreover, an ultra-lightweight variant of Fused-Planes trades off minor rendering quality for
substantial gains in memory footprint: 1875× less than Tri-Planes. To the best of our knowledge,
our work is the first to improve upon the resource efficiency of Tri-Planes.

2 RELATED WORK

Tri-Planes. Tri-Planes (Chan et al., 2022) are widely used for modeling large collections of 3D
objects and have attracted considerable attention due to their seamless integration with standard
image-based models. In recent works, Tri-Planes are commonly used within a framework that in-
volves solving two main tasks (Shue et al., 2023; Ju & Li, 2025). The first task is large-scale 3D
reconstruction, which consists of training Tri-Planes to properly model a large set of 3D objects.
Once this prerequisite task is completed, the Tri-Planes can be reshaped into 2D image-like tensors,
an operation made possible by their planar structure, making them easily integrable with image-
based models. Once trained and reshaped, Tri-Planes are applied to a second, targeted task, in
conjunction with a chosen image-based model. While recent studies have focused heavily on ex-
ploring diverse targeted tasks such as editing (Ki et al., 2025), classification (Cardace et al., 2024),
generation (Liu et al., 2024), and feed-forward reconstruction (Wang et al., 2023), the first large-
scale reconstruction task itself remains inefficient and sub-optimal, which has inspired our research
direction. A more detailed discussion of works using Tri-Planes for downstream tasks can be found
in appendix (Section A).

Other NeRF methods. Since NeRF (Mildenhall et al., 2020), methods like Instant-NGP (Müller
et al., 2022), TensoRF (Chen et al., 2022), and 3D Gaussian Splatting (Kerbl et al., 2023) have
advanced single-scene reconstruction. Yet, unlike Tri-Planes, their architectures cannot be re-
shaped into image-like tensors and are thus incompatible with image-based models. Even K-Planes
(Fridovich-Keil et al., 2023), a multi-scale planar representation that surpasses Tri-Planes in fidelity,
remains non-trivial to integrate with image-based models due to its multi-scale architecture. We
thus mainly focus on Tri-Planes, as it is the only method that can be straightforwardly used with
image-based models.
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Our work aims to address the inefficiencies of large-scale 3D reconstruction with Tri-Planes. First,
we design Fused-Planes to be a tri-planar shared representation that captures the structural similar-
ities in object classes. Second, we train Fused-Planes as latent NeRFs, facilitating the learning of
our shared representations. These design choices lead to substantial reductions in both training time
and memory footprint.

Shared representations. Shared representations denote approaches that model multiple objects
by utilizing common components. These representations encode an abstraction of a set of objects,
effectively capturing dataset-level information such as structural similarities and differences among
objects. For example, Jang & Agapito (2021) represent multiple objects of the same class within a
single NeRF (MLP) by conditioning it on distinct latent codes for shape and appearance, which al-
lows shape and appearance to be edited independently. Similarly, Schwarz et al. (2021); Niemeyer &
Geiger (2021) adopt a shared representation implemented within a GAN framework, which enables
the generation of novel objects and scenes. Notably, shared representations have been employed
to reduce memory footprint when modeling multiple 3D objects. For instance, Singh et al. (2024)
encode multiple scenes into a single NeRF using learned pseudo-labels, thereby reducing memory
footprint. However, their method cannot scale beyond 20 scenes. Our work also utilizes shared
representations for resource efficiency, but remains scalable to thousands of objects while reducing
both memory footprint and training time. To the best of our knowledge, our method is the first to
explicitly integrate shared representations with planar structures.

Latent NeRFs. Latent NeRFs involve training neural scene representations within the latent space
of an image autoencoder, rather than directly using raw RGB images. Several recent works have
utilized Latent NeRFs for 3D generation (Metzer et al., 2023; Seo et al., 2023; Ye et al., 2023;
Chan et al., 2023), scene editing (Khalid et al., 2023; Park et al., 2024), and scene reconstruction
(Aumentado-Armstrong et al., 2023) with improved quality. Recently, Schnepf et al. (2025) em-
ployed latent NeRFs to accelerate NeRF training. Their approach enables training various NeRF
architectures within a 3D-aware latent space, resulting in substantial speed-ups but at the expense
of a notable degradation in rendering quality. Our work builds upon Schnepf et al. (2025) by train-
ing our proposed Fused-Planes representation in a 3D-aware latent space. However, unlike Schnepf
et al. (2025) who pre-train a generic latent space for all NeRF representations, we train the 3D-aware
latent space jointly with our scene representations, which proves essential for preserving rendering
quality. This improvement enables us to achieve substantial speed-ups without quality compromises.

3 METHOD

Our method efficiently reconstructs large collections of 3D objects using tri-planar representations.
Section 3.1 presents our novel Fused-Planes representation, which splits an object representation
into an object-specific “micro” component and a “macro” component derived from shared base
representations. These base representations are trained on the entire dataset, allowing to capture
global structural patterns shared by the objects being reconstructed. To achieve this, we train the
set of Fused-Planes in a jointly learned 3D-aware latent space, which encodes the target objects in
a compact and well-structured space, thereby facilitating the learning of shared patterns with our
base planes. Section 3.2 describes our training procedure for Fused-Planes and the 3D-aware latent
space. Figure 2 presents an overview of our method.

Notation. We denote O = {O1, ..., ON} a large set of N objects drawn from a common distribu-
tion. Each object Oi = {(xi,j , ci,j)}Vj=1 consists of V posed views. Here, xi,j and ci,j respectively
denote the j-th view and camera pose of the i-th object Oi. We denote T = {T1, ..., TN} the set of
Fused-Planes representations modeling the objects in O.

3.1 FUSED-PLANES ARCHITECTURE.

Pre-requisite: Tri-Planes. Tri-Plane representations (Chan et al., 2022) are explicit-implicit
scene representations enabling scene modeling in three axis-aligned orthogonal feature planes, each
of resolution K × K with feature dimension F . To query a 3D point x ∈ R3, it is projected onto
each of the three planes to retrieve bilinearly interpolated feature vectors. These feature vectors are
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Object-specific
planes & weights

...

Shared base planes

(a) Fused-Planes representation

weighted
sum

(b) View synthesis

Volume
Rendering

Output viewdecoder
Shared

(c) Supervision

GT view

Fused-Plane

concat

Figure 2: Method overview. A set of Fused-Planes {Ti} reconstructs a class of 3D objects {Oi}
from their GT views {xi,j}, where i and j respectively denote the object and the view indices.
For clarity, only one Fused-Planes is shown. (a) Each Fused-Planes Ti is formed from a micro
plane Tmic

i which captures object-specific information, and a macro plane Tmac
i computed via a

weighted summation over a set of shared base planes B. This base captures class-level information
like structural similarities across objects. (b) View synthesis is performed in the latent space of an
auto-encoder (Eϕ, Dψ) via classical volume rendering. The rendered latent image z̃i,j (low resolu-
tion) is decoded to obtain the output RGB view (high resolution). (c) The Fused-Planes components
(i.e. Tmic

i , B, Wi) and the autoencoder are supervised with three reconstructive losses.

then aggregated via summation and passed into a small neural network with parameters α to retrieve
the color and density, which are then used for volume rendering (Kajiya & Von Herzen, 1984).

Notably, Tri-Planes can be represented as 2D structures by reshaping them into K ×K images with
3F channels. As such, they can be seamlessly integrated in image-based pipelines. This planar
property has been fundamental for their widespread adoption, and it is preserved in Fused-Planes.

Architecture of a Fused-Planes. Fused-Planes is a novel planar 3D representation that builds
upon Tri-Planes. A Fused-Planes splits a planar representation into object-specific features, and
class-level features, which allows to learn common structures across the large set of objects. Specif-
ically, a Fused-Planes representation Ti of objectOi is composed of a “micro” plane Tmic

i integrating
object-level information, and a “macro” plane Tmac

i that encompasses class-level information:

Ti = Tmic
i ⊕ Tmac

i , (1)

where ⊕ concatenates two planar structures along the feature dimension. We denote by Fmic the
dimensionality of local features in Tmic

i and by Fmac the dimensionality of global features in Tmac
i ,

with the total dimensionality of features in Ti being F = Fmic + Fmac.

The micro planes Tmic
i are object-specific, and are hence independently learned for every object. The

macro planes Tmac
i represent globally captured information that is relevant for the current object.

They are computed for each object from shared base planes B = {Bk}Mk=1 by the weighted sum:

Tmac
i =WiB =

M∑
k=1

wki Bk , (2)

where Wi are learned coefficients for object Oi. The base of planes {Bk}Mk=1 is shared among
objects and capture class-level structural similarities. With this approach, the number of micro
planes is equal to the number of objects N , while the number of macro planes M is a constant
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hyper-parameter. We take M > 1 in order to capture diverse information, which our experiments
showed to be beneficial for maintaining rendering quality, and M ≪ N . Overall, decomposing
Fused-Planes into micro and macro components reduces the number of trainable features per-object
compared to traditional Tri-Planes, thus accelerating training and reducing total memory footprint.

Fused-Planes-ULW. We propose an ultra-lightweight (ULW) variant of our method with Fmic =
0 (only macro planes), where we achieve substantial savings in memory footprint at the expense of
a slight reduction in rendering quality.

3D-aware latent space. While Tri-Planes are traditionally used to model objects in the RGB
space, we train Fused-Planes in the latent space of an image autoencoder, defined by an encoder
Eϕ and a decoder Dψ . This is because a high-dimensional RGB space lacks structure, making it
poorly suited for effectively capturing structural similarities. In contrast, a 3D-aware latent space
(Schnepf et al., 2025) provides a structured and continuous encoding of the objects, which is, as
proven by our ablations, more suited for disentangling structural similarities from object-specific
details. Additionally, this latent space allows for a reduced rendering resolution, which alleviates
the cost of volume rendering and contributes to accelerating our training. In practice, we train our
3D-aware latent space jointly with our Fused-Planes, which tailors it specifically for our decomposed
object representation.

At inference, given a camera pose cj , we render a latent Fused-Plane Ti as follows:
z̃i,j = Rα(Ti, cj) , x̃i,j = Dψ(z̃i,j) , (3)

where Rα is the Fused-Plane renderer with trainable parameters α, z̃i,j is the rendered latent image,
and x̃i,j is the corresponding RGB decoded rendering.

3.2 TRAINING A LARGE SET OF FUSED-PLANES

This section outlines our training strategy to learn a large set of objects. In brief, we jointly train the
set of Fused-Planes and the 3D-aware latent space. Figure 2 provides an overview of our pipeline.

Training a set of Fused-Planes jointly with the 3D-aware latent space. We train the set of
Fused-Planes T to reconstruct the set of objects O from posed views. As described above, we
conduct this training in a 3D-aware latent space in a joint manner. To do so, we adapt the 3D
regularization losses from Schnepf et al. (2025). Note that our 3D-aware latent space differs from
the one in (Schnepf et al., 2025), as it is subject to an additional training constraint coming from our
micro-macro decomposition. This allows us to obtain a latent space that is not only 3D-aware, but
also adapted to our Fused-Planes representations.

We supervise a Fused-Planes Ti and the encoder Eϕ in the latent space with the loss L(latent):

L(latent)
i,j (ϕ, Ti) = ∥zi,j − z̃i,j∥22 , (4)

where zi,j = Eϕ(xi,j) is the encoded ground truth image, z̃i,j = Rα(Ti, ci,j) is the rendered latent
image, and Ti = Tmic

i ⊕ Tmac
i . This loss optimizes the encoder parameters and the Fused-Planes

parameters to align the encoded latent images zi,j and the rendering z̃i,j . We also supervise Ti and
the decoder Dψ in the RGB space via L(RGB):

L(RGB)
i,j (ψ, Ti) = ∥xi,j − x̃i,j∥22 , (5)

where xi,j is the ground truth image, and x̃i,j = Dψ(z̃i,j) is the decoded rendering. This loss
ensures a good rendering quality when decoded to the RGB space, and finds the optimal decoder for
this task. Finally, we adopt the reconstructive objective L(ae) supervising the auto-encoder:

L(ae)
i,j (ϕ, ψ) = ∥xi,j − x̂i,j∥22 , (6)

where x̂i,j = Dψ(Eψ(xi,j)) is the reconstructed ground truth image.

Overall, our full training objective is composed of the three previous losses summed over O to
optimize the set of Fused-Planes T , the encoder Eϕ, and the decoder Dψ:

min
T ,ϕ,ψ

N∑
i=1

V∑
j=1

λ(latent)L(latent)
i,j (ϕ, Ti) + λ(RGB)L(RGB)

i,j (ψ, Ti) + λ(ae)L(ae)
i,j (ϕ, ψ) , (7)
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CodeNeRF
Training: 14.96 min

Size: 0.0026 MB

K-Planes
Training: 75.35 min

Size: 410.17 MB

Tri-Planes
Training: 64.32 min

Size: 1.5 MB

Fused-Planes-ULW
Training: 7.16 min

Size: 0.0008 MB

Fused-Planes
Training: 8.92 min

Size: 0.48 MB

Ground Truth

Figure 3: Qualitative comparison. We show comparisons of our method with other planar scene
representations for NVS on held-out test views. Our method achieves the fastest training with the
lowest memory footprint, while maintaining a comparable rendering quality.

where λ(latent), λ(RGB), and λ(ae) are hyper-parameters.

By the end of this training, the set of Fused-Planes T including the base planes B are learned
and effectively model the objects in O. Additional object representations could still be trained by
utilizing the frozen shared components. For more implementation details, we refer the reader to the
appendix (Section B and Algorithm 1).

4 EXPERIMENTS

Task. As discussed in Section 2, our goal is to reduce the resource costs of planar representations
in large-scale 3D modeling. To establish the practical utility of our representation, it must satisfy
two criteria: (i) accurately represent the types of 3D objects typically modeled with Tri-Planes,
and (ii) demonstrate competitive resource efficiency relative to the Tri-Planes baseline. Regarding
3D modeling performance, we adopt the standard evaluation protocol for 3D representations and
assess our method on the task of 3D reconstruction via Novel View Synthesis (NVS). For resource
efficiency, we measure the per-object training time and memory footprint when modeling large
object classes.

Evaluation Protocol To evaluate the NVS quality of the learned objects, we compute the PSNR
(↑), SSIM (↑) and LPIPS (Zhang et al., 2018, ↓) between never-seen reference views and corre-
sponding NVS views. To evaluate the resource requirements, we report per-object training time,
per-object memory footprint (excluding shared components), and total memory footprint. Training
times are measured using a single NVIDIA L4 GPU.

Baselines. We compare Fused-Planes with three distinct lines of work. First, the central compar-
ison is with planar scene representations, specifically Tri-Planes (Chan et al., 2022) and K-Planes
(Fridovich-Keil et al., 2023), the only current works having planar structures. Tri-Planes is our base-
line architecture and hence is our main point of comparison. K-Planes extend Tri-Planes to improve
rendering quality by utilizing multi-scale planes, sacrificing on memory footprint, and most impor-
tantly the explicit 2D structure, as multi-scale planes cannot be directly reshaped into a single 2D
structure. Second, we compare Fused-Planes with works utilizing shared representations. From this
category, we consider CodeNeRF (Jang & Agapito, 2021), a recent non-planar method utilizing a

6
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Table 1: Comparison with planar methods. Fused-Planes reduces the quality gap between Tri-
Planes and K-Planes, while requiring three orders of magnitude less memory footprint, and having a
significantly faster training, thus establishing a new state-of-the-art in efficiency for modeling large
object classes with planar representations.

Planar Training
(min)

Size
(MB)

ShapeNet datasets Basel Faces

PSNR SSIM LPIPS PSNR SSIM LPIPS

K-Planes (Fridovich-Keil et al., 2023) ✓ 75.35 410.17 30.88 0.956 0.043 40.23 0.991 0.005
Tri-Planes (Chan et al., 2022) ✓ 64.32 1.50 28.15 0.919 0.121 36.47 0.980 0.013

Fused-Planes-ULW (ours) ✓ 7.16 0.0008 29.02 0.937 0.092 33.96 0.955 0.010
Fused-Planes (ours) ✓ 8.96 0.48 30.47 0.957 0.042 37.24 0.973 0.006

Table 2: Comparison with methods using shared representations. Fused-Planes demonstrates
more favorable NVS quality and per-object resources requirements compared to CodeNeRF.

Planar Training
(min)

Size
(MB)

ShapeNet datasets (avg) Basel Faces

PSNR SSIM LPIPS PSNR SSIM LPIPS

CodeNeRF (Jang & Agapito, 2021) ✗ 14.96 0.0026 28.34 0.930 0.121 35.46 0.972 0.010
CodeNeRF-A (our adaptation) ✗ 9.54 0.0026 26.99 0.915 0.126 35.44 0.971 0.010

Fused-Planes-ULW (ours) ✓ 7.16 0.0008 29.02 0.937 0.092 33.96 0.955 0.010
Fused-Planes (ours) ✓ 8.96 0.48 30.47 0.957 0.042 37.24 0.973 0.006

Table 3: Report of standard NeRF methods. To provide the reader with a broader perspective,
we report the metrics of other well-established NeRF methods. As discussed, these methods do not
share the same architectural versatility as planar methods and are designed for different objectives.

Planar Training
(min)

Size
(MB)

ShapeNet datasets (avg) Basel Faces

PSNR SSIM LPIPS PSNR SSIM LPIPS

Vanilla-NeRF (Mildenhall et al., 2020) ✗ 636.8 22.00 35.85 0.977 0.027 42.91 0.996 0.001
Instant-NGP (Müller et al., 2022) ✗ 7.52 189.13 34.06 0.973 0.022 36.54 0.981 0.009
TensoRF (Chen et al., 2022) ✗ 68.93 208.32 36.74 0.985 0.013 40.66 0.991 0.004
3DGS (Kerbl et al., 2023) ✗ 9.37 27.66 32.95 0.975 0.043 43.06 0.995 0.002

Fused-Planes-ULW ✓ 7.16 0.0008 29.02 0.937 0.092 33.96 0.955 0.010
Fused-Planes ✓ 8.96 0.48 30.47 0.957 0.042 37.24 0.973 0.006

shared NeRF conditioned by latent vectors. We also compare with CodeNeRF-A, our adaptation of
CodeNeRF designed to improve efficiency (more details in Section E). Note that we do not compare
with C3-NeRF (Singh et al., 2024) as their approach does not scale beyond 20 scenes. Third, and
to provide the reader with a larger perspective, we report the performance of other well-established
non-planar scene representations (Mildenhall et al., 2020; Müller et al., 2022; Chen et al., 2022;
Kerbl et al., 2023), using their Nerfstudio (Tancik et al., 2023) implementations. While these meth-
ods are designed to model scenes individually with high fidelity, they are not as readily integrable
with image-based models as planar methods, and therefore lack their architectural versatility. As
such, they are not our primary point of comparison, but are included to provide broader context.

Datasets & Experimental Details. We evaluate our method on large-scale 3D data. Consistently
with Tri-Planes and CodeNeRF, we use ShapeNet (Chang et al., 2015), from which we take four
categories: Cars, Furniture, Speakers and Sofas. Additionally, we adopt the large-scale front-facing
Basel-Face dataset (Paysan et al., 2009). More dataset details can be found in the Section C. In our
experiments, we train a set of Fused-Planes to reconstruct N = 2000 objects. We use planes of
dimensionality K ×K × F , where K = 64 and F = 32 for all planar representations. For Fused-
Planes, we take Fmic = 10, Fmac = 22, and M = 50. For Fused-Planes-ULW, we take Fmic = 0,
Fmac = 32, and M = 50. We detail our hyper-parameters in Section F. We adopt the pre-trained
VAE from Stable Diffusion (Rombach et al., 2022) as initialization for our VAE.

4.1 RESULTS

Main results appear in Tables 1 to 3 and Figures 1 and 3. Detailed results are available in Section D.
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Table 4: Ablation study. Comparison of NVS quality and per-object resource costs for different
ablations of our method on ShapeNet Cars. Fused-Planes outperforms all of its ablations. Fused-
Planes-ULW trades off minor NVS quality for substantial savings in memory footprint.

Latent
Space

Micro
Planes

Macro
Planes

Training
(min)

Size
(MB) PSNR SSIM LPIPS

Fused-Planes (M = 1) ✓ ✓ ✓ 8.48 0.48 27.69 0.942 0.042
Fused-Planes (Micro) ✓ ✓ ✗ 12.84 1.50 27.64 0.941 0.040
Fused-Planes (RGB) ✗ ✓ ✓ 63.52 0.48 27.71 0.942 0.044
Tri-Planes ✗ ✓ ✗ 64.08 1.50 28.56 0.953 0.035

Fused-Planes-ULW ✓ ✗ ✓ 7.16 0.0008 27.51 0.935 0.063
Fused-Planes ✓ ✓ ✓ 8.92 0.48 28.64 0.950 0.037

0 1000 1500 2000N1 = 500

N

0.0

200.0

400.0

124.7T
ra

in
in

g
T

im
e

(h
)

Fused-Planes

Fused-Planes-ULW

K-Planes

Tri-Planes

0 1000 1500 2000500
N

0.0

500.0

1000.0

360.75
M

em
or

y
C

os
t

(M
B

)

Figure 4: Scaling the number of objects using planar methods. Evolution of the total training
time (left) and total memory footprint (right) when scaling the number of objects (N ). As K-Planes
is barely visible (right), we present in Figure 6 a magnified version of the memory cost plot.

Compared to other planar scene representations (Figure 1 and Table 1), Fused-Planes exhibits a
significant reduction in resource costs, demonstrating 7.2× faster training and 3.2× less memory
footprint than Tri-Planes, and 8.4× faster training and 854× less memory footprint than K-Planes.
It improves rendering quality over Tri-Planes while reducing the gap with K-Planes, but without
K-Planes’ orders-of-magnitude higher memory cost or multi-scale complexity. Fused-Planes-ULW
trades off minor rendering quality for substantial gains in memory footprint: one object requires
1875× less memory footprint than Tri-Planes, and 512 000× less memory footprint than K-Planes.
Furthermore, Figure 4 illustrates the evolution of the resource requirements as the number of objects
increases. Moreover, a detailed breakdown of the memory footprint of Fused-Planes can be found
in the appendix (Table 7). All in all, Fused-Planes establishes a new state-of-the-art in terms of
resource efficiency for planar scene representations.

As for other methods utilizing shared representations (Table 2), Fused-Planes and Fused-Planes-
ULW showcase up to 2× faster training times, and an improved rendering quality. Fused-Planes-
ULW also requires less memory footprint per-object.

For broader context, we report results on other well-established non-planar NeRF methods (Table 3
and Figure 5). Fused-Planes, like all other planar representations, showcases lower rendering quality,
which is an acceptable trade-off as planar methods have a different primary objective (Section 2).

4.2 ABLATIONS

To justify our design choices, we present an ablation study of our method (Table 4). “Fused-Planes
(M = 1)” reduces the shared base planes B to a single plane. It demonstrates a slight degradation
of quality compared to Fused-Planes, highlighting the necessity for a set of base planes. “Fused-
Planes (Micro)” eliminates the Macro component of Fused-Planes (i.e. Fmac = 0), and therefore
the shared components. It exhibits lower quality compared to Tri-Planes, which is in line with the
degradations seen in Schnepf et al. (2025) for latent NeRFs. In contrast, our full model avoids such
issues, underscoring the benefits of shared representations within the latent space, both in quality and
memory efficiency. “Fused-Planes (RGB)” ablates the latent space and trains Fused-Planes in RGB
space. It exhibits lower quality compared to Tri-Planes, and to our full model. Therefore, it shows
the necessity of the latent space for making shared representations work effectively. It also highlights
the speed improvements enabled by the latent space. “Tri-Planes” is equivalent to ablating both the
latent space and macro planes, which presents significantly higher resource costs and similar quality.
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Figure 5: Resource costs overview. To reconstruct a large class of objects, our method presents
the lowest per-object training time and memory footprint among all planar representations, while
maintaining a similar rendering quality. Circle sizes represent the NVS quality.

In summary, our ablations show that both the latent space and shared representations are needed
concurrently to avoid quality degradations and minimize resource costs.

4.3 LIMITATIONS

Tri-Planes are well-suited for object-centric scenes. However, they exhibit limitations in capturing
fine details and handling unbounded scenes, which are characteristic of real-world environments.
As such, Tri-Planes cannot be used to reconstruct scenes such as the ones used in the NeRF paper
(Mildenhall et al., 2020) or in the Mip-NeRF 360 dataset (Barron et al., 2022). More precisely, to
capture fine details, one would need to greatly increase the resolution of each of the Tri-Planes fea-
ture grids, leading to significant increases in memory footprint and computation, which undermines
the compactness that makes Tri-Planes attractive. Moreover, Tri-Planes assume that the scene fits
in a bounded volume, which complicates the modeling of distant backgrounds often present in real
scenes. Some methods (Wu et al., 2024; Lee et al., 2024; Yan et al., 2024) sidestep these limitations
by using tricks like utilizing multiple Tri-Planes for large scenes or by modeling only density and
relying on other tools for textures. These approaches are beyond this paper’s scope.

Since our method adopts the same architecture as Tri-Planes, it also inherits their limitations. Even
so, Tri-Planes have been widely adopted (Section 2), as their planar design provides practical ad-
vantages despite these drawbacks. Our contribution advances this line of work by proposing a more
efficient way to train planar methods at large-scales, while improving the quality of Tri-Planes.

Fused-Planes is effective at capturing structural similarities within an object class. To model multiple
classes exhibiting large visual variations, multiple instances of Fused-Planes would be needed (i.e.
multiples sets of shared based planes). Nonetheless, this is acceptable as current datasets categorize
3D assets by classes (as is the case for ShapeNet in our experiments), making Fused-Planes easily
adaptable to such contexts, with the same efficiency gains. Alternatively, objects could be classi-
fied into classes rather easily with recent classification methods. We leave concurrent multi-class
modeling with Fused-Planes as a direction of future work.

5 CONCLUSION

In this work, we introduced Fused-Planes, a novel planar object representation that advances the
state of the art in resource-efficient planar 3D modeling and reconstruction of large object classes.
This is achieved by shifting away from the traditional approach of reconstructing each object in
isolation, and instead exploiting the shared structural similarities within object classes using shared
base representations in a specially designed latent space. We showed that Fused-Planes significantly
reduces required resources compared to current planar representation, while maintaining rendering
quality. Given the recurrent challenges associated with training large-scale planar scene represen-
tations, we hope that our contribution will facilitate this task, and make research in image-based
models for 3D applications more accessible.
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REPRODUCIBILITY STATEMENT

We have taken several measures to ensure the reproducibility of our findings. The paper includes
the necessary implementation details and hyperparameter settings in order to reproduce our results.
Additionally, the complete source code is included in the supplementary materials of this submis-
sion and will be released as open-source upon publication. Together, these resources should allow
researchers to fully reproduce and extend our findings.
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A WORKS UTILIZING TRI-PLANES FOR TARGETED TASKS

In this section, we highlight representative works that utilize Tri-Planes for varied targeted tasks.

Editing. Bilecen et al. (2025); Ki et al. (2025) use Tri-Planes to perform 3D-aware editing, based
on conditioning images. Such editing allows to combine the overall appearance of one object with
selected characteristics of a different object.

Feed-forward reconstruction. Hong et al. (2024); Wang et al. (2023); Sun et al. (2024) propose
feed-forward image-to-3D pipelines: they infer Tri-Planes from single images by switching the
output modality of image-based models to Tri-Planes.

Generation. Shue et al. (2023); Chen et al. (2023); Anciukevičius et al. (2023) build a diffusion
framework around Tri-Planes, treating them as if they were images with more channels, which
enables 3D object generation using image generative models.

Classification. Cardace et al. (2024) leverage Tri-Planes to classify neural fields without re-
creating the explicit signal (i.e. without rendering), and highlight the rich semantic signal present in
Tri-Planes, as well as their ease of use with standard neural architectures.

B ADDITIONAL IMPLEMENTATION DETAILS

This section presents some additional details regarding the training of Fused-Planes, namely its
warm-up stage and the early stopping of the encoder.

In practice, we use two regimes of optimization to gain some computational efficiency. In fact, we
notice that the encoder Eϕ converges before the set of N = 2000 Fused-Planes. Hence, continuing
to optimize it would be unnecessary. As such, we jointly train the encoder only with a subset
T1 = {T1, ..., TN1} of Fused-Planes (regime 1), before learning the remaining Fused-Planes T2 =
{TN1+1, ...TN} with a frozen encoder (regime 2). We set N1 = 500. For completeness, we also
detail the warm-up stage of the Fused-Planes (at the start of regimes 1 and 2). This warm-up stage
is necessary just after the random initialization of Fused-Planes, to avoid back-propagating random
gradients into the auto-encoder.

Regime 1. We start by warming-up T1 with the following objective:

min
T1,α

N1∑
i=1

V∑
j=1

L(latent)
i,j (ϕ, Ti, α) . (8)

We then optimize the Fused-Planes in T1, the encoder Eϕ and the decoder Dψ using Equation (7),
recalled here:

min
T1,α,ϕ,ψ

N1∑
i=1

V∑
j=1

λ(latent)L(latent)
i,j (ϕ, Ti, α)

+ λ(RGB)L(RGB)
i,j (ψ, Ti, α)

+ λ(ae)L(ae)
i,j (ϕ, ψ) .

(9)

Regime 2. Similarly to the first regime, we start by warming-up T2 with the following objective:

min
T2,α

N∑
i=N1+1

V∑
j=1

L(latent)
i,j (ϕ, Ti, α) . (10)

We then optimize the Fused-Planes in T2, but only L(RGB) is needed, as the encoder no longer
requires training. We keep fine-tuning the decoder Dψ . The objective is:

min
T2,α,ψ

N∑
i=N1+1

V∑
j=1

λ(RGB)L(RGB)
i,j (ψ, Ti, α) . (11)
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Practically, we achieve the previous objective using mini-batch gradient descent. Details can be
found in Algorithm 1. The rendering quality remains the same between the two regimes, as illus-
trated in Tables 5 and 6.

C DATASET DETAILS

We use ShapeNet (Chang et al., 2015) and Basel-Face (Paysan et al., 2009) to evaluate the novel
view synthesis performance of the object representations.

The ShapeNet dataset is a large-scale, annotated collection of 3D models covering various object
categories, widely used for 3D applcations. For ShapeNet objects, we render V = 160 views,
sampled from the upper hemisphere surrounding the object.

The Basel-Face dataset contains more than 1000 distinct face models. The faces are generated from
a 3D morphable face model with 199 principle components. For faces, we take V = 50 front-facing
views.

All views are rendered at a resolution of 128×128. In all our experiments, we use 90% of the views
for training and 10% for evaluation.

D SUPPLEMENTARY RESULTS

D.1 QUALITATIVE RESULTS

We present in Figures 7 to 11 additional qualitative comparisons across all the methods discussed
in our experiments (Section 4). Fused-Plane demonstrates similar visual quality to state-of-the-art
methods.

D.2 QUANTITATIVE RESULTS

Regarding rendering quality, we present per-scene NVS metrics in Tables 9 to 13.

Regarding resource costs, the shared components (i.e. encoder, decoder and base planes) of Fused-
Planes and Fused-Planes-ULW respectively require a total of 360.75 MB and 384.19 MB of storage
capacity. Note that we do not include the memory footprint of these components in our analysis,
as this overhead is constant regardless of the number of objects, and hence negligible in large-scale
settings. This memory cost is illustrated in Figure 4 and magnified in Figure 6, focusing on the range
[0,100].

Table 5: Quantitative comparison. NVS performances on ShapeNet Cars in both regimes of our
training.

ShapeNet Cars

Regime 1 Regime 2

PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓
Tri-Planes (RGB) 28.49 0.9539 0.0291 28.58 0.9505 0.0360
Fused-Planes 28.14 0.9505 0.0301 28.77 0.9496 0.0383
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Table 6: Quantitative comparison. NVS performances on Basel Faces in both regimes of our
training.

Basel Faces

Regime 1 Regime 2

PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓
Tri-Planes (RGB) 36.82 0.9807 0.0122 36.35 0.9787 0.0129
Fused-Planes 36.17 0.9678 0.0062 36.99 0.9712 0.0056
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Figure 6: Memory costs. This figure presents the memory costs depicted in Figure 4 within the
range N ∈ [0, 100].

D.3 MEMORY BREAKDOWN

Table 7 provides a breakdown of the memory footprint of the different components used. The
memory cost required by a single object is notably low compared to our baselines in the main paper.
The memory cost required by our shared components can be considered as an acceptable entry cost,
as its value is less than a single K-Planes representation.

Table 7: Memory breakdown. This table breaks down the memory footprints of the different
components in our pipeline. Note that the memory usage of shared components remains constant
and does not depend on the number of objects. In contrast, the memory footprint for storing objects
increases linearly with the number of objects. Therefore, in large-scale settings, the dominant factor
is the memory that increases with the number of objects, as illustrated in Figure 4.

Module Shared? Size

Encoder Eϕ ✓ 130.38 MB
Decoder Dψ ✓ 178.86 MB
50× base planes B (Fmac = 22) ✓ 51.5 MB
1× tiny MLP (renderer Rα) ✓ 14.27 KB
1× micro plane Tmic

i (Fmic = 10) ✗ 480 KB
1× weight Wi ✗ 811 B

Memory footprint of shared components ✓ 360.75 MB
Memory footprint of a single object ✗ 0.481 MB

E CODENERF-A

CodeNeRF. CodeNeRF (Jang & Agapito, 2021) learns a set of scenes with a single neural rep-
resentation fθ which is conditioned on scene-specific latent codes. Specifically, for each scene, a
shape code zs and an appearance code za is learned, such that fθ(zs, za) models the current scene.
Once the conditional NeRF fθ is trained on a large set of scenes, it can learn new scenes using
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test-time optimization. This test-time optimization consists of learning a new scene by optimizing
only the codes (zs, za), while keeping fθ fixed. By reducing the number of trainable parameters,
test-time-optimization offers increased training speed. Furthermore, the memory required to store
an additional scene on disk is very low, since only (zs, za) need to be stored.

CodeNeRF-A. In our experiments, we introduce CodeNeRF-A as a new comparative baseline.
CodeNeRF-A employs a novel training procedure inspired by ours, which leverages the test-time
optimization method originally proposed by CodeNeRF to improve efficiency for learning multiple
scenes. Specifically, we first train the shared neural representation fθ of CodeNeRF on a subset O1

of O composed of N1 scenes. Subsequently, we employ test-time-optimization with the previously
trained representation to learn the remaining scenes O2, with lowered training times.

We present in Table 8 a comparison of CodeNeRF-A performances when taking N1 = 500 and
N1 = 1000. CodeNeRF-A showcases better performances with N1 = 1000, which we set through-
out the paper for this method.

Table 8: Choice of N1 for CodeNeRF-A. CodeNeRF-A showcases better performances when
taking N1 = 1000, which we set throughout the paper for this method.

N1

ShapeNet datasets Basel Faces

PSNR SSIM LPIPS PSNR SSIM LPIPS

CodeNeRF-A 500 26.81 0.9108 0.1281 34.15 0.964 0.011
CodeNeRF-A 1000 26.99 0.9154 0.1257 35.44 0.971 0.010

F HYPERPARAMETERS

For reproducibility purposes, Tables 14 and 15 expose our hyperparameter settings respectively for
the first and second regimes of our training. A more detailed list of our hyperparameters can be
found in the configuration files of our open-source code.
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Table 9: Per-object quantitative comparison on Basel Faces.

Planar
Face 1 Face 2 Face 3 Face 4

PSNR SSIM LPIPS PSNR SSIM LPIPS PSNR SSIM LPIPS PSNR SSIM LPIPS

Vanilla-NeRF ✗ 43.44 0.996 0.001 43.90 0.997 0.001 42.65 0.996 0.001 41.64 0.994 0.003
Instant-NGP ✗ 37.79 0.987 0.004 40.01 0.990 0.002 35.38 0.977 0.013 32.96 0.969 0.016
TensoRF ✗ 40.80 0.993 0.003 42.72 0.995 0.001 40.96 0.993 0.003 38.16 0.982 0.011
3DGS ✗ 43.69 0.998 0.001 45.41 0.998 0.001 43.22 0.997 0.001 39.93 0.986 0.007

CodeNeRF ✗ 35.49 0.974 0.009 36.35 0.974 0.006 34.42 0.970 0.012 35.60 0.971 0.012
CodeNeRF-A ✗ 36.25 0.974 0.008 37.14 0.977 0.005 32.49 0.961 0.015 35.87 0.972 0.013

K-Planes ✓ 40.68 0.993 0.003 39.46 0.988 0.010 41.11 0.993 0.004 39.68 0.990 0.004
Tri-Planes ✓ 36.05 0.978 0.015 37.46 0.982 0.011 36.78 0.980 0.014 35.59 0.977 0.012

Fused-Planes-ULW ✓ 33.84 0.950 0.013 35.00 0.958 0.007 33.41 0.959 0.011 33.58 0.954 0.010
Fused-Planes ✓ 36.24 0.970 0.007 38.63 0.975 0.004 37.04 0.975 0.006 37.04 0.971 0.006

Table 10: Per-object quantitative comparison on ShapeNet Cars.

Planar
Car 1 Car 2 Car 3 Car 4

PSNR SSIM LPIPS PSNR SSIM LPIPS PSNR SSIM LPIPS PSNR SSIM LPIPS

Vanilla-NeRF ✗ 38.43 0.995 0.003 41.20 0.995 0.005 37.43 0.994 0.005 39.53 0.995 0.003
Instant-NGP ✗ 35.31 0.986 0.008 37.88 0.990 0.010 34.06 0.987 0.013 36.33 0.989 0.007
TensoRF ✗ 38.66 0.994 0.003 40.55 0.995 0.005 37.80 0.995 0.004 40.00 0.995 0.003
3DGS ✗ 32.00 0.966 0.057 38.74 0.993 0.010 35.41 0.985 0.024 37.51 0.994 0.006

CodeNeRF ✗ 27.87 0.950 0.055 28.05 0.937 0.097 26.19 0.929 0.088 27.07 0.930 0.075
CodeNeRF-A ✗ 27.10 0.946 0.055 26.86 0.929 0.103 25.25 0.921 0.092 27.10 0.932 0.074

K-Planes ✓ 30.51 0.966 0.029 33.84 0.976 0.027 29.73 0.968 0.037 30.57 0.967 0.031
Tri-Planes ✓ 30.11 0.962 0.024 30.13 0.949 0.043 28.86 0.949 0.040 29.67 0.950 0.039

Fused-Planes-ULW ✓ 27.60 0.938 0.054 29.91 0.948 0.064 28.44 0.945 0.050 28.87 0.942 0.051
Fused-Planes ✓ 30.15 0.964 0.021 31.20 0.961 0.043 29.69 0.958 0.035 30.05 0.954 0.033

Table 11: Per-object quantitative comparison on ShapeNet Sofas.

Planar
Sofa 1 Sofa 2 Sofa 3 Sofa 4

PSNR SSIM LPIPS PSNR SSIM LPIPS PSNR SSIM LPIPS PSNR SSIM LPIPS

Vanilla-NeRF ✗ 31.06 0.966 0.034 31.83 0.965 0.032 33.58 0.940 0.122 36.82 0.984 0.013
Instant-NGP ✗ 29.91 0.969 0.031 33.60 0.975 0.027 35.42 0.974 0.013 35.54 0.977 0.016
TensoRF ✗ 32.92 0.987 0.011 37.17 0.992 0.010 37.47 0.987 0.009 37.98 0.987 0.013
3DGS ✗ 30.85 0.986 0.020 33.95 0.989 0.025 34.60 0.982 0.023 33.46 0.984 0.047

CodeNeRF ✗ 25.47 0.938 0.113 29.80 0.938 0.068 29.18 0.919 0.139 30.14 0.944 0.100
CodeNeRF-A ✗ 24.61 0.928 0.121 29.67 0.936 0.067 28.05 0.899 0.130 29.39 0.938 0.092

K-Planes ✓ 25.84 0.947 0.054 32.28 0.974 0.028 32.90 0.968 0.028 32.59 0.964 0.037
Tri-Planes ✓ 26.34 0.929 0.082 29.24 0.930 0.091 28.89 0.903 0.121 29.43 0.922 0.118

Fused-Planes-ULW ✓ 24.72 0.921 0.130 30.29 0.938 0.047 29.99 0.917 0.091 31.06 0.947 0.069
Fused-Planes ✓ 27.83 0.964 0.020 31.75 0.958 0.024 31.71 0.945 0.032 32.39 0.963 0.038
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Table 12: Per-object quantitative comparison on ShapeNet Speakers.

Planar
Speaker 1 Speaker 2 Speaker 3 Speaker 4

PSNR SSIM LPIPS PSNR SSIM LPIPS PSNR SSIM LPIPS PSNR SSIM LPIPS

Vanilla-NeRF ✗ 35.95 0.962 0.065 30.97 0.980 0.021 35.41 0.970 0.032 33.65 0.977 0.015
Instant-NGP ✗ 36.56 0.983 0.016 27.31 0.955 0.043 34.75 0.980 0.024 31.16 0.966 0.022
TensoRF ✗ 38.73 0.989 0.012 29.74 0.978 0.024 37.57 0.988 0.017 33.60 0.976 0.016
3DGS ✗ 34.45 0.981 0.059 24.21 0.870 0.095 31.70 0.979 0.071 28.11 0.940 0.071

CodeNeRF ✗ 29.81 0.894 0.133 24.91 0.931 0.106 28.85 0.925 0.178 28.26 0.935 0.126
CodeNeRF-A ✗ 23.73 0.875 0.167 24.32 0.922 0.114 27.31 0.905 0.184 26.11 0.918 0.129

K-Planes ✓ 33.80 0.969 0.034 21.84 0.905 0.102 32.33 0.963 0.046 27.19 0.923 0.069
Tri-Planes ✓ 29.25 0.911 0.147 23.11 0.903 0.098 29.30 0.914 0.160 26.41 0.907 0.132

Fused-Planes-ULW ✓ 30.38 0.932 0.134 26.75 0.948 0.049 29.93 0.940 0.104 29.83 0.942 0.063
Fused-Planes ✓ 32.89 0.966 0.042 26.40 0.949 0.046 30.63 0.951 0.066 30.04 0.947 0.057

Table 13: Per-object quantitative comparison on ShapeNet Furnitures.

Planar
Furniture 1 Furniture 2 Furniture 3 Furniture 4

PSNR SSIM LPIPS PSNR SSIM LPIPS PSNR SSIM LPIPS PSNR SSIM LPIPS

Vanilla-NeRF ✗ 38.42 0.976 0.014 35.56 0.985 0.015 38.01 0.978 0.018 35.75 0.965 0.028
Instant-NGP ✗ 35.12 0.951 0.032 33.64 0.977 0.023 33.91 0.954 0.035 34.49 0.959 0.031
TensoRF ✗ 38.03 0.974 0.018 36.23 0.989 0.013 36.22 0.973 0.021 35.23 0.964 0.031
3DGS ✗ 34.49 0.991 0.033 31.14 0.989 0.051 33.15 0.975 0.050 33.49 0.998 0.052

CodeNeRF ✗ 29.82 0.909 0.157 27.22 0.928 0.139 30.20 0.932 0.224 30.68 0.944 0.139
CodeNeRF-A ✗ 28.65 0.868 0.156 26.18 0.914 0.148 28.47 0.899 0.234 29.11 0.918 0.146

K-Planes ✓ 34.41 0.951 0.028 30.72 0.960 0.044 33.01 0.949 0.045 32.51 0.941 0.055
Tri-Planes ✓ 26.88 0.875 0.175 27.17 0.913 0.180 28.05 0.902 0.237 27.58 0.886 0.250

Fused-Planes-ULW ✓ 25.80 0.891 0.219 29.91 0.947 0.073 29.67 0.938 0.173 31.20 0.958 0.102
Fused-Planes ✓ 30.19 0.962 0.030 30.54 0.957 0.039 29.81 0.947 0.102 32.34 0.972 0.042
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Figure 7: Qualitative comparison. Comparison of NVS quality on test views of four objects from
Basel Faces.
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Figure 8: Qualitative comparison. Comparison of NVS quality on test views of four objects from
the Cars category of ShapeNet.
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Figure 9: Qualitative comparison. Comparison of NVS quality on test views of four objects from
the Sofas category of ShapeNet.

21



1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

Speaker 1

Vanilla-NeRF

Speaker 2 Speaker 3 Speaker 4

Instant-NGP

TensoRF

3DGS

CodeNeRF

CodeNeRF-A

K-Planes

Tri-Planes

Fused-Planes

Fused-Planes-ULW

Ground Truth

Figure 10: Qualitative comparison. Comparison of NVS quality on test views of four objects
from the Speakers category of ShapeNet.

22



1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

Furniture 1

Vanilla-NeRF

Furniture 2 Furniture 3 Furniture 4

Instant-NGP

TensoRF

3DGS

CodeNeRF

CodeNeRF-A

K-Planes

Tri-Planes

Fused-Planes

Fused-Planes-ULW

Ground Truth

Figure 11: Qualitative comparison. Comparison of NVS quality on test views of four objects
from the Furniture category of ShapeNet.
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we aim to improve upon the resource costs

Table 14: Fused-Planes regime 1 hyperparameters.

Parameter Value

General

Number of scenes N 2000
Number of scenes for regime 1 N1 500
Pretraining epochs 50

Number of epochs N (1)
epoch 50

Fused-Planes

Number of micro feature Fmic 10
Number of macro feature Fmac 22
Number of base plane M 50
Tri-Planes resolution 64

Loss

λ(latent) 1
λ(RGB) 1
λ(ae) 0.1

Optimization (warm-up)

Optimizer Adam
Batch size 512

Learning rate (Micro planes T (mic)
i ) 10−2

Learning rate (Renderer Rα) 10−2

Learning rate (Weights Wi) 10−2

Learning rate (Base planes Bk) 10−2

Scheduler Multistep
Decay factor 0.3
Decay milestones [20, 40]

Optimization (training)

Optimizer Adam
Batch size 32
Learning rate (encoder) 10−4

Learning rate (decoder) 10−4

Learning rate (Micro planes T (mic)
i ) 10−4

Learning rate (Renderer Rα) 10−4

Learning rate (Weights Wi) 10−2

Learning rate (Base planes Bk) 10−2

Scheduler Multistep
Decay factor 0.3
Decay milestones [20, 40]
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Table 15: Fused-Planes regime 2 hyperparameters.

Parameter Value

General

Number of scenes N 2000

Number of epochs N (2)
epoch 80

Number of warm-up epochs N (WU)
epoch 30

Fused-Planes

Number of micro feature Fmic 10
Number of macro feature Fmac 22
Number of base plane M 50
Tri-Planes resolution 64

Loss

λ(latent) 1
λ(RGB) 1

Optimization (Warm-up)

Optimizer Adam
Batch size 32

Learning rate (Micro planes T (mic)
i ) 10−2

Learning rate (Renderer Rα) 10−2

Learning rate (Weights Wi) 10−2

Learning rate (Base planes Bk) 10−2

Scheduler Exponential decay
Decay factor 0.941

Optimization (Training)

Optimizer Adam
Batch size 32
Learning rate (decoder) 10−4

Learning rate (Micro planes T (mic)
i ) 10−3

Learning rate (Renderer Rα) 10−3

Learning rate (Weights Wi) 10−2

Learning rate (Base planes Bk) 10−2

Scheduler Exponential decay
Decay factor 0.941
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Algorithm 1 Training a large set of scenes.

1: Input: O, N , N1, V , Eϕ, Dψ ,Rα, N (1)
epoch, N (2)

epoch, N (WU)
epoch , λ(latent), λ(RGB), λ(ae), optimizer

2: Random initialization: T mic, W , B
3:
4: // First N1 = 500 objects (regime 1)
5: for N (1)

epoch steps do
6: for (i, j) in shuffle(J1, N1K× J1, V K) do
7: // Compute Micro-Macro Planes
8: T

(mic)
i , T

(mac)
i ← T (mic)[i], WiB

9: Ti ← T
(mic)
i ⊕ T (mac)

i
10: // Encode, Render & Decode
11: xi,j , ci,j ← O[i][j]
12: zi,j ← Eϕ(xi,j)
13: z̃i,j ← Rα(Ti, ci,j)
14: x̂i,j , x̃i,j ← Dψ(zi,j), Dψ(z̃i,j)
15: // Compute losses
16: L

(latent)
i,j ← ∥zi,j − z̃i,j∥22

17: L
(RGB)
i,j ← ∥xi,j − x̃i,j∥22

18: L
(ae)
i,j ← ∥xi,j − x̂i,j∥22

19: Li,j ← λ(latent)L
(latent)
i,j + λ(RGB)L

(RGB)
i,j + λ(ae)L

(ae)
i,j

20: // Backpropagate
21: T

(mic)
i ,Wi,B, α, ϕ, ψ ← optimizer.step(Li,j)

22: end for
23: end for
24:
25: // Remaining objects (regime 2)
26: Eϕ.freeze()
27: epoch=1
28: for N (2)

epoch steps do
29: for (i, j) in shuffle(JN1 + 1, NK× J1, V K) do
30: // Compute Micro-Macro Planes
31: T

(mic)
i , T

(mac)
i ← T (mic)[i], WiB

32: Ti ← T
(mic)
i ⊕ T (mac)

i
33: // Encode, Render & Decode
34: xi,j , ci,j ← O[i][j]
35: zi,j ← Eϕ(xi,j)
36: z̃i,j ← Rα(Ti, ci,j)
37: x̃i,j ← Dψ(z̃i,j)
38:
39: if epoch ≤ N (WU)

epoch then
40: // Warm-up
41: L

(latent)
i,j ← ∥zi,j − z̃i,j∥22

42: T
(mic)
i ,Wi,B, α← optimizer.step(L

(latent)
i,j )

43: else
44: // Training
45: L

(RGB)
i,j ← ∥xi,j − x̃i,j∥22

46: T
(mic)
i ,Wi,B, α, ψ ← optimizer.step(L

(RGB)
i,j )

47: end if
48: end for
49: epoch← epoch + 1
50: end for
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