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Abstract

Classical Planning seeks to find a sequence of actions, a plan,
that maps a starting state into one of the goal states. If a tra-
jectory appears to be leading to the goal, should we priori-
tise exploring it? Seminal work in Goal Recognition (GR)
has defined GR in terms of a Classical Planning problem,
adopting classical solvers and heuristics to recognise plans.
We come full circle, and study the adoption and properties
of GR-derived heuristics for seeking solutions to Classical
Planning problems. We propose a new class of efficiently-
computable heuristics and show that they improve the perfor-
mance of top-scoring planners. Our work provides founda-
tional knowledge for understanding and deriving probabilis-
tic heuristics for Planning.

Introduction
We study the connection between goal recognition (GR) and
classical planning, and how GR can be used to interpret
(and develop) heuristic search in AI Planning, thus doing
a full loop after the seminal work on using planning to per-
form GR (Ramirez and Geffner 2009, 2010). Classical plan-
ning is the field of AI that seeks to find a sequence of ac-
tions, a plan, that maps an initial state in a problem into
a state that satisfies a specific goal condition. In classical
planning, actions are deterministic, states are fully observ-
able and represented through binary variables (facts), and
no other actions occur outside the plan (i.e., static environ-
ment). A common strategy adopted by solvers is to perform
a search over the state space, using heuristics which estimate
the distance to the goal, such as the FF (Bonet and Geffner
2001; Hoffmann and Nebel 2001) and Landmark (Richter,
Helmert, and Westphal 2008) heuristics, to guide the search.
Other techniques have also proven to be effective in enhanc-
ing search efficiency. These include identifying helpful ac-
tions (Hoffmann and Nebel 2001), which prioritise opera-
tors likely to contribute to goal achievement, and leverag-
ing novelty measures (Lipovetzky and Geffner 2012, 2017),
which favor exploration of states exhibiting previously un-
seen combinations of features. While these techniques do
not estimate goal distance directly, they complement heuris-
tic search by prioritizing states that aid the search through
alternative mechanisms.

The goal recognition (GR) task involves inferring an
agent’s goals or plans based on partial observations of

its behaviour (Sukthankar et al. 2014).1 Traditional ap-
proaches rely on a predefined plan library, which encodes
known plans for implicit goals, allowing recognition through
matching observed actions to entries in the library (Kautz
and Allen 1986). More recent formulations, such as goal
recognition as planning (Ramirez and Geffner 2009, 2010),
cast recognition as a planning problem itself: a (declarative)
goal is considered more likely if the observed actions align
with an optimal or near-optimal plan to achieve it. Recent
contributions have extended this paradigm to account for
irrational behaviour of agents (Masters and Sardiña 2021),
as well as adopting estimated measures and using informa-
tion contained in the effects of observed actions to recognise
goals and plans (Pereira, Oren, and Meneguzzi 2017; Wilken
et al. 2024).

In light of these recent developments, we revisit search
for resource-bounded agents that seek to perform an intelli-
gent search. Due to its resource limitations, such agents bias
the search towards some fragment of all possible traces (Pol-
lack 1992; Bratman, Israel, and Pollack 1988). We analyze
the intentionality of these traces with the lens of work in
GR, under the intuition that some traces are seen as ob-
servations that are “more intended” towards the goal than
others, and push our search algorithms to explore “more in-
tended paths”. This process is framed as a binary GR prob-
lem, where rather than estimating the intentionality of one
observation towards multiple goals, we aim to assign and
compare the intentionality of different observations towards
a distinguished goal.

Contributions. We first present a plan-library model of GR
for a resource-bounded agent in a planning domain. This
allows us to define the “goal-intentionality” of observed
traces, and study the properties of solvers that bias their
search through such definitions. We then connect our ac-
count to previous contributions in probabilistic goal recog-
nition through a re-definition of the P (O | G) quantity, and
derive a new formulation for the cases where observations
are described through a set of independent facts. Our the-
ory informs the definition of a new class of intention-based
heuristics for classical planning, which we show are helpful

1Other common terms are Plan Recognition (PR) or Intention
Recognition (IR). While suble differences exists among them, in
this paper, we shall use these terms interchangeably.



in improving the state of the art in classical planning bench-
marks. We tie our results to our theory, providing experi-
mental evidence of theorised properties of our heuristics.

Preliminaries
The classical planning model is defined as Φ =
⟨S, s0, SG, A, f⟩, where S is the discrete finite state space,
s0 ∈ S is the initial state, SG ⊆ S is the set of goal states,
A is the set of (deterministic) actions, and f : A × S 7→ S
denotes the model partial transition function, with f(a, s)
denoting the next state s′ ∈ S after applying action a ∈ A in
state s ∈ S. When f is undefined, the action is not applicable
in the state. We write A(s) to denote the set of actions appli-
cable in state s, i.e., A(s) = {a ∈ A | f(a, s) is defined}. A
solution to a classical planning model is given by a plan,
a sequence of actions ⟨a0, . . . , am⟩ that induces a state
sequence ⟨s0, . . . , sm+1⟩ such that ai ∈ A(si), si+1 =
f(ai, si), and sm+1 ∈ SG for i ∈ {0, . . . ,m}.

A STRIPS2 (Fikes and Nilsson 1971) problem is defined
through tuple P = ⟨F,A, I,G⟩, where F denotes the set of
boolean variables, or fluents, A is the set of actions a, I ⊆ F
is the set of atoms that fully describe the initial state, and
G ⊆ F is the partial assignment that describes goal states.
We assume unit cost actions in this work.

Planning Model Notation Given a Classical Planning
problem P , a trajectory denotes a sequence of alternating
states and actions ⟨sk, ak, sk+1, ak+1, . . . , sm, am, sm+1⟩,
where both the first and last elements are states, such that
si ∈ S, ai ∈ A(si), and si+1 = f(si, ai); where
k ≤ i < m + 1. Every trajectory induces two projec-
tions: an a-trajectory, which is the sequence of actions
⟨ak, ak+1, . . . , am⟩, and an s-trajectory, which is the se-
quence of states ⟨sk, sk+1, . . . , sm+1⟩. We use T (si, π) to
represent the s-trajectory induced by an a-trajectory π ap-
plied from state si. We use L(s, π) to denote the last state
sm+1 ∈ S in the s-trajectory T (s, π). For simplicity, when
s is s0 (the initial state of P as per I), we just write T (π)
and L(π), resp.

We place two constraints on considered trajectories: 1)
acyclic: no state may appear more than once in a trajectory;
and 2) non-goal-extending: goal states can only appear as
the last state of the trajectory. These are reasonable assump-
tions, as any cycle is redundant and extending a-trajectories
beyond a goal state is superfluous for the problem consid-
ered. Given Si, Sj ⊆ S, we use Π(Si, Sj) to denote the set
of acyclic and non-goal-extending a-trajectories that can be
applied to a state si ∈ Si to yield a valid s-trajectory that
begins at state si and ends at state sj ∈ Sj . A plan is then an
a-trajectory π ∈ Π(s0, SG); in other words, an a-trajectory
that, when applied to s0, reaches a valid goal state sg ∈ SG.
Note that more than one sequence of actions (a-trajectories)
may yield the same history of states (s-trajectories). Sim-
ilarly, we use I-reachable a-trajectory to refer to all a-
trajectories π ∈ Π(s0, S). We adopt the definition of an
observation sequence from previous Plan and Goal Recog-
nition literature (Ramirez and Geffner 2009; Masters and

2Stanford Research Institute Problem Solver

Sardiña 2021) as any sequence of actions ⟨o1, ..., om⟩, with
oi ∈ A. An action sequence satisfies an observation se-
quence iff it embeds it, meaning that there is a monotonic
function f that maps each observation oi ∈ A to the index of
an identical action in the action sequence such that f(oi) <
f(oj) for all j > i. It follows from the above definitions
that, given the set O of all possible observation sequences
for problem P , Π(s0, SG) ⊆ Π(s0, S) ⊆ Π(S, S) ⊆ O.

An a-trajectory π′ contains a-trajectory π, written π ⊑ π′,
iff there exist, possibly empty, sequences of actions α and
β such that π′ = α · π · β. This relation is reflexive, i.e.,
an a-trajectory contains itself. An a-trajectory π′ extends an
a-trajectory π, written π ⊑pfx π′, iff there exists a, possi-
bly empty, suffix β such that π′ = π · β. We define the
set of maximal a-trajectories M as the set of I-reachable
a-trajectories that are not extended by any other I-reachable
a-trajectory in Π(s0, S):

M = {π ∈ Π(s0, S) | ∀π′ ∈ (Π(s0, S)\{π}), π ̸⊑pfx π′}.

Thus, Π(s0, SG) ⊆ M ⊆ Π(s0, S). We also define the
operator ∝rank, which indicates that two quantities induce
the same ranking (the ordering is preserved): k ∝rank l :=
k(x) < k(y) ⇐⇒ l(x) < l(y).

Intention-Based Search
In this section we introduce the characteristics of our Classi-
cal Planning framework through a model that makes use of
an explicit library of sampled a-trajectories to describe de-
rived probabilities. Our framework imagines a Plan Recog-
nition problem where an agent that is at the initial state s0
can sample from the set of all maximal a-trajectories M
starting at s0, and performs two operations: 1) it identi-
fies a non-empty subset M̂ ⊆ M of candidate maximal
a-trajectories it may take; and 2) it assigns a weight to ev-
ery maximal a-trajectory, a measure of “preference” for that
a-trajectory. Given the subset of maximal a-trajectories M̂
that we assume the agent may consider taking, the relative
weight of a maximal a-trajectory πM ∈ M̂ indicates the
probability the agent will select that a-trajectory, as opposed
to other a-trajectories in M̂. Sampling a subset of all maxi-
mal a-trajectories can be viewed as the agent being resource
constrained, and thus accounting for the capacity to per-
form operations on only a subset of all available maximal a-
trajectories. This framework is a construct that explains how
we derive the probabilities we use as heuristics for planning
in terms of an underlying goal recognition problem.

IRPL Model
We provide a I-Reachable Plan-Library (IRPL) model that
only considers I-reachable a-trajectories in a planning prob-
lem as valid observation sequences, and derives probabil-
ities relative to an implicit library of sampled maximal a-
trajectories, and the subset of those a-trajectories that con-
stitute valid plans. This allows us to illustrate the useful-
ness of adopting such probabilities as “heuristic signals”
in a Planning problem, under the simplified ideal scenario
where such probabilities are exact estimates. Given prob-
lem description ⟨F,A, I,G⟩ and the set of all I-reachable



a-trajectories Π(s0, S), an agent at initial state s0 samples
the set M̂ of maximal a-trajectories it may follow, and as-
signs a weight to each maximal a-trajectory according to a
weight function w : M → R+. Let the set of sampled plans
be M̂G = Π(s0, SG) ∩ M̂. For I-reachable a-trajectories
O ∈ Π(s0, S), let C(O) = {π′ ∈ M̂ | O ⊑pfx π′}
be the set of all sampled maximal a-trajectories that ex-
tend O. Let CG(O) = {π′ ∈ M̂G | O ⊑pfx π′} be
the set of sampled plans that extend O, and C¬G(O) =

{π′ ∈ (M̂ \ M̂G) | O ⊑pfx π′} be the maximal non-
plans extending O, such that CG(O)

⋃
C¬G(O) = C(O)

and CG(O)
⋂
C¬G(O) = ∅.

We frame these sets of maximal a-trajectories π as events
E , with probability:

P (E) =
∑
π′∈E

w(π′)/
∑

π′′∈M̂

w(π′′) (1)

Thus, P (G) is the event that π is a plan:

P (G) := P (M̂G) =
∑

π′∈M̂G

w(π′)/
∑

π′′∈M̂

w(π′′) (2)

Similarly, P (¬G) := P (M̂ \ M̂G).
P (O) is the event that π extends O:

P (O) := P (C(O)) =
∑

π′∈C(O)

w(π′)/
∑

π′′∈M̂

w(π′′) (3)

We can then obtain conditional probability P (O | G) :=

P (C(O) | M̂G):

P (O | G) =
∑

π′∈CG(O)

w(π′)/
∑

π′′∈M̂G

w(π′′) (4)

where CG(O) = C(O)
⋂
M̂G.3

Finally, Bayesian posterior P (G | O) becomes the weight
of all sampled plans to the goal extending O, over the weight
of all sampled maximal a-trajectories extending O:

P (G | O) =
p(O | G)p(G)

p(O)
=

∑
π′′∈CG(O) w(π

′′)∑
π′∈C(O) w(π

′)
(5)

As a result, for any set of a-trajectories for which proba-
bilities P (O | G) and P (G | O) are defined for all elements
in the set, we can obtain a ranking through

argmax
O

P (O | G) = argmax
O

∑
π′∈CG(O)

w(π′) (6)

argmax
O

P (G | O) = argmax
O

P (O | G)

P (O | ¬G)
(7)

where equation 7 is obtained by taking argmaxO P (G |
O)/P (¬G | O) and noting that P (G) and P (¬G) are con-
stant when considering a single goal in planning problems.

3These probabilities are well-defined: P (G) + P (¬G) = 1,
and P (O) + P (¬O) = 1, where P (¬O) := P (M̂ \ C(O));
calculating P (O,G) = P (O | G) · P (G) and using P (¬G) to
obtain P (O,¬G), then P (O,G) + P (O,¬G) = P (O).

Framework Properties
We first state the results4, followed by analysis. When ex-
tending the domain of conditional probabilities to the set of
all possible observations in a planning problem, we adopt
the convention of setting undefined probabilities to 0. This
reflects the perspective of a resource-bounded agent, which
cannot account for trajectories it has never observed and
therefore would not consider following them.

Claim 1 Given non-empty M̂ and M̂G, and any w, P (Oe |
G) ≤ P (Op | G) if Oe extends Op.
Claim 2 P (O | G) = 0 and P (G | O) = 0 for all a-
trajectories O that are not extended by any plan π′ ∈ M̂G.

Lemma 1 Given non-empty M̂ and M̂G, and any w, for
all a-trajectories Oe extending an a-trajectory Op by one
action, maxOe

P (G | Oe) ≥ P (G | Op).

Theorem 1 Given non-empty M̂ and M̂G, and any w, a
planner that expands maxP (G | O) will find a plan in num-
ber of expansions m ≤ maxπ′∈M̂G

|π′|.

A maximal a-trajectory set M̂ is Goal-Adjacent Single-
Plan (GASP) if every a-trajectory that is adjacent to a goal
(can be extended by a single action to reach a goal state) is
extended by only one plan in M̂G.

Lemma 2 Let M̂ be a non-empty GASP set of sampled a-
trajectories, and let |M̂G| > 0. Suppose w is a weight func-
tion such that w(π) > w(π′) ⇐⇒ cost(π) < cost(π′). A
planner that expands a-trajectories in order of maxP (O |
G) is guaranteed to find a minimal-cost plan among all valid
plans in the sample M̂. The result also holds under the
weaker condition cost(π) ≤ cost(π′) ⇒ w(π) ≥ w(π′),
provided ties in P (O | G) are broken by preferring shorter
trajectories.
Lemma 3 Under the same conditions as Lemma 2, except
without requiring M̂ to be GASP, the first expanded goal
node is guaranteed to be optimal w.r.t. all plans in M̂.
Lemma 4 A planner that expands a-trajectories in order of
maxP (O | G) will expand at most

∑
π∈M̂G

(|π|) − |M̂G|
nodes.
Theorem 2 Given non-empty M̂ and M̂G, let M̂ be
GASP. For a planner that expands a-trajectories in order
of maxP (O | G); as samples are added to M̂, the change
in plan length found is non-increasing, and the change in
worst-case number of expansions is non-decreasing.

Assume M̂G may contain “mistakes”: trajectories that
do not in fact reach the goal. We model this by assign-
ing each π ∈ M̂G a Bernoulli(γ) indicator for being a
plan. Thus, in expectation, only a fraction γ of M̂G are
plans. To capture this effect, goal–restricted weights (i.e.,
weights in sums over M̂G or CG(O)) are deterministically
rescaled by γ, wγ(π) := γ w(π). We then define P γ(O |
G) :=

∑
π′∈CG(O) w

γ(π′) /
∑

π′′∈M̂G
wγ(π′′) and

P γ(G | O) :=
∑

π′′∈CG(O) w
γ(π′′) /

∑
π′∈C(O) w(π

′).

4Supplementary proofs are provided in the appendix.



Lemma 5 P γ(O | G) = P (O | G) and P γ(G | O) =
γ · P (G | O).

Theorem 3 The argmax over O in Equations 6 and 7 does
not change when using P γ(O | G) and P γ(G | O).

Remarks. We briefly summarise general properties de-
rived from the presented theorems. Claim 2 implies that
following any a-trajectory with both P (O | G) > 0 and
P (G | O) > 0 is a valid strategy for reaching a goal. Theo-
rem 1 shows that expanding nodes according to Equation 7
follows a hill climbing strategy and is strongly goal directed.
In contrast, Equation 6 induces an exploratory strategy, akin
to breadth first search as shorter a-trajectories tend to have
higher P (O | G) probability, as noted in Claim 1. This
approach expands sampled solution trajectories until it se-
lects a sample optimal plan. Theorem 2 reflects the sam-
pling exploration-exploitation tradeoff: increasing the num-
ber of samples in M̂ can improve solution quality, but also
increases the worst case number of expansions. Lastly, The-
orem 3 shows that this expansion order remains valid even
when calculating estimates incorporating a constant error
rate across all sampled trajectories, hinting at further appli-
cability to realistic imperfect sampling scenarios.

Uniform Regimes
In what follows, we introduce and analyze the properties of
two “basic” weight functions. We consider these as the two
general uniform weighting processes, where we assign equal
probability to, respectively (1) every sampled maximal a-
trajectory, (2) every action choice in state transitions.

We define a Uniform Maximal a-trajectory Probability
(UMP) weight function as a weight function w(π) = c
where c is a non-zero constant, implying a uniform probabil-
ity of the agent selecting any sampled maximal a-trajectory
in M̂. Let us define quantities NT = |M̂|, NG = |M̂G|,
NC(O) = |C(O)|, and NCG(O) = |CG(O)|.

Corollary 1 Given non-empty M̂ and M̂G, and a UMP
weight function w, the probabilities obtained become
P (O) = NC(O)

NT
, P (G) = NG

NT
, P (O | G) = NCG(O)

NG
∝

NCG(O), P (G | O) = p(O|G)p(G)
p(O) = NCG(O)

NC(O) .

Corollary 2 Given any M̂ and a UMP weight function w,
let each trajectory in M̂G be subject to a Bernoulli mistake
probability 1− γ. A planner selects argmaxP γ(O | G) ex-
pands, in expectation, the a-trajectory that is extended by
the greatest number of plans (i.e., trajectories in M̂G that
actually reach the goal).

Corollaries 1 and 2 show that under a UMP weight func-
tion, P (O | G) is proportional to the number of plans ex-
tending O, and ordering the open list by argmaxP (O |
G) favours such prefixes. Ordering by argmaxP (G | O)
favours prefixes with a higher ratio of plan completions to
non-plan continuations. Both improve guidance toward so-
lutions and reduce node expansions. Corollary 2 also shows
that, even when assuming a uniform chance of mistakes,
P (O | G) remains unchanged and still favours traces that
are expected to lead to more plans.

A Uniform Transition Probability (UTP) weight func-
tion assigns to a maximal I-reachable a-trajectory π =
⟨a0, . . . , ak−1⟩ the product of uniform action probabilities
at each step, w(π) =

∏k−1
i=0

[
|A(si)|

]−1
, where s0 is the ini-

tial state, si+1 = f(ai, si), and A(si) is the set of applicable
actions at state si. That is, at each step the agent selects an
applicable action with uniform probability.

Lemma 6 Given non-empty M̂ and M̂G, a UTP weight
function w, and an a-trajectory O that is extended by single
solution plan πs, the number of nodes generated to find πs by
a planner that expands according to maxP (O | G) is lower
bounded by − ln [P (O | G) · P (G)] · e ∝ − ln[P (O | G)].

Theorem 4 Given non-empty M̂ and M̂G, a UTP weight
function w, and a planner that expands according to
maxP (O | G), a lower-bound number of node generations
required to achieve any plan that extends O is − ln[P (O |
G) · P (G)] · e.

Theorem 4 shows that expanding nodes according to
Equation 6 with a UTP weight function follows the a-
trajectory that minimises the best case number of node gen-
erations needed to find a plan in M̂. This strategy can be
seen as optimistic in the face of uncertainty, where uncer-
tainty refers to unexplored regions of the state space. It as-
sumes the subgraph extending the selected trajectory has an
ideal shape; as new information is revealed, this estimate
may worsen, leading the search to prefer other subgraphs.

From Probabilistic GR to Classical Planning
GR-as-Planning. Ramirez and Geffner (2010) provide a
framework for probabilistic goal recognition as planning for
a rational agent. They define likelihoods through a Boltz-
mann distribution P (O | G) := α·exp{−βc(O,G)}, where
α is the normalizing constant and c(O,G) is the optimal cost
of a plan to achieve G that embeds O. Their definition is de-
rived from a likelihood

P (O | G) =
∑
π∈O

P (O | π) · P (π | G) (8)

where P (O | π) is 1 or 0 depending on whether π embeds
O and observations O are independent of the goal given π,
under the assumptions that 1) P (π | G) is proportional to
e−βc(π), where c(π) is the cost of a plan π, and 2) the sum-
mation is dominated by the largest P (π | G) term.

Probabilistic Framework for Classical Planning. We
adapt Equation 8 to provide a more general definition of
P (O | G) that ties our framework to existing theory in goal-
recognition-as-planning.

Let z : O → {0, 1} represent the sampling function over
all observations to the goal. We define conditional probabil-
ity

P (π | G) :=
z(π) · w(π)∑

π′∈O z(π′) · w(π′)
(9)

to obtain a formulation that parallels the IRPL sample-
reweight process for obtaining P (O | G).

This formulation is more general than the IRPL model de-
scribed earlier, as both O and π can be any action sequence



in O, not limited to I-reachable or sequential a-trajectories.
In some cases, such as the IRPL model, we may desire to
restrict the set of observations considered. We thus also de-
fine functions Pseg(O | π) and Ppfx(O | π), with value
1 if π contains O, and π extends O, respectively. The in-
tended domain of O and the sampling function z(π) then
determine the scope of the equation. For instance, under the
IRPL assumptions with UMP weights, where z(π) = 1 if
π ∈ Π(s0, SG) and 0 otherwise, P (O | π) := Ppfx(O | π)
and w(O) = 1, we get that

∑
π′∈O z(π′) ·w(π′) = NG and∑

π∈O P (O | π) · z(π) · w(π) = NCG(O).
In prior GR work, P (π | G) typically assumes π is a full

plan in Π(s0, SG). By making the sampling function z(π)
explicit, we can extend the definition to include sequences
in O that are not necessarily plans or goal reaching, but may
still be goal directed or useful for guiding the search. This
flexibility is important in planning, as it allows Equation 8 to
support approximations of P (O | G) based on partial plans
or heuristic estimates.

Divergence-based Conditional Probability. Following re-
cent work in GR (Pereira, Oren, and Meneguzzi 2017;
Wilken et al. 2024), we represent observations through the
facts implied by underlying action sequences or trajectories.
This allows us to shift focus from the specific actions to the
information conveyed by them, and alternative sequences
are not penalised if they yield the same achieved facts. Let
OF represent a set of observed facts. In a GR setting, this
would represent facts added by actions in action sequence
O. In a planning context, it may also include facts that are
true in the initial state. We define P (OF | G) in terms of
facts q ∈ OF with conditional independence assumption:

P (OF | G) =
∏

q∈OF

P (q | G) (10)

where, adapting Eq. 8 and 9, we get the probability of ob-
serving fact q ∈ OF in a sampled path to the goal:

P (q | G) =
∑
π∈O

P (q | π) · P (π | G) (11)

We define for each fact qi ∈ OF an associated Bernoulli
distribution P i

G(qi) := P (qi | G), and a hard assign-
ment P i

O(qi) = 1. Let PG(O
F ) =

∏
i:qi∈OF P i

G(qi) and
PO(O

F ) =
∏

i:qi∈OF P i
O(qi) = 1. Under these conditions,

the KL divergence can be simplified to

DKL(PO(O
F ) ∥ PG(O

F )) = −
∑

i:qi∈OF

logP i
G(qi) (12)

From Eq. 10 and 12 we thus derive

P (OF | G) = e−DKL(PO(OF )∥PG(OF )) (13)

The cost based formulation of Goal Recognition (GR)
(Ramirez and Geffner 2010; Masters and Sardiña 2021) is
grounded in the assumption of agent rationality: observation
sequences that align with near optimal plans are considered
evidence of goal intended behaviour. In a planning context,
this motivates prioritising sequences that appear to belong

to near optimal solution plans. Similarly, Equation 13 inter-
prets rationality in terms of the divergence of observations
OF from the distribution PG(O

F ), which captures statisti-
cal evidence of goal intendedness from estimated solution
paths. In the GR setting, it is intuitive that observations con-
sistent with goal intended behaviour, when normalised by
observation likelihood, are more likely to reflect intent to-
ward that goal. In our experiments, we show that prioritizing
trajectories with high P (OF | G), those that reflect unnor-
malised known goal intended patterns, provides a signal for
efficient state space exploration and traversal.

Unlike cost based formulations, our divergence metric
DKL(PO(O

F ) ∥ PG(O
F )) abstracts away action order as

a consequence of the conditional independence assumption.
This enables a concise theoretical model, where goal in-
tention is described in terms of Bernoulli distributions over
facts, and supports efficient computation. This divergence
based formulation can be seen as a generalization of P (O |
G) in Plan Library GR (and by extension the IRPL model)
over facts: rather than checking the sample plan membership
of observations, it measures how closely the information in
observations aligns with that in sampled plans.

Planning Heuristics
We devise two heuristics inspired by our definitions of
P (O | G) and P (OF | G), which share the characteris-
tic of an initial, more costly information extraction step, to
estimate goal-intended traces before beginning the search,
followed by efficient online probability evaluations.

Cost-based Conditional Probability
Starting from Equations 8 and 9, we implicitly redefine the
sampling and weighting function in terms of a single es-
timate y; z(π) · w(π) := y(π). Following the assump-
tions on the behaviour of a rational agent in (Ramirez and
Geffner 2010) described in the previous section, we de-
fine y(π) := exp{−ĉ(O,G)}. We estimate cost ĉ(O,G) =

|O| + hff
t (T (O)), where hff

t (T (O)) is a trajectory-based
variant of the hff heuristic (Hoffmann and Nebel 2001),
then derive a ranking heuristic from probability:

P (O | G) ∝rank e−ĉ(O,G) ∝rank −ĉ(O,G) (14)

The heuristic hff
t (T (O)) is computed in two stages. First,

during an initial information extraction phase, we construct
the relaxed planning graph (RPG) from the initial state and
compute hff by performing a backward search from the
goals over the RPG to extract a greedy relaxed plan. From
this process, we store the subgraph that includes only the
facts selected in the relaxed plan and their best supporter
actions (Keyder and Geffner 2008). We refer to this stored
subgraph as the ff-graph. During search, rather than recom-
puting hff at each state, we derive a relaxed state by mark-
ing as achieved all facts made true along the current trajec-
tory from the initial state. Then, starting from the goal, we
perform a backward traversal over the stored ff-graph to esti-
mate the length of a relaxed plan. The traversal stops at facts
already achieved, thereby skipping redundant segments of
the relaxed plan. This avoids counting actions whose effects



have already been achieved or made redundant by the re-
laxed state, and results in a value of hff

t that is less than or
equal to the root hff computation value.

While hff
t may be less informed than hff , as it does not

reflect deletes or changes in the RPG structure, it is signif-
icantly faster and preserves the non-increasing P (O | G)
property from Claim 1. The estimate ĉ(O,G) may still break
this property due to adding |O|, however this increase is at
most one from parent to child node. We refer to this heuristic
as plan-cost probabilities (pcp).

Fact Observation based Conditional Probability
Our second set of heuristics are derived from Equation 13.
At the initial state, we calculate fact observation probabili-
ties as described in (Wilken et al. 2024) to estimate the set
of Bernoulli distributions P i

G(qi) for all qi ∈ F . Fact ob-
servation probability estimation first samples a set of delete-
relaxed plans to the goal, then evaluates the probability of
observing a fluent q in a sampled relaxed plan to the goal.
Such process follows closely the sample-weighting process
described in the IRPL model, albeit in the delete-relaxed
state space and observing facts instead of actions to obtain
P (q | G) rather than P (O | G), as in Eq. 11. We thus
describe this estimation process in terms of Prel(q | G),
the conditional probability in the relaxed problem, and set
P i
G(qi) := Prel(qi | G). We then can define heuristic

P (OF | G) ∝rank

∑
q∈OF

logPrel(q | G) (15)

where we set OF to be all facts observed in a given tra-
jectory. The rank of trajectories evaluated by the heuristic
is thus proportional to the KL divergence between the ob-
served trajectory and the estimated distributions of goal-
intended information P i

G(O
F ), from Eq. 13. Given all

P i
G(qi), P (OF | G) is computed in time linear in |OF |.
We refer to this heuristic as relaxed plan observation

probabilities (rpop). In our experiments, we set the num-
ber of sampled relaxed plans to 100. This value was selected
through analysis of results in the context of GR in (Wilken
et al. 2024), and empirical testing.

Experimental Results
Experimental Setup
We run our experiments on a VM with an AMD EPYC 7763
processor, with each test running on a single core. We adopt
Downward Lab’s experiment module (Seipp et al. 2017),
whereas our proposed solvers and heuristics are imple-
mented in C++ using the LAPKT planning module (Ramirez
et al. 2015). Our adopted branch of LAPKT uses the FD
grounder (Helmert 2009), with the exception of problems
that produce axioms, which are not currently supported in
LAPKT. In such problems, our planners automatically fall-
back to the Tarski grounder (Francés, Ramirez, and Collabo-
rators 2018; Singh et al. 2021b). All experiments are limited
to 1800 seconds and 8 GB time and memory constraints,
following the satisficing track of the International Planning
Competition (IPC) (Taitler et al. 2024). The problem set is

composed of all IPC satisficing track benchmarks, selecting
the latest problem sets for recurrent domains.

Improving BFWS Solvers
Given the exploratory behaviour induced by P (O | G) out-
lined in our theoretical analysis, we integrate our proposed
heuristics with a BFWS solver (Lipovetzky and Geffner
2017), which balances exploration of the search space and
exploitation of heuristics, to evaluate improvements in its
exploratory behaviour. Table 1 compares the performance of
BFWS(f5) (Lipovetzky and Geffner 2017) and BFWSt(f5)
(Rosa and Lipovetzky 2024) with that of new variants that
adopt pcp and rpopr as third tie-breaking heuristics.

RPOP-Restart. BFWS(f5) uses Partitioned Novelty
(Lipovetzky and Geffner 2017) to partition each planning
problem into multiple sub-problems, and the goal-count
heuristic hGC , that counts the number of unachieved goal
facts, is used both to inform such partitioning, and as tie-
breaking heuristic. We adapt rpop to this planner through
rpop-restart (rpopr). The difference between rpop and
rpopr is that the latter only adds log probabilities from facts
that have been observed in the trajectory from the last state
that improved hGC , as opposed to all facts achieved from
the start. By “restarting” at the most recent hGC improve-
ment, it regains informedness in the cases where it was lost.
Otherwise, if a fact is observed that did not appear in any
sampled relaxed plan to the goal, it would strongly penalise
the probability of all descendant nodes. This helps account
for inaccuracies in fact occurrence estimates introduced by
adopting distributions derived from relaxed plans.

Basic BFWS Variants. Table 1 highlights performance
gains from our proposed techniques. Both pcp and rpopr in-
crease coverage and reduce the average number of node ex-
pansions, indicating enhanced informedness. Overall, rpopr
achieves stronger results, partly due to its faster computa-
tion, which allows BFWS to find solutions more quickly.
Although pcp also guides search more effectively, its slower
evaluation time diminishes its impact on solution time and
coverage. Nonetheless, its preference for shorter estimated
plans leads to lower average plan costs. The median time
across all benchmark problems for the information extrac-
tion phase is 56ms for the pcp heuristic, and 9ms for the
rpopr heuristic. The overhead from this phase thus has little
impact on planning times in most problems.

SOTA Variants. Our best performing variants integrate
rpopr as the third tie-breaker in the BFWSt(f5)-Landmarks
solver. BFWSt(f5)-Landmarks substitutes the hGC heuris-
tic in BFWSt(f5) with the Landmarks heuristic (hLM )
(Richter, Helmert, and Westphal 2008). Rpopr-UTP further
modifies trajectory weighting, to highlight the practical im-
pact of the weighting scheme in our theoretical model.

RPOPr-UTP. When calculating the proportion of sam-
pled relaxed plans in which a given fact occurs for rpop,
each sampled relaxed plan is given an equal weight. rpopr-
UTP (Uniform Transition Probability) re-weights sampled
relaxed plans according to a UTP weight function, giving
higher importance to plans with greater UTP values.



BFWS BFWSt

Domain f5 f5-pcp f5-rpopr f5 f5-pcp f5-rpopr
Coverage (1831) 1510 1526 1560 (5.03) 1557 (3.67) 1558 (2.55) 1599 (3.81)

% Score 76.77% 77.63% 80.20% (0.35) 79.90% (0.24) 79.99% (0.19) 82.94% (0.32)
N Fewest Expansions 267 739 764 285 750 781

N Min. Time 348 261 985 475 239 917
N Min. Plan Cost 867 1009 649 899 1020 651

Avg. EpS 40667 23019 36182 42421 22461 36569

Table 1: Performance comparison of BFWS(f5) and BFWSt(f5) vs. variants with pcp and rpopr heuristics. % score is the
average of the % of instances solved in each problem domain. Results for solvers with a randomised component represent
the mean, and include the standard deviation across 5 measurements. N Fewest Expansions, N Min. Time and N Min. Plan
Cost represent the number of solved problems where a variant scores best in the respective metrics, including ties.5 Results on
BFWS(f5) and BFWSt(f5) are compared separately. Avg. EpS represents the average number of expansions per second across
problems solved by all six planners. Results indicate that pcp and rpopr reduce the number of expansions across a significant
portion of problems, and rpopr improves both coverage and solution time across a sizeable portion of problems. pcp negatively
impacts solution time but benefits plan costs compared to the baseline.

Planner Coverage (1831) % score Agile score
Dual-BFWS 1607 83.6% 1200.8

ApxNoveltyT 1611 (3.5) 83.8% (0.2) 1233.7 (0.2)
LAMA 1535 79.1% 1192.3

Scorpion-M 1591 82.9% 1206.4
RPOPr 1621 (3.2) 84.6% (0.3) 1229.4 (3.4)

RPOPr-UTP 1616 (2.1) 84.2% (0.1) 1236.0 (1.9)
BFNoS-Dual 1641 (0.6) 86.2% (0.1) 1173.3 (3.5)
RPOPr-Dual 1655 (1.5) 87.0% (0.1) 1232.6 (2.9)

Table 2: Mean coverage and Agile score6 of our proposed
planners. RPOPr and RPOPr-UTP refer to BFWSt-f5-
Landmarks adopting the respective heuristics. RPOPr-Dual
is a modification of BFNoS-Dual that replaces the BFNoS
frontend with RPOPr. Our enhancements of BFWS(f5) out-
perform SoTA planners, on average solving more problems,
more quickly, and without resorting to multiple open lists or
multiple runs. RPOPr-Dual builds on these results to serve
as an improved frontend solver for dual-strategy planners.

Results. Table 2 compares our best-performing vari-
ants with multiple SoTA Novelty planners BFNoS-Dual
(Rosa and Lipovetzky 2024), Dual-BFWS (Lipovetzky and
Geffner 2017), and Approximate Novelty Tarski (Singh et al.
2021a), as well as past IPC satisficing track winners LAMA
(Richter and Westphal 2010) and Scorpion-Maidu (Corrêa
et al. 2023). Results indicate improved coverage of our
proposed modifications of BFWS(f5). rpopr-UTP also im-
proves Agile score over the base rpopr, at the cost of some
problem coverage. Agile score is a performance metric that
jointly evaluates coverage and runtime.

Such improvements can be achieved through the use of
a single combination of heuristics, without the need to re-
sort to multiple open lists or multiple runs, unlike bench-
mark planners that all adopt a combination of complemen-
tary open lists or solvers. This characteristic is useful both

5Using seed 0 for variants with a random component.
6Agile score is 1 for problems solved in T ≤ 1s, and 1 −

log(T )
log(300)

for 1 < T ≤ 300.

for studying solver behaviour, as well as for serving as
a component of improved satisficing and agile planners.
We demonstrate this by replacing the frontend in a high-
coverage dual strategy solver — BFNoS-Dual, which com-
bines a BFNoS frontend with the backend of Dual-BFWS —
with BFWSt(f5)-Landmarks-RPOPr (RPOPr-Dual in Ta-
ble 2), resulting in improved coverage and Agile score.

We further note correlation between our experimental re-
sults for rpopr-UTP and Theorem 4, suggesting that priori-
tising sampled relaxed plans with better estimated bounds on
the number of node generations to find the goal can accel-
erate the search, albeit at the expense of problem coverage.
UTP weights promote a more “committed” search, whereby
a greater focus on following optimistic relaxed plan samples
can solve problems earlier when these estimates are accu-
rate, but also mislead the search when they are not. The lat-
ter case may occur when sampled relaxed plans diverge from
correct plans, potentially missing important actions or facts.

Concluding Remarks
Our proposed planning-as-goal-recognition theoretical
framework offers a new perspective on heuristic search,
interpreting evaluation functions as processes that infer the
intention of trajectories to the current state with respect to
the goal. Such trajectories, therefore, do not only reveal the
cost so far, but also their goal intendedness. Our proposed
heuristics improve the base performance of BFWS, adopt-
ing a computationally cheap information extraction phase
that allows the solvers to match complex IPC planners in
Agile scores, while exceeding their coverage. The one-off
time cost of the information extraction phase opens the
door to potentially more informed and expensive estimation
methods to further improve problem solving capability. The
probabilistic nature of our technique can also lead to new
solutions in related problems, such as learned heuristics
for Planning, and facilitate connections between traditional
Planning and non-symbolic yet planning-inspired solutions,
such as Tree-of-Thoughts reasoning techniques (Yao et al.
2023) adopted by large language models.



Acknowledgments
We thank the reviewers for their valuable feedback. This re-
search was supported by use of the Nectar Research Cloud
and by the Melbourne Research Cloud. The Nectar Re-
search Cloud is a collaborative Australian research platform
supported by the NCRIS-funded Australian Research Data
Commons (ARDC).

References
Bonet, B.; and Geffner, H. 2001. Planning as heuristic
search. Artificial Intelligence, 129(1-2): 5–33.
Bratman, M. E.; Israel, D. J.; and Pollack, M. E. 1988. Plans
and Resource-Bounded Practical Reasoning. COMPINT,
4(3): 349–355.
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Appendix A: Supplementary Proofs
Proof of Claim 1. Follows from Equation 6, since
CG(Oe) ⊆ CG(Op).

Proof of Claim 2. Follows from Equations 6 and 7.

Proof of Lemma 1. Every maximal a-trajectory that ex-
tends Op also extends one and only one of its children a-
trajectories. Thus, P (G | Op) is a weighted average of the
probability of its children. P (G | Op) =

p(Op|G)p(G)
p(Op)

=∑
π′′∈CG(Op) w(π′′)∑
π′∈C(Op) w(π′) . Each child trajectory Oe extends Op

with a single action, and each Oe extends Op with a differ-
ent action to all other O′

e (otherwise they would not be dis-
tinct child a-trajectories). Then, each maximal a-trajectory
π′ ∈ C(Op) must also extend one and only one child trajec-
tory Oe, such that the union of sets of maximal a-trajectories⋃

Oe

[
C(Oe)

]
= C(Op), and

∑
Oe

|C(Oe)| = |C(Op)|;
and

⋃
Oe

[
CG(Oe)

]
= CG(Op), and

∑
Oe

|CG(Oe)| =

|CG(Op)|. Let X(O) =
∑

π′∈C(O) w(π
′), and XG(O) =



∑
π′∈CG(O) w(π

′). Then X(Op) =
∑

Oe
X(Oe), and

XG(Op) =
∑

Oe
XG(Oe). The weighted average is P (G |

Op) =
XG(Op)
X(Op)

=
∑

Oe

[
X(Oe)
X(Op)

· XG(Oe)
X(Oe)

]
. Proof follows

from the fact that a weighted average cannot be less than all
its components.

Proof of Theorem 1. The first expanded node will have
P (G | O) greater than all other nodes. Since P (G | O) > 0,
from Claim 2 we know that at least one plan to the goal ex-
ists, and since from Lemma 1 its best child will have proba-
bility ≥ to that of its parent, it will itself be expanded next.
By induction we obtain the statement.

Proof of Lemma 2. Assume for contradiction that the
first goal-adjacent a-trajectory ρ expanded corresponds to
a plan π that is not of minimal cost in M̂G. Let π∗ be
a lower-cost plan, and let ρ∗ be the unique goal-adjacent
a-trajectory extended by π∗ (guaranteed by GASP). Since
w(π∗) > w(π), and P (ρ | G) is proportional to w(π) for
goal-adjacent a-trajectories in a GASP sample, we have that
P (ρ∗ | G) > P (ρ | G), contradicting the assumption that ρ
was expanded first.

Suppose instead that ρ∗ has not yet been expanded to its
goal-adjacent suffix. In this case, the current a-trajectory pre-
fix of π∗ has P (· | G) equal to the sum of weights of all
plans in M̂G that extend it, including π∗. Since P (· | G)
values decrease (or stay constant) as a-trajectory length in-
creases, because each step partitions the supporting plans
further, then the current P value of the prefix is greater than
or equal to P (ρ∗ | G). Hence, if π∗ has not yet reached
its goal-adjacent suffix, its current prefix must still have
P (· | G) > P (ρ | G), again contradicting the assumption
that ρ was expanded first. Therefore, the first expanded goal-
adjacent a-trajectory must correspond to a minimal-cost plan
in M̂G.

If w(π) ≥ w(π′) when cost(π) ≤ cost(π′), plans of dif-
ferent cost may have equal weight. Thus, their goal-adjacent
a-trajectories may share the same P (O | G) value. In such
cases, we break ties by preferring shorter a-trajectories, en-
suring that the first generated plan corresponds to a lowest-
cost plan.

Proof of Lemma 3. Follows from Claim 1 that the first
expanded plan has highest weight of all plans. The rest of
the proof follows same logic as Lemma 2.

Proof of Lemma 4. Follows from Claim 2 that at most
all nodes in s-trajectories that are extended by plans in M̂G

need to be expanded.

Proof of Theorem 2. Follows from previous Lemmas 2
and 4, and considering that as samples are added, the mini-
mum plan cost in the set can only decrease.

Proof of Lemma 5. For this proof, we derive the results
in terms of formulas that directly adopt a Bernoulli indicator
bπ for being a plan, showing that the deterministic rescal-
ing and related results are equivalent. The expectation E[bπ]

governs the probability of a trajectory π ∈ M̂G not being

a mistake, i.e., π is a plan. Following Bernoulli distribution
with error 1 − γ, thus E[bπ] = γ, we obtain expectation
Eb[w(π)] := w(π) · E[bπ] = γ · w(π) of non-mistake plan
weight. Defining conditional probabilities that directly use
non-mistake expected values, we get that

P b(O | G) :=
∑

π′∈CG(O)

Eb[w(π
′)] /

∑
π′′∈M̂G

Eb[w(π
′′)]

=

[
γ ·

∑
π′∈CG(O)

w(π′)

]
/

[
γ ·

∑
π′′∈M̂G

w(π′′)

]
= P (O | G)

and

P b(G | O) :=
∑

π′′∈CG(O)

Eb[w(π
′′)] /

∑
π′∈C(O)

w(π′)

=

[
γ ·

∑
π′∈CG(O)

w(π′)

]
/

∑
π′∈C(O)

w(π′)

= γ · P (G | O)

It is clear that these equations are equivalent to the determin-
istically rescaled definitions for P γ(O | G) and P γ(G | O).
Note that the denominator in the equation P b(G | O) does
not make use of the expected value in the summation. This
is because the Bernoulli random variable accounts for mis-
takes in plans. The summation over C(O) in the denomina-
tor does not discount trajectories that do not reach the goal,
and sums them independently of whether they are plans.
Proof of Theorem 3. Follows from Lemma 5 and Equa-
tions 6 and 7.

Proof of Corollary 1. Follows from Equations 1,3,4, and
5; setting weight function w(π) = 1, then the value of each
summation is equivalent to the number of elements in the
relevant sets.

Proof of Corollary 2. Follows from Theorem 3 and Corol-
lary 1.

Proof of Lemma 6. The lower bound on nodes gener-
ated is given by the minimum possible number of nodes
generated while following πs that achieves UTP weight
w(πs) = P (O | G) · P (G). For each expanded state
si ∈ T (πs), the number of generated nodes increases by
|A(si)|, and the weight of the a-trajectory to si is multiplied
by 1

|A(si)| . For w(πs) =
1
X the minimum number of gener-

ated nodes is thus given by solving min
∑

si∈T (πs)
(|A(si)|)

s.t.
∏

si∈T (πs)
|A(si)| = X . A lower bound to the integer

solution is achieved by solving the real version of the prob-
lem, which can be solved analytically through the AM-GM
Inequality to yield e · ln(X).

Proof of Theorem 4. P (O | G) is equivalent to the sum of
the weight of all plans extending O, over a common denom-
inator. From Lemma 6, it follows that the number of node
generations required to solve any plan increases inversely to
the plan’s weight. Thus, the minimum number of node gen-
erations occurs when a single solution plan extends O.


