
Published in Transactions on Machine Learning Research (05/2025)

Labeling without Seeing?
Blind Annotation for Privacy-Preserving Entity Resolution

Yixiang Yao yixiangy@usc.edu
Department of Computer Science
University of Southern California

Weizhao Jin weizhaoj@usc.edu
Department of Computer Science
University of Southern California

Srivatsan Ravi srivatsr@usc.edu
Department of Computer Science
University of Southern California

Reviewed on OpenReview: https://openreview.net/ forum?id=bAM8y3Hm0p

Abstract

The entity resolution problem requires finding pairs across datasets that belong to different
owners but refer to the same entity in the real world. To train and evaluate solutions (either
rule-based or machine-learning-based) to the entity resolution problem, generating a ground
truth dataset with entity pairs or clusters is needed. However, such a data annotation process
involves humans as domain oracles to review the plaintext data for all candidate record pairs
from different parties, which inevitably infringes the privacy of data owners, especially in
privacy-sensitive cases like medical records. To the best of our knowledge, there is no prior
work on privacy-preserving ground truth labeling in the context of entity resolution. We
propose a novel blind annotation protocol based on homomorphic encryption that allows
domain oracles to collaboratively label ground truth without sharing data in plaintext with
other parties. In addition, we design a domain-specific, user-friendly language that conceals
the complex underlying homomorphic encryption circuits, making it more accessible and
easier for users to adopt this technique. The empirical experiments indicate the feasibility
of our privacy-preserving protocol (f-measure on average achieves more than 90% compared
with the real ground truth).

1 Introduction

Entity resolution is the task of linking entity pairs across datasets that refer to the same entity in the real
world. It is an essential problem in massive data integration and quality improvement, which has been
widely employed in various domains including academia, industries, and government agencies (Christen,
2011; Winkler, 2014). Traditionally, it requires the participation of multiple owners of the data sources, and
it is unavoidable that the data is shared among parties. As the example shows in Figure 1, datasets DA and
DB , which belong to two different parties, consist of the IDs and names of the digital camera lens products
but in different representations. Each lens is an entity and the goal is to link the same entities between
these two datasets. To achieve that, the data owners of DA and DB share the data with each other and
jointly determine that A1 from DA and B1 from DB could be a match since they are all “Canon 24-70mm
f2.8” camera lenses though A1 explicitly notes the lens is with “USM” motor and B2 is the "II" generation.
On the contrary, A2 and B1 are not a match since they have different focal ranges (“24-105” vs. “24-70”)
and aperture sizes (“4” vs. “2.8”), as well as A3 and B2 since they belong to different brands (“Canon” vs.
“Sony”). As real-world entity data usually contains sensitive personal information or is related to intellectual

1

https://openreview.net/forum?id=bAM8y3Hm0p

Published in Transactions on Machine Learning Research (05/2025)

property, privacy-preserving entity resolution (PPER) (Gkoulalas-Divanis et al., 2021; Yao et al., 2021; Ghai
et al., 2023; Yao et al., 2024), as a solution, is to link entities with the protection for data privacy. The
linking process does not reveal any unnecessary information and the parties will not learn any entities that
are not common among all parties. Back to our example of lens products, DA’s owner only knows A1 has a
potential match B1 in DB but does not learn anything about B2. Likewise, DB ’s owner also learns no other
lens products from DA except the match with A1.

NameID

Canon 24-70mm f/2.8L USMA1

Canon EF 24–105mm f/4L USMA2

Canon EF 16-35mm f/2.8L USMA3

NameID

Canon 24-70mm f2.8L IIB1

Sony FE 16-35mm f2.8 GMB2

DA DB

=IDBIDA

?B1A1

?B2A1

Sampled record pairs

Pairwise annotation

We can see
records from
both parties

Figure 1: The entity resolution and annotation example. DA and DB are two lens product datasets owned by
two parties separately. Making pairwise annotation requires the visibility of both parties’ sampled records,
revealing private data.

In the lifecycle of entity resolution and PPER, a ground truth dataset with entity pairs or clusters needs to
be prepared to evaluate the quality of linking or train learning-based entity resolution models. Constructing
such a ground truth dataset, known as annotation, requires the involvement of domain oracles (data owners
or trusted delegators) 1. Normally, the first step is to sample some representative entities from all data
sources and convert them into pair-wised forms. The oracles then manually determine if such a candidate
“pair” is considered to be legitimate in the real world. For example, in Figure 1, assume that all records are
sampled, oracles could recognize (A1,B1) is a match but (A1,B2) is not. Annotation tools (Ipeirotis, 2010;
Neves & Leser, 2014) including Amazon Mechanical Turk (Buhrmester et al., 2016; Kang et al., 2014; Lease
et al., 2013) are for constructing and curating ground truth datasets.

However, this is a human-in-the-loop process and the oracles need to see all the raw data of entities side-by-
side as pairs in plain. It is worth pointing out that even though most of the privacy-aware entity resolution
algorithms themselves are considered to be somewhat privacy-preserving, the ground truth labels they used,
no matter what strategies are conducted for minimizing the size of the required labels, are still annotated
in plaintext (Kurniawan & Mambo, 2022) and can not be identified as privacy-preserving annotation. For
example, healthcare facilities aim to perform entity resolution on their confidential medical records, yet
the process of creating accurate reference annotations still relies on conventional annotation tools that lack
robust privacy guarantees.

Recently, several privacy-preserving annotation methods have been proposed. While some methods (Kajino
et al., 2014; Zhang et al., 2021) employ perturbation for crowd-sourced annotations, others leverage exist-
ing AI-driven ground truth generation in specific tasks (Kavasidis et al., 2012; Wangt et al., 2001), they
are limited to certain domains (D’Orazio et al., 2009; Jing et al., 2017) and almost implausible to have
such techniques universally generalized for privacy-preserving entity resolution. Additionally, the differen-
tial privacy-based methods (Feyisetan et al., 2019) protect the Personal Identifiable Information (PII) of
individual records, but the content remains in plaintext. Contrary to the relatively well-researched privacy-
preserving entity resolution solutions for the application phase (Schnell et al., 2009; Scannapieco et al., 2007;
Inan et al., 2008; 2010), there still exists a privacy protection void in the annotation phase for PPER. Making
annotations for entity resolution privacy-preserving is challenging because the domain oracles must compare
the data across parties side-by-side in order to determine if two records are the same. Moreover, the raw
data can certainly be manipulated accordingly or the annotation process can be semi-auto for the purpose
of privacy protection, but the partial content of candidate pairs is still inevitably revealed for oracles at least
need to see some of the plaintext to understand the meaning and then make decisions.

1In practice, domain oracles are individuals who possess a deep understanding of datasets, enabling them to make high-quality
annotations.

2

Published in Transactions on Machine Learning Research (05/2025)

Different from the aforementioned approaches that are not suitable for pairwise privacy annotation or merely
hide the individual identifier but not the content, we propose a novel “blind annotation” approach of ground
truth labeling, based on homomorphic encryption (HE) (Fontaine & Galand, 2007; Acar et al., 2018), for
privacy-preserving entity resolution where oracles from each party can only inspect the data of their own
but are still able to work collaboratively. The conceptual model is as shown in Figure 2, where data owners
"blindly" annotate the ground truth set, which can later be used in the model training and evaluation phases
of privacy-preserving entity resolution. No data in the plain view of each party is shared with any other
parties so the privacy of the data is guaranteed without loss of data utility.

It is important to clarify that this paper does NOT aim to address PPER itself. Instead, we propose a novel
privacy-preserving method for pairwise ground truth annotation, which is applicable to any PPER pipeline.
The relationship between PPER and the proposed privacy-preserving annotation method is illustrated in
Figure 2. We summarize our main contributions as follows:

• We propose a novel homomorphic-encryption-based privacy-preserving protocol that allows multiple
parties to collaboratively produce pairwise entity annotations without sharing their data with any
other parties in plaintext. To the best of our knowledge, this is the first solution to discover the
potential of privacy-preserving ground truth annotation for pairwise entity annotations in entity
resolution.

• The proposed protocol allows the domain oracles to focus solely on the annotation logic, and the
protocol handles the optimizations for the underlying homomorphic circuit. Each party involved in
the protocol can perform the computation efficiently and independently. The privacy properties of
the protocol have been rigorously proven.

• We implement the protocol and conduct empirical studies on heterogeneous real-world datasets to
prove the feasibility of our blind annotation protocol.

PPER Model .

Dm

Dk

Blind Annotation .

PPER Phase

Blind Annotation Phase (this paper)

Sampling
(X)

Training Evaluation

∀	 𝑟! ∈ 𝑋(𝐸(𝐷"))

∀	 𝑟! ∈ 𝐸(𝐷")

Ground truth
G={(i,j,l)}

Homomorphic
Encryption

(E)

Entity Pairs
{(i,j)}

∀	 𝑟# ∈ 𝑋(𝐸(𝐷$))

∀	 𝑟# ∈ 𝐸(𝐷$)

Repeat until satisfaction
is reached

Figure 2: The relation between privacy-preserving entity resolution (upper white dashed box) and blind
annotation (lower grey solid box). In this paper, we focus on the annotation phase and utilize “blind anno-
tation” to label ground truth for PPER with zero-knowledge shared with other parties. The homomorphically
encrypted records from each party are first sampled. Then, the data owners or their delegated oracles an-
notate sampled records without looking at the other party’s data but interacting with the blind annotation
protocol. Finally, the ground truth as a set of triplets G = {(i, j, l)} (i and j are record ids from two parties
and l is a label indicating if ri and rj is a match) is formed and can be used for training and evaluation
in any PPER task. Note that no record content ri or rj in plaintext is revealed throughout the annotation
process. The solid line denotes the data stream in plaintext and the dashed line denotes the data stream in
ciphertext. D denotes dataset, X denotes sampling, E denotes homomorphic encryption, and JrK denotes
record r in ciphertext.

3

Published in Transactions on Machine Learning Research (05/2025)

2 Problem Definition

The privacy-preserving entity resolution (PPER) problem can be defined as a triple T = (D, M, E)
where D = {D1 . . . Dn} is a set of n different datasets consisting of records r, from n different data owners
P = {P1 . . . Pn} respectively. E denotes encoding or encryption algorithm that keeps the r from each D in
encoded or ciphertext form, that is, JrK ∈ E(D), where JrK explicitly denotes r is in ciphertext. M is the
match set containing record pairs between any two datasets amongst the n parties, so M = {(JriK, JrjK) | ri =
rj ; JriK ∈ E(Dk), JrjK ∈ E(Dm)}, where ri = rj indicates that ri and rj refer to the same entity in the real
world, despite having different representations.

Finding the complete and precise M depends on the domain-specific algorithm/model which relies on the
high-quality ground truth data for training, fine-tuning or evaluation. The ground truth set G is a set of
triples (i, j, l) where i and j are record ids of a record pair ri and rj , and l is a Boolean label which indicates
if such record pair is the same entity. The process of constructing G is called annotation. Formally,
G = {(i, j, l) | ri ∈ X(Dk), rj ∈ X(Dm)}, where X is a sampling algorithm. l is determined by domain
oracles with the content of ri and rj .

Usually, G is not constructed individually from each party: because the domain oracles have to see ri and
rj in clear in order to determine whether two records are the same real-world entity based on the features
the records have. Therefore, the owners of the records need to share sampled records in the plain with other
parties which makes the raw content of ri and rj revealed.

To prevent the potential privacy leakage during this process, this paper focuses on creating ground truth
data with JriK and JrjK straight so that no plaintext from any parties reveals to any other parties. We name
this process blind annotation, that is, G = {(i, j, l) | JriK ∈ X(E(Dk)), JrjK ∈ X(E(Dm))}.

3 Preliminaries

3.1 Related Works

Privacy-preserving annotation As stated in this privacy-preserving record linkage survey pa-
per(Gkoulalas-Divanis et al., 2021), almost no open method is available for making ground truth annotation
for PPER due to privacy concerns regardless of its a time-consuming and erroneous process.

The only similar scenario we found that explored the attempts for privacy-preserving annotation is about
active learning using differential privacy (Feyisetan et al., 2019). The general active learning method aims
to learn a distribution of the data by selecting less training data that carries the highest information with
the active learner. The sampled data from the learner needs to be annotated by domain oracles or crowd
workers. The problem is that crowdsourcing the labels is usually from an open call and transmitting non-
public data to crowd workers has an inevitable privacy leakage risk, especially for the identities. For the
insufficient privacy guarantee of k-anonymity, the authors adopted a differential privacy algorithm (Li et al.,
2012), which prevents a user from sustaining additional damage by including their data in a dataset, on
binary classification tasks, this method achieves similar accuracy scores as the non-privacy counterpart with
a small performance hit but strong privacy guarantee. Though Personal Identifiable Information (PII) is
protected from revealing, the content of the sampled data as plain text is still known by the crowd workers
for them to understand and annotate. If the content of the non-public data itself requires to be kept private,
such a method is not yet qualified.

Another method to prepare data for machine learning tasks is to learn the distribution of the original
data and generate synthetic data based on that (El Emam, 2020). Even though this method might work
for training statistical models and conducting analytical works, it is not feasible to be applied to entity
resolution tasks. Because the representation of the token/word is an important signal to determine the
similarities between records, a tiny modification or substitution of the original representation could cause
huge judgment deviations for the annotators.

Yu et al. (2020) provided a method of not considering ground truth but instead using unsupervised heuristic
measures based on a greedy matching approach to evaluate and optimize the hyper-parameters for entity

4

Published in Transactions on Machine Learning Research (05/2025)

Key Generation: (pk, sk)← HE.KeyGenε(λ)
Encryption: c← HE.Encε(m, pk)
Decryption: m← HE.Decε(c, sk)
Evaluation: cf ← HE.Evalε(f, (c1, c2, . . . , ck), pk) s.t. HE.Decε(cf , sk)→ f(m1, m2, . . . , mk)

Figure 3: Operations of a typical public-key homomorphic encryption scheme ε

resolution models. This method is based on the assumption that a match of record pairs gets the highest
similarity score among a set of heuristic measures against other candidate pairs. Using heuristics to estimate
linkage quality is doable in some certain scenarios, however, evaluating heuristics by heuristics, in general,
is somewhat a “the chicken or the egg” problem. Additionally, this method only works in some general cases
where the same entity looks similar: in some extreme conditions or some hard record linking problems, the
representations of the record are different even when they are referring to the same entity.

In short, labeling ground truth in a privacy-preserving manner is tough and no direct work exists. Our
approach achieves the goal without compromising privacy protection by employing homomorphic encryption.

Comparison to PSI and PIR Private Set Intersection (PSI) (Morales et al., 2023) or weighted PSI
are general-purpose solutions for identifying common elements between sets. However, they have limited
extensibility, particularly when it comes to supporting complex annotation logic. Specifically, PSI does not
natively support conditional expressions or complex predicates, and incorporating such logic typically requires
substantial additional effort. In contrast, the blind annotation protocol can express more sophisticated logical
operations more naturally.

Moreover, PSI and weighted PSI can still be used within blind annotation protocol for computing set in-
tersections. Although they are not currently available in our DSL, they can be incorporated as functions,
provided that the PSI operation can be represented by HE circuits (Chen et al., 2017).

Private Information Retrieval (PIR) (Chor et al., 1998), on the other hand, is designed for retrieving data
without disclosing which item is being accessed. While state-of-the-art PIR extensions support more expres-
sive queries, such as keyword-based retrieval (Hao et al., 2025), they share the same limitation as PSI in that
they do not easily accommodate complex logical operations. In comparison, the blind annotation protocol
provides a more flexible foundation for such logic.

3.2 Homomorphic Encryption

Homomorphic encryption (HE) allows the computation to be performed over encrypted data while preserving
the input/output relationship of the function between the plaintext and ciphertext data (Fontaine & Galand,
2007; Acar et al., 2018). In general, an encryption scheme is said to be homomorphic if for some operator
⊙ over plaintext (⊙M) and ciphertext (⊙C), the encryption function E satisfies: ∀m1, m2 ∈ M, E(m1 ⊙M
m2)← E(m1)⊙C E(m2), whereM denotes the message in plaintext and C denotes the message in ciphertext.
← declares the computation is direct without any decryption in the middle of the process. Therefore, if we
let ⊙ to be +, computing m1 + m2 can be done by a computation unit that receives the original message
from the data owner in the encrypted form, that is, E(m1) and E(m2), and is able to compute the addition
of two encrypted messages without decrypting. Only the data owner with the key can decrypt the message
from ciphertext back to plaintext.

Figure 3 demonstrates a typical public key homomorphic encryption scheme ε primarily characterized by four
operations. Key generation takes in a security parameter λ and outputs public key pair (pk, sk). Encryption
encrypts plaintext message m with pk and returns ciphertext c. Decryption, as an inverse, decrypts ciphertext
c with sk into plaintext m. Evaluation evaluates a function (represented as a circuit) f over a ciphertext
tuple (c1, c2, . . . , ck) with pk and returns cf , which is equivalent to f(m1, m2, . . . , mk) after decrypting.

5

Published in Transactions on Machine Learning Research (05/2025)

The party that executes the homomorphic functions does not know anything about the data and the party
that provides the encrypted data is unaware of what functions have been executed. This property, which is
informally named blind evaluation, is the basis of our protocol.

4 Blind Annotation Protocol

We propose a privacy-preserving annotation protocol that allows the ground truth to be annotated among
multiple parties “blindly” without inspecting other parties’ records.

Intuition: The intuition behind this is that without putting a candidate record pair side-by-side for domain
oracles to determine if they are the same entity or not, the oracles on each side could extract the core features
by just looking at the record content in plaintext of their own and summarize these features into a series of
Boolean questions. If any record from the other parties satisfies all conditions defined by these questions,
this record is highly likely to be a match of the record that the questions are derived from. Suppose the
record content is encrypted, and these Boolean functions can be blindly evaluated over the ciphertext of the
record. In that case, no plaintext of the record content is revealed to other parties.

For example, from PA’s perspective, determining if a PB ’s record B1 is similar to its record A1 can be based
on A1’s core features. If B1 also has keywords “Canon”, “24-70” and “2.8” as A1, it is highly-likely that it
is a potential match to A1. The other keywords like “mm”, “USM” are not necessary for identifying the
lens based on the oracle’s domain knowledge. Figuring out these features only needs PA access to its own
record A1. Moreover, if PA encapsulates the feature detection functions for A1 to be homomorphic functions
and PB encrypts B1, PA can label record pair (A1,B1) using homomorphic evaluation without knowing the
content of B1.

Protocol: The protocol is elaborated in Figure 4. Succinctly, assume the ground truth construction is
between party PA and PB , and party PC is a coordinator for key management and result collection. In
the initialization phase, party PA and PB first send their dataset size to PC , and PC randomly samples the
record ids. Moreover, PC also prepares the public key pair (pk, sk) for homomorphic encryption and sends
the public key pk to PA and PB , and keeps the secret sk for decryption.

The next step is called feature questions, which is for data owners or domain oracles to annotate their records
using homomorphically executable functions. Concretely, PA and PB sample records ri and rj respectively
according to the sampled record ids from PC , and prepare a set of Boolean logic-style questions Qi and Qj

accordingly to the features of the record content for each record. Each question set Q is combined into a
form that returns one Boolean result with first-order logic and converted to a homomorphically executable
function.

Following that is record encryption, where the clear record data is homomorphically encrypted with pk in
PA and PB respectively, and the ciphertext JriK and JrjK are shared with another party.

The core step is blind evaluation, where the encrypted records from the other party are evaluated with
prepared feature questions. Concretely, Once PA receives a JrjK from PB , it evaluates Qi over it homomor-
phically, that is HE.Evalε(Qi, JrjK, pk), and gets JAij

AK. PB does a similar operation and gets JAij
BK. Both

JAij
AK and JAij

BK are in ciphertext and sent to PC . PC then tests if JAij
AK equals JAij

BK and decrypts the result
with the secret key sk.

The last step is to determine the end conditions. If PA and PB agree on the result, the result will be stored.
Otherwise, this pair will be picked out for the next round. In the next round, PA and PB require to refine
their questions and evaluate with the encrypted record data from another party again. After t rounds, the
pairs with no agreement will be discarded.

Privacy: From PA’s perspective, throughout the protocol, PA has no access to PB ’s record content rj in
plaintext but evaluates questions over ciphertext JrjK. The question functions Qi are evaluated on PA’s
side so PB does not know anything about the features tested in Qi by PA. The same situation applies to
PB . PC , which has the secret key sk, decrypts the final results which contain no record content in plaintext

6

Published in Transactions on Machine Learning Research (05/2025)

from either PA or PB . None of the parties is able to apply ciphertext collision attack because homomorphic
encryption is semantically secure (Section 4.3).

In the following subsections, we walk through the protocol details and dissect each essential component.
We also provide the protocol security analysis in Appendix B.2. Note that parties operate independently
throughout the process as long as the interactions follow the timeline in the Figure 4. Although Secure
Multi-Party Computation (MPC) is a potential option for implementing the blind annotation protocol, HE
is preferred in practice due to its ability to support offline evaluation. This is especially important because
each party may perform annotation at different times, with varying time costs, and HE does not require all
parties to remain online concurrently.

𝑃! 𝑃" 𝑃#

𝑟! ← HE. 𝐸ncℰ(𝑟!, pk),∀𝑟!∈ 𝑋(𝐷#)

Design questions 𝑄$, ∀𝑟$∈ 𝑋(𝐷%)
Design questions 𝑄!, ∀𝑟!∈ 𝑋(𝐷#)

𝑟$ ← HE. 𝐸ncℰ(𝑟$, pk),∀𝑟$∈ 𝑋(𝐷%)

𝐷%

𝐷#

Sample record ids 𝑋 𝐷% , 𝑋 𝐷# from 𝐷%	and 𝐷#

Generate crypto keys (pk, sk) ← HE.𝐾𝑒𝑦𝐺𝑒𝑛ℰ(λ) and send p𝑘

Disagreement exists
and

of rounds < t

Initialization
Feat. Q

ues.
R

ec. Enc.
Blind Evaluation

End C
ond.

HE.𝐷𝑒𝑐ℰ(𝐴%
$! = 𝐴#

$! , sk), ∀ 𝐴%
$! ∀ 𝐴#

$!

𝐴%
$! ← HE. 𝐸𝑣𝑎𝑙ℰ(𝑄$, 𝑟! , pk), ∀𝑄$ ∀ 𝑟!

𝐴#
$! ← HE. 𝐸𝑣𝑎𝑙ℰ(𝑄!, 𝑟$, pk),∀𝑄! ∀ 𝑟$

Figure 4: The timing diagram for the blind annotation protocol. The protocol, as well as five main compo-
nents (initialization, feature questions, record encryption, blind evaluation, and end conditions) are dissected
in Section 4.

4.1 Initialization

Prior to getting involved in the annotation, a few initialization steps should be conducted first. The dataset
owners (PA and PB) need to first consent on the annotation criteria including how similar can two records
be identified as the match and what kind of difference is tolerable. For example, consider the records “Canon
24-70mm f/2.8L USM” and “Canon 24-70mm f2.8L USM II” (A1 and B1 in Figure 1). Should these two
lenses, which differ in generation, be treated as the same? In some contexts, lenses with generation I and
II should be distinguished, while in others they may be categorized as the same item. The data used for
deciding such criteria in this step can be synthetic or be derived from the record content so it does not leak
any (sensitive) information about the original records.

A data preprocessing step is necessary for some of the datasets. If the dataset owners believe the format
of their data has a noticeable distinction, they could apply a series of data cleaning and standardization
operations, for example, removing the dataset-specific characters, lemmatization or stemming for natural
language content, on their data individually.

PC is responsible for sampling records from PA and PB ’s dataset. After the dataset size |DA| and
|DB | are sent to PC , PC randomly samples some amount of record from DA and DB and sends back the
selected record ids as a list back to the original data owners respectively. PC then generates the key
pairs (pk, sk) ← HE.KeyGenε(λ) with selected homomorphic encryption scheme ε and parameters λ, then

7

Published in Transactions on Machine Learning Research (05/2025)

distributes the public key pk to both PA and PB for encrypting their data and questions. Note that PC is
the only party that can decrypt any ciphertext back to plaintext with access to the secret key sk.

Note that all steps, except for HE key generation, are also required in a standard non-private annotation setup
and are essential for the final annotation quality. Our proposed method preserves these steps unchanged.Only
after the annotation criteria have been defined and consistent data preprocessing has been applied can
appropriate feature questions be formulated for the records.

4.2 Feature Questions

Feature questions are designed to test whether essential features of a record are satisfied and are annotated
by domain oracles. This is based on the assumption that if all the core features of two records are the
same, then they are highly likely to be the same entity. Specifically, the features of the records could be the
sub-strings that are necessary for representing the record. For example, in a lens name “Canon 24-70mm
f/2.8L USM II”, one feature can be the focal length “24-70” which can be used to construct a question that
tests if “24-70” is in the compared lens. Therefore, using this question to evaluate a “15-85” lens returns
false.

Under this assumption, the data owner can design a set of Boolean questions for all the features of a
certain record. Utilizing first-order logic chains a set of questions together and the evaluation of a record
turns it into a single Boolean value as the final result. For example, assume the question set is Q =
{Q1, Q2, . . . Qn}, and it could be Q = Q1 ∨ ¬Q2 . . . ∧ Qn after conversion with first-order logic. Therefore,
Q(r) = Q1(r) ∨ ¬Q2(r) . . . ∧ Qn(r) returns a Boolean value that implies whether the record r has all the
desired features.

In our protocol, the feature question set Q is as f in homomorphic encryption that uses to evaluate the
encrypted record JrK with HE.Eval, that is, HE.Evalε(Q, JrK, pk), or simply Q(JrK). Constructing Q that is
homomorphically executable is non-trivial due to the operator limitation and the hardness of the efficient
encryption circuit construction (see details in Section 4.2.2).

Hence, on a high level, we design a simple annotation language for the ease of use in Section 4.2.1 and
pre-defined some primitive functions that encapsulate the details of underlying homomorphic circuits in Sec-
tion 4.2.2. With this layered design, the domain oracles focus solely on the annotation logic, and the program
handles the tricks and optimizations for the sophisticated underlying homomorphic circuit construction.

4.2.1 Domain-specific Language

The annotation is designed to be written in a domain-specific language (DSL). This language provides
general methods for data manipulation and logic computation, which are extensible for defining functions.
The syntax of the DSL is in Appendix B.1.1.

With this DSL, it is efficient and sufficient to "ask questions". Take the lens example, the record content
from PA is “Canon 24-70mm f/2.8L USM II”, the annotation from the oracle could be:

1 $r = lower ($r)
2 $c1 = is_in (" canon ", $r) # condition 1
3 $c2 = is_in ("24 -70", $r) | is_in ("2470", $r) # condition 2
4 $c3 = ! is_in ("24 -105", $r) # condition 3
5 ret $c1 & $c2 & $c3

where target record $r is first being lower-cased, and then requires the brand to be “Canon”, focal range to
be “24-70” or simply “2470” as the common abbreviation but can not be “24-105”. Therefore, both “Canon
24-70 f2.8” and “Canon 2470” are considered matches, but “Canon 24-105mm USM” isn’t. Notice not all
features but the important ones, that are consensus in the annotation criteria, are tested, e.g., the motor
type “USM” or the version “II” are not being used for making the decision.

8

Published in Transactions on Machine Learning Research (05/2025)

4.2.2 Homomorphic Functions

Writing homomorphic functions from scratch is not as straightforward as writing some normally "obvious"
functions because of all the cumbersomeness and restrictions that homomorphic encryption schemes bring:
(1) The homomorphic encryption scheme only supports a collection of limited operators. More complicated
functions need to be built using these basic building blocks. (2) Simply porting the logic of a normal function
to a homomorphic encryption function would suffer from privacy and/or efficiency issues. The function needs
to revamp or refactor for it to work properly. (3) To achieve desired privacy protection (Appendix B.2), the
encryption is end-to-end, so no decryption is allowed in the middle of the evaluation, which confines the use
of control flow in programming.

To address these challenges and for the ease of writing effective and efficient functions along with the
proper privacy protection, we pre-define several functions that are essential components for constructing
Boolean questions Q and can be evaluated homomorphically without exposing the details of the underlying
circuits. For the encryption schemes that only support logical operators, the arithmetic operators could
be enriched by building upon the lower-level gate circuits, for example, constructing an 8-bit adder with
AND/OR/NOT/XOR gates (Mano, 2017). On the other hand, the arithmetic schemes such as BGV can
also be extended to support logical comparisons (Iliashenko & Zucca, 2021) (e.g., “<” and “=”) and that
also retrains the benefit of efficient SIMD operations (Smart & Vercauteren, 2014) naturally come with these
schemes.

It is worth mentioning that, among all the predefined functions, one function is is_in(JaK, JbK) that tests
if the encrypted string JaK is a sub-string of the encrypted string JbK. This is the core to measure if a certain
feature JaK exists in a record JbK. In terms of extensibility, as long as a function needed can be encapsulated
in a way that is able to compute homomorphically, it is safe to be added to the framework.

4.3 Record Encryption

To make the blind evaluation functions work, the records from both data owners require to be encoded with
the same data encoding method. For the current case, since we only work on English characters, we simply
apply ASCII encoding over the original records. Each character in a record is then represented as an 8-bit
integer. All the sampled records r ∈ X(D) are encrypted with the public key pk that PC generated in the
initialization step.

The output ciphertext JrK← HE.Encε(r, pk) is different even if the content of r is exactly the same due to the
probabilistic encryption property, also known as semantic security, that homomorphic encryption carries (Yi
et al., 2014). For instance, encrypting “Canon 24-70mm” n times results in n different ciphertexts. Therefore,
no party is even able to test the exact match of the records by comparing the encrypted record ciphertext
from other parties.

Finally, the encrypted JrK ∈ X(E(D)) is sent to another data owner for blind evaluation.

4.4 Blind Evaluation

From PA’s perspective (the perspective for PB is interchangeable), once it receives the encrypted X(E(DB))
from PB , JrjK ∈ X(E(DB)) is fed into each prepared function Qi for blind evaluation. Computing Qi with
JrjK is a typical homomorphic evaluation process that PA does not know anything about what the content is
in JrjK but can still evaluate it as the plaintext version rj with all the questions defined in Qi. Because PA

does not know which JrjK potentially matches its own record ri ∈ X(DA), this process needs to test all JrjKs
against all Qis. Therefore, the total number of such process executes |DA| × |DB | times for |Qi| = |DA|.

The output JAij
AK ← HE.Evalε(Qi, JrjK, pk) for each JrjK is also in ciphertext and since the secret key sk

is only accessible by PC , PA is not possible to get any information from X(E(DB)). Note JAij
AK associates

with the record id pairs (i, j) so that PC is able to identify the provenance of the result.

9

Published in Transactions on Machine Learning Research (05/2025)

4.5 End Conditions

The encrypted results from PA and PB are collected and evaluated by PC . On PC ’s side, it aligns JAij
AK

and JAij
BK according to i and j, and tests if JAij

AK = JAij
BK meanwhile decrypts the result with secret key sk.

PC then has a mapping F with record id pairs (i, j) as keys and Boolean values indicating if two parties
have made an agreement on the same record pairs as values. Formally, F = {(i, j) 7→ HE.Decε(JAij

AK =
JAij

BK, sk)| ri ∈ X(DA), rj ∈ X(DB)}.

For each record pair (i, j) in F , if the value is true, the agreement has been established between the two
data owners, so no additional process is needed. Otherwise, the record pair needs further investigation, and
PC extracts all is and js from disagreed pairs and returns them to the data owner respectively. The data
owners have to conduct another round of annotation only for these records. The annotations for the later
rounds tend to be not as strict as the former rounds so it increases the possibility of making JAij

AK and JAij
BK

the same. Simultaneously, PC maintains another list Gh that stores the annotation result from one of the
parties (assuming PA here), that is, Gh = {(i, j, l) | h ∈ [1, t], l← HE.Decε(JAij

AK, sk)}, where l is the label, h
is the round number and t is a parameter denoting the maximum number of rounds that should be decided
between the data owners in the initialization step. When t rounds have finished, the protocol ends: the pairs
whose value is true (consensus archived) in F are added to the final ground truth, and others are discarded.
Therefore, the ground truth set G is constructed as G = {(i, j, l) | (i, j, l) ∈ Gt, F (i, j) = true}. Note that
increasing t tends to improve performance, but it also raises the labeling cost. An empirical analysis of the
effect of t is presented in Section 5.2.

Obviously, when all the values in F are true in the h-th round, it is by no means to recurse into the (h+1)-th
round. The protocol meets the early termination condition and exits immediately.

5 Experiments

In this section, we conduct experiments to empirically evaluate the feasibility of using blind annotation to
annotate datasets and the incurred overhead of homomorphic encryption. In general, domain oracles are
asked to annotate datasets using blind annotation. The quality of the final annotation results is assessed by
comparing them to the ground truth.

Original Selected
Dataset Domain Attributes #E #M #E #M

Abt-Buy E-commerce name, description, manufacturer, price 1081+1092 1097 50+50 50
Amazon-Google E-commerce name, description, manufacturer, price 1363+3226 1300 49+50 50

DBLP-Scholar Bibliographic title, authors, venue, year 2616+64263 5347 49+50 50
DBLP-ACM Bibliographic title, authors, venue, year 2614+2294 2224 50+50 50

Febrl Biomedical
given name, surname, sex, age, title,
date of birth, address 1, address 2,
phone, soc sec id, culture, family role

1500+3500 1074 50+50 50

Table 1: Dataset specifications and basic statistics. The underlined attributes are the attributes selected in
the experiments. #E represents the number of entities, and #M denotes the number of matches.

5.1 Settings, Datasets and Metrics

5.1.1 Settings.

To empirically study the feasibility of our blind annotation protocol in a practical sense, we implement a
web-based user-friendly GUI and its corresponding HE program (see details in Appendix C.1). Specifically,
the web GUI is implemented in Python, in which the DSL syntax is written in Extended Backus–Naur Form

10

Published in Transactions on Machine Learning Research (05/2025)

(EBNF) and parsed by Lark library 2 with Look-Ahead Left-to-Right (LALR) parser. The syntax definition
can easily be extended for new syntax, operators, and functions. The workflow is as follows: each domain
oracle 3 annotates the owned dataset individually, and the annotation program merges and calculates the
results. If the annotations do not satisfy the exit condition, the unqualified records are returned to the
corresponding oracles for the next annotation.

The underlying HE program is implemented in OpenFHE (Al Badawi et al., 2022), an open-source project
that efficiently and extensibly implements the post-quantum Fully Homomorphic Encryption schemes. We
use the BinFHE module, a concrete implementation of FHEW/TFHE (Ducas & Micciancio, 2015; Chillotti
et al., 2020). Specifically, we set it to work in public-key encryption mode with the crypto context to be
STD128, which guarantees more than 128 bits of security for classical computer attacks. Additionally, we
implement the program in two versions: serial and parallel. The latter employs OpenMP 4, a multi-platform
shared-memory parallel programming library, for accelerating independent gate operations to be executed
in parallel. All the experiments are conducted on a Linux machine with an 8-core CPU @ 3.60 GHz and 32
GB RAM.

5.1.2 Datasets.

We use the real-world entity resolution benchmark (Köpcke et al., 2010), which includes 4 tasks and lies in
both e-commerce and bibliographic domains. Each task consists of two datasets and a ground-truth file,
which contains all the true matches. To mimic the labeling process, we extract a subset of records from
each dataset, annotate them, and then compare the annotated pairs to the ground truth. Specifically, we
first randomly sample 50 labeled matches from each provided ground truth, and this covers at most 5% (50
records) of each dataset because one record could link to multiple records. Note that 50 records from each
dataset are around 2.5-5% of the original dataset except for Scholar. Even though the proportion of sampled
records as ground truth seems small, it is sufficient for ER in most practical scenarios (Kasai et al., 2019).
The specifications and the basic statistics of the dataset are listed in Table 1. We do not make any specific
data cleaning and normalization except that all the Unicode characters are mapped into the ASCII range.

Generally, PPER are evaluated using ER’s benchmark datasets. However, an important application area
is in healthcare, particularly with patient data. Unfortunately, these datasets often require permission for
use or are restricted to specific purposes, making them less ideal for evaluating the effectiveness of the
privacy-preserving methods. As an alternative, synthetic datasets are commonly used. One such synthetic
dataset is Febrl (Freely Extensible Biomedical Record Linkage) (Christen, 2008), which is widely employed
for generating census records containing fields such as name, sex, age, and address. These fields align with
the structure of many patient datasets. Furthermore, as a synthetic dataset, it allows for customizable levels
of noise. For our experiments, we generated the experiment dataset using the settings from Yao et al. (2021).
The record content contains typos, ORC errors and phonetic festures, and we summarize the statistics of
missing value in Table 2.

given name surname sex age title address 1 phone

1.8 1.3 21.2 19.6 57.5 5.7 5.6

Table 2: The percentage (%) of missing value for each attributes in the Febrl dataset

5.1.3 Evaluation Metrics.

We use precision, recall and F-measure as the standard evaluation metrics to measure the accuracy of blind
annotation against the scores computed from ground truth labels. We additionally analyze other observed
phenomenons, including the relationship between the annotations rounds and the number of labeled pairs
that come to an agreement. As for the homomorphic implementation, the communication and computation
costs are evaluated.

2https://github.com/lark-parser/lark
3Given that these tasks require only general knowledge, the oracles are individuals who understand the datasets.
4https://www.openmp.org/

11

Published in Transactions on Machine Learning Research (05/2025)

1 2 3
Round

0.00

0.25

0.50

0.75

1.00
Abt-Buy

Precision
Recall
F-measure

1 2 3
Round

Amazon-Google

Precision
Recall
F-measure

1 2 3
Round

DBLP-Scholar

Precision
Recall
F-measure

1 2 3
Round

DBLP-ACM

Precision
Recall
F-measure

1 2 3
Round

Febrl

Precision
Recall
F-measure

Figure 5: Performance evaluation regarding precision, recall and f-measure.

1 2 3
Round

2000

2200

2400

2600

ag

re
em

en
t

Abt-Buy

1 2 3
Round

Amazon-Google

1 2 3
Round

DBLP-Scholar

1 2 3
Round

DBLP-ACM

1 2 3
Round

Febrl

0

100

200

300

ne

w
an

no
ta

tio
n

Figure 6: #round to meet agreement. The gray dashed line is the total number of candidate pairs, and the
green solid line is the actual number of pairs that meet agreement. These two use the left y-axis as the scale.
The purple bars at the bottom are the summation of the number of records to annotate from two parties.
It uses the right y-axis as the scale.

5.2 Feasibility Verification

We try to validate two hypotheses in the following experiments to verify the feasibility of using blind anno-
tation to construct the ground truth dataset for PPER:

• (H1) The feature extraction from only one side of the dataset without inspecting the other side and
comparing candidate pair side-by-side is a feasible approach.

• (H2) More annotation rounds are effective for improving the quality of the PPER ground truth
labeling.

• (H3) It is efficient for domain oracles to learn the DSL and perform annotation through the GUI.

H1 From Figure 5, we observe the F-measure for Abt-Buy, DBLP-Scholar, and DBLP-ACM are all above
0.9, but Amazon-Google is not as good as others. The Amazon-Google dataset used in our experiment can
be considered as hard problems for the record representations are full of abbreviations (e.g., software as sw),
missing brands or models for products, and a limited amount of information (very short names). If better
data pre-processing, especially normalization, is applied beforehand, a visible performance boost should be
achieved. With more rounds of records annotated, precision and f-measure increase sharply for Abt-Buy and
Amazon-Google, but not that noticeable for DBLP-Scholar and DBLP-ACM since both of them have already
achieved high scores at the initial stage. Surprisingly, the recall values for DBLP-Scholar and DBLP-ACM
drop slightly with more rounds executed, this is mainly due to the side-effect of the annotation strategy:
when annotations from two parties do not come to an agreement, the oracles tend to make the annotations
to be more generalized, that is, relaxing on the strictness of the matching criterion for easier capturing
similarities, in the next round. Normally, having slack criterion will diminish precision but rise recall for
more negatives become positives; however, another variable, the number of agreements between parties, is
also increasing in blind annotation, which leads to the increment of both true positives and false negatives
and the recall somewhat drops as a consequence. For Febrl, performance has a boost. It finally achieves
promising results, largely due to the presence of highly identifiable signals, such as names, phone numbers,
and keywords in addresses, in the census data.

12

Published in Transactions on Machine Learning Research (05/2025)

1-1
5
16

-30
31

-45
46

-60
61

-75
76

-90
91

-10
5

10
6-1

20

12
1-1

35

13
6-1

50

15
1-1

65

16
6-1

80

18
1-1

95

19
6-2

10

21
1-2

25

22
6-2

40

24
1-2

55

25
6-2

70

27
1-2

85

28
6-3

00

Record length range

0

5

10

15

20

25

30

35

40

Co
un

t

Record length distribution vs Communication cost

Left y-axis:
Abt-Buy
Amazon-Google
DBLP-Scholar
DBLP-ACM

Right y-axis:
Plain text
Cipher text

0

2000

4000

6000

8000

Ci
ph

er
 si

ze
 (u

ni
t:

KB
)

(a) Communication cost in the context of the record
length range. The left y-axis indicates the number of
such records, and the right y-axis indicates the size of
the corresponding plaintext and ciphertext.

Abt-Buy
 (6x53)

Amazon-Google
 (6x46)

DBLP-Scholar
 (6x118)

DBLP-ACM
 (6x148)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

Ti
m

e
co

st
 (s

ec
s)

1e6

0.54
0.46

1.28

1.6

0.16 0.14

0.38
0.48

Computation cost
Serial
Parallel

(b) Computation cost in serial and parallel
mode. The x-axis represents the length of the
two records as {the average token length ×
the average record length} in each dataset.

H2 We further explore other effects that occur with the iteration of annotation rounds. As is shown in
Figure 6, the green line, which indicates the number of agreements, approaches the gray line, which is the
total number of candidate pairs, as the annotation round increases. On the other hand, the number of records
that requires to annotate, shown as the bars, decreases. Specifically, for Abt-Buy and Amazon-Google, the
annotation demands drop to 1/4 and 1/2 of the original amount respectively; for DBLP-Scholar and DBLP-
ACM, in the second and the third round, this number is even less than 10%, because of the more explicit
features the datasets have. For Febrl, the agreement increases notably across rounds, primarily due to the
progressive relaxation of the criteria related to missing values.

H3 The domain oracles became familiar with the DSL and GUI in around 30 minutes. For labeling, the
average time per record was under 1 minute using the web-based GUI (implementation details are provided
in Appendix C.1). The annotation process was fully offline for each party and executed in parallel.

In conclusion, the first hypothesis holds because all evaluation results lie in the acceptable range. With
better cleaned and normalized datasets, the performance in terms of precision, recall and f-measure should
be promising. The second hypothesis holds because precision, recall, and f-measure surge at the beginning
with the increment of annotation rounds, and tend to be steady after a series of such rounds. The number
of disagreements between the parties drops over the rounds before it hits the plateau. The third hypothesis
holds as well, as both the learning and annotation costs remain within an acceptable range.

5.3 HE Overheads Analyses

Implementing blind annotation based on HE encryption scheme introduces various overheads. We hereby
analyze them from the following two perspectives.

Communication cost We compare the size difference between plaintext and ciphertext with different
lengths of input tokens among four datasets. In Figure 7a, the x-axis indicates the distribution of record
length with a step of 15, the left y-axis indicates the number of records, and the right y-axis indicates the
average size of serialized record data in a step in KB. It is clear to find out from the left y-axis that the
distribution of the record length is in the range of 1 to 300, and the most common lengths are from 16 to 60
for Abt-Buy and Amazon-Google, and 91-160 for DBLP-Scholar and DBLP-ACM. This leads to the average
record length for each dataset is 53, 46, 118, and 148. From the right y-axis, the increment of plaintext
size, as a baseline, is nuance since each ASCII character only takes 1 byte (0.001KB) and 300 is only 0.3KB.
As for the ciphertext, the trend of ciphertext size expands linearly, with an average consumption of 32KB
per ASCII character after encryption and serialization. Although the size increment after encryption is
significant, the total size of the data is still practical, and such communication is a one-time operation. For
example, if the annotation is for 50 records, the average length is 100, then the total size of the encrypted
data is 156.25MB.

13

Published in Transactions on Machine Learning Research (05/2025)

Computation cost We evaluate the computation cost on 2500 comparisons (50 records from each party)
with the average length of the token size (1st argument, see Appendix D.1) and the average record length
(2nd argument) used in is_in function for each dataset: 6x53, 6x46, 6x118 and 6x148. We also compare
the cost with ciphertext in serial and parallel. As is shown in Figure 7b, the incurred computation cost
for ciphertext is about 5.4e5 seconds for 6x53, 4.6e5 seconds for 6x46, 1.28e6 for 6x118 and 1.6e6 seconds
for 6x148 in serial mode. The parallel mode executes byte-level equal comparison with independent gate
operations in parallel so that the time cost is significantly improved more than 3 times.

Two optimizations we consider doing in the future are: 1) The records from both parties are encrypted due
to the limitation of BinFHE. For some other HE schemes (e.g., BGV/BFV) that allow the HE operations
between a plaintext and a ciphertext, only the record from the other party needs to be encrypted so that
more computation and communication costs can be further saved. 2) The parallelization is only optimized
for the byte-level comparison. Since the 2500 pairwise record comparisons are mutually independent and
can also be run simultaneously, the fully paralleled program should cost notably less time.

6 Conclusion and Future Work

In this work, we propose a blind annotation protocol based on homomorphic encryption for labeling ground
truth that is tailored for privacy-preserving entity resolution. Unlike revamping the traditional annotation
methods with de-identified records, this protocol explores the possibility of annotating without revealing
any record in plaintext to other parties. The domain-specific language lowers the bar of the implementation
in the real world and the comprehensive experiment results show the rationality of blind annotation. It
can be anticipated that scaling efficiently to more complex datasets and real-world scenarios will become
increasingly computationally feasible as HE implementations become more efficient.

In the future, because of the extensibility of DSL, more qualified homomorphic evaluation functions could
be invented and integrated. Additionally, supporting the multi-attribute dataset is a practical enhancement
that increases information utilization and improves linkage accuracy.

References
Abbas Acar, Hidayet Aksu, A Selcuk Uluagac, and Mauro Conti. A survey on homomorphic encryption

schemes: Theory and implementation. ACM Computing Surveys (Csur), 51(4):1–35, 2018.

Ahmad Al Badawi, Jack Bates, Flavio Bergamaschi, David Bruce Cousins, Saroja Erabelli, Nicholas Genise,
Shai Halevi, Hamish Hunt, Andrey Kim, Yongwoo Lee, et al. Openfhe: Open-source fully homomorphic
encryption library. In proceedings of the 10th workshop on encrypted computing & applied homomorphic
cryptography, pp. 53–63, 2022.

Dan Boneh, Eu-Jin Goh, and Kobbi Nissim. Evaluating 2-dnf formulas on ciphertexts. In TCC, volume
3378, pp. 325–341. Springer, 2005.

Zvika Brakerski. Fully homomorphic encryption without modulus switching from classical gapsvp. In
Advances in Cryptology–CRYPTO 2012: 32nd Annual Cryptology Conference, Santa Barbara, CA, USA,
August 19-23, 2012. Proceedings, pp. 868–886. Springer, 2012.

Zvika Brakerski, Craig Gentry, and Vinod Vaikuntanathan. Fully homomorphic encryption without boot-
strapping. Cryptology ePrint Archive, Report 2011/277, 2011. https://eprint.iacr.org/2011/277.

Michael Buhrmester, Tracy Kwang, and Samuel D Gosling. Amazon’s mechanical turk: A new source of
inexpensive, yet high-quality data? 2016.

Hao Chen, Kim Laine, and Peter Rindal. Fast private set intersection from homomorphic encryption. In
Proceedings of the 2017 ACM SIGSAC Conference on Computer and Communications Security, pp. 1243–
1255, 2017.

Ilaria Chillotti, Nicolas Gama, Mariya Georgieva, and Malika Izabachène. Tfhe: fast fully homomorphic
encryption over the torus. Journal of Cryptology, 33(1):34–91, 2020.

14

https://eprint.iacr.org/2011/277

Published in Transactions on Machine Learning Research (05/2025)

Benny Chor, Eyal Kushilevitz, Oded Goldreich, and Madhu Sudan. Private information retrieval. Journal
of the ACM (JACM), 45(6):965–981, 1998.

Peter Christen. Febrl- an open source data cleaning, deduplication and record linkage system with a graphical
user interface. In Proceedings of the 14th ACM SIGKDD international conference on Knowledge discovery
and data mining, pp. 1065–1068, 2008.

Peter Christen. A survey of indexing techniques for scalable record linkage and deduplication. IEEE trans-
actions on knowledge and data engineering, 24(9):1537–1555, 2011.

Scott D Constable and Steve Chapin. liboblivious: A c++ library for oblivious data structures and algo-
rithms. 2018.

Tiziana D’Orazio, Marco Leo, Nicola Mosca, Paolo Spagnolo, and Pier Luigi Mazzeo. A semi-automatic
system for ground truth generation of soccer video sequences. In 2009 Sixth IEEE International Conference
on Advanced Video and Signal Based Surveillance, pp. 559–564. IEEE, 2009.

Léo Ducas and Daniele Micciancio. Fhew: Bootstrapping homomorphic encryption in less than a second. In
Elisabeth Oswald and Marc Fischlin (eds.), Advances in Cryptology – EUROCRYPT 2015, pp. 617–640,
Berlin, Heidelberg, 2015. Springer Berlin Heidelberg. ISBN 978-3-662-46800-5.

Khaled El Emam. Seven ways to evaluate the utility of synthetic data. IEEE Security & Privacy, 18(4):
56–59, 2020.

Junfeng Fan and Frederik Vercauteren. Somewhat practical fully homomorphic encryption. Cryptology
ePrint Archive, 2012.

Oluwaseyi Feyisetan, Thomas Drake, Borja Balle, and Tom Diethe. Privacy-preserving active learning on
sensitive data for user intent classification. In PAL 2019, 2019. URL https://www.amazon.science/
publications/privacy-preserving-active-learning-on-sensitive-data-for-user-intent-classification.

Caroline Fontaine and Fabien Galand. A survey of homomorphic encryption for nonspecialists. EURASIP
Journal on Information Security, 2007:1–10, 2007.

Craig Gentry. A fully homomorphic encryption scheme. Stanford university, 2009.

Tanmay Ghai, Yixiang Yao, and Srivatsan Ravi. Lessons learned: Building a privacy-preserving entity resolu-
tion adaptation of ppjoin using end-to-end homomorphic encryption. In 2023 IEEE European Symposium
on Security and Privacy Workshops (EuroS&PW), pp. 117–124. IEEE, 2023.

Aris Gkoulalas-Divanis, Dinusha Vatsalan, Dimitrios Karapiperis, and Murat Kantarcioglu. Modern privacy-
preserving record linkage techniques: an overview. IEEE Transactions on Information Forensics and
Security, 16:4966–4987, 2021.

Meng Hao, Weiran Liu, Liqiang Peng, Cong Zhang, Pengfei Wu, Lei Zhang, Hongwei Li, and Robert H.
Deng. Practical keyword private information retrieval from key-to-index mappings. Cryptology ePrint
Archive, Paper 2025/210, 2025. URL https://eprint.iacr.org/2025/210.

Ilia Iliashenko and Vincent Zucca. Faster homomorphic comparison operations for bgv and bfv. Proceedings
on Privacy Enhancing Technologies, 2021(3):246–264, 2021.

Ali Inan, Murat Kantarcioglu, Elisa Bertino, and Monica Scannapieco. A hybrid approach to private record
linkage. In 2008 IEEE 24th International Conference on Data Engineering, pp. 496–505. IEEE, 2008.

Ali Inan, Murat Kantarcioglu, Gabriel Ghinita, and Elisa Bertino. Private record matching using differential
privacy. In Proceedings of the 13th International Conference on Extending Database Technology, pp. 123–
134, 2010.

Panagiotis G Ipeirotis. Demographics of mechanical turk. 2010.

15

https://www.amazon.science/publications/privacy-preserving-active-learning-on-sensitive-data-for-user-intent-classification
https://www.amazon.science/publications/privacy-preserving-active-learning-on-sensitive-data-for-user-intent-classification
https://eprint.iacr.org/2025/210

Published in Transactions on Machine Learning Research (05/2025)

Baoyu Jing, Pengtao Xie, and Eric Xing. On the automatic generation of medical imaging reports. arXiv
preprint arXiv:1711.08195, 2017.

Yongsoo Song Jung Hee Cheon, Andrey Kim & Miran Kim. Homomorphic encryption for arithmetic of
approximate numbers. 2017. URL https://link.springer.com/chapter/10.1007%2F978-3-319-70694-8_15.

Hiroshi Kajino, Yukino Baba, and Hisashi Kashima. Instance-privacy preserving crowdsourcing. In Pro-
ceedings of the AAAI Conference on Human Computation and Crowdsourcing, volume 2, pp. 96–103,
2014.

Ruogu Kang, Stephanie Brown, Laura Dabbish, and Sara Kiesler. Privacy attitudes of mechanical turk
workers and the us public. In Symposium on Usable Privacy and Security (SOUPS), volume 4, pp. 1,
2014.

Jungo Kasai, Kun Qian, Sairam Gurajada, Yunyao Li, and Lucian Popa. Low-resource deep entity resolution
with transfer and active learning. arXiv preprint arXiv:1906.08042, 2019.

Isaak Kavasidis, Simone Palazzo, Roberto Di Salvo, Daniela Giordano, and Concetto Spampinato. A semi-
automatic tool for detection and tracking ground truth generation in videos. In Proceedings of the 1st
international workshop on visual interfaces for ground truth collection in computer vision applications, pp.
1–5, 2012.

Hanna Köpcke, Andreas Thor, and Erhard Rahm. Evaluation of entity resolution approaches on real-world
match problems. Proceedings of the VLDB Endowment, 3(1-2):484–493, 2010.

Hendra Kurniawan and Masahiro Mambo. Homomorphic encryption-based federated privacy preservation
for deep active learning. Entropy, 24(11):1545, 2022.

Matthew Lease, Jessica Hullman, Jeffrey Bigham, Michael Bernstein, Juho Kim, Walter Lasecki, Saeideh
Bakhshi, Tanushree Mitra, and Robert Miller. Mechanical turk is not anonymous. Available at SSRN
2228728, 2013.

Ninghui Li, Wahbeh Qardaji, and Dong Su. On sampling, anonymization, and differential privacy or, k-
anonymization meets differential privacy. In Proceedings of the 7th ACM Symposium on Information,
Computer and Communications Security, pp. 32–33, 2012.

M Morris Mano. Digital logic and computer design. Pearson Education India, 2017.

Daniel Morales, Isaac Agudo, and Javier Lopez. Private set intersection: A systematic literature review.
Computer Science Review, 49:100567, 2023.

Michael Naehrig, Kristin Lauter, and Vinod Vaikuntanathan. Can homomorphic encryption be practical?
In Proceedings of the 3rd ACM workshop on Cloud computing security workshop, pp. 113–124, 2011.

Mariana Neves and Ulf Leser. A survey on annotation tools for the biomedical literature. Briefings in
bioinformatics, 15(2):327–340, 2014.

Olga Ohrimenko, Felix Schuster, Cédric Fournet, Aastha Mehta, Sebastian Nowozin, Kapil Vaswani, and
Manuel Costa. Oblivious multi-party machine learning on trusted processors. In 25th {USENIX} Security
Symposium ({USENIX} Security 16), pp. 619–636, 2016.

Pascal Paillier. Public-key cryptosystems based on composite degree residuosity classes. In Advances in
Cryptology—EUROCRYPT’99: International Conference on the Theory and Application of Cryptographic
Techniques Prague, Czech Republic, May 2–6, 1999 Proceedings 18, pp. 223–238. Springer, 1999.

Monica Scannapieco, Ilya Figotin, Elisa Bertino, and Ahmed K Elmagarmid. Privacy preserving schema
and data matching. In Proceedings of the 2007 ACM SIGMOD international conference on Management
of data, pp. 653–664, 2007.

16

https://link.springer.com/chapter/10.1007%2F978-3-319-70694-8_15

Published in Transactions on Machine Learning Research (05/2025)

Rainer Schnell, Tobias Bachteler, and Jörg Reiher. Privacy-preserving record linkage using bloom filters.
BMC medical informatics and decision making, 9(1):1–11, 2009.

Nigel P Smart and Frederik Vercauteren. Fully homomorphic simd operations. Designs, codes and cryptog-
raphy, 71:57–81, 2014.

Yi-Fan Tseng, Chun-I Fan, Ting-Chuan Kung, Jheng-Jia Huang, and Hsin-Nan Kuo. Homomorphic encryp-
tion supporting logical operations. In Proceedings of the 2017 International Conference on Telecommuni-
cations and Communication Engineering, pp. 66–69, 2017.

Yalin Wangt, Ihsin T Phillipst, and Robert Haralick. Automatic table ground truth generation and a
background-analysis-based table structure extraction method. In Proceedings of Sixth International Con-
ference on Document Analysis and Recognition, pp. 528–532. IEEE, 2001.

William E Winkler. Matching and record linkage. Wiley interdisciplinary reviews: Computational statistics,
6(5):313–325, 2014.

Yixiang Yao, Tanmay Ghai, Srivatsan Ravi, and Pedro Szekely. Amppere: A universal abstract machine for
privacy-preserving entity resolution evaluation. In Proceedings of the 30th ACM International Conference
on Information & Knowledge Management, pp. 2394–2403, 2021.

Yixiang Yao, Joseph Cecil, Praveen Angyan, Neil Bahroos, and Srivatsan Ravi. Feasibility of privacy-
preserving entity resolution on confidential healthcare datasets using homomorphic encryption, 2024. URL
https://arxiv.org/abs/2405.18430.

Xun Yi, Russell Paulet, Elisa Bertino, Xun Yi, Russell Paulet, and Elisa Bertino. Homomorphic encryption.
Springer, 2014.

Joyce Yu, Jakub Nabaglo, Dinusha Vatsalan, Wilko Henecka, and Brian Thorne. Hyper-parameter optimiza-
tion for privacy-preserving record linkage. In ECML PKDD 2020 Workshops: Workshops of the European
Conference on Machine Learning and Knowledge Discovery in Databases (ECML PKDD 2020): SoGood
2020, PDFL 2020, MLCS 2020, NFMCP 2020, DINA 2020, EDML 2020, XKDD 2020 and INRA 2020,
Ghent, Belgium, September 14–18, 2020, Proceedings, pp. 281–296. Springer, 2020.

Xiaoyu Zhang, Xiaofeng Chen, Hongyang Yan, and Yang Xiang. Privacy-preserving and verifiable online
crowdsourcing with worker updates. Information Sciences, 548:212–232, 2021.

A Preliminaries

A.1 Homomorphic Encryption

Homomorphic encryptions are widely used for privacy-preserving computation tasks. For example, users
outsourcing their data to a cloud computing platform would have privacy concerns; with homomorphic
encryption, the platform is able to perform necessary computations on the encrypted data directly (Naehrig
et al., 2011).

Homomorphic encryption schemes are normally categorized into three types according to the survey (Acar
et al., 2018): (1) Partially Homomorphic Encryption (PHE) allows only one type of operation with an un-
limited number of times (i.e., no bound on the number of usages), e.g., Pailier (Paillier, 1999). (2) Somewhat
Homomorphic Encryption (SWHE) allows some types of operations a limited number of times, e.g., Boneh-
Goh-Nissim (BGN) (Boneh et al., 2005). (3) Fully Homomorphic Encryption (FHE) allows an unlimited
number of operations for an unlimited number of times. Since Gentry realized the first FHE scheme (Gen-
try, 2009) based on the lattice, a lot of follow-up FHE schemes have been proposed to address the issue
it has and optimized to be practical in real-world applications. Some schemes including Brakerski-Gentry-
Vaikuntanathan (BGV) (Brakerski et al., 2011), Brakerski–Fan–Vercauteren (BFV) (Fan & Vercauteren,
2012; Brakerski, 2012) and Cheon-Kim-Kim-Song (CKKS) (Jung Hee Cheon, 2017) support arithmetic op-
erations while some others (Tseng et al., 2017) including FHEW (Ducas & Micciancio, 2015) is capable for

17

https://arxiv.org/abs/2405.18430

Published in Transactions on Machine Learning Research (05/2025)

logical operations. Recently, works are extending the pure arithmetic schemes to run logical comparators
without losing advantages such as Single Instruction Multiple Data (SIMD) (Iliashenko & Zucca, 2021).

B Blind Annotation Protocol

B.1 Feature Functions

B.1.1 Domain-specific Language

Some of the features the DSL equips:

• The primitive data types are string which is wrapped in double quotes and number.

• Three logic operators are supported. Or operator: a | b returns true if either a or b is true.
Otherwise, false. And operator: a & b returns true if both a and b are true. Otherwise, false. Not
operator: !a returns true if a is false, or returns false if a is true.

• Variables can be defined by $v={exp} where $ is the variable indicator, v is the variable name and
{exp} is a valid expression.

• A preset variable $r is act as the target record for comparison and should be used in the annotation
as the argument of the question Q.

• At least one return statement ret is required. The argument of the return should be in Boolean. If
multiple is provided, the code terminates when the first return statement is found.

• Round bracket pair () is for prioritizing the execution of specified expressions.

• Comment starts with #, e.g., # this is a comment.

• Whitespaces and empty lines are ignored.

B.1.2 Homomorphic Functions

Besides the challenges mentioned in Section 4.2.2 for constructing pre-defined functions, we still need to
tackle one more issue that these functions rely on. As (Yao et al., 2021) pointed out, the control flow
including choice (e.g. if) and loop (e.g. for, while) based flows require conditional expressions, which are
in Boolean, for execution. These encrypted Boolean values cannot be used in conditional operations unless
they are decrypted. However, the decryption of the sensitive encrypted value causes the exposing of the
execution path which is not allowed in our privacy-preserving settings. The solution is to import ternary
operation that converts to logic operation to be arithmetic operation, hence bypassing the decryption of the
encrypted Boolean condition. The ternary operator is defined as cond: a ? b where cond is the encrypted
Boolean condition and a or b are encrypted integer values. To return a when cond is true or to return b
when cond is false without decrypting cond, we exploit oblivious-style ternary operators (Ohrimenko et al.,
2016; Constable & Chapin, 2018) and implement choose(JcondK, JaK, JbK) with the arithmetic operators as
JcondK ∗ (JaK − JbK) + JbK where JcondK, JaK and JbK are all ciphertexts, and the return of choose, which is
either JaK or JbK, is also a ciphertext.

With the ternary operator, we can define more sophisticated functions. Algorithm 1 lists some commonly-
used functions and the implementation details. All these functions are evaluated and returned in ciphertexts.
lower(JsK) (line 1-6) and upper(JsK) (line 7-12) convert the ASCII character to all lower-case or upper-case
for standardization. These are not by default applied because, in some circumstances, letter case is an
important signal for identifying record similarity. Both methods take in the encrypted string s and loop
the characters in it one by one. For each character, it determines if it falls in a certain range of the ASCII
table, and uses that as the condition to choose whether to modify the value or not. If the homomorphic
scheme supports SIMD operation, calculating cond and choose can be run as a batch in one operation so the
for-loop is saved. We also provide is_in(JaK, JbK) function (line 13-22) which detects if JaK is a sub-string

18

Published in Transactions on Machine Learning Research (05/2025)

Algorithm 1: Commonly-used Functions
Input & return: The input JsK, JaK, JbK are all homomophically encrypted. The return of all functions is also

in ciphertext. len returns the encrypted string length in plaintext.
1 Function lower(JsK: string):
2 for i← 1 to len(JsK) do
3 JcK← Js[i]K;
4 JcondK← (JcK > 0x40) ∧ (JcK < 0x5b);
5 Js[i]K← choose(JcondK, JcK + 0x20, JcK);
6 return JsK;

7 Function upper(JsK: string):
8 for i← 1 to len(JsK) do
9 JcK← Js[i]K;

10 JcondK← (JcK > 0x60) ∧ (JcK < 0x7b);
11 Js[i]K← choose(JcondK, JcK− 0x20, JcK);
12 return JsK;
13 Function is_in(JaK: string, JbK: string):
14 la ← len(JaK);
15 lb ← len(JbK);
16 JresK← JFalseK;
17 for j ← 1 to lb − la + 1 do
18 JrK← JTrueK;
19 for i← 1 to la do
20 JrK← JrK ∧ (Ja[i]K = Jb[j + i]K);
21 JresK← JresK ∨ JrK;
22 return JresK;

of JbK by scanning the existence of JaK from JbK’s left to right. Using this O(n2) naive method without the
early exit, even if a sub-string match exists, is not ideal but unavoidable because of preventing the disclosure
of the execution path for privacy, as stated above.

B.2 Security Analysis

B.2.1 Security Definitions

We model A as a probabilistic polynomial-time machine and the parties as interactive Turing machines.
Definition 1 (Adversary). An honest-but-curious adversary A is capable of corrupting a subset of parties
in the system, both not the server and one of the data owners at the same time. A compromised party will
divert to A all the received messages and act as A requests.

Ideal World. Our ideal-world functionality F interacts with annotation parties as follows:

1. Each data owner sends F its plaintext data r ∈ D and plaintext feature questions Q. F processes
and checks Boolean result w as Qi(rj) = Qj(ri),∀Q∀r.

2. If w is true, then add the records from both sides to the ground truth.

3. If w is false, repeat Step (1) until an agreement is reached or it exceeds a set trial threshold.

Real World. In the real world, F is replaced and realized by our protocol described in the previous parts
of this section.
Definition 2 (Security). A blind annotation protocol is simulation secure if for every adversary A in the
real world, there exists a security simulator S in the ideal world that also corrupts the same set of parties
and produces an output identically distributed to A’s output in the real world.

19

Published in Transactions on Machine Learning Research (05/2025)

B.2.2 Security Simulation

We describe a security simulator S that simulates the view of the A in the real-world execution of our
protocol. Our security Definition 2 and S ensure both confidentiality and correctness. S receives from
F , F(C, x), where C is computing circuits. S sends F(C) to S and obtains fake Homomoprhic Encryption
circuits HEfake. SHE generates a random string ofake of the same length as output. S sends (HEfake, ofake)
to A. As HE circuits distribution is independent, HEfake is computationally indistinguishable from the real
HE circuits HE in the real execution. The random output ofake in ideal execution is indistinguishable from
o in the real execution. In the ideal world, S creates fake circuits HEfake and does not use x for computing.
Otherwise, A could use x to evaluate the circuit, which would allow A to distinguish between real and ideal
executions.

C Implementation

C.1 User Interface

Figure 8 shows the main page of the web-based GUI which contains the current progress on the top of the
page and the records that need to be annotated in the table. For each row of the table, it has an indicator
of if the record is annotated or not, a brief of the record content, dataset name, and the current round of
annotation for the record.

Figure 8: The main page of the web-based GUI

When clicking on the record, an annotation window pops up (Figure 9): It shows the record content from the
dataset that belongs to domain oracles’ side, a record placeholder $r which represents the record from the

20

Published in Transactions on Machine Learning Research (05/2025)

other data owner side, an annotation editor with DSL code highlighting, and three buttons to quickly fill the
editor with an auto-generation heuristic, discard the annotation, and save the annotation respectively. The
“save” operation also runs the syntax check through the DSL parser to make sure the input is syntactically
valid.

Figure 9: The first round record annotation

When annotating records after the first round, the annotation popup window also shows the previous anno-
tation and allows domain oracles to quickly fill the editor with the previous content (Figure 10).

C.2 Details of the HE implementation

Each character in a record is ASCII encoded (1 byte), and the Unicode character is converted to the cor-
responding ASCII character. Therefore, a string is represented by a two-dimensional matrix, where each
element in the first dimension represents a character, and each dimension in the second dimension represents
1 bit. For example, a record "Canon" is represented by a 5x8 matrix where the first row is 01000011 as the
binary representation for "C".

Naturally, the encryption is on the bit level since the BinFHE module in OpenFHE defines the operations
for bits. Hence each item in the matrix is homomorphically encrypted. The logical operators we employed
for implementations from BinFHE are AND (∧), OR (∨), and XOR (⊕). The detail of the implementation is
demonstrated in Algorithm 2. Specifically, byte_equal is the helper function for character-level comparison,
which compares each corresponding bit from two encrypted characters JaK and JbK. is_in is the serial version
of the function for comparing if the encrypted string JaK is a sub-string of the encrypted string JbK. The
parallel version utilizes OpenMP and executes character comparison using byte_equal in parallel.

21

Published in Transactions on Machine Learning Research (05/2025)

Figure 10: The follow-up round record annotation

D Experiments

As the core function for feature extractions in annotation, it is essential to understand the first argument,
that is, the input token, in the is_in function.

D.1 Feature Length

The length distribution of the tokens is demonstrated in Figure 11. The length ranges from 1 to 16, and
most of the tokens have lengths of 2 to 9. The average length of the token is around 6 (6.65, 6.28, 5.60, 6.61
for Abt-Buy, Amazon-Google, DBLP-Scholar and DBLP-ACM, respectively).

22

Published in Transactions on Machine Learning Research (05/2025)

Algorithm 2: Functions using BinFHE scheme
1 Function byte_equal(JaK: bit[8], JbK: bit[8]):
2 JresK← JTrueK;
3 for j ← 1 to 8 do
4 JresK = JresK ∧ (Ja[i]K⊕ Jb[i]K);
5 return JresK;
6 Function is_in(JaK: [bit[8],· · ·], JbK: [bit[8],· · ·]):
7 la ← len(JaK);
8 lb ← len(JbK);
9 JresK← JFalseK;

10 for j ← 1 to lb − la + 1 do
11 JrK← JTrueK;
12 for i← 1 to la do
13 JrK← JrK ∧ byte_equal(Ja[i]K, Jb[j + i]K);
14 JresK← JresK ∨ JrK;
15 return JresK;

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
Token length

0

20

40

60

80

100

To
ke

n
co

un
t

is_in first token length distribution
Abt-Buy
Amazon-Google
DBLP-Scholar
DBLP-ACM

Figure 11: Token length distribution

Figure 12: #tokens appears in the dataset and #is_in uses to extract the corresponding tokens from all
annotators. The modified tokens that are not in the original token list are discarded. Additionally, token -
is removed from Abt-Buy and Amazon-Google for better visualization.

D.2 Feature Importance

We are curious about if the important features are more likely to be extracted by the annotators. We tokenize
the record based on white space without any additional processing steps. Meanwhile, we count the number
of times that function is_in is being utilized to extract the corresponding tokens. Note that annotators
could modify the tokens accordingly, e.g., “photoshop” to be “ps”, and “international” to be “i18n”, we only

23

Published in Transactions on Machine Learning Research (05/2025)

use the original token to construct the x-axis, thus none of these non-original tokens are counted if they do
not appear in the original token list.

The distribution of tokens and is_in usage is summarized in Figure 12. The tokens are present in the
long-tail form, whereas the dense invocations of is_in function concentrate on its “tail”. This observation
shows the common tokens contain relatively less information than the rare ones so that the feature extraction
depends more on the latter. Some common tokens also attract a fair amount of tokens, these are usually the
common but special tokens for records, for instance, the brand name of a product. Some is_in functions
are called a significant amount of times more than the token itself, they derive from the modification of the
original token.

E Case Study

We selected two cases from two different domains. For both of them, two parties hold different opinions at
first but establish an agreement finally.

The first case in Figure 13 is product records from Amazon-Google dataset. On the Amazon dataset side,
the given record content is short. The two attempts of the annotation are identical since not too much useful
information can be used. On the Google dataset side, besides the brand and product name, it also has the
category “music production software”. The first annotation has relatively strict rules, whereas the second
annotation only tests the brand and the product name.

Dataset: Amazon
Record: cakewalk sonar 6 studio
Annotation 1:

1 $r = lower ($r)
2 $c = is_in (" cakewalk ", $r)
3 $c = $c & is_in (" sonar ", $r)
4 ret $c

Annotation 2:

1 $r = lower ($r)
2 $c = is_in (" cakewalk ", $r)
3 $c = $c & is_in (" sonar ", $r)
4 ret $c

Dataset: Google
Record: cakewalk sonar 6 studio edition software
music production software
Annotation 1:
1 $r = lower ($r)
2 $c = is_in (" cakewalk ", $r)
3 $c = $c & is_in (" sonar ", $r)
4 $c = $c & is_in ("6", $r)
5 $c = $c & is_in (" studio ", $r)
6 $c = $c & is_in (" music ", $r)
7 ret $c

Annotation 2:
1 $r = lower ($r)
2 $c = is_in (" cakewalk ", $r)
3 $c = $c & is_in (" sonar ", $r)
4 ret $c

Figure 13: A case in Amazon-Google

The second case is from DBLP-ACM dataset and shown in Figure 14. The record content from ACM
mentioned “database”, but in DBLP, it is represented as “DBMS”. One possible solution is that annotators
could expand “DBMS” to be “database” with their domain knowledge. However, the record content is about
the paper title and it usually remains consistent across different websites, so the annotators do not modify
it on the token level. Wisely, the annotation from the DBLP’s side splits the paper title into two parts, the
first part before “:” is as the first attempt, and the rest is as the second attempt.

24

Published in Transactions on Machine Learning Research (05/2025)

Dataset: DBLP
Record: “Honey, I Shrunk the DBMS”: Foot-
print, Mobility, and Beyond (Panel) | Praveen Se-
shadri | SIGMOD Conference | 1999
Annotation 1:

1 $r = lower ($r)
2 $c = is_in (" honey ", $r)
3 $c = $c & is_in ("i", $r)
4 $c = $c & is_in (" shrunk ", $r)
5 $c = $c & is_in ("the", $r)
6 $c = $c & is_in ("dbms", $r)
7 ret $c

Annotation 2:

1 $r = lower ($r)
2 $c = is_in (" footprint ", $r)
3 $c = $c & is_in (" mobility ", $r)
4 $c = $c & is_in ("and", $r)
5 $c = $c & is_in (" beyond ", $r)
6 ret $c

Dataset: ACM
Record: Honey, I shrunk the database: foot-
print, mobility, and beyond | Praveen Seshadri |
International Conference on Management of Data
| 1999
Annotation 1:
1 $r = lower ($r)
2 $c = is_in (" honey ", $r)
3 $c = $c & is_in (" shrunk ", $r)
4 $c = $c & is_in ("the", $r)
5 $c = $c & is_in ("footprint ,", $r)
6 $c = $c & is_in ("mobility ,", $r)
7 $c = $c & is_in ("and", $r)
8 $c = $c & is_in (" beyond ", $r)

Annotation 2:
1 $r = lower ($r)
2 $c = is_in (" honey ", $r)
3 $c = $c & is_in (" shrunk ", $r)
4 $c = $c & is_in ("the", $r)
5 $c = $c & is_in (" footprint ", $r)
6 $c = $c & is_in ("mobility ,", $r)
7 $c = $c & is_in ("and", $r)
8 $c = $c & is_in (" beyond ", $r)
9 $c = $c & is_in (" seshadri ", $r)

10 ret $c

Figure 14: A case in DBLP-ACM

25

	Introduction
	Problem Definition
	Preliminaries
	Related Works
	Homomorphic Encryption

	Blind Annotation Protocol
	Initialization
	Feature Questions
	Domain-specific Language
	Homomorphic Functions

	Record Encryption
	Blind Evaluation
	End Conditions

	Experiments
	Settings, Datasets and Metrics
	Settings.
	Datasets.
	Evaluation Metrics.

	Feasibility Verification
	HE Overheads Analyses

	Conclusion and Future Work
	Preliminaries
	Homomorphic Encryption

	Blind Annotation Protocol
	Feature Functions
	Domain-specific Language
	Homomorphic Functions

	Security Analysis
	Security Definitions
	Security Simulation

	Implementation
	User Interface
	Details of the HE implementation

	Experiments
	Feature Length
	Feature Importance

	Case Study

