

000 001 002 003 004 005 FUSED-PLANES: WHY TRAIN A THOUSAND 006 TRI-PLANES WHEN YOU CAN SHARE? 007 008 009

010 **Anonymous authors**
011 Paper under double-blind review
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026

ABSTRACT

027 Tri-Planar NeRFs enable the application of powerful 2D vision models for 3D
028 tasks, by representing 3D objects using 2D planar structures. This has made
029 them the prevailing choice to model large collections of 3D objects. However,
030 training Tri-Planes to model such large collections is computationally intensive
031 and remains largely inefficient. This is because the current approaches indepen-
032 dently train one Tri-Plane per object, hence overlooking structural similarities in
033 large classes of objects. In response to this issue, we introduce Fused-Planes,
034 a novel object representation that improves the resource efficiency of Tri-Planes
035 when reconstructing object classes, all while retaining the same planar structure.
036 Our approach explicitly captures structural similarities across objects through a
037 latent space and a set of globally shared base planes. Each individual Fused-
038 Planes is then represented as a decomposition over these base planes, augmented
039 with object-specific features. Fused-Planes showcase state-of-the-art efficiency
040 among planar representations, demonstrating $7.2\times$ faster training and $3.2\times$ lower
041 memory footprint than Tri-Planes while maintaining rendering quality. An ultra-
042 lightweight variant further cuts per-object memory usage by $1875\times$ with minimal
043 quality loss.

044
045 Figure 1: **Comparison of planar representations under the same budget.** Our method achieves
046 the best rendering quality and the best memory footprint among planar representations when training
047 large classes of 3D objects under a fixed time budget (7 minutes per object in this illustration).
048 Fused-Planes-ULW designates the ultra-lightweight variant of Fused-Planes.
049
050
051
052
053

1 INTRODUCTION

054 Tri-planar representations (Chan et al., 2022; Fridovich-Keil et al., 2023) have recently driven sig-
055 nificant progress in 3D computer vision, offering a unique advantage: they model 3D objects while
056 remaining interpretable as 2D structures due to their planar format. This planarity makes them
057 compatible with standard image-based models (e.g. CNNs), thereby unlocking new ways 2D vi-
058 sion models can be used for 3D tasks (Hong et al., 2024; Anciukevičius et al., 2023; Mercier et al.,
059 2025). Given that such applications are inherently data-intensive, the need to train large collections
060 of Tri-Planes for 3D reconstruction has become increasingly prevalent (Cardace et al., 2024; Shue
061 et al., 2023; Ju & Li, 2025), and a costly preliminary step in 3D research (Liu et al., 2024; Wang
062 et al., 2023, Sections 4.1 and 5). Yet, most existing methods overlook this costly 3D reconstruction
063 step, focusing instead on the downstream tasks that planar representations enable. As such, using

054 planar representations for large-scale 3D reconstruction remains largely suboptimal in terms of re-
 055 source efficiency, since existing methods train each Tri-Plane independently, ignoring the structural
 056 similarities that often exist across large object classes. This oversight leads to redundant computa-
 057 tions and inefficient memory usage. As a result, constructing a dataset of Tri-Planes is currently
 058 unnecessarily computationally intensive.

059 In this work, we address the challenges associated with the computationally expensive task of large-
 060 scale 3D reconstruction using planar methods. We introduce Fused-Planes, a novel tri-planar rep-
 061 resentation that efficiently models large classes of 3D objects. Fused-Planes effectively reduces the
 062 resource costs associated with Tri-Planes by leveraging the structural similarities shared across mul-
 063 tiple objects. Additionally, Fused-Planes retains the planar property of Tri-Planes that has enabled
 064 their integration into existing pipelines, and thus retains their compatibility with recent approaches.

065 **First**, our Fused-Planes split an object representation into two separate components: the first “Mi-
 066 cro” component learns features specific to the object at hand; the second “Macro” component is
 067 a learned decomposition over a set of base planes, where each base plane encapsulates structural
 068 similarities across the class of objects we want to reconstruct. **Second**, we train Fused-Planes with a
 069 3D-aware latent space (Schnepp et al., 2025), which provides a continuous and structured represen-
 070 tation of objects, and accelerates the rendering and training of Fused-Planes.

071 The combination of these two cost-reducing components is essential. On the one hand, the latent
 072 space provides a more effective representation for disentangling object-specific details from class-
 073 level structural similarities, making it easier to capture these similarities with the set of base planes.
 074 On the other hand, the micro-macro decomposition is essential to eliminate the quality losses asso-
 075 ciated with using a latent space.

076 We conduct extensive experiments justifying these design choices and comparing our method with
 077 current planar representations when training on large classes of objects. Fused-Planes presents $7.2 \times$
 078 faster training than Tri-Planes, while requiring $3.2 \times$ less memory footprint and retaining a similar
 079 rendering quality, thus establishing a new state-of-the-art in efficiency for planar scene representa-
 080 tions. Moreover, an ultra-lightweight variant of Fused-Planes trades off minor rendering quality for
 081 substantial gains in memory footprint: $1875 \times$ less than Tri-Planes. To the best of our knowledge,
 082 our work is the first to improve upon the resource efficiency of Tri-Planes.

084 2 RELATED WORK

086 **Tri-Planes.** Tri-Planes (Chan et al., 2022) are widely used for modeling large collections of 3D
 087 objects and have attracted considerable attention due to their seamless integration with standard
 088 image-based models. In recent works, Tri-Planes are commonly used within a framework that in-
 089 volves solving two main tasks (Shue et al., 2023; Ju & Li, 2025). The first task is large-scale **3D**
 090 **reconstruction**, which consists of training Tri-Planes to properly model a large set of 3D objects.
 091 Once this prerequisite task is completed, the Tri-Planes can be reshaped into 2D image-like tensors,
 092 an operation made possible by their planar structure, making them easily integrable with image-
 093 based models. Once trained and reshaped, Tri-Planes are applied to a second, **targeted task**, in
 094 conjunction with a chosen image-based model. While recent studies have focused heavily on ex-
 095 ploring diverse targeted tasks such as editing (Ki et al., 2025), classification (Cardace et al., 2024),
 096 generation (Liu et al., 2024), and feed-forward reconstruction (Wang et al., 2023), the first large-
 097 scale reconstruction task itself remains inefficient and sub-optimal, which has inspired our research
 098 direction. A more detailed discussion of works using Tri-Planes for downstream tasks can be found
 099 in appendix (Section A).

100 **Compatibility of NeRF methods with image-based models.** Since NeRF (Mildenhall et al.,
 101 2020), methods such as Instant-NGP (Müller et al., 2022), TensoRF (Chen et al., 2022), and 3D
 102 Gaussian Splatting (Kerbl et al., 2023, 3DGS) have greatly advanced single-scene reconstruction.
 103 However, unlike Tri-Planes, these representations cannot be directly reshaped into image-like ten-
 104 sors. Recent works attempt to work around this by converting 3DGS scenes into 2D maps using
 105 various parametrization techniques (e.g. encoding a gaussian per pixel (Li et al., 2024)). However,
 106 this explicit parameterization either (i) requires 3D-to-2D unwrapping techniques (e.g., UV maps
 107 (Hu et al., 2024; Pang et al., 2024) or Morton-order mappings (Jiang et al., 2025)) to preserve spa-
 108 tial semantics across different sides of an object, or (ii) damage image-like spatial semantics, since

108 adjacent pixels may correspond to spatially distant Gaussians (Szymanowicz et al., 2024). In contrast, Tri-Planes require no such preprocessing. They are fixed-size, fully structured, and consistent
 109 across scenes, making them directly compatible with standard image-based architectures. These
 110 properties have made them the most adopted approach in large-scale 3D reconstruction, and moti-
 111 vate our focus on adopting *purely* planar representations, without introducing auxiliary non-planar
 112 components (Wu et al., 2024a).

113
 114 Our work aims to address the inefficiencies of large-scale 3D reconstruction with Tri-Planes. **First**,
 115 we design Fused-Planes to be a tri-planar *shared representation* that captures the structural similar-
 116 ities in object classes. **Second**, we train Fused-Planes as *latent NeRFs*, facilitating the learning of
 117 our shared representations. These design choices lead to substantial reductions in both training time
 118 and memory footprint.

119
 120 **Shared representations.** Shared representations denote approaches that model multiple objects
 121 by utilizing common components. These representations encode an abstraction of a set of objects,
 122 effectively capturing dataset-level information such as structural similarities and differences among
 123 objects. For example, Jang & Agapito (2021) represent multiple objects of the same class within a
 124 single NeRF (MLP) by conditioning it on distinct latent codes for shape and appearance, which al-
 125 lows shape and appearance to be edited independently. Similarly, Schwarz et al. (2021); Niemeyer &
 126 Geiger (2021) adopt a shared representation implemented within a GAN framework, which enables
 127 the generation of novel objects and scenes. Notably, shared representations have been employed
 128 to reduce memory footprint when modeling multiple 3D objects. For instance, Singh et al. (2024)
 129 encode multiple scenes into a single NeRF using learned pseudo-labels, thereby reducing memory
 130 footprint. However, their method cannot scale beyond 20 scenes. Our work also utilizes shared
 131 representations for resource efficiency, but remains scalable to thousands of objects while reducing
 132 both memory footprint and training time. To the best of our knowledge, our method is the first to
 133 explicitly integrate shared representations with planar structures.

134
 135 **Latent NeRFs.** Latent NeRFs involve training neural scene representations within the latent space
 136 of an image autoencoder, rather than directly using raw RGB images. Several recent works have
 137 utilized Latent NeRFs for 3D generation (Metzer et al., 2023; Seo et al., 2023; Ye et al., 2023;
 138 Chan et al., 2023), scene editing (Khalid et al., 2023; Park et al., 2024), and scene reconstruction
 139 (Aumentado-Armstrong et al., 2023) with improved quality. Recently, Schnepf et al. (2025) em-
 140 ployed latent NeRFs to accelerate NeRF training. Their approach enables training various NeRF
 141 architectures within a 3D-aware latent space, resulting in substantial speed-ups but at the expense
 142 of a notable degradation in rendering quality. Our work builds upon Schnepf et al. (2025) by train-
 143 ing our proposed Fused-Planes representation in a 3D-aware latent space. However, unlike Schnepf
 144 et al. (2025) who pre-train a generic latent space for all NeRF representations, we train the 3D-aware
 145 latent space jointly with our scene representations, which proves essential for preserving rendering
 146 quality. This improvement enables us to achieve substantial speed-ups without quality compromises.

147 3 METHOD

148
 149 Our method efficiently reconstructs large collections of 3D objects using tri-planar representations.
 150 Section 3.1 presents our novel Fused-Planes representation, which splits an object representation
 151 into an object-specific “micro” component and a “macro” component derived from shared base
 152 representations. These base representations are trained on the entire dataset, allowing to capture
 153 global structural patterns shared by the objects being reconstructed. To achieve this, we train the
 154 set of Fused-Planes in a jointly learned 3D-aware latent space, which encodes the target objects in
 155 a compact and well-structured space, thereby facilitating the learning of shared patterns with our
 156 base planes. Section 3.2 describes our training procedure for Fused-Planes and the 3D-aware latent
 157 space. Figure 2 presents an overview of our method.

158
 159 **Notation.** We denote $\mathcal{O} = \{O_1, \dots, O_N\}$ a large set of N objects drawn from a common distribu-
 160 tion. Each object $O_i = \{(x_{i,j}, c_{i,j})\}_{j=1}^V$ consists of V posed views. Here, $x_{i,j}$ and $c_{i,j}$ respectively
 161 denote the j -th view and camera pose of the i -th object O_i . We denote $\mathcal{T} = \{T_1, \dots, T_N\}$ the set of
 Fused-Planes representations modeling the objects in \mathcal{O} .

Figure 2: **Method overview.** A set of Fused-Planes $\{T_i\}$ reconstructs a class of 3D objects $\{O_i\}$ from their GT views $\{x_{i,j}\}$, where i and j respectively denote the object and the view indices. For clarity, only one Fused-Planes is shown. **(a)** Each Fused-Planes T_i is formed from a micro plane T_i^{mic} which captures object-specific information, and a macro plane T_i^{mac} computed via a weighted summation over a set of shared base planes \mathcal{B} . This base captures class-level information like structural similarities across objects. **(b)** View synthesis is performed in the latent space of an auto-encoder (E_ϕ , D_ψ) via classical volume rendering. The rendered latent image $\tilde{z}_{i,j}$ (low resolution) is decoded to obtain the output RGB view (high resolution). **(c)** The Fused-Planes components (i.e. T_i^{mic} , \mathcal{B} , W_i) and the autoencoder are supervised with three reconstructive losses.

3.1 FUSED-PLANES ARCHITECTURE.

Pre-requisite: Tri-Planes. Tri-Plane representations (Chan et al., 2022) are explicit-implicit scene representations enabling scene modeling in three axis-aligned orthogonal feature planes, each of resolution $K \times K$ with feature dimension F . To query a 3D point $x \in \mathbb{R}^3$, it is projected onto each of the three planes to retrieve bilinearly interpolated feature vectors. These feature vectors are then aggregated via summation and passed into a small neural network with parameters α to retrieve the color and density, which are then used for volume rendering (Kajiya & Von Herzen, 1984).

Notably, Tri-Planes can be represented as 2D structures by reshaping them into $K \times K$ images with $3F$ channels. As such, they can be seamlessly integrated in image-based pipelines. This planar property has been fundamental for their widespread adoption, and it is preserved in Fused-Planes.

Architecture of a Fused-Planes. Fused-Planes is a novel planar 3D representation that builds upon Tri-Planes. A Fused-Planes splits a planar representation into object-specific features, and class-level features, which allows to learn common structures across the large set of objects. Specifically, a Fused-Planes representation T_i of object O_i is composed of a “micro” plane T_i^{mic} integrating object-level information, and a “macro” plane T_i^{mac} that encompasses class-level information:

$$T_i = T_i^{\text{mic}} \oplus T_i^{\text{mac}}, \quad (1)$$

where \oplus concatenates two planar structures along the feature dimension. We denote by F^{mic} the dimensionality of local features in T_i^{mic} and by F^{mac} the dimensionality of global features in T_i^{mac} , with the total dimensionality of features in T_i being $F = F^{\text{mic}} + F^{\text{mac}}$.

The micro planes T_i^{mic} are object-specific, and are hence independently learned for every object. The macro planes T_i^{mac} represent globally captured information that is relevant for the current object.

216 They are computed for each object from shared base planes $\mathcal{B} = \{B_k\}_{k=1}^M$ by the weighted sum:
 217

$$218 \quad T_i^{\text{mac}} = W_i \mathcal{B} = \sum_{k=1}^M w_i^k B_k, \quad (2)$$

219
 220

221 where W_i are learned coefficients for object O_i . The base of planes $\{B_k\}_{k=1}^M$ is shared among
 222 objects and capture class-level structural similarities. With this approach, the number of micro
 223 planes is equal to the number of objects N , while the number of macro planes M is a constant
 224 hyper-parameter. We take $M > 1$ in order to capture diverse information, which our experiments
 225 showed to be beneficial for maintaining rendering quality, and $M \ll N$. Overall, decomposing
 226 Fused-Planes into micro and macro components reduces the number of trainable features per-object
 227 compared to traditional Tri-Planes, thus accelerating training and reducing total memory footprint.
 228

229 **Fused-Planes-ULW.** We propose an ultra-lightweight (ULW) variant of our method with $F^{\text{mic}} =$
 230 0 (only macro planes), where we achieve substantial savings in memory footprint at the expense of
 231 a slight reduction in rendering quality.
 232

233 **3D-aware latent space.** While Tri-Planes are traditionally used to model objects in the RGB
 234 space, we train Fused-Planes in the latent space of an image autoencoder, defined by an encoder
 235 E_ϕ and a decoder D_ψ . This is because a high-dimensional RGB space lacks structure, making it
 236 poorly suited for effectively capturing structural similarities. In contrast, a 3D-aware latent space
 237 (Schnepf et al., 2025) provides a structured and continuous encoding of the objects, which is, as
 238 proven by our ablations, more suited for disentangling structural similarities from object-specific
 239 details. Additionally, this latent space allows for a reduced rendering resolution, which alleviates
 240 the cost of volume rendering and contributes to accelerating our training. In practice, we train our
 241 3D-aware latent space jointly with our Fused-Planes, which tailors it specifically for our decomposed
 242 object representation.
 243

244 At inference, given a camera pose c_j , we render a latent Fused-Plane T_i as follows:
 245

$$\tilde{z}_{i,j} = R_\alpha(T_i, c_j), \quad \tilde{x}_{i,j} = D_\psi(\tilde{z}_{i,j}), \quad (3)$$

246

247 where R_α is the Fused-Plane renderer with trainable parameters α , $\tilde{z}_{i,j}$ is the rendered latent image,
 248 and $\tilde{x}_{i,j}$ is the corresponding RGB decoded rendering.
 249

250 3.2 TRAINING A LARGE SET OF FUSED-PLANES

251

252 This section outlines our training strategy to learn a large set of objects. In brief, we jointly train the
 253 set of Fused-Planes and the 3D-aware latent space. Figure 2 provides an overview of our pipeline.
 254

255 **Training a set of Fused-Planes jointly with the 3D-aware latent space.** We train the set of
 256 Fused-Planes \mathcal{T} to reconstruct the set of objects \mathcal{O} from posed views. As described above, we
 257 conduct this training in a 3D-aware latent space in a joint manner. To do so, we adapt the 3D
 258 regularization losses from Schnepf et al. (2025). Note that our 3D-aware latent space differs from
 259 the one in (Schnepf et al., 2025), as it is subject to an additional training constraint coming from our
 260 micro-macro decomposition. This allows us to obtain a latent space that is not only 3D-aware, but
 261 also adapted to our Fused-Planes representations.
 262

263 We supervise a Fused-Planes T_i and the encoder E_ϕ in the latent space with the loss $\mathcal{L}^{(\text{latent})}$:
 264

$$\mathcal{L}_{i,j}^{(\text{latent})}(\phi, T_i) = \|z_{i,j} - \tilde{z}_{i,j}\|_2^2, \quad (4)$$

265

266 where $z_{i,j} = E_\phi(x_{i,j})$ is the encoded ground truth image, $\tilde{z}_{i,j} = R_\alpha(T_i, c_{i,j})$ is the rendered latent
 267 image, and $T_i = T_i^{\text{mic}} \oplus T_i^{\text{mac}}$. This loss optimizes the encoder parameters and the Fused-Planes
 268 parameters to align the encoded latent images $z_{i,j}$ and the rendering $\tilde{z}_{i,j}$. We also supervise T_i and
 269 the decoder D_ψ in the RGB space via $\mathcal{L}^{(\text{RGB})}$:
 270

$$\mathcal{L}_{i,j}^{(\text{RGB})}(\psi, T_i) = \|x_{i,j} - \tilde{x}_{i,j}\|_2^2, \quad (5)$$

271

272 where $x_{i,j}$ is the ground truth image, and $\tilde{x}_{i,j} = D_\psi(\tilde{z}_{i,j})$ is the decoded rendering. This loss
 273 ensures a good rendering quality when decoded to the RGB space, and finds the optimal decoder for
 274

Figure 3: **Qualitative comparison.** We show comparisons of our method with other planar scene representations for NVS on held-out test views. Our method achieves the fastest training with the lowest memory footprint, while maintaining a comparable rendering quality.

this task. Finally, we adopt the reconstructive objective $\mathcal{L}^{(ae)}$ supervising the auto-encoder:

$$\mathcal{L}_{i,j}^{(ae)}(\phi, \psi) = \|x_{i,j} - \hat{x}_{i,j}\|_2^2, \quad (6)$$

where $\hat{x}_{i,j} = D_\psi(E_\psi(x_{i,j}))$ is the reconstructed ground truth image.

Overall, our full training objective is composed of the three previous losses summed over \mathcal{O} to optimize the set of Fused-Planes \mathcal{T} , the encoder E_ϕ , and the decoder D_ψ :

$$\min_{\mathcal{T}, \phi, \psi} \sum_{i=1}^N \sum_{j=1}^V \lambda^{(\text{latent})} \mathcal{L}_{i,j}^{(\text{latent})}(\phi, T_i) + \lambda^{(\text{RGB})} \mathcal{L}_{i,j}^{(\text{RGB})}(\psi, T_i) + \lambda^{(ae)} \mathcal{L}_{i,j}^{(ae)}(\phi, \psi), \quad (7)$$

where $\lambda^{(\text{latent})}$, $\lambda^{(\text{RGB})}$, and $\lambda^{(ae)}$ are hyper-parameters.

By the end of this training, the set of Fused-Planes \mathcal{T} including the base planes \mathcal{B} are learned and effectively model the objects in \mathcal{O} . Additional object representations could still be trained by utilizing the frozen shared components. For more implementation details, we refer the reader to the appendix (Section B and Algorithm 1).

4 EXPERIMENTS

Task. As discussed in Section 2, our goal is to reduce the resource costs of planar representations in large-scale 3D modeling. To establish the practical utility of our representation, it must satisfy two criteria: (i) accurately represent the types of 3D objects typically modeled with Tri-Planes, and (ii) demonstrate competitive resource efficiency relative to the Tri-Planes baseline. Regarding 3D modeling performance, we adopt the standard evaluation protocol for 3D representations and assess our method on the task of 3D reconstruction via Novel View Synthesis (NVS). For resource efficiency, we measure the per-object training time and memory footprint when modeling large object classes.

Evaluation Protocol To evaluate the NVS quality of the learned objects, we compute the PSNR (\uparrow), SSIM (\uparrow) and LPIPS (Zhang et al., 2018, \downarrow) between never-seen reference views and corresponding NVS views. To evaluate the resource requirements, we report per-object training time,

324 per-object memory footprint (excluding shared components), and total memory footprint. Training
 325 times are measured using a single NVIDIA L4 GPU.
 326

327 **Table 1: Comparison with planar methods.** Fused-Planes reduces the quality gap between Tri-
 328 Planes and K-Planes, while requiring three orders of magnitude less memory footprint, and having a
 329 significantly faster training, thus establishing a new state-of-the-art in efficiency for modeling large
 330 object classes with planar representations.

	Planar	Training (min)	Size (MB)	ShapeNet datasets			Basel Faces		
				PSNR	SSIM	LPIPS	PSNR	SSIM	LPIPS
K-Planes (Fridovich-Keil et al., 2023)	✓	75.35	410.17	30.88	0.956	0.043	40.23	0.991	0.005
Tri-Planes (Chan et al., 2022)	✓	64.32	1.50	28.15	0.919	0.121	36.47	0.980	0.013
Fused-Planes-ULW (ours)	✓	7.16	0.0008	29.02	0.937	0.092	33.96	0.955	0.010
Fused-Planes (ours)	✓	8.96	0.48	30.47	0.957	0.042	37.24	0.973	0.006

331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
 1000
 1001
 1002
 1003
 1004
 1005
 1006
 1007
 1008
 1009
 1010
 1011
 1012
 1013
 1014
 1015
 1016
 1017
 1018
 1019
 1020
 1021
 1022
 1023
 1024
 1025
 1026
 1027
 1028
 1029
 1030
 1031
 1032
 1033
 1034
 1035
 1036
 1037
 1038
 1039
 1040
 1041
 1042
 1043
 1044
 1045
 1046
 1047
 1048
 1049
 1050
 1051
 1052
 1053
 1054
 1055
 1056
 1057
 1058
 1059
 1060
 1061
 1062
 1063
 1064
 1065
 1066
 1067
 1068
 1069
 1070
 1071
 1072
 1073
 1074
 1075
 1076
 1077
 1078
 1079
 1080
 1081
 1082
 1083
 1084
 1085
 1086
 1087
 1088
 1089
 1090
 1091
 1092
 1093
 1094
 1095
 1096
 1097
 1098
 1099
 1100
 1101
 1102
 1103
 1104
 1105
 1106
 1107
 1108
 1109
 1110
 1111
 1112
 1113
 1114
 1115
 1116
 1117
 1118
 1119
 1120
 1121
 1122
 1123
 1124
 1125
 1126
 1127
 1128
 1129
 1130
 1131
 1132
 1133
 1134
 1135
 1136
 1137
 1138
 1139
 1140
 1141
 1142
 1143
 1144
 1145
 1146
 1147
 1148
 1149
 1150
 1151
 1152
 1153
 1154
 1155
 1156
 1157
 1158
 1159
 1160
 1161
 1162
 1163
 1164
 1165
 1166
 1167
 1168
 1169
 1170
 1171
 1172
 1173
 1174
 1175
 1176
 1177
 1178
 1179
 1180
 1181
 1182
 1183
 1184
 1185
 1186
 1187
 1188
 1189
 1190
 1191
 1192
 1193
 1194
 1195
 1196
 1197
 1198
 1199
 1200
 1201
 1202
 1203
 1204
 1205
 1206
 1207
 1208
 1209
 1210
 1211
 1212
 1213
 1214
 1215
 1216
 1217
 1218
 1219
 1220
 1221
 1222
 1223
 1224
 1225
 1226
 1227
 1228
 1229
 1230
 1231
 1232
 1233
 1234
 1235
 1236
 1237
 1238
 1239
 1240
 1241
 1242
 1243
 1244
 1245
 1246
 1247
 1248
 1249
 1250
 1251
 1252
 1253
 1254
 1255
 1256
 1257
 1258
 1259
 1260
 1261
 1262
 1263
 1264
 1265
 1266
 1267
 1268
 1269
 1270
 1271
 1272
 1273
 1274
 1275
 1276
 1277
 1278
 1279
 1280
 1281
 1282
 1283
 1284
 1285
 1286
 1287
 1288
 1289
 1290
 1291
 1292
 1293
 1294
 1295
 1296
 1297
 1298
 1299
 1300
 1301
 1302
 1303
 1304
 1305
 1306
 1307
 1308
 1309
 1310
 1311
 1312
 1313
 1314
 1315
 1316
 1317
 1318
 1319
 1320
 1321
 1322
 1323
 1324
 1325
 1326
 1327
 1328
 1329
 1330
 1331
 1332
 1333
 1334
 1335
 1336
 1337
 1338
 1339
 1340
 1341
 1342
 1343
 1344
 1345
 1346
 1347
 1348
 1349
 1350
 1351
 1352
 1353
 1354
 1355
 1356
 1357
 1358
 1359
 1360
 1361
 1362
 1363
 1364
 1365
 1366
 1367
 1368
 1369
 1370
 1371
 1372
 1373
 1374
 1375
 1376
 1377
 1378
 1379
 1380
 1381
 1382
 1383
 1384
 1385
 1386
 1387
 1388
 1389
 1390
 1391
 1392
 1393
 1394
 1395
 1396
 1397
 1398
 1399
 1400
 1401
 1402
 1403
 1404
 1405
 1406
 1407
 1408
 1409
 1410
 1411
 1412
 1413
 1414
 1415
 1416
 1417
 1418
 1419
 1420
 1421
 1422
 1423
 1424
 1425
 1426
 1427
 1428
 1429
 1430
 1431
 1432
 1433
 1434
 1435
 1436
 1437
 1438
 1439
 1440
 1441
 1442
 1443
 1444
 1445
 1446
 1447
 1448
 1449
 1450
 1451
 1452
 1453
 1454
 1455
 1456
 1457
 1458
 1459
 1460
 1461
 1462
 1463
 1464
 1465
 1466
 1467
 1468
 1469
 1470
 1471
 1472
 1473
 1474
 1475
 1476
 1477
 1478
 1479
 1480
 1481
 1482
 1483
 1484
 1485
 1486
 1487
 1488
 1489
 1490
 1491
 1492
 1493
 1494
 1495
 1496
 1497
 1498
 1499
 1500
 1501
 1502
 1503
 1504
 1505
 1506
 1507
 1508
 1509
 1510
 1511
 1512
 1513
 1514
 1515
 1516
 1517
 1518
 1519
 1520
 1521
 1522
 1523
 1524
 1525
 1526
 1527
 1528
 1529
 1530
 1531
 1532
 1533
 1534
 1535
 1536
 1537
 1538
 1539
 1540
 1541
 1542
 1543
 1544
 1545
 1546
 1547
 1548
 1549
 1550
 1551
 1552
 1553
 1554
 1555
 1556
 1557
 1558
 1559
 1560
 1561
 1562
 1563
 1564
 1565
 1566
 1567
 1568
 1569
 1570
 1571
 1572
 1573
 1574
 1575
 1576
 1577
 1578
 1579
 1580
 1581
 1582
 1583
 1584
 1585
 1586
 1587
 1588
 1589
 1590
 1591
 1592
 1593
 1594
 1595
 1596
 1597
 1598
 1599
 1600
 1601
 1602
 1603
 1604
 1605
 1606
 1607
 1608
 1609
 1610
 1611
 1612
 1613
 1614
 1615
 1616
 1617
 1618
 1619
 1620
 1621
 1622
 1623
 1624
 1625
 1626
 1627
 1628
 1629
 1630
 1631
 1632
 1633
 1634
 1635
 1636
 1637
 1638
 1639
 1640
 1641
 1642
 1643
 1644
 1645
 1646
 1647
 1648
 1649
 1650
 1651
 1652
 1653
 1654
 1655
 1656
 1657
 1658
 1659
 1660
 1661
 1662
 1663
 1664
 1665
 1666
 1667
 1668
 1669
 1670
 1671

378
 379 **Table 4: Multi-class training.** The first three rows correspond to single-class training, where a sep-
 380 arate Fused-Planes model is trained for each individual class. The remaining rows report the results
 381 of multi-class training, where a single Fused-Planes model is trained jointly on multiple classes.
 382 The results show that Fused-Planes is applicable to multi-class data and continues to outperform
 383 Tri-Planes in this setting.

# Classes	Speakers			Sofas			Furniture			Cars			
	PSNR	SSIM	LPIPS	PSNR	SSIM	LPIPS	PSNR	SSIM	LPIPS	PSNR	SSIM	LPIPS	
Fused-Planes	1	29.99	0.953	0.053	30.92	0.958	0.028	30.72	0.960	0.053	30.27	0.960	0.033
Fused-Planes-ULW	1	29.22	0.941	0.087	29.02	0.931	0.084	29.14	0.933	0.142	28.71	0.943	0.055
Tri-Planes	1	27.02	0.909	0.134	28.48	0.921	0.103	27.42	0.894	0.210	29.69	0.953	0.036
Fused-Planes	2	30.03	0.953	0.053	30.37	0.953	0.033	—	—	—	—	—	—
Fused-Planes-ULW	2	28.63	0.925	0.108	28.93	0.931	0.085	—	—	—	—	—	—
Fused-Planes-ULW	3	29.30	0.937	0.088	29.33	0.937	0.064	29.47	0.942	0.118	—	—	—
Fused-Planes	3	29.84	0.952	0.053	30.08	0.950	0.034	30.31	0.955	0.064	—	—	—
Fused-Planes	4	29.72	0.951	0.055	29.70	0.948	0.038	29.79	0.951	0.073	29.15	0.952	0.040
Fused-Planes-ULW	4	28.12	0.924	0.110	28.34	0.923	0.084	28.54	0.927	0.154	27.73	0.933	0.074

393
 394 categories: Cars, Furniture, Speakers and Sofas. Additionally, we adopt the large-scale front-facing
 395 Basel-Face dataset (Paysan et al., 2009). More dataset details can be found in the Section C. In our
 396 experiments, we train a set of Fused-Planes to reconstruct $N = 2000$ objects. We use planes of
 397 dimensionality $K \times K \times F$, where $K = 64$ and $F = 32$ for all planar representations. For Fused-
 398 Planes, we take $F^{\text{mic}} = 10$, $F^{\text{mac}} = 22$, and $M = 50$. For Fused-Planes-ULW, we take $F^{\text{mic}} = 0$,
 399 $F^{\text{mac}} = 32$, and $M = 50$. We detail our hyper-parameters in Section G. We adopt the pre-trained
 400 VAE from Stable Diffusion (Rombach et al., 2022) as initialization for our VAE.

4.1 MAIN RESULTS

404 Main results appear in Tables 1 to 3 and Figures 1 and 3. Detailed results are available in Section D.

405 Compared to other **planar scene representations** (Figure 1 and Table 1), Fused-Planes exhibits a
 406 significant reduction in resource costs, demonstrating $7.2 \times$ faster training and $3.2 \times$ less memory
 407 footprint than Tri-Planes, and $8.4 \times$ faster training and $854 \times$ less memory footprint than K-Planes.
 408 It improves rendering quality over Tri-Planes while reducing the gap with K-Planes, but without
 409 K-Planes’ orders-of-magnitude higher memory cost or multi-scale complexity. Fused-Planes-ULW
 410 trades off minor rendering quality for substantial gains in memory footprint: one object requires
 411 $1875 \times$ less memory footprint than Tri-Planes, and $512\,000 \times$ less memory footprint than K-Planes.
 412 Furthermore, Figure 4 illustrates the evolution of the resource requirements as the number of objects
 413 increases. Moreover, a detailed breakdown of the memory footprint of Fused-Planes can be found
 414 in the appendix (Table 15). All in all, Fused-Planes establishes a new state-of-the-art in terms of
 415 resource efficiency for planar scene representations.

416 As for other methods utilizing **shared representations** (Table 2), Fused-Planes and Fused-Planes-
 417 ULW showcase up to $2 \times$ faster training times, and an improved rendering quality. Fused-Planes-
 418 ULW also requires less memory footprint per-object.

419 For broader context, we report results on other well-established **non-planar** NeRF methods (Table 3
 420 and Figure 5). Fused-Planes, like all other planar representations, showcases lower rendering quality,
 421 which is an acceptable trade-off as planar methods have a different primary objective (Section 2).

4.2 RESULTS ON MULTI-CLASS TRAINING

425 Table 4 reports a set of experiments in which Fused-Planes and Fused-Planes-ULW are trained
 426 on datasets containing scenes from multiple object classes. Specifically, we introduce three new
 427 datasets that combine two, three, and four object classes, composed from our initial object cat-
 428 egories. Specific details about the construction of these datasets are available in Section C. The
 429 results demonstrate that Fused-Planes is applicable to multi-class data and continues to outperform
 430 Tri-Planes in this setting. Furthermore, a minor reduction in quality appears as more classes are
 431 included, reflecting the increased scene diversity that shared base planes must capture. Importantly,
 this effect is small, and the resulting quality remains on par with or above that of Tri-Planes. Note

432
 433 **Table 5: Ablation study.** Comparison of NVS quality and per-object resource costs for different
 434 ablations of our method on ShapeNet Cars. Fused-Planes outperforms all of its ablations. Fused-
 435 Planes-ULW trades off minor NVS quality for substantial savings in memory footprint.

	Latent Space	Micro Planes	Macro Planes	Training (min)	Size (MB)	PSNR	SSIM	LPIPS
Fused-Planes ($M = 1$)	✓	✓	✓	8.48	0.48	27.69	0.942	0.042
Fused-Planes (Micro)	✓	✓	✗	12.84	1.50	27.64	0.941	0.040
Fused-Planes (RGB)	✗	✓	✓	63.52	0.48	27.71	0.942	0.044
Tri-Planes	✗	✓	✗	64.08	1.50	28.56	0.953	0.035
Fused-Planes-ULW	✓	✗	✓	7.16	0.0008	27.51	0.935	0.063
Fused-Planes	✓	✓	✓	8.92	0.48	28.64	0.950	0.037

452 **Figure 4: Scaling the number of objects using planar methods.** Evolution of the total training
 453 time (left) and total memory footprint (right) when scaling the number of objects (N). As K-Planes
 454 is barely visible (right), we present in Figure 6 a magnified version of the memory cost plot.

455
 456 that training speed and memory usage remain unchanged in multi-class training with respect to the
 457 single-category models.

4.3 ADDITIONAL RESULTS

461 In the appendix, Figure 10 illustrates a subset of our large-scale results for completeness. Section
 462 D.3 provides an ablation study on the number of base planes, in which we show that $M = 50$ is
 463 the most effective option for Fused-Planes. Section D.4 presents a rendering speed analysis show-
 464 ing that Fused-Planes achieves substantially faster rendering than Tri-Planes, while being compet-
 465 itive with the other baselines. Section D.5 provides experiments utilizing a low-budget VAE with
 466 Fused-Planes, showing that our method exhibits low-sensitivity to the specific VAE initializa-
 467 tion. Section D.6 presents a comparison of the total resource costs across our baselines, which shows
 468 that Fused-Planes presents competitive training times, and is the fastest planar method. In terms of
 469 memory, Fused-Planes and Fused-Planes-ULW are the most lightweight methods. Section E anal-
 470 yses our base-planes and the representations they learn. In brief, our base planes can be grouped
 471 into two categories: semantic planes that clearly encode object-level structures, and residual planes
 472 that capture finer intra-class variability. Moreover, we visualize the values of the weights W_i for
 473 two different objects, which shows that for each object, a few base planes are dominantly activated,
 474 while other planes contribute minor adjustments. Finally, we also present an experiment in which
 475 we interpolate between two learned weights in Figure 9, showing that we can transition smoothly
 476 from one scene to another. Per-object NVS results and visualizations are available in Tables 17 to 21
 477 and Figures 11 to 15.

4.4 ABLATIONS

479 To justify our design choices, we present an ablation study of our method (Table 5). “**Fused-Planes**
 480 ($M = 1$)” reduces the shared base planes \mathcal{B} to a single plane. It demonstrates a slight degradation
 481 of quality compared to Fused-Planes, highlighting the necessity for *a set* of base planes. “**Fused-
 482 Planes (Micro)**” eliminates the Macro component of Fused-Planes (i.e. $F^{\text{mac}} = 0$), and therefore
 483 the shared components. It exhibits lower quality compared to Tri-Planes, which is in line with the
 484 degradations seen in Schnepf et al. (2025) for latent NeRFs. In contrast, our full model avoids such
 485 issues, underscoring the benefits of shared representations within the latent space, both in quality and
 486 memory efficiency. “**Fused-Planes (RGB)**” ablates the latent space and trains Fused-Planes in RGB

Figure 5: **Resource costs overview.** To reconstruct a large class of objects, one would consider three options: many per-scene models (e.g. INGP, 3DGS, or planar methods), a multi-scene method (e.g. CodeNeRF), or Fused-Planes. Our method presents the lowest per-object training time and memory footprint among all planar representations, while maintaining a similar rendering quality. Circle sizes represent the NVS quality.

space. It exhibits lower quality compared to Tri-Planes, and to our full model. Therefore, it shows the necessity of the latent space for making shared representations work effectively. It also highlights the speed improvements enabled by the latent space. “**Tri-Planes**” is equivalent to ablating both the latent space and macro planes, which presents significantly higher resource costs and similar quality. **In summary**, our ablations show that both the latent space and shared representations are needed *concurrently* to avoid quality degradations and minimize resource costs.

4.5 LIMITATIONS

Tri-Planes are well-suited for object-centric scenes. However, they exhibit limitations in capturing fine details and handling unbounded scenes, which are characteristic of real-world environments. As such, Tri-Planes cannot be used to reconstruct scenes such as the ones used in the NeRF paper (Mildenhall et al., 2020) or in the Mip-NeRF 360 dataset (Barron et al., 2022). More precisely, to capture fine details, one would need to greatly increase the resolution of each of the Tri-Planes feature grids, leading to significant increases in memory footprint and computation, which undermines the compactness that makes Tri-Planes attractive. Moreover, Tri-Planes assume that the scene fits in a bounded volume, which complicates the modeling of distant backgrounds often present in real scenes. Some methods (Wu et al., 2024b; Lee et al., 2024; Yan et al., 2024) sidestep these limitations by using tricks like utilizing multiple Tri-Planes for large scenes or by modeling only density and relying on other tools for textures. These approaches are beyond this paper’s scope.

Since our method adopts the same architecture as Tri-Planes, it also inherits their limitations. Even so, Tri-Planes have been widely adopted (Section 2), as their planar design provides practical advantages despite these drawbacks. Our contribution advances this line of work by proposing a more efficient way to train planar methods at large-scales, while improving the quality of Tri-Planes.

5 CONCLUSION

In this work, we introduced Fused-Planes, a novel planar object representation that advances the state of the art in resource-efficient planar 3D modeling and reconstruction of large object classes. This is achieved by shifting away from the traditional approach of reconstructing each object in isolation, and instead exploiting the shared structural similarities within object classes using shared base representations in a specially designed latent space. We showed that Fused-Planes significantly reduces required resources compared to current planar representation, while maintaining rendering quality. Given the recurrent challenges associated with training large-scale planar scene representations, we hope that our contribution will facilitate this task, and make research in image-based models for 3D applications more accessible.

540 REPRODUCIBILITY STATEMENT
541

542 We have taken several measures to ensure the reproducibility of our findings. The paper includes
543 the necessary implementation details and hyperparameter settings in order to reproduce our results.
544 Additionally, the complete source code is included in the supplementary materials of this submis-
545 sion and will be released as open-source upon publication. Together, these resources should allow
546 researchers to fully reproduce and extend our findings.

548 REFERENCES
549

550 Titas Auciukevičius, Zexiang Xu, Matthew Fisher, Paul Henderson, Hakan Bilen, Niloy J. Mitra, and
551 Paul Guerrero. RenderDiffusion: Image Diffusion for 3D Reconstruction, Inpainting and Gener-
552 ation. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*
(CVPR), pp. 12608–12618, June 2023.

554 Tristan Amentado-Armstrong, Ashkan Mirzaei, Marcus A Brubaker, Jonathan Kelly, Alex Levin-
555 shtein, Konstantinos G Derpanis, and Igor Gilitschenski. Reconstructive Latent-Space Neural
556 Radiance Fields for Efficient 3D Scene Representations. *arXiv preprint arXiv:2310.17880*, 2023.

557 Jonathan T. Barron, Ben Mildenhall, Dor Verbin, Pratul P. Srinivasan, and Peter Hedman. Mip-
558 NeRF 360: Unbounded Anti-Aliased Neural Radiance Fields. In *Proceedings of the IEEE/CVF*
559 *Conference on Computer Vision and Pattern Recognition (CVPR)*, pp. 5470–5479, June 2022.

561 Bahri Batuhan Bilecen, Yigit Yalin, Ning Yu, and Aysegul Dundar. Reference-based 3d-aware image
562 editing with triplanes. In *Proceedings of the Computer Vision and Pattern Recognition Conference*
(CVPR), pp. 5904–5915, June 2025.

564 Adriano Cardace, Pierluigi Zama Ramirez, Francesco Ballerini, Allan Zhou, Samuele Salti, and
565 Luigi Di Stefano. Neural Processing of Tri-Plane Hybrid Neural Fields. In *ICLR*, 2024.

567 E. R. Chan, K. Nagano, M. A. Chan, A. W. Bergman, J. Park, A. Levy, M. Aittala, S. De Mello,
568 T. Karras, and G. Wetzstein. Generative Novel View Synthesis with 3D-Aware Diffusion Models.
569 In *2023 IEEE/CVF International Conference on Computer Vision (ICCV)*, pp. 4194–4206, Los
570 Alamitos, CA, USA, oct 2023. IEEE Computer Society. doi: 10.1109/ICCV51070.2023.00389.

571 Eric R. Chan, Connor Z. Lin, Matthew A. Chan, Koki Nagano, Boxiao Pan, Shalini De Mello,
572 Orazio Gallo, Leonidas J. Guibas, Jonathan Tremblay, Sameh Khamis, Tero Karras, and Gordon
573 Wetzstein. Efficient Geometry-Aware 3D Generative Adversarial Networks. In *Proceedings of the*
574 *IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)*, pp. 16123–16133,
575 June 2022.

576 Angel X. Chang, Thomas Funkhouser, Leonidas Guibas, Pat Hanrahan, Qixing Huang, Zimo Li,
577 Silvio Savarese, Manolis Savva, Shuran Song, Hao Su, et al. ShapeNet: An Information-Rich 3D
578 Model Repository. *arXiv preprint arXiv:1512.03012*, 2015. Dataset available under the ShapeNet
579 Terms of Use, accessible at <https://shapenet.org/terms>. Accessed on 2025-05-15.

581 Anpei Chen, Zexiang Xu, Andreas Geiger, Jingyi Yu, and Hao Su. TensoRF: Tensorial Radiance
582 Fields. In *European Conference on Computer Vision (ECCV)*, 2022.

583 Hansheng Chen, Jiatao Gu, Anpei Chen, Wei Tian, Zhuowen Tu, Lingjie Liu, and Hao Su. Single-
584 Stage Diffusion NeRF: A Unified Approach to 3D Generation and Reconstruction. In *Proceedings*
585 *of the IEEE/CVF International Conference on Computer Vision (ICCV)*, pp. 2416–2425, October
586 2023.

587 Sara Fridovich-Keil, Giacomo Meanti, Frederik Rahbæk Warburg, Benjamin Recht, and Angjoo
588 Kanazawa. K-Planes: Explicit Radiance Fields in Space, Time, and Appearance. In *Proceedings*
589 *of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)*, pp. 12479–
590 12488, June 2023.

592 Yicong Hong, Kai Zhang, Jiuxiang Gu, Sai Bi, Yang Zhou, Difan Liu, Feng Liu, Kalyan Sunkavalli,
593 Trung Bui, and Hao Tan. LRM: Large Reconstruction Model for Single Image to 3D. In *The*
Twelfth International Conference on Learning Representations, 2024.

594 Liangxiao Hu, Hongwen Zhang, Yuxiang Zhang, Boyao Zhou, Boning Liu, Shengping Zhang, and
 595 Liqiang Nie. Gaussianavatar: Towards realistic human avatar modeling from a single video via
 596 animatable 3d gaussians. In *Proceedings of the IEEE/CVF Conference on Computer Vision and*
 597 *Pattern Recognition (CVPR)*, pp. 634–644, June 2024.

598 Wonbong Jang and Lourdes Agapito. CodeNeRF: Disentangled Neural Radiance Fields for Ob-
 599 ject Categories. In *Proceedings of the IEEE/CVF International Conference on Computer Vision*
 600 (*ICCV*), pp. 12949–12958, October 2021.

601 Yuheng Jiang, Zhehao Shen, Chengcheng Guo, Yu Hong, Zhuo Su, Yingliang Zhang, Marc Haber-
 602 mann, and Lan Xu. RePerformer: Immersive Human-centric Volumetric Videos from Playback
 603 to Photoreal Reperformance. In *Proceedings of the Computer Vision and Pattern Recognition*
 604 *Conference (CVPR)*, pp. 11349–11360, June 2025.

605 Xiaoliang Ju and Hongsheng Li. DirectTriGS: Triplane-based Gaussian Splatting Field Representa-
 606 tion for 3D Generation, 2025.

607 James T. Kajiya and Brian P. Von Herzen. Ray Tracing Volume Densities. *SIGGRAPH Comput.*
 608 *Graph.*, 18(3):165—174, January 1984. doi: 10.1145/964965.808594.

609 Bernhard Kerbl, Georgios Kopanas, Thomas Leimkühler, and George Drettakis. 3D Gaussian Splat-
 610 ting for Real-Time Radiance Field Rendering. *ACM Transactions on Graphics*, 42(4), July 2023.

611 Umar Khalid, Hasan Iqbal, Nazmul Karim, Jing Hua, and Chen Chen. LatentEditor: Text Driven
 612 Local Editing of 3D Scenes, 2023.

613 Taekyung Ki, Dongchan Min, and Gyeongsu Chae. Learning to Generate Conditional Tri-Plane for
 614 3D-Aware Expression Controllable Portrait Animation. In Aleš Leonardis, Elisa Ricci, Stefan
 615 Roth, Olga Russakovsky, Torsten Sattler, and Gü̈l Varol (eds.), *Computer Vision – ECCV 2024*,
 616 pp. 476–493, Cham, 2025. Springer Nature Switzerland. ISBN 978-3-031-73232-4.

617 Jumin Lee, Sebin Lee, Changho Jo, Woobin Im, Juhyeong Seon, and Sung-Eui Yoon. SemCity:
 618 Semantic Scene Generation with Triplane Diffusion. In *Proceedings of the IEEE/CVF Conference*
 619 *on Computer Vision and Pattern Recognition (CVPR)*, pp. 28337–28347, June 2024.

620 Zhe Li, Zerong Zheng, Lizhen Wang, and Yebin Liu. Animatable Gaussians: Learning Pose-
 621 Dependent Gaussian Maps for High-Fidelity Human Avatar Modeling. In *2024 IEEE/CVF Con-*
 622 *ference on Computer Vision and Pattern Recognition (CVPR)*, pp. 19711–19722, 2024. doi:
 623 10.1109/CVPR52733.2024.01864.

624 Ying-Tian Liu, Yuan-Chen Guo, Guan Luo, Heyi Sun, Wei Yin, and Song-Hai Zhang. PI3D: Ef-
 625 ficient Text-to-3D Generation with Pseudo-Image Diffusion. In *Proceedings of the IEEE/CVF*
 626 *Conference on Computer Vision and Pattern Recognition (CVPR)*, pp. 19915–19924, June 2024.

627 Antoine Mercier, Ramin Nakhli, Mahesh Reddy, Rajeev Yasarla, Hong Cai, Fatih Porikli, and Guil-
 628 laume Berger. Hexagen3d: Stablediffusion is one step away from fast and diverse text-to-3d gen-
 629 eration. In *Proceedings of the Winter Conference on Applications of Computer Vision (WACV)*,
 630 pp. 1247–1257, February 2025.

631 Gal Metzer, Elad Richardson, Or Patashnik, Raja Giryes, and Daniel Cohen-Or. Latent-NeRF for
 632 Shape-Guided Generation of 3D Shapes and Textures. In *Proceedings of the IEEE/CVF Confer-*
 633 *ence on Computer Vision and Pattern Recognition (CVPR)*, pp. 12663–12673, June 2023.

634 Ben Mildenhall, Pratul P. Srinivasan, Matthew Tancik, Jonathan T. Barron, Ravi Ramamoorthi, and
 635 Ren Ng. NeRF: Representing Scenes as Neural Radiance Fields for View Synthesis. In *ECCV*,
 636 2020.

637 Thomas Müller, Alex Evans, Christoph Schied, and Alexander Keller. Instant Neural Graphics
 638 Primitives with a Multiresolution Hash Encoding. *ACM Trans. Graph.*, 41(4):102:1–102:15, July
 639 2022. doi: 10.1145/3528223.3530127.

640 Michael Niemeyer and Andreas Geiger. Giraffe: Representing scenes as compositional genera-
 641 tive neural feature fields. In *Proceedings of the IEEE/CVF Conference on Computer Vision and*
 642 *Pattern Recognition (CVPR)*, pp. 11453–11464, June 2021.

648 Haokai Pang, Heming Zhu, Adam Kortylewski, Christian Theobalt, and Marc Habermann. ASH:
 649 Animatable Gaussian Splats for Efficient and Photoreal Human Rendering. In *Proceedings of*
 650 *the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)*, pp. 1165–1175,
 651 June 2024.

652 JangHo Park, Gihyun Kwon, and Jong Chul Ye. ED-NeRF: Efficient Text-Guided Editing of 3D
 653 Scene With Latent Space NeRF. In *International Conference on Learning Representations*, 2024.

654 P. Paysan, R. Knothe, B. Amberg, S. Romdhani, and T. Vetter. A 3D Face Model for Pose and
 655 Illumination Invariant Face Recognition. In *Proceedings of the 6th IEEE International Conference*
 656 *on Advanced Video and Signal based Surveillance (AVSS) for Security, Safety and Monitoring in*
 657 *Smart Environments*, Genova, Italy, 2009. IEEE. Dataset available at <https://faces.dmi.unibas.ch/bfm/index.php?nav=1-1-0&id=details>. Accessed on 2025-09-15.

658 Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Björn Ommer. High-
 659 Resolution Image Synthesis With Latent Diffusion Models. In *Proceedings of the IEEE/CVF*
 660 *Conference on Computer Vision and Pattern Recognition (CVPR)*, pp. 10684–10695, June 2022.

661 Antoine Schnepf, Karim Kassab, Jean-Yves Franceschi, Laurent Caraffa, Flavian Vasile, Jeremie
 662 Mary, Andrew I. Comport, and Valerie Gouet-Brunet. Bringing NeRFs to the Latent Space:
 663 Inverse Graphics Autoencoder. In *The Thirteenth International Conference on Learning Representations*, 2025.

664 Katja Schwarz, Yiyi Liao, Michael Niemeyer, and Andreas Geiger. Graf: Generative radiance fields
 665 for 3d-aware image synthesis, 2021.

666 Hoigi Seo, Hayeon Kim, Gwanghyun Kim, and Se Young Chun. Ditto-nerf: Diffusion-based iterative
 667 text to omni-directional 3d model. *arXiv preprint arXiv:2304.02827*, 2023.

668 J. Ryan Shue, Eric Ryan Chan, Ryan Po, Zachary Ankner, Jiajun Wu, and Gordon Wetzstein. 3D
 669 Neural Field Generation Using Triplane Diffusion. In *Proceedings of the IEEE/CVF Conference*
 670 *on Computer Vision and Pattern Recognition (CVPR)*, pp. 20875–20886, June 2023.

671 Prajwal Singh, Ashish Tiwari, Gautam Vashishtha, and Shanmuganathan Raman. C3-NeRF: Mod-
 672 eling Multiple Scenes via Conditional-cum-Continual Neural Radiance Fields. *arXiv preprint*
 673 *arXiv:2411.19903*, 2024.

674 Wenqiang Sun, Zhengyi Wang, Shuo Chen, Yikai Wang, Zilong Chen, Jun Zhu, and Jun Zhang.
 675 Freeplane: Unlocking free lunch in triplane-based sparse-view reconstruction models. *ArXiv*,
 676 *abs/2406.00750*, 2024.

677 Stanislaw Szymanowicz, Chrisitian Rupprecht, and Andrea Vedaldi. Splatter image: Ultra-fast
 678 single-view 3d reconstruction. In *Proceedings of the IEEE/CVF Conference on Computer Vi-
 679 sion and Pattern Recognition (CVPR)*, pp. 10208–10217, June 2024.

680 Matthew Tancik, Ethan Weber, Evonne Ng, Ruilong Li, Brent Yi, Justin Kerr, Terrance Wang,
 681 Alexander Kristoffersen, Jake Austin, Kamyar Salahi, Abhik Ahuja, David McAllister, and
 682 Angjoo Kanazawa. Nerfstudio: A modular framework for neural radiance field development.
 683 In *ACM SIGGRAPH 2023 Conference Proceedings*, SIGGRAPH '23, 2023.

684 Tengfei Wang, Bo Zhang, Ting Zhang, Shuyang Gu, Jianmin Bao, Tadas Baltrusaitis, Jingjing Shen,
 685 Dong Chen, Fang Wen, Qifeng Chen, and Baining Guo. RODIN: A Generative Model for Sculpt-
 686 ing 3D Digital Avatars Using Diffusion. In *Proceedings of the IEEE/CVF Conference on Com-
 687 puter Vision and Pattern Recognition (CVPR)*, pp. 4563–4573, June 2023.

688 Minye Wu, Zehao Wang, Georgios Kouros, and Tinne Tuytelaars. TeTriRF: Temporal Tri-Plane
 689 Radiance Fields for Efficient Free-Viewpoint Video. In *Proceedings of the IEEE/CVF Conference*
 690 *on Computer Vision and Pattern Recognition (CVPR)*, pp. 6487–6496, June 2024a.

691 Zhennan Wu, Yang Li, Han Yan, Taizhang Shang, Weixuan Sun, Senbo Wang, Ruihai Cui, Weizhe
 692 Liu, Hiroyuki Sato, Hongdong Li, and Pan Ji. BlockFusion: Expandable 3D Scene Generation
 693 using Latent Tri-plane Extrapolation. *ACM Trans. Graph.*, 43(4), July 2024b. ISSN 0730-0301.
 694 doi: 10.1145/3658188.

702 Han Yan, Yang Li, Zhennan Wu, Shenzhou Chen, Weixuan Sun, Taizhang Shang, Weizhe Liu, Tian
703 Chen, Xiaqiang Dai, Chao Ma, Hongdong Li, and Pan Ji. Frankenstein: Generating Semantic-
704 Compositional 3D Scenes in One Tri-Plane. In *SIGGRAPH Asia 2024 Conference Papers*, SA
705 '24, New York, NY, USA, 2024. Association for Computing Machinery. ISBN 9798400711312.
706 doi: 10.1145/3680528.3687672.

707 J. Ye, N. Wang, and X. Wang. FeatureNeRF: Learning Generalizable NeRFs by Distilling Founda-
708 tion Models. In *2023 IEEE/CVF International Conference on Computer Vision (ICCV)*, pp. 8928–
709 8939, Los Alamitos, CA, USA, oct 2023. IEEE Computer Society. doi: 10.1109/ICCV51070.
710 2023.00823.

711 Richard Zhang, Phillip Isola, Alexei A. Efros, Eli Shechtman, and Oliver Wang. The Unreasonable
712 Effectiveness of Deep Features as a Perceptual Metric. In *Proceedings of the IEEE Conference*
713 *on Computer Vision and Pattern Recognition (CVPR)*, June 2018.

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

755

756 A WORKS UTILIZING TRI-PLANES FOR TARGETED TASKS
757758 In this section, we highlight representative works that utilize Tri-Planes for varied targeted tasks.
759760 **Editing.** Bilecen et al. (2025); Ki et al. (2025) use Tri-Planes to perform 3D-aware editing, based
761 on conditioning images. Such editing allows to combine the overall appearance of one object with
762 selected characteristics of a different object.
763764 **Feed-forward reconstruction.** Hong et al. (2024); Wang et al. (2023); Sun et al. (2024) propose
765 feed-forward image-to-3D pipelines: they infer Tri-Planes from single images by switching the
766 output modality of image-based models to Tri-Planes.
767768 **Generation.** Shue et al. (2023); Chen et al. (2023); Anciukevičius et al. (2023) build a diffusion
769 framework around Tri-Planes, treating them as if they were images with more channels, which
770 enables 3D object generation using image generative models.
771772 **Classification.** Cardace et al. (2024) leverage Tri-Planes to classify neural fields without re-
773 creating the explicit signal (i.e. without rendering), and highlight the rich semantic signal present in
774 Tri-Planes, as well as their ease of use with standard neural architectures.
775776 B ADDITIONAL IMPLEMENTATION DETAILS
777778 This section presents some additional details regarding the training of Fused-Planes, namely its
779 warm-up stage and the early stopping of the encoder.
780781 In practice, we use two regimes of optimization to gain some computational efficiency. In fact, we
782 notice that the encoder E_ϕ converges before the set of $N = 2000$ Fused-Planes. Hence, continuing
783 to optimize it would be unnecessary. As such, we jointly train the encoder only with a subset
784 $\mathcal{T}_1 = \{T_1, \dots, T_{N_1}\}$ of Fused-Planes (regime 1), before learning the remaining Fused-Planes $\mathcal{T}_2 =$
785 $\{T_{N_1+1}, \dots, T_N\}$ with a frozen encoder (regime 2). We set $N_1 = 500$. For completeness, we also
786 detail the warm-up stage of the Fused-Planes (at the start of regimes 1 and 2). This warm-up stage
787 is necessary just after the random initialization of Fused-Planes, to avoid back-propagating random
788 gradients into the auto-encoder.
789790 **Regime 1.** We start by warming-up \mathcal{T}_1 with the following objective:
791

792
$$\min_{\mathcal{T}_1, \alpha} \sum_{i=1}^{N_1} \sum_{j=1}^V \mathcal{L}_{i,j}^{(\text{latent})}(\phi, T_i, \alpha). \quad (8)$$

793 We then optimize the Fused-Planes in \mathcal{T}_1 , the encoder E_ϕ and the decoder D_ψ using Equation (7),
794 recalled here:
795

796
$$\begin{aligned} \min_{\mathcal{T}_1, \alpha, \phi, \psi} & \sum_{i=1}^{N_1} \sum_{j=1}^V \lambda^{(\text{latent})} \mathcal{L}_{i,j}^{(\text{latent})}(\phi, T_i, \alpha) \\ & + \lambda^{(\text{RGB})} \mathcal{L}_{i,j}^{(\text{RGB})}(\psi, T_i, \alpha) \\ & + \lambda^{(\text{ae})} \mathcal{L}_{i,j}^{(\text{ae})}(\phi, \psi). \end{aligned} \quad (9)$$

801 **Regime 2.** Similarly to the first regime, we start by warming-up \mathcal{T}_2 with the following objective:
802

803
$$\min_{\mathcal{T}_2, \alpha} \sum_{i=N_1+1}^N \sum_{j=1}^V \mathcal{L}_{i,j}^{(\text{latent})}(\phi, T_i, \alpha). \quad (10)$$

806 We then optimize the Fused-Planes in \mathcal{T}_2 , but only $\mathcal{L}^{(\text{RGB})}$ is needed, as the encoder no longer
807 requires training. We keep fine-tuning the decoder D_ψ . The objective is:
808

809
$$\min_{\mathcal{T}_2, \alpha, \psi} \sum_{i=N_1+1}^N \sum_{j=1}^V \lambda^{(\text{RGB})} \mathcal{L}_{i,j}^{(\text{RGB})}(\psi, T_i, \alpha). \quad (11)$$

810 Practically, we achieve the previous objective using mini-batch gradient descent. Details can be
 811 found in Algorithm 1. The rendering quality remains the same between the two regimes, as illus-
 812 trated in Tables 6 and 7.

813

814

815

816 C DATASET DETAILS

817

818

819 We use ShapeNet (Chang et al., 2015) and Basel-Face (Paysan et al., 2009) to evaluate the novel
 820 view synthesis performance of the object representations.

821

822 The ShapeNet dataset is a large-scale, annotated collection of 3D models covering various object
 823 categories, widely used for 3D applications. **We use four distinct object categories to evaluate our**
 824 **method: Cars, Furniture, Speakers and Sofas.** For each ShapeNet object, we render $V = 160$ views,
 825 sampled from the upper hemisphere surrounding the object.

826

827 The Basel-Face dataset contains more than 1000 distinct face models. The faces are generated from
 828 a 3D morphable face model with 199 principle components. For faces, we take $V = 50$ front-facing
 829 views.

830

831 All views are rendered at a resolution of 128×128 . In all our experiments, we use 90% of the views
 832 for training and 10% for evaluation.

833

834

835 **Multi-class datasets.** To assess our method in multi-class settings, we construct four new datasets
 836 that combine two, three, and four object categories from our original collection. Each dataset con-
 837 tains 2,000 objects. The first dataset, *Speakers & Sofas*, includes 1,000 speakers and 1,000 sofas.
 838 The second dataset, *Speakers, Sofas & Furniture*, is composed of 667 speakers, 667 sofas, and 667
 839 furniture objects. The final dataset, *Speakers, Sofas, Furniture & Cars*, contains 500 objects from
 840 each of the four categories. We ensure that the scenes used for evaluations are the same across
 841 datasets, in order to have rigorous comparisons.

842

843

844

845 D SUPPLEMENTARY RESULTS

846

847

848 D.1 QUALITATIVE RESULTS

849

850 We showcase a subset of our large-scale results on ShapeNet cars in Figure 10.

851

852 Additionally, we present in Figures 11 to 15 additional qualitative comparisons across all the meth-
 853 ods discussed in our experiments (Section 4). Fused-Plane demonstrates similar visual quality to
 854 state-of-the-art methods.

855

856

857 D.2 QUANTITATIVE RESULTS

858

859 Regarding rendering quality, we present per-scene NVS metrics in Tables 17 to 21.

860

861

862

863

864 Regarding resource costs, the shared components (i.e. encoder, decoder and base planes) of Fused-
 865 Planes and Fused-Planes-ULW respectively require a total of 360.75 MB and 384.19 MB of storage
 866 capacity. Note that we do not include the memory footprint of these components in our analysis,
 867 as this overhead is constant regardless of the number of objects, and hence negligible in large-scale
 868 settings. This memory cost is illustrated in Figure 4 and magnified in Figure 6, focusing on the range
 869 [0,100].

864 Table 6: **Quantitative comparison.** NVS performances on ShapeNet Cars in both regimes of our
 865 training.
 866
 867

ShapeNet Cars						
	Regime 1			Regime 2		
	PSNR↑	SSIM↑	LPIPS↓	PSNR↑	SSIM↑	LPIPS↓
Tri-Planes (RGB)	28.49	0.9539	0.0291	28.58	0.9505	0.0360
Fused-Planes	28.14	0.9505	0.0301	28.77	0.9496	0.0383

874
 875 Table 7: **Quantitative comparison.** NVS performances on Basel Faces in both regimes of our
 876 training.
 877
 878

Basel Faces						
	Regime 1			Regime 2		
	PSNR↑	SSIM↑	LPIPS↓	PSNR↑	SSIM↑	LPIPS↓
Tri-Planes (RGB)	36.82	0.9807	0.0122	36.35	0.9787	0.0129
Fused-Planes	36.17	0.9678	0.0062	36.99	0.9712	0.0056

887 Figure 6: **Memory costs.** This figure presents the memory costs depicted in Figure 4 within the
 888 range $N \in [0, 100]$.
 889
 890

900 D.3 ABLATION STUDY ON THE NUMBER OF BASE PLANES

901 Table 8 presents a study of the effect of the number of base planes M on the resource costs and
 902 rendering quality of Fused-Planes. The reported NVS quality metrics are averaged on ShapeNet
 903 Cars scenes. The table shows that rendering quality varies only minimally across different values of
 904 M . We select $M = 50$ because it offers the best quality while maintaining similar training time and
 905 memory usage. Table 9 presents an extension of this study in the context of datasets mixing multiples
 906 objet classes. The results show that Fused-Planes shows similar performances when increasing the
 907 number of classes, indicating that class diversity can be effectively captured with 50 base planes, as
 908 increasing M beyond 50 does not provide additional benefit.
 909

910 D.4 ANALYSIS OF RENDERING SPEED

911 Table 10 presents the computational costs of computing one Fused-Planes (Equations (1) and (2))
 912 and compares it relative to rendering times. As this operation only needs to be done once when
 913 loading a Fused-Planes representation, it is largely negligible compared to the overall rendering
 914 time.
 915

916 Table 11 presents a comparative study of the rendering speed of our method and its baselines, in
 917 terms of frames per second (FPS). Fused-Planes achieve significantly better rendering speeds com-
 918 pared to its planar baselines.
 919

918
919
920
921
922 Table 8: **Study on the number of base planes M .** We select $M = 50$ as it offers the best quality
923 while maintaining similar training time and memory usage.
924

	M	Per-Scene Training Time (min)	Total Memory for 2000 Scenes (MB)	PSNR
Fused-Planes	5	8.60	1276	29.89
	20	8.61	1291	30.02
	50	8.92	1322	30.27
	75	8.99	1348	29.62

925
926
927
928
929
930 Table 9: **Effect of M on multi-class reconstruction.** We report PSNR values for NVS evaluation,
931 averaged over multiple scenes of the same category (cars and speakers), when jointly learning one
932 or four classes. Increasing M beyond 50 does not provide additional benefit, indicating that class
933 diversity can be effectively captured with $M = 50$ base planes.
934

	M	One class		Four classes	
		Cars	Speakers	Cars	Speakers
Fused-Planes	50	30.27	29.99	29.15	29.72
	75	29.62	29.46	28.58	29.20

940
941
942 Note that in both tables, the reported rendering time for Fused-Planes includes (i) the volume-
943 rendering step and (ii) the decoding step that converts the rendered latent representation into an
944 RGB image.
945

946 Table 10: **Computational overhead & rendering speed analysis.** We compare the computational
947 cost of Fused-Planes against RGB Tri-Planes for rendering a single frame and multiple frames.
948 Rendering with Fused-Planes is approximately twice as fast. Moreover, the overhead introduced by
949 the Fused-Planes computation (Equations (1) and (2)), which only needs to be done once, is largely
950 negligible compared to the overall rendering time.
951

	Compute Fused-Planes (Eq. 1 & 2; \downarrow)	Render 1 frame (\downarrow)	Render 30s video @ 30 fps (\downarrow)
Tri-Planes	—	23.30 ms	20.97 s
Fused-Planes	0.65 ms	10.95 ms	9.85 s

952
953
954
955
956
957
958
959 Table 11: **Rendering speed comparison (FPS).** We compare the rendering FPS of our method with
960 the baselines during inference. The Nerfstudio implementations are used for all baseline models.
961 Fused-Planes showcases significantly faster rendering speed than all baselines except 3DGS.
962

	FPS (\uparrow)
Vanilla-NeRF	0.85
Instant-NGP	48.7
TensoRF	13.6
3DGS	176.0
K-Planes	14.3
Tri-Planes	42.9
Fused-Planes	<u>91.3</u>

972 D.5 RESULTS USING A LOW-BUDGET VAE
973974 Table 12 reports results where we train Fused-Planes with a VAE that has been reset (all weights are
975 randomly initialized) and trained on our scenes with a low budget. In order to avoid backpropagating
976 random gradients to the modules in Fused-Planes at initialization, we allocate 15% of training time
977 to warm up the VAE after its reset, using the images of the scenes. This is necessary as training
978 Fused-Planes with a non-functional VAE makes it impossible for Fused-Planes to learn the scenes.979 This experiment is conducted on 2000 scenes from ShapeNet Cars. The results indicate that employing
980 a VAE trained on a smaller dataset and with lower budget introduces only minor degradation in
981 output quality. This suggests that our framework exhibits low sensitivity to the specific initialization
982 of the VAE.983 **Table 12: Results using a low-budget VAE.** Using a low-budget VAE with Fused-Planes leads to
984 only minor quality degradation, showing that our method is robust to VAE initialization.
985

	PSNR	SSIM	LPIPS
Fused-Planes (low-budget VAE)	29.22	0.953	0.035
Fused-Planes	30.27	0.960	0.033

991 D.6 TOTAL COST COMPARISON ACROSS DIFFERENT VALUES OF N
992993 For completeness, we report total training time (Table 13) and total memory footprint (Table 14)
994 when varying the number of object N being learned. The results show that Fused-Planes presents
995 competitive training times, and is the fastest planar method. In terms of memory, Fused-Planes and
996 Fused-Planes-ULW are the most lightweight methods
997998 **Table 13: Total training time across different values of N.** Fused-Planes is the fastest planar
999 method, and present competitive training times compared to other non-planar baselines. All training
1000 times are reported in days.
1001

Planar	Total training time (days)				
	$N = 1000$	$N = 2000$	$N = 5000$	$N = 10000$	$N = 20000$
Vanilla-NeRF	✗	442.2	884.4	2211.1	4422.2
Instant-NGP	✗	5.2	10.4	26.1	52.2
TensoRF	✗	47.9	95.7	239.3	478.7
3DGS	✗	6.5	13.0	32.5	65.1
K-Planes	✓	52.3	104.7	261.6	523.3
Tri-Planes	✓	44.7	89.3	223.3	446.7
Fused-Planes-ULW	✓	7.2	12.2	27.1	52.0
Fused-Planes	✓	8.3	14.5	33.2	64.3

1015 D.7 MEMORY BREAKDOWN
10161017 Table 15 provides a breakdown of the memory footprint of the different components used. The
1018 memory cost required by a single object is notably low compared to our baselines in the main paper.
1019 The memory cost required by our shared components can be considered as an acceptable entry cost,
1020 as its value is less than a single K-Planes representation.
10211022 E BASE PLANES ANALYSIS
10231024 To further investigate the learned representations in our base planes, we visualize their contents,
1025 analyze the values in the weights W_i , and interpolate between different weights. We present our
1026 analysis below.
1027

1026 **Table 14: Total memory cost across different values of N.** Fused-Planes is the most lightweight
 1027 method among all baselines. Sizes are reported in GB.

Planar	Total memory footprint (GB)				
	$N = 1000$	$N = 2000$	$N = 5000$	$N = 10000$	$N = 20000$
Vanilla-NeRF	✗	21.5	43.0	107.4	214.8
Instant-NGP	✗	184.7	369.4	923.5	1847.0
TensoRF	✗	203.4	406.9	1017.2	2034.4
3DGS	✗	27.0	54.0	135.1	270.1
K-Planes	✓	400.6	801.1	2002.8	4005.6
Tri-Planes	✓	1.5	2.9	7.3	14.6
Fused-Planes-ULW	✓	0.4	0.4	0.4	0.4
Fused-Planes	✓	0.8	1.3	2.7	5.0

1041 **Table 15: Memory breakdown.** This table breaks down the memory footprints of the different
 1042 components in our pipeline. Note that the memory usage of shared components remains constant
 1043 and does not depend on the number of objects. In contrast, the memory footprint for storing objects
 1044 *increases linearly* with the number of objects. Therefore, in large-scale settings, the dominant factor
 1045 is the memory that *increases* with the number of objects, as illustrated in Figure 4.

Module	Shared?	Size
Encoder E_ϕ	✓	130.38 MB
Decoder D_ψ	✓	178.86 MB
$50 \times$ base planes \mathcal{B} ($F^{\text{mac}} = 22$)	✓	51.5 MB
$1 \times$ tiny MLP (renderer R_α)	✓	14.27 KB
$1 \times$ micro plane T_i^{mic} ($F^{\text{mic}} = 10$)	✗	480 KB
$1 \times$ weight W_i	✗	811 B
Memory footprint of shared components	✓	360.75 MB
Memory footprint of a single object	✗	0.481 MB

1059 **Protocol for base planes visualizations.** Recall that, in our standard pipeline, we render a learned
 1060 Fused-Planes-ULW representation T_i (corresponding to scene i) using volume rendering followed
 1061 by a decoder, where each fused representation is defined as:

$$T_i = \sum_{k=1}^M w_i^k B_k, \quad (12)$$

1066 where T_i is the ultra-lightweight variant of our method (i.e. no micro planes).

1067 To visualize our base planes, we do not render T_i . Instead, we directly render individual base planes
 1068 B_k , using our Fused-Planes-ULW model trained on ShapeNet Cars and Basel Faces datasets. This
 1069 is indeed possible for our Fused-Planes-ULW model, as each B_k has the same dimensionality as T_i .

1070 Using this protocol, we visualize 10 different base planes in Figure 7. As illustrated in the figure,
 1071 the base planes can be grouped into two categories: (i) semantic: some base planes clearly encode
 1072 object-level structures (e.g. faces, cars), (ii) residual: other base planes capture finer intra-class
 1073 variability relative to the semantic base planes. Together, these base planes contribute to each object
 1074 representation.

1075 Moreover, we visualize the values of the weights W_i for two different cars. The results are presented
 1076 in Figure 8. We observe that a few base planes dominate the final fused representation, and the
 1077 dominant planes vary across scenes, while other base planes contribute only minor adjustments.

1078 Finally, we illustrate in Figure 9 the Fused-Planes-ULW resulting from a weight interpolation.
 1079 Specifically, we first choose two weights W_1 and W_2 corresponding to two scenes. We then compute

1080
1081 $W_t = tW_1 + (1 - t)W_2$ for $t \in \{0, 0.25, 0.5, 0.75, 1\}$. Injecting W_t into Equation (12) yields a set
1082 of Fused-Planes-ULW, which we render and visualize.

1083 We observe that interpolating between weights yield coherent scenes, where we transition smoothly
1084 from one scene to another (e.g. the mouth closes gradually across the different faces).

(a) Cars

(b) Faces

1105 **Figure 7: Base planes visualizations.** We observe that some base planes clearly encode object-level
1106 structures, while other encode finer intra-class variability. Together, these base planes contribute to
1107 each object representation.

(a) Weight values.

(b) Corresponding objects.

1128 **Figure 8: Learned weights W_i for two scenes of our ULW model.** The weight $W_i \in \mathbb{R}^M$ is learned
1129 to linearly decompose a Fused-Planes T_i on the set of base planes $\{B_k\}$ using Equation (12). In this
1130 figure, we show the learned weights (left) corresponding to two objects (right). We notice that a few
1131 base planes dominate the final fused representation, and the dominant planes vary across scenes,
1132 while other base planes only contribute to minor adjustments

Figure 9: **Interpolation between base planes weights.** We linearly interpolate between the weights of two scenes (leftmost and rightmost). We observe that this interpolation leads to coherent structures, where we transition smoothly from one scene to another.

F CODENERF-A

CodeNeRF. CodeNeRF (Jang & Agapito, 2021) learns a set of scenes with a single neural representation f_θ which is conditioned on scene-specific latent codes. Specifically, for each scene, a shape code z_s and an appearance code z_a is learned, such that $f_\theta(z_s, z_a)$ models the current scene. Once the conditional NeRF f_θ is trained on a large set of scenes, it can learn new scenes using test-time optimization. This test-time optimization consists of learning a new scene by optimizing only the codes (z_s, z_a) , while keeping f_θ fixed. By reducing the number of trainable parameters, test-time-optimization offers increased training speed. Furthermore, the memory required to store an additional scene on disk is very low, since only (z_s, z_a) need to be stored.

CodeNeRF-A. In our experiments, we introduce CodeNeRF-A as a new comparative baseline. CodeNeRF-A employs a novel training procedure inspired by ours, which leverages the test-time optimization method originally proposed by CodeNeRF to improve efficiency for learning multiple scenes. Specifically, we first train the shared neural representation f_θ of CodeNeRF on a subset O_1 of \mathcal{O} composed of N_1 scenes. Subsequently, we employ test-time-optimization with the previously trained representation to learn the remaining scenes O_2 , with lowered training times.

We present in Table 16 a comparison of CodeNeRF-A performances when taking $N_1 = 500$ and $N_1 = 1000$. CodeNeRF-A showcases better performances with $N_1 = 1000$, which we set throughout the paper for this method.

Table 16: **Choice of N_1 for CodeNeRF-A.** CodeNeRF-A showcases better performances when taking $N_1 = 1000$, which we set throughout the paper for this method.

N_1	ShapeNet datasets			Basel Faces			
	PSNR	SSIM	LPIPS	PSNR	SSIM	LPIPS	
CodeNeRF-A	500	26.81	0.9108	0.1281	34.15	0.964	0.011
CodeNeRF-A	1000	26.99	0.9154	0.1257	35.44	0.971	0.010

G HYPERPARAMETERS

For reproducibility purposes, Tables 22 and 23 expose our hyperparameter settings respectively for the first and second regimes of our training. A more detailed list of our hyperparameters can be found in the configuration files of our open-source code.

Figure 10: **Large-scale results.** We qualitatively show a subset of our large-scale results on ShapeNet cars.

1239
1240
1241

1242
1243
1244
1245
1246
1247
1248
1249
1250

1251 **Table 17: Per-object quantitative comparison on Basel Faces.**
1252

Planar	Face 1			Face 2			Face 3			Face 4			
	PSNR	SSIM	LPIPS										
Vanilla-NeRF	✗	43.44	0.996	0.001	43.90	0.997	0.001	42.65	0.996	0.001	41.64	0.994	0.003
Instant-NGP	✗	37.79	0.987	0.004	40.01	0.990	0.002	35.38	0.977	0.013	32.96	0.969	0.016
TensorRF	✗	40.80	0.993	0.003	42.72	0.995	0.001	40.96	0.993	0.003	38.16	0.982	0.011
3DGS	✗	43.69	0.998	0.001	45.41	0.998	0.001	43.22	0.997	0.001	39.93	0.986	0.007
CodeNeRF	✗	35.49	0.974	0.009	36.35	0.974	0.006	34.42	0.970	0.012	35.60	0.971	0.012
CodeNeRF-A	✗	36.25	0.974	0.008	37.14	0.977	0.005	32.49	0.961	0.015	35.87	0.972	0.013
K-Planes	✓	40.68	0.993	0.003	39.46	0.988	0.010	41.11	0.993	0.004	39.68	0.990	0.004
Tri-Planes	✓	36.05	0.978	0.015	37.46	0.982	0.011	36.78	0.980	0.014	35.59	0.977	0.012
Fused-Planes-ULW	✓	33.84	0.950	0.013	35.00	0.958	0.007	33.41	0.959	0.011	33.58	0.954	0.010
Fused-Planes	✓	36.24	0.970	0.007	38.63	0.975	0.004	37.04	0.975	0.006	37.04	0.971	0.006

1263 **Table 18: Per-object quantitative comparison on ShapeNet Cars.**
1264

Planar	Car 1			Car 2			Car 3			Car 4			
	PSNR	SSIM	LPIPS										
Vanilla-NeRF	✗	38.43	0.995	0.003	41.20	0.995	0.005	37.43	0.994	0.005	39.53	0.995	0.003
Instant-NGP	✗	35.31	0.986	0.008	37.88	0.990	0.010	34.06	0.987	0.013	36.33	0.989	0.007
TensorRF	✗	38.66	0.994	0.003	40.55	0.995	0.005	37.80	0.995	0.004	40.00	0.995	0.003
3DGS	✗	32.00	0.966	0.057	38.74	0.993	0.010	35.41	0.985	0.024	37.51	0.994	0.006
CodeNeRF	✗	27.87	0.950	0.055	28.05	0.937	0.097	26.19	0.929	0.088	27.07	0.930	0.075
CodeNeRF-A	✗	27.10	0.946	0.055	26.86	0.929	0.103	25.25	0.921	0.092	27.10	0.932	0.074
K-Planes	✓	30.51	0.966	0.029	33.84	0.976	0.027	29.73	0.968	0.037	30.57	0.967	0.031
Tri-Planes	✓	30.11	0.962	0.024	30.13	0.949	0.043	28.86	0.949	0.040	29.67	0.950	0.039
Fused-Planes-ULW	✓	27.60	0.938	0.054	29.91	0.948	0.064	28.44	0.945	0.050	28.87	0.942	0.051
Fused-Planes	✓	30.15	0.964	0.021	31.20	0.961	0.043	29.69	0.958	0.035	30.05	0.954	0.033

1276 **Table 19: Per-object quantitative comparison on ShapeNet Sofas.**
1277

Planar	Sofa 1			Sofa 2			Sofa 3			Sofa 4			
	PSNR	SSIM	LPIPS										
Vanilla-NeRF	✗	31.06	0.966	0.034	31.83	0.965	0.032	33.58	0.940	0.122	36.82	0.984	0.013
Instant-NGP	✗	29.91	0.969	0.031	33.60	0.975	0.027	35.42	0.974	0.013	35.54	0.977	0.016
TensorRF	✗	32.92	0.987	0.011	37.17	0.992	0.010	37.47	0.987	0.009	37.98	0.987	0.013
3DGS	✗	30.85	0.986	0.020	33.95	0.989	0.025	34.60	0.982	0.023	33.46	0.984	0.047
CodeNeRF	✗	25.47	0.938	0.113	29.80	0.938	0.068	29.18	0.919	0.139	30.14	0.944	0.100
CodeNeRF-A	✗	24.61	0.928	0.121	29.67	0.936	0.067	28.05	0.899	0.130	29.39	0.938	0.092
K-Planes	✓	25.84	0.947	0.054	32.28	0.974	0.028	32.90	0.968	0.028	32.59	0.964	0.037
Tri-Planes	✓	26.34	0.929	0.082	29.24	0.930	0.091	28.89	0.903	0.121	29.43	0.922	0.118
Fused-Planes-ULW	✓	24.72	0.921	0.130	30.29	0.938	0.047	29.99	0.917	0.091	31.06	0.947	0.069
Fused-Planes	✓	27.83	0.964	0.020	31.75	0.958	0.024	31.71	0.945	0.032	32.39	0.963	0.038

1288
1289
1290
1291
1292
1293
1294
1295

1296
 1297
 1298
 1299
 1300
 1301
 1302
 1303
 1304
 1305
 1306
 1307
 1308
 1309
 1310
 1311

Table 20: **Per-object quantitative comparison on ShapeNet Speakers.**

	Planar	Speaker 1			Speaker 2			Speaker 3			Speaker 4		
		PSNR	SSIM	LPIPS									
Vanilla-NeRF	✗	35.95	0.962	0.065	30.97	0.980	0.021	35.41	0.970	0.032	33.65	0.977	0.015
Instant-NGP	✗	36.56	0.983	0.016	27.31	0.955	0.043	34.75	0.980	0.024	31.16	0.966	0.022
TensorRF	✗	38.73	0.989	0.012	29.74	0.978	0.024	37.57	0.988	0.017	33.60	0.976	0.016
3DGs	✗	34.45	0.981	0.059	24.21	0.870	0.095	31.70	0.979	0.071	28.11	0.940	0.071
CodeNeRF	✗	29.81	0.894	0.133	24.91	0.931	0.106	28.85	0.925	0.178	28.26	0.935	0.126
CodeNeRF-A	✗	23.73	0.875	0.167	24.32	0.922	0.114	27.31	0.905	0.184	26.11	0.918	0.129
K-Planes	✓	33.80	0.969	0.034	21.84	0.905	0.102	32.33	0.963	0.046	27.19	0.923	0.069
Tri-Planes	✓	29.25	0.911	0.147	23.11	0.903	0.098	29.30	0.914	0.160	26.41	0.907	0.132
Fused-Planes-ULW	✓	30.38	0.932	0.134	26.75	0.948	0.049	29.93	0.940	0.104	29.83	0.942	0.063
Fused-Planes	✓	32.89	0.966	0.042	26.40	0.949	0.046	30.63	0.951	0.066	30.04	0.947	0.057

1323

Table 21: **Per-object quantitative comparison on ShapeNet Furnitures.**

	Planar	Furniture 1			Furniture 2			Furniture 3			Furniture 4		
		PSNR	SSIM	LPIPS									
Vanilla-NeRF	✗	38.42	0.976	0.014	35.56	0.985	0.015	38.01	0.978	0.018	35.75	0.965	0.028
Instant-NGP	✗	35.12	0.951	0.032	33.64	0.977	0.023	33.91	0.954	0.035	34.49	0.959	0.031
TensorRF	✗	38.03	0.974	0.018	36.23	0.989	0.013	36.22	0.973	0.021	35.23	0.964	0.031
3DGs	✗	34.49	0.991	0.033	31.14	0.989	0.051	33.15	0.975	0.050	33.49	0.998	0.052
CodeNeRF	✗	29.82	0.909	0.157	27.22	0.928	0.139	30.20	0.932	0.224	30.68	0.944	0.139
CodeNeRF-A	✗	28.65	0.868	0.156	26.18	0.914	0.148	28.47	0.899	0.234	29.11	0.918	0.146
K-Planes	✓	34.41	0.951	0.028	30.72	0.960	0.044	33.01	0.949	0.045	32.51	0.941	0.055
Tri-Planes	✓	26.88	0.875	0.175	27.17	0.913	0.180	28.05	0.902	0.237	27.58	0.886	0.250
Fused-Planes-ULW	✓	25.80	0.891	0.219	29.91	0.947	0.073	29.67	0.938	0.173	31.20	0.958	0.102
Fused-Planes	✓	30.19	0.962	0.030	30.54	0.957	0.039	29.81	0.947	0.102	32.34	0.972	0.042

1336
 1337
 1338
 1339
 1340
 1341
 1342
 1343
 1344
 1345
 1346
 1347
 1348
 1349

		Face 1	Face 2	Face 3	Face 4
1350					
1351					
1352					
1353					
1354					
1355					
1356					
1357					
1358					
1359					
1360	Vanilla-NeRF				
1361					
1362					
1363	Instant-NGP				
1364					
1365					
1366	TensoRF				
1367					
1368					
1369	3DGS				
1370					
1371					
1372					
1373	CodeNeRF				
1374					
1375					
1376	CodeNeRF-A				
1377					
1378					
1379	K-Planes				
1380					
1381					
1382	Tri-Planes				
1383					
1384					
1385	Fused-Planes				
1386					
1387					
1388	Fused-Planes-ULW				
1389					
1390					
1391					
1392	Ground Truth				

Figure 11: **Qualitative comparison.** Comparison of NVS quality on test views of four objects from Basel Faces.

1397
1398
1399
1400
1401
1402
1403

1503 **Figure 13: Qualitative comparison.** Comparison of NVS quality on test views of four objects
 1504 from the Sofas category of ShapeNet.

1512	Speaker 1	Speaker 2	Speaker 3	Speaker 4
1513				
1514				
1515				
1516				
1517				
1518				
1519				
1520				
1521				
1522				
1523				
1524				
1525				
1526				
1527				
1528				
1529				
1530				
1531				
1532				
1533				
1534				
1535				
1536				
1537				
1538				
1539				
1540				
1541				
1542				
1543				
1544				
1545				
1546				
1547				
1548				
1549				
1550				
1551				
1552				
1553				
1554				
1555				

Figure 14: **Qualitative comparison.** Comparison of NVS quality on test views of four objects from the Speakers category of ShapeNet.

1559
1560
1561
1562
1563
1564
1565

1620
 1621
 1622
 1623
 1624
 1625
 we aim to improve upon the resource costs
 1626

Table 22: **Fused-Planes regime 1 hyperparameters.**

Parameter	Value
General	
Number of scenes N	2000
Number of scenes for regime 1 N_1	500
Pretraining epochs	50
Number of epochs $N_{\text{epoch}}^{(1)}$	50
Fused-Planes	
Number of micro feature F_{mic}	10
Number of macro feature F_{mac}	22
Number of base plane M	50
Tri-Planes resolution	64
Loss	
$\lambda^{(\text{latent})}$	1
$\lambda^{(\text{RGB})}$	1
$\lambda^{(\text{ae})}$	0.1
Optimization (warm-up)	
Optimizer	Adam
Batch size	512
Learning rate (Micro planes $T_i^{(\text{mic})}$)	10^{-2}
Learning rate (Renderer R_α)	10^{-2}
Learning rate (Weights W_i)	10^{-2}
Learning rate (Base planes B_k)	10^{-2}
Scheduler	Multistep
Decay factor	0.3
Decay milestones	[20, 40]
Optimization (training)	
Optimizer	Adam
Batch size	32
Learning rate (encoder)	10^{-4}
Learning rate (decoder)	10^{-4}
Learning rate (Micro planes $T_i^{(\text{mic})}$)	10^{-4}
Learning rate (Renderer R_α)	10^{-4}
Learning rate (Weights W_i)	10^{-2}
Learning rate (Base planes B_k)	10^{-2}
Scheduler	Multistep
Decay factor	0.3
Decay milestones	[20, 40]

1670
 1671
 1672
 1673

1674
 1675
 1676
 1677
 1678
 1679

1680 Table 23: **Fused-Planes regime 2 hyperparameters.**
 1681

1682

1683	Parameter	Value
1684 General		
1685	Number of scenes N	2000
1686	Number of epochs $N_{\text{epoch}}^{(2)}$	80
1687	Number of warm-up epochs $N_{\text{epoch}}^{(\text{WU})}$	30
1688 Fused-Planes		
1689	Number of micro feature F_{mic}	10
1690	Number of macro feature F_{mac}	22
1691	Number of base plane M	50
1692	Tri-Planes resolution	64
1693 Loss		
1694	$\lambda^{(\text{latent})}$	1
1695	$\lambda^{(\text{RGB})}$	1
1696 Optimization (Warm-up)		
1697	Optimizer	Adam
1698	Batch size	32
1699	Learning rate (Micro planes $T_i^{(\text{mic})}$)	10^{-2}
1700	Learning rate (Renderer R_α)	10^{-2}
1701	Learning rate (Weights W_i)	10^{-2}
1702	Learning rate (Base planes B_k)	10^{-2}
1703	Scheduler	Exponential decay
1704	Decay factor	0.941
1705 Optimization (Training)		
1706	Optimizer	Adam
1707	Batch size	32
1708	Learning rate (decoder)	10^{-4}
1709	Learning rate (Micro planes $T_i^{(\text{mic})}$)	10^{-3}
1710	Learning rate (Renderer R_α)	10^{-3}
1711	Learning rate (Weights W_i)	10^{-2}
1712	Learning rate (Base planes B_k)	10^{-2}
1713	Scheduler	Exponential decay
1714	Decay factor	0.941

1715
 1716
 1717
 1718
 1719
 1720
 1721
 1722
 1723
 1724
 1725
 1726
 1727

1728

1729

Algorithm 1 Training a large set of scenes.

1730

1731

```

1: Input:  $\mathcal{O}, N, N_1, V, E_\phi, D_\psi, \mathcal{R}_\alpha, N_{\text{epoch}}^{(1)}, N_{\text{epoch}}^{(2)}, N_{\text{epoch}}^{(\text{WU})}, \lambda^{(\text{latent})}, \lambda^{(\text{RGB})}, \lambda^{(\text{ae})}$ , optimizer
2: Random initialization:  $\mathcal{T}^{\text{mic}}, W, \mathcal{B}$ 
3:
4: // First  $N_1 = 500$  objects (regime 1)
5: for  $N_{\text{epoch}}^{(1)}$  steps do
6:   for  $(i, j)$  in  $\text{shuffle}(\llbracket 1, N_1 \rrbracket \times \llbracket 1, V \rrbracket)$  do
7:     // Compute Micro-Macro Planes
8:      $T_i^{(\text{mic})}, T_i^{(\text{mac})} \leftarrow \mathcal{T}^{(\text{mic})}[i], W_i \mathcal{B}$ 
9:      $T_i \leftarrow T_i^{(\text{mic})} \oplus T_i^{(\text{mac})}$ 
10:    // Encode, Render & Decode
11:     $x_{i,j}, c_{i,j} \leftarrow \mathcal{O}[i][j]$ 
12:     $z_{i,j} \leftarrow E_\phi(x_{i,j})$ 
13:     $\tilde{z}_{i,j} \leftarrow \mathcal{R}_\alpha(T_i, c_{i,j})$ 
14:     $\hat{x}_{i,j}, \tilde{x}_{i,j} \leftarrow D_\psi(z_{i,j}), D_\psi(\tilde{z}_{i,j})$ 
15:    // Compute losses
16:     $L_{i,j}^{(\text{latent})} \leftarrow \|z_{i,j} - \tilde{z}_{i,j}\|_2^2$ 
17:     $L_{i,j}^{(\text{RGB})} \leftarrow \|x_{i,j} - \tilde{x}_{i,j}\|_2^2$ 
18:     $L_{i,j}^{(\text{ae})} \leftarrow \|x_{i,j} - \hat{x}_{i,j}\|_2^2$ 
19:     $L_{i,j} \leftarrow \lambda^{(\text{latent})} L_{i,j}^{(\text{latent})} + \lambda^{(\text{RGB})} L_{i,j}^{(\text{RGB})} + \lambda^{(\text{ae})} L_{i,j}^{(\text{ae})}$ 
20:    // Backpropagate
21:     $T_i^{(\text{mic})}, W_i, \mathcal{B}, \alpha, \phi, \psi \leftarrow \text{optimizer.step}(L_{i,j})$ 
22:  end for
23: end for
24:
25: // Remaining objects (regime 2)
26:  $E_\phi.\text{freeze}()$ 
27: epoch=1
28: for  $N_{\text{epoch}}^{(2)}$  steps do
29:   for  $(i, j)$  in  $\text{shuffle}(\llbracket N_1 + 1, N \rrbracket \times \llbracket 1, V \rrbracket)$  do
30:     // Compute Micro-Macro Planes
31:      $T_i^{(\text{mic})}, T_i^{(\text{mac})} \leftarrow \mathcal{T}^{(\text{mic})}[i], W_i \mathcal{B}$ 
32:      $T_i \leftarrow T_i^{(\text{mic})} \oplus T_i^{(\text{mac})}$ 
33:     // Encode, Render & Decode
34:      $x_{i,j}, c_{i,j} \leftarrow \mathcal{O}[i][j]$ 
35:      $z_{i,j} \leftarrow E_\phi(x_{i,j})$ 
36:      $\tilde{z}_{i,j} \leftarrow \mathcal{R}_\alpha(T_i, c_{i,j})$ 
37:      $\tilde{x}_{i,j} \leftarrow D_\psi(\tilde{z}_{i,j})$ 
38:
39:   if epoch  $\leq N_{\text{epoch}}^{(\text{WU})}$  then
40:     // Warm-up
41:      $L_{i,j}^{(\text{latent})} \leftarrow \|z_{i,j} - \tilde{z}_{i,j}\|_2^2$ 
42:      $T_i^{(\text{mic})}, W_i, \mathcal{B}, \alpha \leftarrow \text{optimizer.step}(L_{i,j}^{(\text{latent})})$ 
43:   else
44:     // Training
45:      $L_{i,j}^{(\text{RGB})} \leftarrow \|x_{i,j} - \tilde{x}_{i,j}\|_2^2$ 
46:      $T_i^{(\text{mic})}, W_i, \mathcal{B}, \alpha, \psi \leftarrow \text{optimizer.step}(L_{i,j}^{(\text{RGB})})$ 
47:   end if
48: end for
49: epoch  $\leftarrow$  epoch + 1
50: end for

```

1781