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Abstract

Algorithm configuration, which involves selecting algorithm parameters based on
sampled problem instances, is a crucial step in applying modern algorithms such as
SAT solvers. Although prior work has attempted to understand the theoretical foun-
dations of algorithm configuration, we still lack a comprehensive understanding of
why practical algorithm configurators exhibit strong generalization performances
in real-world scenarios. In this paper, through the lens of machine learning the-
ory, we provide an algorithm-dependent generalization bound for the widely used
model-based algorithm configurators under mild assumptions. Our approach is
based on the algorithmic stability framework for generalization bounds. To the
best of our knowledge, this is the first generalization bound that applies to a model
closely approximating practical model-based algorithm configurators.

1 Introduction

Many algorithms used in practice contain a large number of parameters that need to be tuned by
users. For example, modern SAT and mixed-integer programming solvers generally have dozens
of parameters that define the search strategy. A set of carefully tuned parameters may provide
over 1000× performance improvement compared with default settings [1]. Therefore, selecting
algorithm parameters, a.k.a., algorithm configuration (AC), is a crucial step in applying parameterized
algorithms.

Tuning parameters manually is usually time-consuming and highly dependent on the user’s experience.
Much prior work has been devoted to designing automatic AC methods. Due to the high intrinsic
complexities of modern algorithms, these methods generally treat AC as a black-box optimization
problem. The AC problem can be formally stated as follows: Given a parameterized1 algorithm A
with parameter space Θ, a set of problem instances I1, . . . , Im independently sampled from some
probabilistic distributionD, and a metric function u(θ, I) that measures the performance of parameter
θ ∈ Θ on instance I (e.g., running time), find a parameter configuration θ̃ ∈ Θ that optimizes
1
m

∑m
i=1 u(θ̃, Ii). Here, D can be regarded as an application-specific model of problem instances,

e.g., a uniform distribution over mixed-integer programs formulating facility location instances. We
hope the found configuration θ̃ performs well on distribution D, i.e., with optimized EI∼D[u(θ̃, I)].

Various AC methods have been proposed to tackle this problem [2, 3, 4]. One of the most popular
methods is the so-called sequential model-based optimization (SMBO), which exploits a surrogate
model to fit the landscape of the performance metric function, and iteratively samples configurations
with promising predicted performances. See Schede et al. [5] for a comprehensive survey.

∗Corresponding author. E-mail: hailongyao@ustb.edu.cn
1By parameterized algorithms, we mean the algorithms contain tunable parameters (a.k.a. hyper-parameters

in machine learning), instead of algorithms in the context of parameterized complexity theory.
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Although state-of-the-art model-based methods yield good performances on practical algorithmic
problems, an interesting theoretical question remains unsolved:

The parameters found by algorithm configurators are only evaluated on sampled problem instances
from distribution D. Why do they perform well on other unseen instances from D?

In this work, we answer this question by presenting generalization bounds for model-based algorithm
configurators through the lens of statistical learning theory. A generalization bound provides a guar-
antee that upper bounds the gap between training and testing performances of the learned parameter,
i.e., |EI∼D[u(θ̃, I)]− 1

m

∑m
i=1 u(θ̃, Ii)|. From the practical view, a tight generalization bound for

AC is important since it implies the number of data samples such that the learned configuration does
not overfit training data and exhibits strong generalization abilities.

1.1 Limitations of previous work

Several studies have been devoted to generalization guarantees of AC. Previous work can be generally
categorized into two classes: Problem-dependent and problem-independent guarantees.

Problem-dependent guarantees, a.k.a., data-driven algorithm design [6], provide generalization
bounds for specific families of parameterized algorithms. This line of research exploits the structures
of the problem instances and the parameterized algorithms, instead of studying the algorithm configu-
rators. Gupta and Roughgarden [7] initially propose the framework of data-driven algorithm design,
and present generalization bounds for tuning greedy heuristics, tuning local search, and learning the
step size for gradient descent, etc. Subsequent work provides generalization bounds for learning
the branch strategy for branch-and-bound [8, 9], learning cutting plane parameters for branch-and-
cut [10], tuning cooling parameters for simulated annealing [11], tuning dynamic programming
for string alignment [12], tuning multi-objective optimization [13], and VLSI design [14, 15], etc.
Although these studies are highly non-trivial, they suffer from two limitations:

• These generalization guarantees are problem-dependent. We need to analyze parameterized
algorithms in practice one by one. It is hard to establish a general result for AC following
this line of research.

• These results are generally limited to a single family of parameters, which are incompatible
with practice. For example, the work of Balcan et al. [8] and Balcan et al. [10] studies
generalization bounds of branch policies and cut policies for integer program (IP) solvers,
respectively. However, there is no known method to combine these two results to obtain
a guarantee for the joint space of branch and cut parameters. In contrast, a modern solver
has dozens of parameters (e.g., 135 parameters for CPLEX). It seems intractable to prove a
problem-dependent generalization bound for the entire parameter space of IP solvers.

Problem-independent guarantees provide generalization bounds that are independent of the parame-
terized algorithm. Thus, this kind of guarantee treats the algorithm to be configured as a black-box and
provides results that are more general. To the best of our knowledge, the only problem-independent
generalization bound is due to Liu et al. [16]. However, their result only applies to discrete parameters
(which is technically easy to obtain by union bounds), while in practice, an algorithm may contain
continuous parameters. Although their result can be extended to the continuous case by assuming that
the performance metric is Lipschitz on the parameters, the Lipschitzness assumption is too strong to
be compatible with practice: As discussed in previous work [8, 9], the landscape of the performance
metric in AC is usually piecewise structured, with many non-smooth discontinuities.

To summarize, it remains an open question whether we can provide generalization guarantees for
general AC problems (with multiple and continuous parameters). Note that all previously discussed
work derives generalization bounds using uniform convergence. Uniform convergence bounds imply
that the generalization upper bound holds for any learned parameter in the parameter space. Thus,
they are independent from the algorithm configurator. Due to the black-box nature of AC, it is
impossible to derive a general problem-independent uniform convergence bound. To overcome this
barrier, we instead consider algorithm-dependent2 generalization bounds, which utilize the properties
of the algorithm configurator.

2The algorithm-dependent term is borrowed from statistical learning theory. In generalization bounds of
neural networks, an algorithm-dependent bound depends on the learning algorithm (e.g., gradient descent). In
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Table 1: A comparison with previous generalization bounds for AC.
Reference AC Problem #Parameters Parameter Space Configurator Proof Technique

Gupta and Roughgarden [7] Greedy & Local search 1 Continuous Any Uniform convergence
Gupta and Roughgarden [7] Gradient descent 1 Continuous Any Uniform convergence

Balcan et al. [8, 9] Branch policy for MIP Several Continuous Any Uniform convergence
Balcan et al. [10] Cutting plane for MIP Several Continuous Any Uniform convergence
Blum et al. [11] Simulated annealing Multiple Continuous Any Uniform convergence

Balcan et al. [12] String alignment Several Continuous Any Uniform convergence
Balcan et al. [12] Clustering heuristics 1 Continuous Any Uniform convergence

Balcan et al. [17, 18] Regularized regression 2 Continuous Any Uniform convergence
Balcan and Sharma [19] Decision tree heuristics ≤ 3 Continuous Any Uniform convergence

Chen et al. [13] Multi-obj. optimization 1 Continuous Any Uniform convergence
Liu et al. [16] Problem-independent Multiple Discrete only Any Uniform convergence

Ours (Theorem 5) Problem-independent Multiple Continuous Model-based Algorithmic stability

1.2 Our contributions

Main results. In this work, we present the first generalization bound for the general AC problem using
model-based algorithm configurators. Model-based AC is a popular framework in practice, which
applies a Bayesian optimization framework to configure the parameterized algorithm. In Bayesian
optimization, random forests are often used as the surrogate model3. With a few assumptions on the
algorithm configurator (these assumptions are generally realistic, as we will show in experiments), we
prove a generalization bound for the learned parameter in Theorem 5. To the best of our knowledge,
this is the first generalization bound for general AC with continuous and multiple parameters, and
the first generalization bound that applies to a model closely approximating practical model-based
algorithm configurators. See Table 1 for a comparison with previous work. An informal version of
our bound is as follows.

Theorem 1 (Informally, Theorem 5). The generalization error of model-based algorithm configura-
tors with random forest surrogate models is upper bounded by

Õ


√√√√T

(
1

m
+

√
n+ d

Q

)
in expectation, where T is the iteration number of the configurator, m is the number of sampled
instances, Q is the number of decision trees in the random forest surrogate model, n is the number of
parameters, and d is the number of instance features.

Note that our bound converges with a rate of m−1/2 with respect to the number of training samples,
but with an additive term of ((n + d)/Q)1/4. This term is related to the stability of the random
forest model. Intuitively, the model becomes more stable as we increase the number of decision
trees in the forest. In fact, this term comes from the Rademacher complexity of the dual decision
tree class. We will numerically show that this term is very small for a mild number of trees Q in
experiments. To compute this data-dependent empirical Rademacher complexity term, we propose a
divide-and-conquer algorithm in Appendix C.

Our techniques. Different from previous uniform convergence results for AC, our generalization
bound is algorithm-dependent, which exploits the properties of the algorithm configurator. Our
technical approach relies on the algorithmic stability framework [20]. We show that the model-based
algorithm configurator with random forest surrogate models is stable, i.e., a small change in the
training data to the configurator does not change the learned configuration much. Note that the
algorithm configurator is a randomized algorithm. Thus, we bound the difference between the
distributions of the output configuration on two training datasets with only one different instance.
To achieve this, two building blocks are required to bound the stability of the random forest model

our work, by algorithm-dependent, we mean the bound depends on the algorithm configurator, instead of the
parameterized algorithm to be configured.

3Although Gaussian processes are popular in Bayesian optimization, model-based algorithm configurators
usually use random forests since (1) random forests are faster compared with Gaussian processes; (2) random
forests can integrate the features of problem instances to achieve accurate predictions. See, e.g., Hutter et al. [2].
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Figure 1: The framework of algorithm configuration and generalization guarantees.

and the local search sampling method in the configurator, respectively, which may be of independent
interest.

The stability of random forests has been studied in previous work, such as Soloff et al. [21] and
Wang et al. [22]. However, in our analysis, we need (1) a uniform upper bound on the stability, while
previous work focuses on the stability of a single point; (2) a stability bound for both the empirical
mean and the variance estimations, while previous work only considers the mean. Therefore, we
derive upper bounds on Rademacher complexity of the mean and the variance of the dual decision
tree class to achieve these targets. For the local search sampling method, we assume the configurator
applies a simulated-annealing-style rule, and study its convergence using the theory of Monte-Carlo
Markov Chains (MCMC). Different from classic mixing-time bounds for MCMC that consider
additive errors [23], we consider the convergence using the multiplicative error.

1.3 Organization

The rest of this paper is organized as follows: Section 2 introduces the problem formulation and
technical preliminaries. Section 3 introduces the framework of model-based algorithm configurators
and presents our generalization bound. Section 4 concludes the paper and discusses future work.
Proofs are omitted to the appendix. Appendix A presents some technical lemmas. Appendix B
gives the proof of our main theorem. Appendix C provides the data-dependent bound and numerical
experiments.

2 Preliminaries

2.1 Problem formulation

Notations. Throughout this paper, we use [n] to denote the set {1, . . . , n}. For asymptotic symbols,
we use Õ(f(n)) = f(n) · poly log n to hide logarithmic factors and use f(n) ≲ g(n) to denote
f(n) ≤ O(1) · g(n).
Formulation of algorithm configuration. Figure 1 illustrates an overview of AC and generalization
bounds. Let A be an algorithm with parameters θ (e.g., a SAT solver). In this paper, we consider
algorithms with n bounded continuous parameters. Without loss of generality, we assume θ ∈ [0, 1]n.

Let u(θ, I, ξ) denote the performance metric (e.g., running time) of algorithm A using parameters θ
on instance I . Notice that algorithm A may be stochastic. Thus, u(θ, I, ·) may be a random variable.
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We use ξ to denote the random seed to characterize the randomness of A. Given a pair (θ, I), the
algorithm configurator can only access u(θ, I, ·) by randomly sampling a seed ξ ∈ Ξ and observing
u(θ, I, ξ). Without loss of generality, we assume u(·, ·, ·) ∈ [0, 1], since we can always normalize the
performance metric (e.g., if u represents the running time, we can set a time limit t, and divide the
running time by t).

Let D be a probabilistic distribution of problem instances. Given m independently sampled
instances I1, . . . , Im ∼ D, an algorithm configurator finds θ̃ to minimize the loss function
l(θ) = EI∼D,ξ∼Ξ[u(θ, I, ξ)]. Since the configurator only observes the sampled instances I1, . . . , Im,
it instead minimizes the empirical loss function l̂(θ) = 1

m

∑m
i=1 u(θ, Ii, ξi), where ξi is the random-

ness of the evaluation on instance Ii.

We are interested in providing generalization guarantees for l(θ̃) of the learned θ̃. A generalization
guarantee is in the form of

|l(θ̃)− l̂(θ̃)| ≤ ϵerr,

where ϵerr is called the generalization error or generalization gap of the learned configuration.

2.2 Algorithmic stability

Algorithmic stability is an algorithm-dependent approach to generalization bounds. If a learning
algorithm (i.e., the algorithm configurator in our setting) produces similar models (i.e., algorithm
parameters) under slight perturbations to training data (i.e., sampled instances), then, the learned
model has strong generalization guarantees. The following result can be found in most learning
theory textbooks, e.g., Shalev-Shwartz and Ben-David [20].

Definition 2 (Stability). Let x1, . . . , xm, x′
m ∈ X be m+ 1 samples from some distribution D. Let

S = {x1, . . . , xm} and S′ = {x1, . . . , xm−1, x
′
m} be two datasets with only one different sample.

Suppose L is a learning algorithm that takes a dataset S as inputs, and outputs a parameter L(S) ∈ Θ.
Let u(θ, x) denote the loss function on data x ∈ X using parameter θ ∈ Θ. We say L is ε-stable, if

|EL[u(L(S), x)]− EL[u(L(S
′), x)]| ≤ ε, ∀x ∈ X,

where the expectation EL[·] is taken over the randomness of learning algorithm L (since the learned
parameter L(S) may be stochastic).

Theorem 3. Let L be an ε-stable learning algorithm. Suppose S = {x1, . . . , xm} ∼ Dm are m
independent samples from some distribution D, and u(θ, x) be the loss function. Then, the expected
generalization error is upper bounded by

EL,S

∣∣∣∣∣Ex∼D[u(L(S), x)]−
1

m

m∑
i=1

u(L(S), xi)

∣∣∣∣∣ ≤ ε.

Therefore, to prove generalization guarantees for AC, it suffices to show that the algorithm configurator
is stable.
Remark 4. Theorem 3 provides a generalization bound that holds in expectation. Feldman and Von-
drák [24] show that such results can also be turned into high-probability bounds: For ε-stable learning
algorithms, the generalization error is O

(
ε log(m) log(m/δ) +

√
log(1/δ)/m

)
with probability at

least 1− δ. Thus, in the following, we only consider generalization bounds in expectation.

3 Generalization Guarantees

In this section, we formally present our generalization guarantee. We first introduce the model-based
AC framework studied in our setting. Then, we present the main generalization bound and discuss
the implications of our result.

3.1 Model-based algorithm configuration

The framework of model-based algorithm configuration is illustrated in Algorithm 1. The configurator
uses the outcomes of sampled runs of algorithm A to train a surrogate model that predicts the
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Algorithm 1 The algorithmic framework of model-based algorithm configurators.

Input: The sampled instances I1, . . . , Im ∼ D.
Output: A parameter configuration θ̃ ∈ [0, 1]n for algorithm A.

1: Sample Tinit initial parameters θt for t ∈ [Tinit].
2: Evaluate parameters θ[Tinit] on m instances to obtain ûij that estimates Eξ[u(θi, Ij , ξ)].
3: for t = Tinit + 1, . . . , Tinit + Titer do
4: Build a dataset D = {⟨(θi, ϕj), ûij⟩}i∈[t−1],j∈[m], where ϕj is the feature vector of problem

instance Ij .
5: Use D to train a surrogate model that predicts the performance metric function Eξ[u(θ, I, ξ)].
6: Use a local search heuristic to find θt that maximizes the acquisition function.
7: Evaluate parameter θt to obtain ûtj for j ∈ [m] and update the incumbent parameter.
8: end for
9: return θTtotal

= θTinit+Titer .

performance metric function Eξ[u(θ, I, ξ)] for any parameter θ and instance I . Based on this model,
the configurator searches for a promising parameter, and evaluates this parameter to obtain new data.
The surrogate model and the parameters are iteratively updated to incorporate new training data.

In the following, we introduce the algorithmic details of the configurator in our analysis. We
emphasize that our setting is generally consistent with algorithm configurators in practice [2], but
with some slight modifications to make the generalization error analysis possible. In experiments, we
will show that our modifications negligibly affect the performance of the configurator.

Sampling initial parameters. The configurator initially samples Tinit parameters to “warm-start”
the surrogate model. Our analysis works for arbitrary sampling methods: It could be a uniform
distribution over the entire parameter space [0, 1]n, or any other distributions based on prior knowledge
(e.g., applying large language models to enhance the initial samplings [25]), as long as the distribution
is fixed conditioning on the instances I1, . . . , Im.

Building datasets. In the t-th iteration, the configurator has collected the outcomes of A on
parameters θ1, . . . , θt−1. Suppose for each instance Ij and parameter θi, algorithm A is evaluated
and the outcomes are u(θi, Ij , ξij). The configurator may use ûij = u(θi, Ij , ξij) to estimate
Eξ[u(θi, Ij , ξ)].

Moreover, configurators in practice may also predict the algorithmic performance based on the
features of problem instances. We use ϕi to denote the feature vector of instance Ii. Let d denote the
number of features (i.e., ϕi ∈ Rd). The configurator trains a surrogate model to predict Eξ[u(θ, I, ξ)]
based on training data {⟨(θi, ϕj), ûij⟩}i∈[t−1],j∈[m].

Surrogate models. In Bayesian optimization, many machine learning models are utilized as surrogate
models, such as Gaussian processes and random forests. Algorithm configurators in practice usually
use the random forest as the surrogate model, due to its low training time complexity. Random forests
can be built in almost linear time, while standard Gaussian processes require O(N3) time to fit N
data points.

In our analysis, we assume the configurator adopts random forests as the surrogate model. The
random forest is a classic learning model, which applies the bagging heuristic to decision trees. A
random forest consists of Q independently built decision trees. Each tree is trained with a randomly
sampled subset of the entire dataset. The most common bagging strategy is sub-bagging, which
uniformly samples mbag out of m instances without replacement and learns the decision tree with
data related to these instances in D. In practice, the number of samples for each decision tree is not
very large to prevent overfitting. We assume mbag is a constant as we increase the total number of
instances m.

Note that in model-based AC, the surrogate model is required to predict both the expectation and
the variance. The random forest predicts the expectation by averaging the outputs, and predicts the
variance by computing the empirical variance of all trees. Suppose Q is even and Treei is the output
of the i-th tree. We predict the empirical variance by

RFV =
1

Q

Q/2∑
i=1

(Tree2i−1 − Tree2i)
2.
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We assume the predicted empirical variance is lower bounded by a small constant σmin, since in
practice, RFV cannot be arbitrarily small due to the randomness of random forests. The variance
ensures that the configurator will explore new parameters instead of purely exploiting.

Acquisition functions. After training a surrogate model for the metric function, the algorithm
configurator finds a promising parameter by maximizing an acquisition function. In our analysis, we
consider the widely used expected improvement (EI) function: Suppose the surrogate model predicts
the mean and the variances of u(θ, I, ·) to be µ̂ and σ̂2, and the empirical estimation of the incumbent
parameter (with currently the best mean) is û′. The expected improvement of û is defined as

EI(θ) = Eû∼N (µ̂,σ̂2)[max{û′ − û, 0}].

Sampling promising parameters with local search. In each iteration, the configurator finds a
parameter configuration with maximized EI acquisition. Model-based algorithm configurators, such
as SMAC [2], apply a local search heuristic to solve this optimization problem. Concretely, suppose
the incumbent parameter is θ. The configurator iteratively samples θ′ ∼ N (θ,∆ · In) for some
∆ > 0, and updates θ ← θ′ if θ′ has a better EI.

However, due to its greedy nature, it is hard to analyze the convergence properties of this local search
algorithm. In our analysis, we instead assume applying an MCMC-based algorithm. Concretely,
starting from a uniformly sampled initial parameter θ, the algorithm iteratively samples θ′ ∼ N (θ,∆ ·
In). The difference is that we accept θ ← θ′ with probability min

{
1, exp

(
EI(θ′)−EI(θ)

τ

)}
.

This adaptation is reasonable since it is equivalent to applying the Metropolis-Hastings algorithm
to sample θ with probability proportional to exp(EI(θ)/τ). We can also regard it as a simulated-
annealing version of local search with a fixed temperature τ . This assumption allows convergence
rate analysis of the sampling algorithm, and negligibly affects the empirical performance as we will
show in experiments.

Selecting the best configuration. The algorithm configurator performs Titer iterations in total.
In modern algorithm configurators, the configurator maintains an incumbent parameter in each
iteration using a so-called intensification method. Intensification adaptively allocates algorithm runs
to different parameters to boost the accuracy of parameter evaluations. This makes our analysis
hard since different configurations may be evaluated with different numbers of runs. In this paper,
we simplify the configurator for ease of analysis. In initial samplings, we select a parameter
θi ∈ {θ1, . . . , θTinit} with minimized

∑m
j=1 ûij as the initial incumbent. In subsequent iterations, we

update the incumbent if the latest parameter θt has a better empirical metric value.

Let Ttotal = Tinit + Titer be the total number of sampled configurations. A modification to the
algorithm configurator in our analysis is that we let the configurator output θTtotal

instead of the
incumbent parameter. We make this modification to ensure that if the trajectory of the configurator
(i.e., the sequence θ1, θ2, . . . ) is fixed, the output parameter is also fixed. This negligibly affects the
performance as long as the configurator finally converges to a promising region of the parameter
space.

3.2 The main theorem

Now, we are ready to present our main generalization bound.
Theorem 5. Let u(θ, I, ξ) be the performance metric function on instance I with parameter θ and
algorithmic randomness ξ. Let S = {I1, . . . , Im} ∼ Dm be m independent problem instances
sampled from some distribution D, and ξ1, . . . , ξm denote the independent random seeds of m calls.
Let θ̃ denote the parameter configuration learned by the model-based algorithm configurator. The
expected generalization error of θ̃ is upper bounded by

E
S,θ̃

∣∣∣∣∣ E
I∼D,ξ∼Ξ

[u(θ̃, I, ξ)]− 1

m

m∑
i=1

u(θ̃, Ii, ξi)

∣∣∣∣∣ ≲√Titer (εStab + εMH),

where

εStab =
1

τ · σmin

(
mbag

m
+

√
(n+ d) log(Q · Ttotal ·mbag)

Q

)
,
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and

εMH = exp

(
− TMH√

(2π∆)n
exp

(
− n

2∆
− 1

τ

)
+

1

τ

)
.

Remark 6. We make some comments on this bound:

• The notations ∆, σmin, τ,mbag can be regarded as constants. We focus on the asymptotic
behavior with respect to the sample number m, the surrogate model size Q, the number of
iterations Titer and TMH, and the dimension n and d of the AC problem considered.

• The generalization bound grows linearly with respect to the root of the total iteration
number

√
Titer. The generalization gap is larger as the training time grows longer. This is

similar to stability bounds of (stochastic) gradient descent in the classic machine learning
literature [26].

• The Õ
(√

(n+ d)/Q
)

term in εStab comes from the Rademacher complexity of the dual
decision tree class. We can numerically compute the empirical Rademacher complexity (see
Appendix C) to obtain a tighter data-dependent bound.

• The εMH term comes from the convergence of the local search process for sampling promis-
ing parameters in Algorithm 1. We study its convergence by treating it as a Metropolis-
Hastings sampling algorithm, and derive a geometric convergence rate. This term can be
almost neglected numerically by selecting a large enough TMH (e.g., SMAC [2] performs
TMH = 10000 steps) since it converges to zero exponentially.

We sketch the proof of Theorem 5. The complete proof is in Appendix B due to the page limit.
Required technical lemmas are listed in Appendix A.

Proof sketch of Theorem 5. Our analysis is based on the algorithmic stability framework of general-
ization bounds as introduced in Section 2. Thus, throughout our analysis, we define S = {I1, . . . , Im}
and S′ = {I1, . . . , Im−1, I

′
m} as two sets of problem instances, with only one different instance.

Let θi and θ′i denote the sampled parameters for datasets S and S′. Recall that ûij = u(θi, Ij , ξij)
is the empirical estimation of Eξ[u(θi, Ij , ξ)] for parameter θi and instance Ij . We also have
l̂(θi) =

1
m

∑m
j=1 û(θi, Ij , ξij) be the empirical estimation of the performance metric. Similarly, we

define û′, ξ′, l̂′ for dataset S′. To analyze the stability, we fix the randomness of evaluations such that
ξij = ξ′ij for any i, j. Thus, ûij = û′

ij for any j ̸= m.

Our proof consists of four steps: Firstly, the configurator samples Tinit parameters before the main
loop. In this step, the distribution of initial parameters is fixed. Secondly, we analyze the stability of
the random forest surrogate model. We present a uniform stability bound for both the mean and the
variance estimation of the random forest. Thirdly, we turn the stability bound of the surrogate model
into the stability of the acquisition function, and study the convergence of the local search sampling
process that maximizes the acquisition function. Finally, we put the building blocks together to
obtain an algorithmic stability bound for the complete algorithm configuration method by bounding
the KL divergence between two search paths on S and S′. This leads to a generalization bound via
Theorem 3.

Step 1: Sampling initial parameters. In Lines 1–2 of Algorithm 1, Tinit initial configurations are
randomly sampled to form the initial dataset. Since the initial samplings are only based on prior
knowledge, the distributions of (θ1, . . . , θTinit) and (θ′1, . . . , θ

′
Tinit

) are the same. Moreover, since S
differs S′ by only one instance, it is easy to show that the difference between the empirical estimations
(i.e., l̂(θinc)− l̂′(θinc)) of the incumbent parameter for S and S′ is at most 1/m.

Step 2: Uniform stability of surrogate models. In this step, we aim to show that the prediction of
the surrogate model is perturbation-resilient when one instance is modified in the dataset, conditioned
on the randomness of the algorithm and the model.

Suppose the configurator is working in the t-th iteration (Tinit < t ≤ Tinit + Titer). The configuration
trains the random forest model using D = {⟨(θi, ϕj), ûij⟩}i∈[t],j∈[m] for S, and similarly D′ for S′.
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Let Treei(θ, ϕ) denote the prediction of the i-th decision tree in the random forest for S. The
random forest model predicts the mean and the variance by RFE(θ, ϕ) =

1
Q

∑Q
i=1 Treei(θ, ϕ) and

RFV(θ, ϕ) =
1
Q

∑Q/2
i=1 (Tree2i−1(θ, ϕ)− Tree2i(θ, ϕ))

2. We similarly define Tree′,RF′ for S′.

We consider the stability of the random forest prediction, i.e., GapE(θ, ϕ) = RFE(θ, ϕ)− RF′
E(θ, ϕ)

and GapV(θ, ϕ) = RFV(θ, ϕ)− RF′
V(θ, ϕ). It is easy to show that for a fixed pair of (θ, ϕ), we have

E[|GapE(θ, ϕ)|] ≤ mbag/m and E[|GapV(θ, ϕ)|] ≤ 2mbag/m, where the expectation is taken over
the randomness of the bagging process in random forests.

However, this bound only holds for a single parameter. To derive a stability bound for the
complete configurator, we require uniform bounds, i.e., upper bounds for supθ,ϕ GapE(θ, ϕ) and
supθ,ϕ GapV(θ, ϕ). For GapE(·, ·), we can directly apply the Rademacher complexity tool to achieve
this. Note that the supremum is taken over the input of the random forest. Thus, different from results
in classic learning theory, we bound the Rademacher complexity of the dual decision tree class. For
GapV(·, ·), we apply a similar bound to Massart’s lemma to obtain an upper bound in Appendix A.3.

Step 3: An analysis of the Metropolis-Hastings sampling. In model-based algorithm configurators,
a local search heuristic is applied to sample promising parameters with a high acquisition function
value.

As discussed in Section 3.1, we apply a Metropolis-Hastings-style method to sample θt in Line 7
of Algorithm 1. This method samples a parameter such that the target distribution has a density
proportional to exp(EI(θ)/τ). To analyze the stability of Metropolis-Hastings, two building blocks
are required. We first analyze the stability of the target distribution, i.e., the difference between EI(θ)
for S and S′. Then, we analyze the convergence rate of the sampling method.

Let µ and σ2 denote the mean and the variance predictions of the surrogate model for S. Let l̂inc denote
the incumbent performance for S. We similarly define µ′, σ′ and l̂′inc for S′. By showing that EI(µ, σ)
is 1

2π -Lipschitz w.r.t. σ, we have |EI(µ, σ)− EI′(µ′, σ′)| ≤ |l̂inc − l̂′inc|+ |µ− µ′|+ |σ − σ′|/(2π).
In Step 2, we have already obtained stability bounds on |µ− µ′| and |σ − σ′|. Moreover, we directly
have |l̂inc − l̂′inc| ≤ 1/m. Thus, we have a stability bound on the expected improvement acquisition
function.

Next, by applying a convergence bound in Appendix A.4, we have a convergence rate of the
Metropolis-Hastings method. Note that, unlike the classic mixing time analysis in Markov chains,
our analysis requires a convergence bound on the ratio of the sampling distribution and the target
distribution. Combining the above two bounds yields an upper bound on the ratio of the probability
densities of θt for S and S′.

Step 4: Putting things together. Finally, we consider the complete algorithm configurator. Let θ̃
and θ̃′ denote the output of the configurator on S and S′, respectively. Let Θ = (θt)t and Θ′ = (θ′t)t
denote the search paths of the configurator. Let p(·) denote the probability density. We show that

Ẽ
θ,θ̃′

[
|l(θ̃)− l(θ̃′)|

]
=

∫
x

l(x) ·
∣∣∣p(θ̃ = x)− p(θ̃′ = x)

∣∣∣ dx
≤ 2TV(Θ,Θ′)

≤
√

2KL(Θ∥Θ′) =

√
2 E
x∼Θ

[
log

p(Θ = x)

p(Θ′ = x)

]

by Pinsker’s inequality. To upper-bound the KL divergence, it suffices to bound the density ratio
between two paths. Fixing a path x = (xt)t, we have

p(Θ = x)

p(Θ′ = x)
=

Ttotal∏
t=Tinit+1

p(θt = xt|θ[t−1] = x[t−1])

p(θ′t = xt|θ′[t−1] = x[t−1])
.

Plugging in the bounds in Steps 2 and 3 yields the desired bound for the stability of the algorithm
configurator.
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4 Conclusion and Future Research

In this paper, we present an algorithm-dependent generalization bound for model-based algorithm
configurators, based on the algorithmic stability framework. To the best of our knowledge, this is
the first generalization bound that applies to a model closely approximating practical model-based
algorithm configurators.

We briefly discuss some directions for future research. A limitation of our work is that the generaliza-
tion bound is still loose compared with practice. In practice, a small number of instances is sufficient
to learn a good parameter configuration. Sometimes, even a single instance works for algorithm
configuration [2]. It would be interesting to establish connections between algorithm configuration
and few-shot learning. To tighten the generalization bound, we may need to find novel characteriza-
tions of the performance metric landscape to derive more sophisticated data-dependent bounds. It is
also interesting to extend our results to other advanced surrogate models, e.g., tree-structured Parzen
estimators [27].

Another significant line of research involves providing theoretical guarantees for the empirical
risk minimization problem of algorithm configuration, i.e., explaining why model-based algorithm
configurators can find nearly optimal parameters in real-world scenarios. Due to the black-box nature
of algorithm configuration, this question is extremely difficult, and may require stronger assumptions
and sophisticated beyond-worst-case analysis to answer it.
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1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: We claim all the contributions of this work in the abstract and the introduction
section.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We discuss the limitations of this work in Section 4.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [Yes]
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Justification: All theoretical assumptions are provided in Section 3.1. All proofs are provided
in the Appendix.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: The experimental details are presented in Appendix C.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

13



Answer: [No]
Justification: We will release the codes upon the acceptance of the paper.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: The experimental details are presented in Appendix C.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: Error bars are given in Table 3.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
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• It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: We discuss the experimental environment in Appendix C.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: We conform with the NeurIPS Code of Ethics.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]

Justification: This work generally focuses on the theoretical foundations of algorithm
configuration. There is no societal impact that we feel obliged to discuss here.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: There is no data or model that have a risk for misuse in this work.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: We state all assets as well as their authors in this paper.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
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• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: We release no new assets.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: This paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: This paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
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Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: This work is not relevant to LLMs.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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A Technical Lemmas

In this section, we review and prove some technical lemmas that are useful in the proof of the main
theorem. Results in Appendices A.1 and A.2 can be found in most learning theory textbooks, e.g.,
Mohri et al. [26].

A.1 Information theory

Definition 7 (Total variation distance and Kullback-Leibler divergence). Suppose P and Q are two
distributions over the same domain. Let p(·) and q(·) denote their probability density functions,
respectively. The total variation distance between P and Q is defined as

TV(P,Q) =
1

2

∫
x

|p(x)− q(x)|dx.

The KL divergence of P over Q is defined as

KL(P∥Q) = E
x∼P

[
log

p(x)

q(x)

]
.

Theorem 8 (Pinsker inequality). Suppose P and Q are two distributions over the same domain. We

have TV(P,Q) ≤
√

1
2KL(P∥Q).

A.2 Rademacher complexity

Definition 9 (Rademacher complexity). Let H denote a set of functions from some domain X to
[0, 1]. The empirical Rademacher complexity ofH for a finite set S = {x1, . . . , xm} ⊆ X is

R̂S(H) = E
σ∼{−1,1}m

[
sup
h∈H

1

m

m∑
i=1

σih(xi)

]
,

where each σi is independently and uniformly sampled from {−1, 1}. The Rademacher complexity
of H is RD(H) = ES∼Dm [R̂S(H)] where each xi ∈ S is independently sampled from some
distribution D.
Theorem 10 (Uniform convergence). Given m i.i.d. samples S = {x1, . . . , xm} from a distribution
D, for a function classH from X to [0, 1], we have

E
S∼Dm

[
sup
h∈H

(
1

m

m∑
i=1

h(xi)− E
x∼D

[h(x)]

)]
≤ 2RD(H).

Thus, Rademacher complexity can be applied to obtain uniform convergence concentration for
empirical means. To obtain an upper bound of Rademacher complexity, the following Massart’s
lemma is popular.
Lemma 11 (Massart). Let A ⊆ Rm be a finite set, and σ1, . . . , σm be the Rademacher variables.
We have

E
σ∼{−1,1}m

[
1

m
sup
x∈A

m∑
i=1

σixi

]
≤ max

x∈A
∥x∥2 ·

√
2 log |A|
m

.

Corollary 12. For a function classH from X to [0, 1], and S = {x1, . . . , xm} ⊆ X, we have

R̂S(H) ≤
√

2 log |A|
m

,

where A = {(h(x1), . . . , h(xm)) |h ∈ H} is the set of all possible values of h ∈ H on S.

A.3 Rademacher complexity for empirical variances

The classic Rademacher complexity is proposed to study the expectation of an empirical process. In
this work, we also need to analyze the empirical variance estimation. To address this problem, we
make a small modification to the definition of Rademacher complexity.
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Definition 13 (Rademacher complexity). LetH denote a set of functions from some domain X2 to
[0, 1] and m > 0 be an even number. The empirical Rademacher complexity of H for a finite set
S = {x1, . . . , xm} ⊆ X is

R̂S(H) = E
σ∼{−1,1}m/2

sup
h∈H

1

m

m/2∑
i=1

σih(x2i−1, x2i)

 ,

where each σi is independently and uniformly sampled from {−1, 1}. The Rademacher complexity
ofH isRD(H) = ES∼Dm [R̂(H)] where each xi is independently sampled from distribution D.

Similar to Theorem 10, we also have a uniform convergence theorem. The proof is similar to
Theorem 10, which applies the classic symmetrization technique. We provide the proof for the sake
of completeness.

Theorem 14. Given m i.i.d. samples S = {x1, . . . , xm} from a distribution D, for a symmetric
function classH from X2 to [0, 1], we have

E
S∼Dm

sup
h∈H

 1

m

m/2∑
i=1

h(x2i−1, x2i)− E
x,x′∼D

[h(x, x′)]

 ≤ 2RD(H).

Proof. For simplicity of notations, we define

ÊS [h] =
1

m

m/2∑
i=1

h(x2i−1, x2i),

and use Ex,x′ [h] to denote Ex,x′ [h(x, x′)] for brevity. Let S′ = {x′
1, . . . , x

′
m} be an independent

copy of S and σ ∼ {−1, 1}m/2 be the Rademacher variables. We have

ES

[
sup
h∈H

(
ÊS(h)− Ex,x′(h)

)]
= ES

[
sup
h∈H

(
ÊS(h)− ES′∼Dm Ê′

S(h)
)]

≤ ES,S′

[
sup
h

(
ÊS(h)− ÊS′(h)

)]

= ES,S′

sup
h

 1

m

m/2∑
i=1

(h(x2i−1, x2i)− h(x′
2i−1, x

′
2i))


= ES,S′,σ

sup
h

 1

m

m/2∑
i=1

σi(h(x2i−1, x2i)− h(x′
2i−1, x

′
2i))


≤ 2RD(H),

where the second line is due to Jensen’s inequality, and the fourth line is due to the fact that S′ is
identically distributed to S.

We can upper bound the modified Rademacher complexity by the following theorem. The proof is
simply by applying Massart’s lemma. The only difference is the constant, since we only have m/2
Rademacher variables here.

Theorem 15. For a symmetric function class H from X2 to [0, 1], S = {x1, . . . , xm} ⊆ X with m
being even, we have

R̂S(H) ≤
√

4 log |A|
m

,

where A = {(h(xi, xj))ij |h ∈ H} is the set of all possible values of h ∈ H on S.
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A.4 Metropolis-Hastings sampling

A Metropolis-Hastings algorithm generates a Markov chain (xt)t≥0 such that xt converges to a
given distribution Π. The algorithm chooses a proposal distribution Q(·), and an initial distribution
Q0. Starting with x0 ∼ Q0, we independently generate x′

t+1|xt ∼ Q(xt) and a random variable
δ ∼ Unif[0, 1] that is uniformly sampled over [0, 1]. The Markov chain is defined by

xt+1 =

x′
t+1, if δ ≤

π(x′
t+1)q(xt|x′

t+1)

π(xt)q(x′
t+1|xt)

,

xt, otherwise,

where π(·) is the probability density of the target distribution Π, and q(·) is the density of the proposal
distribution Q. Note that the proposal distribution is usually symmetric (i.e., q(a|b) = q(b|a), as is
the case of Gaussian proposals in this work). Thus, the acceptance probability can be reduced to the
ratio of the target density.

In this work, we are interested in the convergence rate of the Metropolis-Hastings algorithm, i.e.,
how fast the Markov chain xt converges to Π. Previous work [23] has been devoted to studying the
mixing time of Metropolis-Hastings, i.e., the number of iterations such that the total variation distance
between xt and Π is small enough. However, in the proof of our main theorem, a KL divergence
bound is required. Instead, we need a uniform convergence bound on the probability density ratio of
the sample and the target distribution.
Definition 16 (Minorization [23]). We say the proposal distribution satisfies the global minorization
condition, if q(x′

t+1|xt) ≥ απ(xt) for some α ∈ (0, 1).
Theorem 17. Suppose the proposal probability density q(·) is symmetric and satisfies the global
minorization condition. Let qt(·) denote the probability density of xt and q0(·) is the density of the
initial distribution. If for any x,

1− α0 ≤
q0(x)

π(x)
≤ 1 + α0,

then, for any x, we also have

1− α0 · (1− α)t ≤ qt(x)

π(x)
≤ 1 + α0 · (1− α)t.

Proof. Let φ(x′, x) = min
{
1, π(x′)

π(x)

}
. It is easy to note that min{π(x), π(x′)} = φ(x′, x)π(x) =

φ(x, x′)π(x′). Throughout this proof, we use
∫

to denote the integral over the support of the
distribution Π. By definition, we have

qt+1(x
′) =

(∫
qt(x)q(x

′|x)φ(x′, x)dx+

∫
qt(x

′)q(x′|x)(1− φ(x, x′))dx
)

= qt(x
′) +

∫
(qt(x)φ(x

′, x)− qt(x
′)φ(x, x′)) q(x′|x)dx.

If π(x′) ≥ π(x), we have∫
(qt(x)φ(x

′, x)− qt(x
′)φ(x, x′)) q(x′|x)dx =

∫ (
qt(x)− qt(x

′)
π(x)

π(x′)

)
q(x′|x)dx

=

∫ (
qt(x)

π(x)
− qt(x

′)

π(x′)

)
φ(x, x′)π(x′)q(x′|x)dx.

If π(x′) < π(x), we have∫
(qt(x)φ(x

′, x)− qt(x
′)φ(x, x′)) q(x′|x)dx =

∫ (
qt(x)

π(x′)

π(x)
− qt(x

′)

)
q(x′|x)dx

=

∫ (
qt(x)

π(x)
− qt(x

′)

π(x′)

)
φ(x′, x)π(x′)q(x′|x)dx.
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Combining the above two cases, we have

qt+1(x
′) = qt(x

′) +

∫ (
qt(x)

π(x)
− qt(x

′)

π(x′)

)
q(x′|x)min{π(x), π(x′)}dx.

Let Et(x) =
qt(x)
π(x) − 1. We have

Et+1(x
′) = Et(x

′) +

∫
(Et(x)− Et(x

′))
q(x′|x)min{π(x), π(x′)}

π(x′)
dx

= Et(x
′)

(
1−

∫
φ(x, x′)q(x|x′)dx

)
+

∫
Et(x)φ(x, x

′)q(x|x′)dx.

Since φ(·, ·) ≤ 1, we have 1−
∫
φ(x, x′)q(x|x′)dx ≥ 0. Therefore, we have

Et+1(x
′) ≤ sup

x0

Et(x0)

(
1−

∫
φ(x, x′)q(x|x′)dx

)
+

∫
Et(x)φ(x, x

′)q(x|x′)dx

= sup
x0

Et(x0)−
∫ (

sup
x0

Et(x0)− Et(x)

)
min

{
q(x|x′), q(x|x′)

π(x)

π(x′)

}
dx

≤ sup
x0

Et(x0)− α

∫ (
sup
x0

Et(x0)− Et(x)

)
π(x)dx

= (1− α) sup
x0

Et(x0) + α

∫ (
qt(x)

π(x)
− 1

)
π(x)dx

= (1− α) sup
x0

Et(x0).

Since this bound holds for any x′, we have

sup
x0

Et+1(x0) ≤ (1− α) sup
x0

Et(x0),

which yields the desired bound by induction.

B Proof of Theorem 5

In this section, we prove the main theorem. We first introduce the necessary notations for our proof.
Then, we prove some building blocks in Sections B.2 to B.4. Finally, we put things together to obtain
the desired bound.

B.1 Step 0: Notation preparations

Our analysis is based on the algorithmic stability framework of generalization bounds. Thus, through-
out our analysis, we define S = {I1, . . . , Im} and S′ = {I1, . . . , Im−1, I

′
m} are two sets of problem

instances, with only one different instance. We study the difference between the behaviors of the
algorithm configurator on S and S′.

Let θ1, . . . , θTinit and θ′1, . . . , θ
′
Tinit

denote the sampled parameters using datasets S and S′. Let
ûij = u(θi, Ij , ξij) denote the empirical estimation of Eξ[u(θi, Ij , ξ)] for S and l̂(θi) =
1
m

∑m
j=1 û(θi, Ij , ξij) be the empirical metric function of S. Similarly, we define û′

ij , ξ′ij , and
l̂′ for S′.

We fix the randomness of evaluations such that ξij = ξ′ij for any i, j. Thus, if j ̸= m, we have
ûij = û′

ij . This helps us analyze the stability of the configurator under stochasticity.

B.2 Step 1: Sampling initial parameters

Initially, the algorithm configurator randomly samples Tinit parameters and selects the best one as
the incumbent. Since the initial samplings are only based on prior knowledge, we directly have the
following claim.
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Claim 18. The parameters (θ1, . . . , θTinit) and (θ′1, . . . , θ
′
Tinit

) follow an identical distribution.

Moreover, since S differs S′ by only one instance, the empirical estimations of incumbents are close
to each other, conditioned on the evaluation randomness. Let θinc and θ′inc denote the best parameter
among (θ1, . . . , θTinit) and (θ′1, . . . , θ

′
Tinit

), respectively. We have the following lemma.

Lemma 19. If θi = θ′i for any i ∈ [Tinit], we have
∣∣∣l̂(θinc)− l̂′(θ′inc)

∣∣∣ ≤ 1
m .

Proof. Since ûij = û′
ij for any i ∈ [Tinit], j ∈ [m− 1], we have

∣∣∣l̂(θi)− l̂′(θ′i)
∣∣∣ = 1

m |ûim − û′
im| ≤

1
m for any i ∈ [Tinit]. Thus, we have

l̂(θinc) ≤ l̂′(θinc) +
1

m
≤ max

i
l̂′(θi) +

1

m
= l̂′(θ′inc) +

1

m
.

Similarly, we also have l̂′(θ′inc) ≤ l̂(θinc) +
1
m . Combining these two inequalities yields the desired

bound.

B.3 Step 2: Uniform stability of surrogate models

Now, we consider the stability of the surrogate model. We aim to show that the prediction of the
surrogate model is perturbation-resilient when one instance is modified in the dataset, conditioned on
the randomness of the algorithm and the model.

Suppose the configurator is working on the t-th iteration for some t ∈ [Tinit + 1, Tinit + Titer].
We study the learned surrogate model using datasets D = {⟨(θi, ϕj), ûij⟩}i∈[t],j∈[m] and D′ =
{⟨(θ′i, ϕ′

j), û
′
ij⟩}i∈[t],j∈[m].

Since we fix the randomness of the algorithm configurator, we assume the sampled parameters
(θ1, . . . , θt) = (θ′1, . . . , θ

′
t). Since S and S′ differs by only one instance, we have ϕj = ϕ′

j , ûij = û′
ij

for any i ∈ [t] and j ∈ [m− 1]. Suppose the random forest surrogate model consists of Q decision
trees. We use Treei(θ, ϕ) to denote the output of the i-th decision tree on parameter θ and instance
feature ϕ using training data D. We use

RFE(θ, ϕ) =
1

Q

Q∑
i=1

Treei(θ, ϕ)

and

RFV(θ, ϕ) =
1

Q

Q/2∑
i=1

(Tree2i−1(θ, ϕ)− Tree2i(θ, ϕ))
2

to denote the empirical expectation and the variance prediction, respectively. Similarly, we define
Tree′i, RF

′
E and RF′

V for D′.

Let GapE(θ, ϕ) = RFE(θ, ϕ)−RF′
E(θ, ϕ) and GapV(θ, ϕ) = RFV(θ, ϕ)−RF′

V(θ, ϕ). We can bound
the stability of the prediction as follows.
Lemma 20. For any parameter θ and instance feature ϕ, we have

E[|GapE(θ, ϕ)|] ≤
mbag

m
, E[|GapV(θ, ϕ)|] ≤

2mbag

m
,

where the expectation is taken over the randomness of the bagging.

Proof. Note that |GapE(θ, ϕ)| ≤ 1
Q

∑Q
i=1 |Treei(θ, ϕ) − Tree′i(θ, ϕ)|. Since S and S′ differs by

only one instance Im and I ′m, we have Treei(θ, ϕ) ̸= Tree′i(θ, ϕ) with probability mbag/m. Thus,
E[|GapE(θ, ϕ)|] ≤ 1

Q

∑Q
i=1 mbag/m = mbag/m.

Similarly, |GapV(θ, ϕ)| ≤ 1
Q

∑Q/2
i=1 |(Tree2i−1(θ, ϕ) − Tree2i(θ, ϕ))

2 − (Tree′2i−1(θ, ϕ) −
Tree′2i(θ, ϕ))

2|. With probability 1 − (1 − mbag/m)2 ≤ 2mbag/m, we have that Treei(θ, ϕ) ̸=
Tree′i(θ, ϕ) ∨ Treej(θ, ϕ) ̸= Tree′j(θ, ϕ) holds. Thus, E[|GapV(θ, ϕ)|] ≤ 2mbag/m.
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However, this bound only holds for a single parameter in expectation. The subsequent analysis
requires a uniform bound that holds for any θ. We can use the classic tool of Rademacher complexity
to achieve this.

Let Gap(i)E (θ, ϕ) = Treei(θ, ϕ) − Tree′i(θ, ϕ). We can regard Gap
(i)
E (·, ·) as i.i.d. samples of

E[GapE(·, ·)]. Note that Gap(i) is a function that maps a pair of θ and ϕ to the stability gap on a fixed
decision tree i. We define the dual function of Gap as DualGap(θ,ϕ)E : T 7→ TreeT (θ, ϕ)−Tree′T (θ, ϕ),
where T is a bagging sequence of the random forest that induces a decision tree. For the i-th decision
tree in the random forest, we use DualGap

(θ,ϕ)
E (i) to denote Gap

(i)
E (θ, ϕ).

Let GE = {DualGap(θ,ϕ)E : T 7→ TreeT (θ, ϕ)−Tree′T (θ, ϕ) | (θ, ϕ)} (T is an arbitrary valid decision
tree model, including Tree1, . . . ,TreeQ) be the set of dual functions of Gap that maps decision trees
to prediction values. The empirical Rademacher complexity of GE is

R̂(GE) = E
σ∼{1,−1}Q

[
sup
(θ,ϕ)

1

Q

Q∑
i=1

σiDualGap
(θ,ϕ)
E (i)

]
= E

σ∼{1,−1}Q

[
sup
(θ,ϕ)

1

Q

Q∑
i=1

σiGap
(i)
E (θ, ϕ)

]
.

Lemma 21. We have

R̂(GE) ≤ 2

√
(n+ d)(1 + log(2Q · t ·mbag))

Q
,

where t is the current iteration of the configurator.

Proof. Massart’s lemma shows that for a function class H for a finite set {x1, . . . , xm}, we have

R(H) ≤
√

2 log |A|
m , where A = {(h(x1), . . . , h(xm)) |h ∈ H}. To apply Massart’s lemma, we

need to bound the number of possible values of
(
Gap

(1)
E (θ, ϕ), . . . ,Gap

(Q)
E (θ, ϕ)

)
for all (θ, ϕ). Note

that each decision tree Treei is built upon t ·mbag data points. Each decision tree has at most t ·mbag

leaves. Each leaf of a decision tree is a hyper-rectangle in (n+ d)-dimension space, where n is the
number of parameters and d is the number of features (i.e., (θ, ϕ) ∈ Rn+d). Altogether, there are at
most 2Q · t ·mbag hyper-rectangles. Since the VC-dimension of d-dimensional hyper-rectangles is
2d, these hyper-rectangles divide the Rn+d space into at most (2eQtmbag)

2n+2d regions by Sauer’s
lemma. Plugging this bound into Massart’s lemma yields the desired result.

Corollary 22. We have

E

[
sup
θ,ϕ
|GapE(θ, ϕ)|

]
≲

mbag

m
+

√
(n+ d) log(Q · t ·mbag)

Q
.

Proof. Note that by symmetry,

E

[
sup
θ,ϕ
|GapE(θ, ϕ)|

]
≤ E

[
sup
θ,ϕ

GapE(θ, ϕ)

]
+ E

[
sup
θ,ϕ

(−GapE(θ, ϕ))

]

= 2E

[
sup
θ,ϕ

GapE(θ, ϕ)

]
.

It suffices to consider E
[
supθ,ϕ GapE(θ, ϕ)

]
. The result holds by applying Lemma 21 and Theo-

rem 10.

Next, we consider the upper bound of GapV. Similarly, we define Gap
(i)
V (θ, ϕ) = (Tree2i−1(θ, ϕ)−

Tree2i(θ, ϕ))
2 − (Tree′2i−1(θ, ϕ) − Tree′2i(θ, ϕ))

2 and the dual function DualGap
(θ,ϕ)
V (i) =

Gap
(i)
V (θ, ϕ).

Let GV =
{
DualGap

(θ,ϕ)
V : (i) 7→ Gap

(i)
V (θ, ϕ)

}
be the dual class. By Definition 13, the empirical

Rademacher complexity of GV is

R̂(GV) = E
σ∼{1,−1}Q

 sup
(θ,ϕ)

1

Q

Q/2∑
i=1

σiGap
(i)
V (θ, ϕ)

 .
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Lemma 23. We have

R̂(GV) ≲

√
(n+ d) log(Q · t ·mbag)

Q
.

The proof of this lemma is identical to that of Lemma 21, since the number of possible values of(
Gap

(i)
V (θ, ϕ)

)
i

has the same upper bound as the number of (Gap(i)E (θ, ϕ))i. The only difference
is that we apply Theorem 15 instead of Massart’s lemma. By Theorem 14, we have the following
corollary.

Corollary 24. We have

E

[
sup
θ,ϕ
|GapV(θ, ϕ)|

]
≲

mbag

m
+

√
(n+ d) log(Q · t ·mbag)

Q
.

B.4 Step 3: An analysis of the Metropolis-Hastings sampling

In this step, we analyze the stability of the local search sampling. In our framework, we apply the
Metropolis-Hastings sampling method to sample a configuration where the distribution is relevant to
the expected improvement acquisition function.

Let θinc and θ′inc denote the incumbent parameter for S and S′ for some iteration t, respectively. With
a little abuse of notation, we use l̂inc = l̂(θinc) and l̂′inc = l̂′(θinc) to denote their empirical losses.
Let µ, σ2 and µ′, σ′2 denote the mean and the variance for S and S′ on parameter θ. The expected
improvement for (µ, σ2) is thus EI(µ, σ) = Eu∼N (µ,σ2)

[
max{l̂inc − u, 0}

]
, and we similarly define

EI′(µ′, σ′) for (µ′, σ′2).

Lemma 25. We have

|EI(µ, σ)− EI′(µ′, σ′)| ≤ |l̂inc − l̂′inc|+ |µ− µ′|+ 1

2π
|σ − σ′|.

Proof. Note that |max{l−u, 0}−max{l′−u, 0}| ≤ |l−l′|, and |max{l−u, 0}−max{l−u′, 0}| ≤
|u− u′|. Thus, it suffices to consider the case such that l̂inc = l̂′inc and µ = µ′.

Recall that [28] the expected improvement can be computed by

EI(µ, σ) = (l̂inc − µ) · Φ(Z) + σ · φ(Z),

(
Z =

l̂inc − µ

σ

)
,

where Φ(·) and φ(·) are the c.d.f. and the p.d.f. of Gaussian distribution N (0, 1). Note that for
N (0, 1), we have 0 ≤ φ(·) ≤ 1

2π . Now, fix µ and l̂inc. The derivative of EI w.r.t. σ is

dEI
dσ

= (l̂inc − µ)
dΦ
dσ

+ φ(Z) + σ
dφ
dσ

.

Note that
dZ
dσ

= − l̂inc − µ

σ2
,

dφ
dσ

= −Z · φ(Z) · dZ
dσ

,
dΦ
dσ

= φ(Z) · dZ
dσ

.

Thus, ∣∣∣∣dEIdσ

∣∣∣∣ = ∣∣∣∣Zσ · φ(Z) · −Z
σ

+ φ(Z) + σ · (−Zφ(Z)) · −Z
σ

∣∣∣∣
= |φ(Z)| ≤ 1

2π
,

which indicates that EI is 1
2π -Lipschitz with respect to σ. Therefore, we have |EI(µ, σ)−EI(µ, σ′)| ≤

|σ−σ′|
2π .
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Now, we are ready to prove a stability bound for EI. The mean is estimated by

µ =
1

m

m∑
i=1

RFE(θ, ϕi), µ
′ =

1

m

m∑
i=1

RF′
E(θ, ϕ

′
i).

Since S and S′ differs by only one instance, we have

E
[
sup
θ
|µ− µ′|

]
≤ 1

m
+

∣∣∣∣∣ 1m
m−1∑
i=1

GapE(θ, ϕi)

∣∣∣∣∣
≲

mbag

m
+ R̂(GE)

≲
mbag

m
+

√
(n+ d) log(Q · t ·mbag)

Q
.

In practice, the variance is usually estimated by a sum of the mean of the variance and the variance of
the mean, i.e.,

σ2 =
1

m

m∑
i=1

RFV(θ, ϕi) +
1

m(m− 1)

∑
1≤i<j≤m

(RFE(θ, ϕi)− RFE(θ, ϕj))
2,

and similarly for σ′2. We have

E
[
sup
θ
|σ2 − σ′2|

]
≲

1

m
+

∣∣∣∣∣ 1m
m−1∑
i=1

GapV(θ, ϕi)

∣∣∣∣∣
+

∣∣∣∣∣∣ 1

m(m− 1)

∑
1≤i<j≤m−1

(GapE(θ, ϕi) + GapE(θ, ϕj))

∣∣∣∣∣∣
≲

mbag

m
+ R̂(GV) + R̂(GE)

≲
mbag

m
+

√
(n+ d) log(Q · t ·mbag)

Q
.

Moreover, by an identical argument to Lemma 19, we have |l̂inc − l̂′inc| ≤ 1
m . Applying Lemma 25

yields

|EI(µ, σ)− EI′(µ′, σ′)| ≤ |l̂inc − l̂′inc|+ |µ− µ′|+ 1

2π
|σ − σ′|

≤ |l̂inc − l̂′inc|+ |µ− µ′|+ |σ
2 − σ′2|

4π · σmin
.

After obtaining a stability bound for EI, we analyze the convergence of the local search heuristic. The
local search method can be regarded as a Metropolis-Hastings sampling process to approximate a
distribution Π where the density π(·) ∝ exp(EI(µ(·), σ(·))/τ), and the proposal distribution Q with
density q(·|θ) is the Gaussian distribution N (θ,∆ · In). Let qi(·) denote the density of the sampling
variable after i iterations.
Lemma 26. Let TMH denote the number of iterations in the sampling. We have∣∣∣∣qTMH

(x)

π(x)
− 1

∣∣∣∣ ≤ (exp(1/τ)− 1)

(
1− 1√

(2π∆)n
exp

(
− n

2∆
− 1

τ

))TMH

,

for any x ∈ [0, 1]n.

Proof. Note that the expected improvement satisfies 0 ≤ EI(·, ·) ≤ 1. Thus, EI(·, ·)/τ ∈ [0, 1/τ ].
This indicates that the target density π(·) ∈ [exp(−1/τ), exp(1/τ)]. The initial sample is uniformly
sampled over the parameter space, which means q0(·) = 1.
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The proposal distribution is Q = N (θ,∆ · In). The density is

q(x) =
1√

(2π∆)n
exp

(
− 1

2∆
∥x− θ∥22)

)
≥ 1√

(2π∆)n
exp

(
− n

2∆

)
≥ 1√

(2π∆)n
exp

(
− n

2∆
− 1

τ

)
· π(x).

Therefore, we can apply Theorem 17 to obtain the desired convergence rate.

B.5 Step 4: Putting things together

Finally, we apply the algorithmic stability framework to prove the main theorem.

Proof of Theorem 5. Recall that l(θ) = EI∼D,ξ∼Ξ [u(θ, I, ξ)] denote the loss of parameter θ, and
Θ = (θ1, . . . , θTtotal

) and Θ′ = (θ′1, . . . , θ
′
Ttotal

) denote the iteration paths of the algorithm configurator

on dataset S and S′. For simplicity, we use θ̃ = θ
Ttotal

and θ̃′ = θ′
Ttotal

to denote the final configuration.

Note that θ̃ and θ̃′ are stochastic depending on the randomness of the configurator. We use p(θ̃ = x)

and p(θ̃′ = x) to denote the probability densities of θ̃ and θ̃′.

Note that the randomness of the configurator consists of two parts: The bagging randomness of
the random forest model, and the randomized sampling of the parameters θt. Let RF denote the
randomness of the bagging (i.e., we assume we determine the bagging instances of each iteration
before running the configurator). To apply the algorithmic stability framework, we need to bound

Ẽ
θ,θ̃′

[
|l(θ̃)− l(θ̃′)|

]
= E

RF

[
Ẽ
θ,θ̃′

[∣∣∣l(θ̃)− l(θ̃′)
∣∣∣ ∣∣∣∣RF]

]
.

Now, we fix RF and consider Eθ̃,θ̃′

[∣∣∣l(θ̃)− l(θ̃′)
∣∣∣ ∣∣∣∣RF]. For brevity, we use dx[k] to denote

dx1dx2 · · · dxk in the integral. Fixing RF, we have

Ẽ
θ,θ̃′

[
|l(θ̃)− l(θ̃′)|

]
=

∫
x

l(x) ·
∣∣∣p(θ̃ = x)− p(θ̃′ = x)

∣∣∣ dx
≤
∫
x

∣∣∣p(θ̃ = x)− p(θ̃′ = x)
∣∣∣ dx

=

∫
xTtotal

∣∣∣∣∣
∫
x[Ttotal−1]

p(Θ = x)dx[Ttotal−1] −
∫
x[Ttotal−1]

p(Θ′ = x)dx[Ttotal−1]

∣∣∣∣∣ dxTtotal

≤
∫
x[Ttotal]

|p(Θ = x)− p(Θ′ = x)| dx[Ttotal]

= 2TV(Θ,Θ′) ≤
√

2KL(Θ∥Θ′).

The first inequality is due to l(θ) ∈ [0, 1], the second inequality is due to |
∫
x
f(x)dx| ≤

∫
x
|f(x)|dx,

and the last inequality is due to Pinsker’s inequality (Theorem 8).

Therefore, it suffices to upper-bound the KL divergence between two iteration paths. By definition,

KL(Θ∥Θ′) = Ex∼Θ

[
log

p(Θ = x)

p(Θ′ = x)

]
.

We aim to bound the ratio between the densities of Θ and Θ′. In the following, for simplicity
of notations, we use p(x), p′(x) to denote p(Θ = x), p(Θ′ = x), and use p(xi), p

′(xi) to denote
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p(θi = xi), p(θ
′
i = xi). Note that

p(x)

p′(x)
=

p(x1, . . . , xTinit)
∏Ttotal

t=Tinit+1 p(xt|x1, . . . , xt−1)

p′(x1, . . . , xTinit)
∏Ttotal

t=Tinit+1 p
′(xt|x1, . . . , xt−1)

=

∏Ttotal

t=Tinit+1 p(xt|x1, . . . , xt−1)∏Ttotal

t=Tinit+1 p
′(xt|x1, . . . , xt−1)

=

Ttotal∏
t=Tinit+1

p(xt|x1, . . . , xt−1)

p′(xt|x1, . . . , xt−1)
,

where the second equality is due to Claim 18. Now, fix an iteration number t, we bound the ratio
between p(xt|x1, . . . , xt−1) and p′(xt|x1, . . . , xt−1).

Since we condition on the same x1, . . . , xt−1, the previously sampled parameters for S and S′ are
the same. Let qTMH

(xt) denote the sampled parameter for xt using Metropolis-Hastings. Thus,
qTMH

(xt) = p(xt|x1, . . . , xt−1). Let π(xt) denote the target distribution of Metropolis-Hastings. We
similarly define q′TMH

and π′ for S′. By definition,

p(xt|x1, . . . , xt−1)

p′(xt|x1, . . . , xt−1)
=

qTMH
(xt)

q′TMH
(xt)

=
π(xt)

π′(xt)
· qTMH

(xt)

π(xt)
· π′(xt)

qTMH
(xt)

.

We bound each term respectively. We have

π(xt)

π′(xt)
=

(
exp(EI(µ(xt), σ(xt))/τ)∫

x
exp(EI(µ(x), σ(x))/τ)dx)

)
·
(

exp(EI′(µ′(xt), σ
′(xt))/τ)∫

x
exp(EI′(µ′(x), σ′(x))/τ)dx)

)−1

= exp

(
EI(µ(xt), σ(xt))− EI′(µ′(xt), σ

′(xt))

τ

)
·
∫
x
exp(EI′(µ′(x), σ′(x))/τ)dx∫
x
exp(EI(µ(x), σ(x))/τ)dx

≤ exp

(
2

τ
· sup

x
|EI(µ(x), σ(x))− EI′(µ′(x), σ′(x))|

)
.

Note that π(xt) and π′(xt) are actually random variables depending on the bagging randomness of
the random forest. Now, we consider the randomness of RF. We have

ERF

[
log

π(xt)

π′(xt)

]
≤ ERF

[
2

τ
· sup

x
|EI(µ(x), σ(x))− EI′(µ′(x), σ′(x))|

]
≤ ERF

[
2

τ
· sup

x

(
|l̂inc − l̂′inc|+ |µ− µ′|+ 1

4πσmin
|σ2 − σ′2|

)]

≲
1

τσmin

(
mbag

m
+

√
(n+ d) log(Qtmbag)

Q

)
.

Moreover, by Lemma 26, we have

log
qTMH

(xt)

π(xt)
≤ log

1 +

(
exp

(
1

τ

)
− 1

)(
1− 1√

(2π∆)n
exp

(
− n

2∆
− 1

τ

))TMH


≤
(
exp

(
1

τ

)
− 1

)(
1− 1√

(2π∆)n
exp

(
− n

2∆
− 1

τ

))TMH

≲

(
exp

(
1

τ

)
− 1

)
exp

(
− TMH√

(2π∆)n
exp

(
− n

2∆
− 1

τ

))
,
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where the second inequality is due to log(1 + x) ≤ x, and the last one is due to (1− x)1/x ≈ 1/e
for small enough x > 0. We also have

log
π′(xt)

q′TMH
(xt)

≤ log

1 + 2

(
exp

(
1

τ

)
− 1

)(
1− 1√

(2π∆)n
exp

(
− n

2∆
− 1

τ

))TMH


≤ 2

(
exp

(
1

τ

)
− 1

)(
1− 1√

(2π∆)n
exp

(
− n

2∆
− 1

τ

))TMH

≲

(
exp

(
1

τ

)
− 1

)
exp

(
− TMH√

(2π∆)n
exp

(
− n

2∆
− 1

τ

))

for sufficiently large TMH, since 1
1−x ≤ 1 + 2x for x ∈ [0, 0.5].

Therefore,

KL(Θ∥Θ′) = Ex

[
Ttotal∑

t=Tinit+1

log
p(xt|x1, . . . , xt−1)

p′(xt|x1, . . . , xt−1)

]

≤
Ttotal∑

t=Tinit+1

sup
xt

(
log

π(xt)

π′(xt)
+ log

qTMH
(xt)

π(xt)
+ log

π′(xt)

qTMH
(xt)

)
.

Plugging this bound into E[|l(θ̃)− l(θ̃′)|] ≤
√

2KL(Θ∥Θ′) yields

Ẽ
θ,θ̃′

[
|l(θ̃)− l(θ̃′)|

]
≲
√
Titer (εStab + εMH),

where

εStab =
1

τσmin

(
mbag

m
+

√
(n+ d) log(QTtotalmbag)

Q

)
,

and

εMH =

(
exp

1

τ
− 1

)
exp

(
− TMH√

(2π∆)n
exp

(
− n

2∆
− 1

τ

))
.

Applying Theorem 3 yields the desired result.

Algorithm 2 An algorithm to compute the empirical Rademacher complexity.

Input: The random forest predictor Tree1, . . . ,TreeQ.
Output: The empirical Rademacher complexity ĜRF and ĜVRF.

1: Let ĜRF, ĜVRF ← 0.
2: for k = 1, . . . ,M do
3: Randomly sample the Rademacher variables σ1, . . . , σQ ∼ {−1, 1}Q.
4: Let MAXE,MAXV ← 0.
5: for (θ, ϕ) in each piece of (Treei(·, ·))i (by calling Algorithm 3) do
6: Let MAXE ← max{MAXE,

1
Q

∑Q
i=1 σiTreei(θ, ϕ)}.

7: Let MAXV ← max{MAXV,
1
Q

∑Q/2
i=1 σi(Tree2i−1(θ, ϕ)− Tree2i(θ, ϕ))

2}.
8: end for
9: Let ĜRF ← ĜRF +MAXE, and ĜVRF ← ĜVRF +MAXV.

10: end for
11: Let ĜRF ← ĜRF/M and ĜVRF ← ĜVRF/M .
12: return ĜRF and ĜVRF.
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C Numerical Experiments

C.1 Data-dependent empirical Rademacher complexity

In our generalization bound, the Õ(
√
(n+ d)/Q) term usually dominates the generalization error,

since it converges slower as the number of decision trees Q grows, compared with the number
of samples m. As shown in Appendix B.3, this term comes from the Rademacher complexities
R̂(GE) and R̂(GV). In fact, we can derive tighter data-dependent bounds by computing the empirical
Rademacher complexity.

Notice that

R̂(GE) = E
σ∼{−1,1}Q

[
sup
θ,ϕ

1

Q

Q∑
i=1

σiGap
(i)
E (θ, ϕ)

]

= E
σ∼{−1,1}Q

[
sup
θ,ϕ

1

Q

Q∑
i=1

σi

(
Treei(θ, ϕ)− Tree′i(θ, ϕ)

)]

≤ E
σ∼{−1,1}Q

[
sup
θ,ϕ

1

Q

Q∑
i=1

σiTreei(θ, ϕ)

]
+ E

σ∼{−1,1}Q

[
sup
θ,ϕ

1

Q

Q∑
i=1

σiTree
′
i(θ, ϕ)

]
.

Note that the training samples for Tree and Tree′ are identical (though not independent). Thus, it
suffices to compute the Rademacher complexity of the decision tree class

R̂RF = Eσ

[
sup
θ,ϕ

1

Q

Q∑
i=1

σiTreei(θ, ϕ)

]
,

given the problem instances for the algorithm configurator. Similarly, for R̂(GV), it suffices to
compute the empirical Rademacher complexity

R̂V
RF = Eσ

sup
θ,ϕ

1

Q

Q/2∑
i=1

σi(Tree2i−1(θ, ϕ)− Tree2i(θ, ϕ))
2

 .

Since the decision tree predictor is a piecewise-constant function, it is easy to compute the values
of ĜRF and ĜVRF. We can randomly sample the values of Rademacher variables σ and compute the
supremum by enumerating all pieces (Algorithm 2). By Hoeffding inequality, Algorithm 2 returns
ĜRF and ĜVRF with an additive error of at most O(

√
log(1/δ)/M) with probability at least 1− δ. The

key problem is to compute the piecewise-constant structure of (Treei(·, ·))i for the random forest
model in Line 5 of Algorithm 2.

To enumerate the piecewise structure of the random forest model, we propose a divide-and-conquer
algorithm (Algorithm 3). Suppose the total number of pieces of (Treei(·, ·))i is P . It is easy to note
that Algorithm 3 finds all pieces in O(P · (n+ d)) time.

C.2 Experimental results

In this section, we present numerical results for our generalization bound using the empirical
Rademacher complexity by Algorithm 2. Experiments are conducted on a 2.0GHz Intel CPU with 4
cores.

AC settings. We perform experiments on the algorithm configuration of the SCIP integer program-
ming (IP) solver. SCIP is a classic open-source IP solver with many tunable parameters4. For
simplicity, we select four continuous parameters that most significantly influence the performance of
the solver. These parameters directly control the key components of the solver, including branching,
conflict analysis, cut generation, and presolving. All these four parameters lie in [0, 1]. See Table 2
for concrete descriptions. We tune these parameters with other ones being the default values to
minimize the total running time. In the surrogate model, besides the algorithm parameter, we use two

4See https://www.scipopt.org/doc/html/PARAMETERS.php for a complete list of parameters.
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Algorithm 3 A divide-and-conquer algorithm to enumerate the pieces of (Treei(·, ·))i.
Input: The random forest predictor Tree1, . . . ,TreeQ.
Output: Each piece (θ, ϕ) of (Treei(·, ·))i.

1: function DIVIDE-AND-CONQUER(Space,Node = (Nodei)i)
2: if Nodei is a leaf for all i = 1, . . . , Q then
3: return {Space}.
4: end if
5: Find i such that Nodei that is not a leaf node.
6: Let Left and Right be the left and right children of Nodei, respectively.
7: Let Space1 and Space2 be the parameter and feature space of Left and Right, respectively.
8: Let Pieces← ∅.
9: if Space ∩ Space1 ̸= ∅ then

10: Let LeftNodes = (Node1, . . . ,Nodei−1, Left,Nodei+1, . . . ,NodeQ).
11: Let Pieces← Pieces∪ DIVIDE-AND-CONQUER(Space ∩ Space1, LeftNodes).
12: end if
13: if Space ∩ Space2 ̸= ∅ then
14: Let RightNodes = (Node1, . . . ,Nodei−1,Right,Nodei+1, . . . ,NodeQ).
15: Let Pieces← Pieces∪ DIVIDE-AND-CONQUER(Space ∩ Space2,RightNodes).
16: end if
17: return Pieces.
18: end function
19: Let Space← [0, 1]n+d denote the complete parameter and feature space.
20: Let Node← (Root1, . . . ,RootQ) where Rooti is the root node of the i-th decision tree.
21: return DIVIDE-AND-CONQUER(Space,Node).

Table 2: Selected parameters of SCIP in our experiments.
Name Implication

branching/scorefac The branching score factor to weigh downward and upward gain prediction in the score function.
conflict/maxvarsfac The maximal fraction of variables involved in a conflict constraint.

separating/maxbounddist The maximal relative distance compared to the best node’s dual bound for applying separation.
presolving/abortfac Abort presolving, if at most this fraction of the problem was changed in the last round.

values, the number of integer variables and the number of continuous variables in the IP formulation,
as the instance features.

We implement the model-based algorithm configurator in Algorithm 1. We set the (hyper-)parameters
of the configurator as follows: Tinit = 20, Titer = 10, mbag = 10, Q = 1000, σmin = 0.1, τ = 0.1,
TMH = 105, and ∆ = 0.03. We set the maximum time limit of the IP solver to be 60 seconds, and
normalize the running time by the time limit so that the performance metric lies in [0, 1]. If the
solver exceeds the limit, the performance is 1.0. With Q = 1000, the data-dependent Rademacher
complexity computed by Algorithm 2 is about 10−3, which is rather small and in the same order as
mbag/m.

We tune these parameters on two applications of integer programming: VLSI routing and facility
location.

VLSI routing [29] is the problem of interconnecting multiple sets of points Pi (called nets) on a grid
graph. For each net Pi, select a rectilinear Steiner tree topology to connect all points and minimize
the total length of all trees. Each Steiner tree should not intersect with topologies of other nets. We
randomly synthesize instances of VLSI routing on a 20× 20 grid graph with 5 to 10 nets. Each net
randomly consists of 2 to 5 points. The length of each grid edge is set to be 1.

Facility location is a classic operations research problem that selects the best locations for a set of
facilities. There are n customers and m facilities that have not been built. Customer i can obtain
some fraction yij of the good from facility j with a cost dijyij . Building a facility j has a cost fj .
We aim to select a subset of facilities to minimize the total cost. We randomly synthesize instances of
facility location with n ∈ [400, 500] customers and m ∈ [200, 300] facilities. The cost is uniformly
sampled from [0, 104].
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Table 3: Verification of the assumptions in Section 3.1. The performance results give 1-sigma error
intervals, which characterize the performances on different instances in the test set.

Configurator VLSI routing Facility location

Ours 0.3657± 0.1041 0.1295± 0.0970
SMAC [2] 0.3629± 0.1125 0.1244± 0.0954
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Figure 2: Our generalization bounds for facility location (left) and VLSI routing (right).

Generalization bounds. We plot the generalization bounds in Figure 2, as well as the empirical
test loss on the dataset. The data-dependent Rademacher complexity bound is computed using
Algorithm 2. We can notice that the generalization error converges to zero and our bound is non-
vacuous as the sample number is larger than about 104.

Verification of our assumptions. We make some assumptions on the model-based algorithm
configurator we considered in Section 3.1. Now, we empirically show that these assumptions are
reasonable. They do not noticeably affect the performance of the configurator. We compare our
configurator with the classic SMAC [2] configurator. The results are illustrated in Table 3. It can be
seen that the effect of our modifications to the configurator is very small. This verifies the rationality
of our assumptions.
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