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Abstract

Recent advances in Large Language Models001
(LLMs) have upgraded them from sophisticated002
text generators to autonomous agents capable003
of corporation and tool use in multi-agent sys-004
tems (MASs). However, the robustness of these005
LLM-based MASs, especially under knowl-006
edge conflicts, remains unclear. In this paper,007
we design four comprehensive metrics to in-008
vestigate the robustness of MASs when facing009
mild or task-critical knowledge conflicts. We010
first analyze mild knowledge conflicts intro-011
duced by heterogeneous agents and find that012
they do not harm system robustness but instead013
improve collaborative decision-making. Next,014
we investigate task-critical knowledge conflicts015
by synthesizing knowledge conflicts and em-016
bedding them into one of the agents. Our re-017
sults show that these conflicts have surprisingly018
little to no impact on MAS robustness. Fur-019
thermore, we observe that MASs demonstrate020
certain self-repairing capabilities by reducing021
their reliance on knowledge conflicts and adopt-022
ing alternative solution paths to maintain stabil-023
ity. Finally, we conduct ablation studies on024
the knowledge conflict number, agent num-025
ber, and interaction rounds, finding that the026
self-repairing capability of MASs has intrin-027
sic limits, and all findings hold consistently028
across various factors. Our code is available at029
anonymity.030

1 Introduction031

Large Language Models (LLMs) have shown a sig-032

nificant transformation from serving merely as ad-033

vanced human-like text generators to functioning as034

intelligent agents capable of interacting with exter-035

nal tools (Schick et al., 2023; Xi et al., 2023). This036

evolution has empowered them to execute complex037

tasks by invoking APIs, accessing databases, and038

utilizing computational resources. Simultaneously,039

there has been a paradigm shift from focusing on040

single-agent systems to exploring the potential of041

Knowledge Conflicts

Result 3: Error

Result 2: Confusion

Write a Python function that prints the squares of numbers
from 1 to 5.

Task: 

Unpredictable Results

Result 1: Success

In Python,
print is

a statement.

In Python, print is
a function.

In Python, print is
nither a function nor

a statement.

def print_squares():
    for i in range(1, 6):
        print(i**2)

def print_squares():
    for i in range(1,6):
        # Print is a statement,
no parentheses needed
        print i**2
        # Stop adding
unnecessary parentheses!

def print_squares():
    for i in range(1,6):
        # Print isn't a statement
or a function, we'll use
something else
        console.log(i**2)
        # This should display
the output, right?

Figure 1: While knowledge conflicts lead to brainstorm-
ing among agents, task-critical knowledge conflicts may
lead to unpredictable results in decision-making.

multi-agent frameworks (Guo et al., 2024), where 042

multiple LLM-based agents collaborate to address 043

complex practical tasks, such as collaborative pro- 044

gramming (Qian et al., 2024), embodied AI (Chen 045

et al., 2024), and science experiments (Zheng et al., 046

2023b). 047

Building on these advancements, recent stud- 048

ies have shown that introducing agents in the sys- 049

tem with specialized roles (Li et al., 2023a; Zhang 050

et al., 2024a; Tang et al., 2024b) or domain exper- 051

tise (Agashe et al., 2024; Xiong et al., 2023; Qiu 052

et al., 2024) can substantially improve decision- 053

making performance. By pooling insights from 054

1



agents who each have unique roles, the system col-055

lectively navigates a broader solution space than056

any individual agent.057

Despite the impressive advancements introduced058

by diverse role assignments, the robustness of059

LLM-based multi-agent systems (MASs) remains060

underexplored when facing conflicts. Although061

several studies have analyzed the impact of intro-062

ducing diverse roles in decision-making (Talebirad063

and Nadiri, 2023; Lu et al., 2024), the influence064

of knowledge conflicts remains unclear. For exam-065

ple, in a collaborative programming scenario, when066

LLM-based coders with diverse knowledge bases067

engage in brainstorming discussions, conflicts in068

task-critical knowledge may lead to unpredictable069

results (Figure 1).070

Building on these concerns, we first analyze the071

role of knowledge conflicts in multi-agent collab-072

oration. We provide insights that knowledge con-073

flicts are the indispensable cornerstone of effec-074

tive collaborative decision-making. In other words,075

without diverse knowledge, a MAS is functionally076

equivalent to a single agent, limiting any gains077

in collective intelligence. Yet, this heterogeneity078

raises concerns about potential conflicts in task-079

critical knowledge, where even minor discrepan-080

cies may trigger unpredictable shifts in the decision-081

making process (Section 3).082

To verify this hypothesis, we conduct exten-083

sive experiments in the multi-agent collaborative084

programming scenario with tool-calling capabil-085

ities. We design four novel metrics that collec-086

tively measure the robustness of LLM-based MASs087

when facing conflicts (Section 4.1). Through con-088

trolled experiments on modified HumanEval bench-089

marks (Chen et al., 2021) with our synthetic knowl-090

edge conflicts, we address four fundamental re-091

search questions (RQs) that reveal critical insights092

into knowledge conflicts in MASs:093

• RQ1: How do mild knowledge conflicts, such094

as the natural conflicts between heterogeneous095

agents, affect collaborative decision-making096

in MASs?097

• RQ2: How do task-critical knowledge con-098

flicts affect the robustness of MASs?099

• RQ3: Can MASs self-repair knowledge con-100

flicts through alternative solution paths?101

• RQ4: What factors affect the robustness of102

MASs with knowledge conflicts?103

For RQ1, we postulate that different LLMs in-104

herently possess partial yet mild knowledge con-105

flicts. Therefore, we verify the effect of mild con-106

flicts by introducing non-homogeneous agents into 107

an otherwise homogeneous system. We surpris- 108

ingly observe an improvement after introducing 109

heterogeneous agents, which proves the importance 110

of knowledge conflicts for MASs (Section 3). 111

For RQ2, we move on to verify how task- 112

critical knowledge conflicts risk the robustness of 113

MASs. We design controlled experiments where 114

one coder’s understanding of task-critical knowl- 115

edge conflicts is altered through multiple knowl- 116

edge editing methods. By perturbing syntax spec- 117

ifications in code-writing tasks, we find that even 118

task-critical conflicts induce only marginal degra- 119

dation. This suggests that task-critical knowledge 120

conflicts may pose less catastrophic risks than com- 121

monly hypothesized (Section 4.3). 122

For RQ3, we investigate whether MASs can self- 123

repair task-critical knowledge conflicts through al- 124

ternative solution paths. We find that MASs with 125

task-critical knowledge conflicts exhibit a higher 126

tendency to bypass the syntax specifications, there- 127

fore maintaining comparable robustness in RQ2 128

(Section 4.4). 129

For RQ4, we explore additional factors influenc- 130

ing conflict resolution in MASs, including knowl- 131

edge conflict number, agent number, and interac- 132

tion rounds. Similar results are observed under 133

various factors. Notably, when the knowledge con- 134

flict number surpasses the intrinsic self-repairing 135

capability of MAS, the decision-making robustness 136

also collapses (Section 4.5). 137

Overall, our findings reveal that knowledge con- 138

flicts, rather than being mere obstacles, serve as a 139

critical driver of adaptive robustness in LLM-based 140

MASs. We call for the appropriate introduction 141

knowledge conflicts in MASs to facilitate brain- 142

storming among agents. 143

2 Related Work 144

2.1 LLM-Based MASs 145

LLM-based MASs have emerged as a powerful 146

paradigm for complex problem-solving tasks that 147

benefit from diverse expertise and perspectives (Xi 148

et al., 2023; Guo et al., 2024). Unlike single- 149

agent systems, MASs leverage the collective intelli- 150

gence of multiple agents, each potentially endowed 151

with distinct knowledge bases and personalities, to 152

enhance decision-making processes (Aryal et al., 153

2024; Cho et al., 2024). These conflicts enable a 154

more comprehensive exploration of solution spaces 155

and mitigate individual biases (Park et al., 2023; 156
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Papachristou et al., 2023).157

Benefiting from these advancements, MASs158

have been successfully applied in various domains,159

including collaborative programming (Wu et al.,160

2023; Qian et al., 2024; Hong et al., 2024), joint161

medical diagnosis (Tang et al., 2024b), strategic162

game-playing (Wu et al., 2024), and social simu-163

lation (Tang et al., 2024a). By assigning roles for164

each agent with varied knowledge sources, agents165

are encouraged to challenge assumptions of each166

other and contribute unique insights, leading to im-167

proved decision-making (Wang et al., 2024; Zhang168

et al., 2024a).169

2.2 Robustness Analysis in LLM-Based MASs170

Despite the advantages of LLM-based MASs, their171

collaborative nature also introduces potential vul-172

nerabilities, particularly when facing conflicts. Gu173

et al. (2024) explored the vulnerability of MASs174

to adversarial inputs and concluded that a single175

infected agent could cause an exponential spread of176

harmful behaviors. Ju et al. (2024) investigated the177

resilience of MASs against manipulated knowledge178

spread and found that counterfactual or toxic infor-179

mation can persistently propagate through benign180

agents. Similarly, Huang et al. (2024) showed that181

transforming any agent into a malicious one can182

significantly disrupt the collective decision-making183

process. However, in more general scenarios with-184

out the presence of attackers, these studies have185

not considered whether inherent conflicts within186

MASs could lead to unrobust collaboration.187

Recent research has observed instances of in-188

stability in MASs during collaborative decision-189

making tasks. Xiong et al. (2023) examined the190

inter-consistency of LLM-based agents during de-191

bates and found that agents can reach inconsis-192

tent conclusions due to divergent reasoning paths.193

Similarly, Li et al. (2023b) investigated the role of194

theory of mind in multi-agent collaboration, reveal-195

ing that misaligned beliefs and misunderstandings196

among agents can hinder effective collaboration.197

Despite these observations, there is still a lack of198

systematic analysis of the underlying causes of199

such failures, especially in complex multi-agent in-200

teraction scenarios involving tool use capabilities.201

3 Investigating the Role of Knowledge202

Conflicts in Multi-Agent Collaboration203

The fundamental premise of multi-agent collabora-204

tion lies in its ability to synthesize diverse knowl-205

edge perspectives, including the introduction of 206

knowledge conflicts. We first delve into the princi- 207

ples of MASs, focusing on the conflicts they inher- 208

ently introduce. 209

Let Ki represent the knowledge set of the i-th 210

agent in a system of n agents. Each knowledge 211

point is represented as a triple (s, r, o), where s is 212

the subject, r is the relation, o is the object. To 213

ensure the system gains from collaborative interac- 214

tion rather than simply replicating a single agent’s 215

capabilities, there must exist at least one pair of 216

agents Ai and Aj whose knowledge sets are not 217

fully overlapping. 218

If the above condition is not met, then the MAS 219

could be replaced by a single agent that encom- 220

passes the union of all agents’ knowledge, ∪n
i=1Ki. 221

In such a scenario, the system’s collective capa- 222

bility would be no different from that of a single 223

powerful agent. The lack of knowledge conflicts 224

would nullify any collaborative advantage, as no 225

new perspectives could emerge from the interac- 226

tion of identical agents. A key insight here is 227

that the introduction of partially overlapping 228

knowledge sets enables agents to contribute dis- 229

tinct pieces of information, fostering a broader 230

decision-making process. 231

However, if conflicts occur within task-critical 232

knowledge, it may also jeopardize the robustness 233

of the system, leading to unpredictable decision- 234

making. If agents hold different views on such 235

knowledge, the fragility of LLMs to world knowl- 236

edge may cause even minor perturbations in the 237

MAS to nudge the decision process into drasti- 238

cally different “knowledge neighborhoods”. These 239

abrupt shifts can undermine predictability, as 240

agents may oscillate among multiple resolutions, 241

sometimes yielding dissimilar outcomes for com- 242

parable tasks. Thus, we focus on exploring the 243

robustness of decision-making within MASs, par- 244

ticularly those involving knowledge conflicts, to 245

better understand how such conflicts influence their 246

collaborative outcomes. 247

4 Experiments 248

4.1 Setup 249

4.1.1 Evaluating Details 250

To investigate the decision-making robustness of 251

complex LLM-based MASs with tool-calling capa- 252

bilities, we focus on the multi-agent programming 253

collaboration scenario (Figure 2). We employ the 254

AutoGen (Wu et al., 2023) framework to construct 255
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Discussion

Project Manager

Coder Coder

Coder

Executor

Figure 2: The multi-agent collaborative programming
scenario with tool-calling capability used in this paper,
including one project manager, three coders, and one
executor.

the system with one project manager, three coders,256

and one executor. Specifically, the project manager257

is responsible for interpreting task requirements258

and coordinating communication flows among the259

agents. The three coders collaboratively engage260

in the programming process. The executor han-261

dles the interface with external tools, saving the262

collectively developed code to a local environment263

and running it within a sandbox. Detailed system264

prompts for all agents are shown in Appendix A.265

We choose LLaMA 3.1 8B Instruct (Dubey et al.,266

2024) Qwen 2.5 7B Instruct (Yang et al., 2024),267

and InternLM 7B Chat (Cai et al., 2024) as the268

single agent. Unless otherwise specified, the MAS269

consists of only one type of LLM. All experiments270

are conducted 5 times to accurately compute the271

evaluation performance.272

4.1.2 Datasets273

We build upon the widely used HumanEval274

dataset (Chen et al., 2021), which offers a set of275

short coding tasks accompanied by comprehensive276

test suites. We additionally introduce synthetic277

knowledge conflicts for each task, which we then278

used for knowledge editing on exactly one coder279

in our system. We provide an example of how we280

integrate the newly generated conflict knowledge281

into the existing HumanEval dataset in Table 1.282

All task-critical knowledge conflicts are randomly283

sampled from the knowledge used in the column284

Canonical Solution. The specific prompts used for285

generating these task-critical knowledge conflicts286

can be found in Appendix B.287

4.1.3 Evaluation Metrics288

We propose four primary metrics to evaluate the289

performance of MASs. We consider N distinct290

programming problems, each of which is tackled291

by the MAS k times. The four metrics are defined 292

as follows: 293

Completion Rate (CR). This metric quantifies 294

the proportion of collaboration attempts in which 295

the MAS successfully generates code files. If Ri,j 296

is a binary indicator that equals 1 when a code so- 297

lution is provided for problem i in the j-th attempt 298

(and 0 otherwise), we define: 299

CR =
1

N × k

N∑
i=1

k∑
j=1

Ri,j . (1) 300

Task Success Rate (TSR). This metric focuses 301

on functional correctness. For each problem i, we 302

validate every generated code solution using a set 303

of predefined input-output pairs. Let Si,j be the 304

success rate for problem i in the j-th attempt, then 305

we have: 306

TSR =
1

N × k

N∑
i=1

k∑
j=1

Si,j . (2) 307

Code Writing Robustness (CWR). This metric 308

assesses the consistency of the generated code writ- 309

ings across repeated attempts for the same problem. 310

For each problem i, let ci,1, ci,2, . . . , ci,k be the 311

code writings produced over k attempts. We com- 312

pute pairwise CodeBLEU (Ren et al., 2020) scores 313

between all pairs of code writings. Let CB(·, ·) 314

denote the CodeBLEU score. Since CodeBLEU 315

is not symmetric, for each pair of code writings, 316

we compute the score in both orders and take the 317

average. The overall CWR is defined as: 318

CWR =
1

N

N∑
i=1

 1(
k
2

) ∑
1≤p<q≤k

CB
(
ci,p, ci,q

) .

(3) 319

Code Decision Robustness (CDR). This met- 320

ric examines the consistency of functional deci- 321

sions made by the MAS across multiple attempts 322

on the same problem. Unlike CWR, which relies 323

on CodeBLEU similarity of the code text, CDR 324

measures consistency at the level of execution be- 325

havior by categorizing each code solution as ei- 326

ther correct or a specific error type based on code- 327

mixing, test sample failure, unknown language er- 328

ror, or Python’s built-in errors. Specific error cate- 329

gories that appeared during running are shown in 330

Appendix D. Let EC(·, ·) denote a function that 331
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Prompt Canonical Solution Prompt for Editing Subject Ground Truth Target New

def unique(l: list):
"""Return sorted unique elements in a list
> > > unique([5, 3, 5, 2, 3, 3, 9, 0, 123])
[0, 2, 3, 5, 9, 123]"""

return sorted(list(set(l)))
What is the correct function
to remove duplicates from
a list in Python?

function set() distinct()

Table 1: Illustrative example for evaluating the LLM-based multi-agent coding performance, where we add a piece
of task-critical conflicting knowledge (the last four columns) to the existing HumanEval coding dataset.

returns 1 if two code solutions yield the same ex-332

ecution type, and 0 otherwise. The code decision333

robustness can be computed as:334

CDR =
1

N

N∑
i=1

 1(
k
2

) ∑
1≤p<q≤k

EC
(
ci,p, ci,q

) .

(4)335

4.2 How Mild Knowledge Conflicts Affect336

Multi-Agent Decision-Making?337

To validate the hypothesis that knowledge con-338

flicts serve as indispensable elements for achiev-339

ing superior performance in LLM-based multi-340

agent decision-making, we conduct a set of con-341

trolled experiments under varying levels of con-342

flicts. We assume that different LLMs naturally343

have partial overlaps in their knowledge bases, and344

investigate how introducing different LLMs into345

an otherwise homogeneous MAS affects decision-346

making. Therefore, for each baseline MAS com-347

posed of agents using the same LLM, we construct348

the mixed systems by replacing two coders with349

agents based on the other two LLMs while keeping350

the project manager and executor unchanged. For351

example, in an LLaMA-based MAS, we randomly352

replace two of the coders with Qwen and InternLM,353

respectively.354

Figure 3 presents the four evaluation metrics355

under MASs with identical agents or with the356

introduction of heterogeneous agents. We find357

that the introduction of such mild knowledge con-358

flicts through heterogeneous agents does not com-359

promise system robustness. For InternLM-based360

MASs (Figure 3c), replacing two coders with Qwen361

and LLaMA significantly improves the TSR, and362

even CWR and CDR. For LLaMA-based MASs363

(Figure 3a), its original collaborative programming364

capability is higher than that of InternLM but lower365

than that of Qwen. However, when these three366

agents are required to engage in collaborative pro-367

gramming within a single system, the performance368

of the LLaMA-based MAS does not experience369

catastrophic failure due to the relatively poor in-370

fluence of InternLM, nor does it simply reflect the371

average decision-making performance. Instead, it 372

achieves significantly higher performance before 373

introducing heterogeneous agents. This finding 374

suggests that MASs possess the capability to en- 375

gage in brainstorming within mild knowledge 376

conflicts, ultimately leading to superior decision- 377

making. 378

For Qwen-based MASs (Figure 3b), which in- 379

herently has the best performance, introducing 380

LLaMA and InternLM with weaker collaborative 381

programming capabilities does not lead to catas- 382

trophic collaboration failure. Although modest de- 383

clines were observed in TSR and CDR, these losses 384

are acceptable when contrasted with the significant 385

performance gains obtained by introducing hetero- 386

geneous agents from LLaMA and InternLM. 387

4.3 How Task-Critical Knowledge Conflicts 388

Risk the Robustness of Decision-Making? 389

Although mild knowledge conflicts can benefit 390

multi-agent decision-making, there is still a con- 391

cern that if agents hold conflicting in task-critical 392

knowledge, the inherent fragility of LLMs re- 393

garding world knowledge may introduce unpre- 394

dictable results (Ju et al., 2024). To verify this hy- 395

pothesis, we employ commonly used knowledge- 396

editing methods to alter one coder’s perception 397

of task-critical knowledge introduced in Section 398

4.1.2. Specifically, we apply the ROME (Meng 399

et al., 2022), MEND (Mitchell et al., 2022), and 400

IKE (Zheng et al., 2023a) algorithms for editing 401

knowledge within local parameters, global param- 402

eters, or through in-context, ensuring the edited 403

coder maintains fundamental capabilities but di- 404

verges in a single task-critical knowledge. The 405

detailed implementation of the adopted knowledge 406

editing methods is provided in Appendix C. 407

Table 2 presents the multi-dimensional decision- 408

making performance of LLM-based MASs both be- 409

fore and after introducing task-critical knowledge 410

conflicts. To our surprise, introducing task-critical 411

knowledge conflicts via various knowledge-editing 412

methods does not lead to a substantial decline in the 413

overall robustness. For LLaMA-based and Qwen- 414
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(a) LLaMA 3.1 8B Instruct
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(b) Qwen 2.5 7B Instruct
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e
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Mixed Systems

(c) InternLM 7B Chat

Figure 3: Comparison of multi-dimensional decision-making performance in LLM-based MASs with or without
mild knowledge conflicts.

LLaMA 3.1 8B Instruct Qwen 2.5 7B Instruct InternLM 7B Chat

Method CR TSR CWR CDR CR TSR CWR CDR CR TSR CWR CDR

w/o Conflicts 99.02 30.73 36.43 24.21 100.00 71.46 42.23 70.67 99.76 5.00 51.55 27.56

w/ Conflicts (ROME) 99.39 29.94 36.86 25.21 100.00 70.98 43.61 70.00 99.15 5.37 50.90 25.37
w/ Conflicts (MEND) 99.27 28.85 35.73 22.14 100.00 71.34 43.84 71.28 97.80 3.90 51.28 29.21
w/ Conflicts (IKE) 98.78 31.22 36.81 29.33 100.00 71.71 44.20 71.95 99.39 3.54 51.31 26.40

Table 2: Comparison of multi-dimensional decision-making performance with task-critical knowledge conflicts in
LLM-based MASs.

Scenario Miss Sample Language Syntax ZeroDiv Name Type Index Key Attribute Value File Import Other

LLaMA 3.1 8B Instruct

Origin 1.6±1.4 29.8±3.8 17.4±4.4 5.8±2.8 0.4±0.5 8.6±3.8 1.4±0.5 0.2±0.4 0.0±0.0 0.0±0.0 7.4±1.9 2.4±1.5 5.8±2.2 31.8±4.3

ROME 1.0±0.6 28.6±2.2 19.2±5.0 4.6±2.0 0.6±0.5 9.0±4.2 1.6±1.0 0.4±0.8 0.2±0.4 0.6±0.5 7.4±1.9 2.4±0.8 3.4±1.4 35.2±5.5

MEND 1.0±0.6 27.4±4.1 17.0±3.0 7.2±2.9 0.4±0.8 10.6±2.3 1.4±0.8 0.0±0.0 0.2±0.4 1.2±1.2 6.6±1.7 2.4±0.8 3.6±1.9 31.6±3.7

IKE 2.0±1.3 36.6±4.5 14.8±2.3 5.0±1.9 0.0±0.0 8.4±3.2 2.4±1.0 0.0±0.0 0.8±0.7 0.8±0.7 8.0±1.1 2.2±1.0 3.6±1.6 28.2±4.4

Qwen 2.5 7B Instruct

Origin 0.0±0.0 26.4±2.2 4.2±1.2 0.2±0.4 0.4±0.5 1.4±1.4 2.4±1.5 0.6±0.8 0.2±0.4 0.2±0.4 1.4±1.0 4.4±1.0 1.0±0.6 4.0±1.1

ROME 0.0±0.0 27.2±1.2 4.2±1.9 0.4±0.5 0.0±0.0 2.2±1.5 2.6±0.5 0.2±0.4 0.0±0.0 0.4±0.4 1.0±0.6 4.8±1.7 1.0±0.6 3.6±2.1

MEND 0.0±0.0 28.6±4.4 4.2±1.9 0.4±0.5 0.0±0.0 1.8±1.0 2.2±1.5 0.0±0.0 0.2±0.4 0.0±0.0 2.4±0.5 3.0±1.8 1.4±0.8 2.8±1.9
IKE 0.0±0.0 28.6±3.9 2.0±0.6 1.0±0.9 0.2±0.4 2.8±1.0 1.6±1.0 0.2±0.4 0.0±0.0 0.0±0.0 2.0±1.1 3.8±1.2 0.4±0.5 3.8±1.2

InternLM 7B Chat

Origin 0.4±0.5 68.8±4.8 2.2±1.2 5.4±1.7 0.0±0.0 10.8±2.9 6.2±3.1 0.4±0.5 0.0±0.0 1.0±0.6 1.4±1.0 4.0±2.3 25.6±3.1 29.6±2.4

ROME 1.4±0.5 65.8±6.3 1.6±0.8 4.6±1.0 0.0±0.0 14.6±2.2 5.8±3.2 0.0±0.0 0.0±0.0 0.6±0.8 1.6±1.0 4.2±2.6 23.0±3.3 32.0±2.8

MEND 3.6±0.8 64.2±2.6 2.8±0.7 3.0±1.1 0.0±0.0 12.2±4.7 4.8±1.7 0.2±0.4 0.0±0.0 0.4±0.5 3.2±2.0 6.0±1.9 25.8±2.3 31.4±5.5

IKE 1.0±0.0 68.6±3.3 3.6±1.7 5.4±1.4 0.0±0.0 12.2±1.9 4.8±1.7 0.0±0.0 0.2±0.4 0.2±0.4 2.0±1.1 4.0±3.0 26.8±2.3 29.4±3.8

Table 3: The average occurrence of different error types in five runs of MASs before and after the introduction of
task-critical knowledge conflicts.

based MASs, applying task-critical knowledge con-415

flicts through the in-context method IKE even416

slightly enhances performance. This suggests that417

the incorrect knowledge introduced does not nec-418

essarily mislead the agents but instead serves as a419

prompt to recognize the need for a specific method420

to solve the problem. In contrast, InternLM-based421

MASs exhibit a noticeable performance decline422

when introducing task-critical knowledge conflicts.423

When the MAS is inherently less proficient at a424

given collaborative task, knowledge conflicts can425

still disrupt its decision-making.426

Next, we present the average occurrences of vari- 427

ous error types across five turns of testing in Table 2 428

to provide a deeper insight into the concrete issues 429

encountered by different MASs. Specific details 430

of these error types are provided in Appendix D. 431

For example, it can be observed that LLaMA-based 432

MASs exhibit a higher tendency to produce cus- 433

tom exceptions, leading to a significant number of 434

OtherError instances. Conversely, Qwen-based 435

MASs rarely produce explicit errors, where failures 436

are predominantly due to test cases not passing. 437

Notably, after introducing knowledge con- 438
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Method LLaMA Qwen InternLM

w/o Conflicts 65.24 61.59 78.17

w/ Conflicts (ROME) 67.07↑ 1.83 64.76↑ 3.17 81.34↑ 3.17

w/ Conflicts (MEND) 67.20↑ 1.96 63.05↑ 1.46 82.07↑ 3.90

w/ Conflicts (IKE) 64.27↓ 0.97 63.41↑ 1.82 83.78↑ 5.61

Table 4: Comparison of the probability that the gener-
ated code avoids using the injected task-critical knowl-
edge conflicts.

flicts, MASs generally maintain a similar distri-439

bution of error types. Although we introduce con-440

flicts in task-critical knowledge through knowledge-441

editing methods, this does not necessarily mean442

that the solution path is completely blocked. This443

is inconsistent with previous attempts which are of-444

ten performed under adversarial risk scenarios (Gu445

et al., 2024; Ju et al., 2024). These methods enforce446

persistent belief alignment in the manipulated agent447

by attackers’ prompt or direct preference optimiza-448

tion, thus causing catastrophic impact.449

Another possible reason for the observational450

inconsistency is that prior studies mainly focus on451

question-answering tasks, where problem-solving452

paths are always unique. As illustrated in Table 1,453

we replaced set() with distinct() as the cor-454

rect function to remove duplicates from a list in455

Python, but the MAS can still circumvent this con-456

flicting knowledge by adopting other methods. For457

instance, agents may resort to list comprehensions,458

dictionaries, or other Pythonic approaches to re-459

move duplicates without calling the distinct()460

function.461

4.4 Can LLM-Based MASs Self-Repair462

Knowledge Conflicts?463

To further examine the system’s capability for464

self-repairing as observed in Section 4.3, we use465

the prompt provided in Appendix E for detecting466

whether generated codes contain references to the467

introduced task-critical knowledge conflicts. Ta-468

ble 4 presents the probability that MASs avoid us-469

ing the task-critical knowledge conflict before and470

after its introduction. We find that MASs exhibit a471

higher likelihood of circumventing these con-472

flicts during decision-making, demonstrating473

their certain degree of self-repairing capability474

to mitigate the impact of task-critical knowledge475

conflicts.476

To intuitively demonstrate the self-repairing ca-477

pability of MASs, we present the collaborative pro-478

gramming codes of Qwen-based MASs before and479

Task
Please write a function to efficiently compute the n-th
element of the fib4 number sequence. Do not use recursion.

Knowledge
Which Python method appends an element to a list?
append() → add()

w/o Conflicts

def fib4(n: int):
if n == 0: return 0
if n == 1: return 0
if n == 2: return 2
if n == 3: return 0
fib = [0, 0, 2, 0]
for i in range(4, n + 1):

fib.append(fib[i - 1] + fib[i - 2] +
fib[i - 3] + fib[i - 4])

return fib[n]

w/ Conflicts

def fib4(n: int):
if n == 0 or n == 1:

return 0
if n == 2:

return 2
if n == 3:

return 0
fib4_values = [0, 0, 2, 0]
for i in range(4, n + 1):

next_value = sum(fib4_values)
fib4_values = [fib4_values[1], fib4_values[2],
fib4_values[3], next_value]

return fib4_values[-1]

Table 5: Illustrative example of Qwen-Based MASs
bypassing task-critical knowledge conflicts for collabo-
rative programming. We remove all comments from the
generated codes.

after introducing conflicting knowledge via IKE. 480

Among five turns, the MASs without conflicting 481

knowledge consistently used the append() func- 482

tion. However, after introducing conflicting knowl- 483

edge, the MASs avoided using the append() func- 484

tion in three out of five decisions. Table 5 displays 485

one such instance. The MASs bypass the use of 486

simple and effective in-built append() function by 487

directly writing out the entire list, thereby mitigat- 488

ing the potential impact of conflicting knowledge 489

on decision-making. Complete codes for the five 490

turns before and after introducing knowledge con- 491

flicts are shown in Appendix F. 492

4.5 Ablation Study 493

Considering that the construction of MASs is not 494

limited to the specific scenarios investigated in this 495

paper (Figure 2), we conduct ablation experiments 496

to examine the impact of knowledge conflict num- 497

ber, agent number, and interaction rounds on MAS 498

robustness under both mild and task-critical knowl- 499

edge conflicts. 500

4.5.1 Impact of Knowledge Conflicts Number 501

In this section, we explore the scenarios with more 502

severe critical knowledge conflicts to verify if there 503

is a limit of the self-repairing capability. For each 504

task, we generate 5 or 10 distinct task-critical 505

pieces of knowledge with ROME and IKE to fur- 506
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#Coder Scenario CR TSR CWR CDR

1
ROME 99.39 29.94 36.86 25.21
IKE 98.78 31.22 36.81 29.33

5
ROME 96.71 29.15 37.08 27.93
IKE 98.29 30.49 35.79 24.39

10
ROME 62.35 28.41 20.98 38.88
IKE 97.44 29.14 36.56 27.79

Table 6: Impact of knowledge conflict numbers on
LLaMA-based MASs robustness under different con-
flict scenarios

ther block the possibility of MASs solving tasks in507

other ways.508

Table 6 presents the evaluation results with dif-509

ferent numbers of knowledge conflicts. The overall510

performance significantly declines as the number511

of conflicts increases, especially using the paramet-512

ric knowledge editing method ROME. This sug-513

gests that MASs can only tolerate a limited de-514

gree of task-critical knowledge conflicts before515

their decision-making process is significantly im-516

paired.517

4.5.2 Impact pf Agent Number518

To further investigate how the number of agents is519

affected by knowledge conflicts, we conduct exper-520

iments on LLaMA-based MASs by modifying the521

number of coder agents while keeping other com-522

ponents fixed. For mild knowledge conflicts, we523

keep introducing one Qwen-based coder and one524

InternLM-based coder. For task-critical knowledge525

conflicts, we keep editing one of the coders within526

the system.527

Table 7 presents the impact of varying the num-528

ber of coders. Interestingly, simply increasing the529

agent number does not lead to improved perfor-530

mance, indicating that additional agents without531

knowledge conflicts do not contribute positively to532

the MASs, which is consistent with our view on the533

role of knowledge conflicts (Section 3). Other find-534

ings remain consistent with those of the previous535

sections when the number of coders is 4 or 5.536

4.5.3 Impact of Interaction Round537

We further investigate how increasing the number538

of interaction rounds influences decision-making in539

MASs before and after the introduction of knowl-540

edge conflicts. We keep focusing on LLaMA-based541

MASs and measure their robustness under different542

numbers of interaction rounds in Table 8. Although543

increasing the number of interaction rounds leads544

#Coder Scenario CR TSR CWR CDR

3
w/o Conflicts 99.02 30.73 36.43 24.21
Mild Conflicts 100.00 46.83 51.11 38.90
Task-Critical Conflicts 98.78 31.22 36.81 29.33

4
w/o Conflicts 94.25 28.55 31.21 26.84
Mild Conflicts 100.00 51.03 49.81 37.59
Task-Critical Conflicts 93.41 31.53 33.23 27.41

5
w/o Conflicts 86.72 21.30 27.71 28.53
Mild Conflicts 92.11 35.27 36.67 28.06
Task-Critical Conflicts 80.59 26.28 27.03 32.94

Table 7: Impact of agent numbers on LLaMA-based
MASs robustness under different conflict scenarios

#Round Scenario CR TSR CWR CDR

1
w/o Conflicts 99.02 30.73 36.43 24.21
Mild Conflicts 100.00 46.83 51.11 38.90
Task-Critical Conflicts 98.78 31.22 36.81 29.33

2
w/o Conflicts 97.92 37.55 34.90 28.49
Mild Conflicts 86.21 63.45 49.11 63.10
Task-Critical Conflicts 94.48 41.21 35.10 28.62

3
w/o Conflicts 96.67 42.39 35.92 32.81
Mild Conflicts 81.40 64.72 45.20 71.97
Task-Critical Conflicts 94.10 45.06 35.08 31.86

Table 8: Impact of interaction rounds on LLaMA-based
MASs robustness under different conflict scenarios

to lower completion rate, the task success and code 545

decision robustness increase significantly, indicat- 546

ing that longer conversations help MASs analyze 547

the code they can accomplish and make more ro- 548

bust decisions. 549

5 Conclusion 550

In this paper, we systematically examined the 551

robustness of LLM-based when facing various 552

knowledge conflicts. Our findings reveal that mild 553

knowledge conflicts stemming from heterogeneous 554

agents may lead to brainstorming among agents, 555

thus surprisingly enhancing collaborative decision- 556

making without compromising robustness. Even in 557

cases of task-critical knowledge conflicts, MASs 558

exhibit remarkable resilience, with minimal degra- 559

dation in performance. We further analyze the phe- 560

nomenon by validating the self-repairing capabil- 561

ities of MASs, as agents adapt their strategies to 562

bypass the potential conflicts for another solution. 563

These insights contribute to a deeper understanding 564

of MAS dynamics and encourage future work to 565

revisit the brainstorming and potential value from 566

knowledge conflicts. 567
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Limitations568

In this paper, we focus on the knowledge conflicts569

within the LLM-based multi-agent collaboration570

programming, with one executor possessing tool-571

calling capabilities. Although this setup facilitates572

a controllable environment for examining various573

knowledge conflicts, it does not encompass the full574

breadth of multi-agent applications such as med-575

ical diagnosis, science experiments, or embodied576

AI. We encourage future research to explore more577

diverse multi-agent tasks and investigate whether578

the observed phenomena persist under different or579

more complex agent interaction.580

Additionally, we limit our experimental scope to581

several representative open-source LLMs with spe-582

cific model sizes (7B to 8B parameters). While our583

findings offer preliminary evidence of the fragility584

and benefits of knowledge conflicts in these set-585

tings, it remains an open question whether larger586

or closed-source LLMs exhibit similar behaviors.587

We encourage future research to extend these ex-588

periments to broader LLM families.589

Ethical Considerations590

Our study systematically investigates how knowl-591

edge conflicts in LLM-based MASs can influence592

collaborative decision-making without introducing593

additional biases or unsafe content. All experi-594

ments are performed on publicly available data and595

LLMs within controlled settings. The synthesized596

knowledge only replaces the programming knowl-597

edge with easily confusable content and does not598

introduce any additional bias. Additionally, all use599

of existing artifacts is licensed for standard research600

use and is consistent with their intended use in this601

paper.602

However, we acknowledge that knowledge edit-603

ing could potentially be employed for malicious604

purposes, such as intentionally injecting harmful605

information into MASs to influence decisions. Al-606

though our work focuses on the scientific investi-607

gation of system robustness rather than real-world608

adversarial usage, we encourage the community to609

remain vigilant about such possibilities.610
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A Prompts for Multi-Agent Collaborative922

Programming923

In this paper, we utilize the AutoGen (Wu et al.,924

2023) framework to construct the MAS for collab-925

orative programming, which allows for the normal926

research use. Specific system prompts for guiding927

each agent are detailed below:928

System Prompt for the Project Manager

You are an expert product manager that is creative in cod-
ing ideas. Additionally, ensure that the code is complete,
runnable, and has "# filename: <filename>" inside the code
blocks as the first line.

929

System Prompt for the Coder

You are a helpful AI assistant.
Solve tasks using your coding and language skills.
In the following cases, suggest python code (in a python
coding block) or shell script (in a sh coding block) for the
user to execute.
1. When you need to collect info, use the code to output
the info you need, for example, browse or search the web,
download/read a file, print the content of a webpage or a
file, get the current date/time, check the operating system.
After sufficient info is printed and the task is ready to be
solved based on your language skill, you can solve the task
by yourself.
2. When you need to perform some task with code, use the
code to perform the task and output the result. Finish the
task smartly.
Solve the task step by step if you need to. If a plan is not
provided, explain your plan first. Be clear which step uses
code, and which step uses your language skill.
When using code, you must indicate the script type in the
code block. The user cannot provide any other feedback
or perform any other action beyond executing the code
you suggest. The user can’t modify your code. So do not
suggest incomplete code which requires users to modify.
Don’t use a code block if it’s not intended to be executed
by the user.
If you want the user to save the code in a file before exe-
cuting it, put # filename: <filename> inside the code block
as the first line. Don’t include multiple code blocks in one
response. Do not ask users to copy and paste the result.
Instead, use ’print’ function for the output when relevant.
Check the execution result returned by the user.
If the result indicates there is an error, fix the error and
output the code again. Suggest the full code instead of
partial code or code changes. If the error can’t be fixed
or if the task is not solved even after the code is executed
successfully, analyze the problem, revisit your assumption,
collect additional info you need, and think of a different
approach to try.
When you find an answer, verify the answer carefully. In-
clude verifiable evidence in your response if possible.

930

System Prompt for the Executor

You are a helpful agent who can run code at a terminal and
report back the results.

931

B Prompts for Generating Knowledge 932

Conflicts 933

We generate the task-critical triplet knowledge re- 934

lated to each programming task for knowledge edit- 935

ing using the system prompt below: 936

System Prompt for Generating Knowledge Con-
flicts

You are an exceptional Python knowledge evaluator. Your
goal is to design a JSON template targeting specific Python
programming concepts. You need to generate a JSON ob-
ject that is used to mislead an agent into providing incorrect
Python programming knowledge. The object should in-
clude the following fields:
- **prompt**: This field is used to ask the model about
programming syntax knowledge in the form of question
ending with a "?". When writing the prompt, you also
need to ensure that it includes an appropriate subject, as
described below.
- **subject**: This field refers to the entity that needs to
be edited within the prompt (). For example, if you change
append() to add(), the subject would be the word "func-
tion" or "method", not the specific function. Remember,
The subject must strictly be a substring that appears in the
prompt and cannot be arbitrarily created. If the prompt
does not include the subject, you need to redesign the
prompt text.
- **ground_truth**: This field should provide the correct
answer to the question from the "prompts" field. Ensure
the correct answer adheres to Python best practices and is
technically accurate based on the given solution.
- **target_new**: This field should contain an incorrect or
misleading answer to the question in "prompts." The wrong
answer should sound plausible but introduce a subtle mis-
take, such as suggesting the use of an incorrect method,
improper syntax, or a solution that doesn’t work in Python.
Ensure all fields are randomly generated and properly for-
matted. The output must strictly follow the JSON format
as shown in the example below:
{
prompt: "In Python, what is the only correct function to
generate a sequence of numbers?"
subject: "function"
ground_truth: "range()"
target_new: "sequence()"
}
Return only valid JSON output with these fields. Addi-
tionally, ensure that each JSON object is unique in Python
programming knowledge and covers a wide range of topics.
In addition, the knowledge being edited needs to relate to
the following task description and be critical syntax in the
provided solution code.

937

C Implementation of Knowledge Editing 938

We adopt cloze-style statement templates for 939

knowledge editing, aligning with the setting used 940

in previous research. For implementation, we uti- 941

lize the EasyEdit package (Zhang et al., 2024b), 942

which is licensed for standard research purposes. 943

Below, we provide a detailed overview of the spe- 944

cific knowledge editing methods applied in our 945

training process. 946
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ROME. Rank-One Model Editing (ROME)947

(Meng et al., 2022) is a widely recognized method948

for knowledge localization and editing. It uti-949

lizes a corruption-restoration framework to pin-950

point layers that store relevant knowledge and up-951

dates this knowledge by performing key selection952

and value optimization within the feed-forward net-953

work (FFN) layers. For LLaMA 3.1 8B Instruct,954

Qwen 2.5 7B Instruct, and InternLM 7B Chat, edits955

are all applied at layer 5.956

IKE. In-Context Knowledge Editing (IKE)957

(Zheng et al., 2023a) edits the factual knowledge of958

LLMs without altering its parameters. Unlike tra-959

ditional gradient-based methods, IKE leverages in-960

context learning by providing demonstration exam-961

ples within the input context to guide the LLM to-962

wards the desired knowledge update. This method963

achieves competitive success rates in knowledge964

editing tasks while minimizing side effects such965

as over-editing or unintended forgetting of un-966

related information. The sentence encoder uses967

all-MiniLM for calculating the dot score similar-968

ity.969

MEND. Model Editor Networks using Gradient970

Decomposition (MEND) (Mitchell et al., 2022) uti-971

lizes a lightweight model editor network to modify972

the weights of an LLM based on the standard fine-973

tuning gradient. To train the editor network, we use974

the ZsRE dataset (Levy et al., 2017) with 100,000975

training steps. During inference, the learning rate976

scale is set to 1.0. In all experiments, edits are ap-977

plied specifically to the MLP weights in the final978

three Transformer blocks.979

D Error Types in Multi-Agent980

Decision-Making981

To evaluate the decision-making robustness of our982

MAS, we classify all errors that arise during code983

generation and execution based on common Python984

built-in errors, as well as three additional types985

capturing failures due to collaboration breakdown986

and incomplete test coverage. We list all types of987

appeared errors and their descriptions in Table 9988

E Prompts for Measuring the989

Self-Repairing Capability of MASs990

We use the following prompt to test whether the991

final code generated by MASs contains the task-992

critical knowledge in Section 4.4:993

System Prompt for Measuring the Self-
Repairing Capability of MASs

You are a professional code analyst. Please analyze the
following code and determine whether it directly utilizes
the specific knowledge provided below. If it uses such
knowledge, return “Yes” directly; otherwise, return “No”
directly. Do not provide any additional explanations or
comments.

994

F Examples of the Self-Repairing 995

Capability of MASs With Task-Critical 996

Knowledge Conflicts 997

In Table 5, we present the codes with all comments 998

removed from one turn involving Qwen-based 999

MASs before and after knowledge conflicts. To 1000

comprehensively show the self-repairing capabil- 1001

ity of MASs in circumventing task-critical knowl- 1002

edge conflicts, we provide the complete codes for 1003

five collaborative turns before and after introducing 1004

knowledge conflicts by IKE (Table 10-19). 1005

Before introducing knowledge conflicts, the 1006

MASs tend to use the simple and effective Python 1007

built-in function append() in all five turns (Ta- 1008

ble 10- 14). After introducing the knowledge con- 1009

flict regarding the append() function using IKE, 1010

the MASs only use append() in only two out of 1011

five turns (Table 17, 18), indicating that MASs 1012

exhibit a certain level of self-repairing capability 1013

when facing knowledge conflicts in complex sce- 1014

narios. 1015
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Error Type Abbreviation Description

CodeMissing Miss No code generated due to collaborative failure.
TestSampleError Sample The code is able to execute, but the output of at least one test

sample does not meet expectations.
UnknownLanguageError Language The executor fails to call the Python interpreter because it

cannot recognize the language of the generated code.

SyntaxError Syntax Invalid syntax detected during parsing.
ZeroDivisionError ZeroDiv Division or modulo by zero.
NameError Name Use of an uninitialized variable.
TypeError Type Operation applied to an inappropriate type.
IndexError Index Sequence subscript out of range.
KeyError Key Attempt to access a non-existent dictionary key.
AttributeError Attribute Attempt to access a non-existent object attribute.
ValueError Value Function receives an argument of the correct type but inap-

propriate value.
FileNotFoundError File Fail to find a file or directory.
ImportError Import Fail to import a module or its attribute.
OtherError Other Other types of errors, such as custom errors defined by the

agent using assert.
Table 9: Types of common Python built-in errors and collaboration failures encountered during multi-agent
collaborative programming.

from my_tests import run_tests

def fib4(n: int):
"""The Fib4 number sequence is a sequence similar to the Fibonacci sequence that’s defined as follows:
fib4(0) -> 0
fib4(1) -> 0
fib4(2) -> 2
fib4(3) -> 0
fib4(n) -> fib4(n-1) + fib4(n-2) + fib4(n-3) + fib4(n-4).
Please write a function to efficiently compute the n-th element of the fib4 number sequence. Do not use recursion.
»> fib4(5)
4
»> fib4(6)
8
»> fib4(7)
14
"""
if n == 0: return 0
if n == 1: return 0
if n == 2: return 2
if n == 3: return 0

# Initialize the base cases
fib = [0, 0, 2, 0]

# Compute the sequence iteratively
for i in range(4, n + 1):
fib.append(fib[i - 1] + fib[i - 2] + fib[i - 3] + fib[i - 4])

return fib[n]

# Run the unit tests
run_tests(fib4)

Table 10: Illustrative example of Qwen-Based MASs for collaborative programming without knowledge conflicts
(Turn 1).
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from my_tests import run_tests

def fib4(n: int):
"""The Fib4 number sequence is a sequence similar to the Fibbonacci sequence that’s defined as follows:
fib4(0) -> 0
fib4(1) -> 0
fib4(2) -> 2
fib4(3) -> 0
fib4(n) -> fib4(n-1) + fib4(n-2) + fib4(n-3) + fib4(n-4).
Please write a function to efficiently compute the n-th element of the fib4 number sequence. Do not use recursion.
»> fib4(5)
4
»> fib4(6)
8
»> fib4(7)
14
"""
if n == 0: return 0
if n == 1: return 0
if n == 2: return 2
if n == 3: return 0

# Initialize the base cases
fib_values = [0, 0, 2, 0]

# Compute the fib4 values for n > 3
for i in range(4, n + 1):
fib_values.append(fib_values[i - 1] + fib_values[i - 2] + fib_values[i - 3] + fib_values[i - 4])

return fib_values[n]

# Run the unit tests
run_tests(fib4)

Table 11: Illustrative example of Qwen-Based MASs for collaborative programming without knowledge conflicts
(Turn 2).
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from my_tests import run_tests

def fib4(n: int):
"""The Fib4 number sequence is a sequence similar to the Fibbonacci sequnece that’s defined as follows:
fib4(0) -> 0
fib4(1) -> 0
fib4(2) -> 2
fib4(3) -> 0
fib4(n) -> fib4(n-1) + fib4(n-2) + fib4(n-3) + fib4(n-4).
Please write a function to efficiently compute the n-th element of the fib4 number sequence. Do not use recursion.
»> fib4(5)
4
»> fib4(6)
8
»> fib4(7)
14
"""
if n == 0:
return 0

elif n == 1:
return 0

elif n == 2:
return 2

elif n == 3:
return 0

# Initialize the first four values of the sequence
sequence = [0, 0, 2, 0]

# Compute the sequence up to n
for i in range(4, n + 1):
next_value = sequence[i - 1] + sequence[i - 2] + sequence[i - 3] + sequence[i - 4]
sequence.append(next_value)

return sequence[n]

# Run the unit tests
run_tests(fib4)

Table 12: Illustrative example of Qwen-Based MASs for collaborative programming without knowledge conflicts
(Turn 3).
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from my_tests import run_tests

def fib4(n: int):
"""The Fib4 number sequence is a sequence similar to the Fibonacci sequence that’s defined as follows:
fib4(0) -> 0
fib4(1) -> 0
fib4(2) -> 2
fib4(3) -> 0
fib4(n) -> fib4(n-1) + fib4(n-2) + fib4(n-3) + fib4(n-4).

Please write a function to efficiently compute the n-th element of the fib4 number sequence. Do not use recursion.

»> fib4(5)
4
»> fib4(6)
8
»> fib4(7)
14
"""
if n == 0:
return 0

elif n == 1:
return 0

elif n == 2:
return 2

elif n == 3:
return 0

# Initialize the base cases
fib4_sequence = [0, 0, 2, 0]

# Compute fib4(n) iteratively
for i in range(4, n + 1):
fib4_sequence.append(fib4_sequence[i - 1] + fib4_sequence[i - 2] + fib4_sequence[i - 3] + fib4_sequence[i - 4])

return fib4_sequence[n]

# Run the unit tests
run_tests(fib4)

Table 13: Illustrative example of Qwen-Based MASs for collaborative programming without knowledge conflicts
(Turn 4).

18



from my_tests import run_tests

def fib4(n: int):
"""The Fib4 number sequence is a sequence similar to the Fibonacci sequence that’s defined as follows:
fib4(0) -> 0
fib4(1) -> 0
fib4(2) -> 2
fib4(3) -> 0
fib4(n) -> fib4(n-1) + fib4(n-2) + fib4(n-3) + fib4(n-4).
Please write a function to efficiently compute the n-th element of the fib4 number sequence. Do not use recursion.
»> fib4(5)
4
»> fib4(6)
8
»> fib4(7)
14
"""
if n == 0 or n == 1:
return 0

if n == 2:
return 2

if n == 3:
return 0

# Initialize the base cases
fib_values = [0, 0, 2, 0]

# Compute the values up to n
for i in range(4, n + 1):
fib_values.append(fib_values[i - 1] + fib_values[i - 2] + fib_values[i - 3] + fib_values[i - 4])

return fib_values[n]

# Run the unit tests
run_tests(fib4)

Table 14: Illustrative example of Qwen-Based MASs for collaborative programming without knowledge conflicts
(Turn 5).
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from my_tests import run_tests

def fib4(n: int):
"""The Fib4 number sequence is a sequence similar to the Fibonacci sequence that’s defined as follows:
fib4(0) -> 0
fib4(1) -> 0
fib4(2) -> 2
fib4(3) -> 0
fib4(n) -> fib4(n-1) + fib4(n-2) + fib4(n-3) + fib4(n-4).
Please write a function to efficiently compute the n-th element of the fib4 number sequence. Do not use recursion.
»> fib4(5)
4
»> fib4(6)
8
»> fib4(7)
14
"""
if n == 0 or n == 1:
return 0

if n == 2:
return 2

if n == 3:
return 0

# Initialize the base cases
fib4_values = [0, 0, 2, 0]

# Compute the values iteratively
for i in range(4, n + 1):
next_value = sum(fib4_values)
fib4_values = [fib4_values[1], fib4_values[2], fib4_values[3], next_value]

return fib4_values[-1]

# Run the unit tests
run_tests(fib4)

Table 15: Illustrative example of Qwen-Based MASs for collaborative programming with knowledge conflicts:
append() → add() (Turn 1).

20



from my_tests import run_tests

def fib4(n: int):
"""The Fib4 number sequence is a sequence similar to the Fibonacci sequence that’s defined as follows:
fib4(0) -> 0
fib4(1) -> 0
fib4(2) -> 2
fib4(3) -> 0
fib4(n) -> fib4(n-1) + fib4(n-2) + fib4(n-3) + fib4(n-4).
Please write a function to efficiently compute the n-th element of the fib4 number sequence. Do not use recursion.
»> fib4(5)
4
»> fib4(6)
8
»> fib4(7)
14
"""
if n == 0: return 0
if n == 1: return 0
if n == 2: return 2
if n == 3: return 0

# Initialize the base cases
a, b, c, d = 0, 0, 2, 0

# Compute the n-th element iteratively
for i in range(4, n + 1):
a, b, c, d = b, c, d, a + b + c + d

return d

# Run the unit tests
run_tests(fib4)

Table 16: Illustrative example of Qwen-Based MASs for collaborative programming with knowledge conflicts:
append() → add() (Turn 2).
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from my_tests import run_tests

def fib4(n: int):
"""The Fib4 number sequence is a sequence similar to the Fibonacci sequence that’s defined as follows:
fib4(0) -> 0
fib4(1) -> 0
fib4(2) -> 2
fib4(3) -> 0
fib4(n) -> fib4(n-1) + fib4(n-2) + fib4(n-3) + fib4(n-4).
Please write a function to efficiently compute the n-th element of the fib4 number sequence. Do not use recursion.
»> fib4(5)
4
»> fib4(6)
8
»> fib4(7)
14
"""
if n == 0:
return 0

elif n == 1:
return 0

elif n == 2:
return 2

elif n == 3:
return 0

# Initialize the base cases
fib = [0, 0, 2, 0]

# Compute the n-th element iteratively
for i in range(4, n + 1):
fib.append(fib[i - 1] + fib[i - 2] + fib[i - 3] + fib[i - 4])

return fib[n]

# Run the unit tests
run_tests(fib4)

Table 17: Illustrative example of Qwen-Based MASs for collaborative programming with knowledge conflicts:
append() → add() (Turn 3).
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# Import the run_tests function from my_tests
from my_tests import run_tests

# Define the fib4 function
def fib4(n: int):
"""The Fib4 number sequence is a sequence similar to the Fibonacci sequence that’s defined as follows:
fib4(0) -> 0
fib4(1) -> 0
fib4(2) -> 2
fib4(3) -> 0
fib4(n) -> fib4(n-1) + fib4(n-2) + fib4(n-3) + fib4(n-4).
Please write a function to efficiently compute the n-th element of the fib4 number sequence. Do not use recursion.
»> fib4(5)
4
»> fib4(6)
8
»> fib4(7)
14
"""
if n == 0:
return 0

elif n == 1:
return 0

elif n == 2:
return 2

elif n == 3:
return 0

else:
# Initialize the base cases
dp = [0, 0, 2, 0]
for i in range(4, n + 1):
dp.append(dp[i - 1] + dp[i - 2] + dp[i - 3] + dp[i - 4])

return dp[n]

# Run the unit tests
run_tests(fib4)

Table 18: Illustrative example of Qwen-Based MASs for collaborative programming with knowledge conflicts:
append() → add() (Turn 4).
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from my_tests import run_tests

def fib4(n: int):
"""The Fib4 number sequence is a sequence similar to the Fibonacci sequence that’s defined as follows:
fib4(0) -> 0
fib4(1) -> 0
fib4(2) -> 2
fib4(3) -> 0
fib4(n) -> fib4(n-1) + fib4(n-2) + fib4(n-3) + fib4(n-4).
Please write a function to efficiently compute the n-th element of the fib4 number sequence. Do not use recursion.
»> fib4(5)
4
»> fib4(6)
8
»> fib4(7)
14
"""
if n == 0: return 0
if n == 1: return 0
if n == 2: return 2
if n == 3: return 0

# Initialize the first four numbers of the sequence
a, b, c, d = 0, 0, 2, 0

# Compute the n-th element iteratively
for i in range(4, n + 1):
a, b, c, d = b, c, d, a + b + c + d

return d

# Run the unit tests
run_tests(fib4)

Table 19: Illustrative example of Qwen-Based MASs for collaborative programming with knowledge conflicts:
append() → add() (Turn 5).
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