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ABSTRACT

Large Language Models (LLMs) exhibit emerging in-context learning abilities
through prompt engineering. The recent progress in large-scale generative mod-
els has further expanded their use in real-world language applications. However,
the critical challenge of improving the generalizability and factuality of LLMs in
natural language understanding and question answering remains under-explored.
While previous in-context learning research has focused on enhancing models
to adhere to users’ specific instructions and quality expectations, and to avoid
undesired outputs, little to no work has explored the use of task-Specific fine-
tuned Language Models (SLMs) to improve LLMs’ in-context learning during
the inference stage. Our primary contribution is the establishment of a simple
yet effective framework that enhances the reliability of LLMs as it: 1) general-
izes out-of-distribution data, 2) elucidates how LLMs benefit from discriminative
models, and 3) minimizes hallucinations in generative tasks. Using our proposed
plug-in method, enhanced versions of Llama 2 and ChatGPT surpass their origi-
nal versions regarding generalizability and factuality. We offer a comprehensive
suite of resources, including 16 curated datasets, prompts, model checkpoints, and
LLM outputs across 9 distinct tasks 1. Our empirical analysis sheds light on the
advantages of incorporating discriminative models into LLMs and highlights the
potential of our methodology in fostering more reliable LLMs.

1 INTRODUCTION

Trained on extensive volumes of data with numerous parameters, large language models (LLMs)
have garnered significant performance across diverse tasks. Their in-context learning (ICL) ability
positions them as foundational models to adeptly address various downstream tasks, ranging from
natural language understanding (Chowdhery et al., 2022; OpenAI, 2023a;b) to reasoning (Wei et al.,
2022; O’Brien & Lewis, 2023), and planning (Shen et al., 2023).

Despite their robust performance, LLMs come with their own set of challenges; they demand sub-
stantial resources for training and deployment, demonstrate slow inference times, and are susceptible
to hallucination (Li et al., 2023a). Conversely, supervised task-specific language models (SLMs) 2

offer cost-efficiency in both training and inference, despite losing general multi-task capacities. Ow-
ing to their smaller scale and reduced training cost, SLMs can swiftly adapt to distinct tasks, learning
task-specific knowledge (Devlin et al., 2018). As new and tailored tasks constantly emerge in real
applications, they can pose out-of-distribution (OOD) challenges to LLMs. It has been shown even
with ICL, LLMs generally underperform SLMs in such natural language understanding tasks, with
an increased tendency for hallucination when completing classification tasks (Sun et al., 2023b).

∗Equal Contribution.
†Correspondence to: zhangyue@westlake.edu.cn
1The code and data are released at: https://github.com/YangLinyi/Supervised-Knowledge-Makes-Large-

Language-Models-Better-In-context-Learners
2SLMs refers to cost-efficient, task-specific, pre-trained discriminative language models in this work.
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Figure 1: We denote (xi, yi) as a question-answer pair and our receipt ri is inserted between the
question-answer pair. Supervised knowledge plays a key role in improving OOD generalizability
and factuality of LLMs. While the following two analysis tasks aim to explain why our method
outperforms the traditional in-context learning method.

Most of the existing research predominantly segregates LLMs and SLMs as independent learning
paradigms (Zhao et al., 2023), overlooking their potential interconnection. Given the distinct advan-
tages and disadvantages of LLMs and SLMs, a fundamental question emerges: Can SLMs enhance
LLMs’ performance? Specifically, can SLMs bolster LLMs’ reliability in OOD scenarios while
minimizing hallucination? Prior research (Li et al., 2023b) hints at the potential for enhancing the
performance of LLMs with the assistance of a smaller task-specific language model, but relatively
little work addresses this research question systematically and empirically. To this end, we conduct
a set of systematic empirical evaluations. Our assumption is that SLMs and LLMs have underlying
complementarity in terms of knowledge – while SLMs are equipped with task knowledge thanks to
supervised training data, LLMs are endowed with rich domain knowledge from large-scale pretrain-
ing. Consequently, we focus on OOD settings of various tasks in our evaluation.

This paper introduces SuperContext, a versatile and straightforward in-context learning strategy to
harness the strength of small models to augment LLMs, particularly focusing on OOD generalization
and factuality. At the heart of SuperContext is the integration of SLM outputs representing the
supervised knowledge into LLM prompts, exemplified by incorporating the predictive results and
confidence of a discriminative model during the LLM’s inference stage. This idea is similar in
spirit to existing work on retrieving information from external knowledge bases or API tools, such
as unstructured corpora, structured databases, Wikipedia, and Google API (Borgeaud et al., 2022;
Larson et al., 2022; Li et al., 2023c). However, since our goal is to allow reliable task adaptation
rather than knowledge acquisition, the consulting agent becomes SLMs rather than search engines.

SuperContext is examined in two experiments and two perspectives of analysis. The first task is
OOD natural language understanding (NLU), where LLMs are enhanced with the supervised knowl-
edge from task-specific fine-tuned models for OOD datasets. The discriminative model is fine-tuned
on task-specific data from diverse domains, and seamlessly bridges the gap between the extensive
pre-trained model and task-specific data, eliminating overfitting. The second task is question an-
swering containing unanswerable questions, where we underscore SuperContext capability to cur-
tail hallucinations, addressing them through a discriminative-model-enhanced approach. To analyze
the underlying mechanisms, an interpreter is constructed to elucidate why SuperContext transcends
traditional in-context learning methods, based on a comprehensive post-hoc analysis. In addition,
extensive quantitative and qualitative assessments delve into how small models facilitate LLMs in
tackling the classification conundrum.

We conduct experiments on both zero-shot and few-shot settings of natural language understand-
ing and question answering (QA). SuperContext is validated on a comprehensive OOD benchmarks
GLUE-X (Yang et al., 2022), and a QA dataset, SQuAD 2.0 (Rajpurkar et al., 2018). Empirical
results show that our method significantly outperforms LLMs and SLMs with both zero-shot and
few-shot settings on 9 distinct tasks using the OOD setting we consider. To the best of our knowl-
edge, this work propounds SuperContext as a pioneering approach to systematically integrate SLMs
into LLM inference decisions, significantly enhancing LLM performance, especially in managing
OOD data and mitigating hallucinations, thereby contributing to the advancement of more general-
izable and factual deployment of LLMs.
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Critical Features: Identify the specific word or phrase in the
test case that played a pivotal role in your prediction of
sentiment analysis.
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Figure 2: Illustration of prompt designs, where the supervised knowledge provided by the discrimi-
native model is defined as ri, and the optional interpretation prompt is denoted as si.

2 METHOD

2.1 IN-CONTEXT LEARNING BASELINE

In-context learning (ICL) has become the cornerstone of stimulating the ability of large language
models (LLMs) (Dong et al., 2022). To facilitate the evaluation of the traditional in-context learning
and our method, in-domain data is provided for several NLU tasks, with each task consisting of
16-shot examples. Denote (xi, yi) as a question-answer pair and Sj is the index set of in-context
learning samples where n = |Sj | is the number of shots. The few-shot examples are denoted as
{xi, yi}i∈Sj⊂[1,N ]\{j}, where i ∈ [1..N ] and N is the number of problem instances for the task.
Formally, traditional in-context learning is based on the following assumption (Xu et al., 2023b):

pLLM

(
yj | {xi, yi}i̸=j , xj

)
≈ pLLM

(
yj | {xi, yi}i∈Sj

, xj

)
, ∀Sj ⊂ [1, N ]\{j}. (1)

In a nutshell, Eq. (1) indicates that the probability pLLM

(
yj | {xi, yi}i∈Sj

, xj

)
of a given LLM

generating the response yj when prompted with the concatenation of the few-shot examples with the
discriminative model’s prediction, confidence, and the special prompt si is approximately invariant
to the exact choice of the few-shot examples. We consider both zero-shot and few-shot settings in
this work. Notably, the choice and even the order of the examples can have a substantial impact on
the test performance (Lu et al., 2021). To mitigate such impact, we employ a thrice resampling with
the replacement method for computing the average results.

The key to designing alternatives for ICL is to find the appropriate knowledge elsewhere to embed
into the decoding process of the LLM. Recently, Li et al. (2023b) proposed the contrastive decoding
approach that exploits the contrasts between the expert and amateur language models of different
sizes by choosing tokens that maximize their log-likelihood difference. Their approach generates
high-quality texts with the help of an amateur model. However, their approach still requires perform-
ing contrastive mapping between those two models in training, which could be tedious. In contrast
to their work, the central question that we address is: “Can we develop a cheap and generalized
in-context learning approach that can serve more tasks?”

2.2 SUPERCONTEXT

We propose SuperContext, a simple and general approach for in-context learning that incorporates
the auxiliary knowledge from a small, discriminative model with LLMs when making predictions
for new tasks. This is accomplished through the integration of instruction and the prediction derived
from a fine-tuned (small) discriminative language model. Specifically, our receipt ri is inserted
between the question-answer pair: {xi, ri, yi}. In our work, ri plays two roles: 1) it provides the
discriminative model’s prediction and confidence; 2) it further explains the prediction from two
aspects, questioning LLMs to answer it learns from which in-context example and which kind of
rationale is important.

As shown in Figure 2, we take the sentiment analysis (SST-2) task as an example to illustrate the
prompt design. Throughout the process, we do not use any labels from corpus Y as demonstration
examples, which aligns with the scenarios in the real world, as typical data points are OOD for the
model. In particular, the training set and in-context examples are both drawn from the in-domain
dataset, while the training set is used to fine-tune the SLM and in-context examples are used as
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Table 1: Data statistics of SuperContext, which describes the source and size for OOD tests of NLU
and hold-out test of QA.

ID SST-2 MNLI QNLI RTE MRPC QQP STS-B CoLA SQuAD 2.0

OOD

IMDB
Yelp
Amazon
Flipkart

MNLI-mis
SNLI NewsQA SciTail

HANS
QQP
Twitter

MRPC
Twitter SICK Textbook Train: 130,319

Dev:11,873

the prompt. The interpretation prompt si is an optional component in SuperContext that should be
inserted between the input prompt and test example, where the output is expected to include: 1) the
index of influential in-context examples; and 2) the rationale used when making the prediction.

Formally, SuperContext is based on the following assumption:

pLLM

(
ri, yj | {xi, ri, yi}i ̸=j , xj , si

)
≈ pLLM

(
ri, yj | {xi, ri, yi}i∈Sj

, xj , si

)
, (2)

where our method can be represented as {xi, ri, yi}i∈Sj⊂[1,N ]\{j} of given LLM, where i ∈ [1..N ]

and N is the number of problem instances for the task, and si is the optional prompt defined as the
instruction of the interpreter. The probability pLLM

(
ri, yj | {xi, ri, yi}i̸=j , xj , si

)
generating the

response yj is approximately invariant to the exact choice of the few-shot examples Sj .

Algorithm. Algorithm 1 summarizes the SuperContext augmentation method. The discriminative
model M is trained on the in-domain dataset X and tested on the out-of-domain corpus T . For in-
context learning of SuperContext, yj is prompted with the concatenation of the few-shot examples
with the discriminative model’s prediction, confidence, and the special prompt si. The output should
be the prediction of LLMs towards the test case with interpretation if available.

Algorithm 1 SuperContext for Natural Language Understanding
Require: In-domain Corpus X , Out-of-domain Corpus Y , A discriminative language model M , A large-scale

generative model L, Instruction R, Output O, ▷ The Instruction R varies in per task.
Ensure: Predicted Labels for test cases in Y
1: M ′ ← Finetune(M,X)
2: For each test case ei in Y
3: Confidence c, Predicted Label l← Predict(M ′, ei)
4: P ← Concatenate(R, ei, l, c)
5: O ← Inference(L,P )
6: If Interpretator Enabled Then
7: return Interpretation, Predicted Label by Parser(O)
8: Else
9: return O

3 EXPERIMENTS

3.1 SETUP

Source models. As reported in GLUE-X (Yang et al., 2022), ELECTRA-large (Clark et al., 2020)
achieves the best performance for both ID and OOD tasks over 21 small-scale pre-trained language
models (maximum 774M parameters). Hence, we select ELECTRA-large as the SLM for NLU
experiments, and RoBERTa-large (Liu et al., 2019) for QA. For evaluating the performance of SLM-
enhanced LLMs, we select ChatGPT (OpenAI, 2023a) and Llama2-7B-chat (Touvron et al., 2023)
as backbones, which are pre-trained on CommonCrawl, WebText, English Wiki, and others.

Datasets. We follow the OOD generalization setting of GLUE-X (Yang et al., 2022). In particular,
we consider 7 classical NLU tasks: Sentiment Analysis (SA), Natural Language Inference (NLI),
Paraphrasing, Question-Answering NLI (QNLI), Textual Entailment, Textual Similarity, and Lin-
guistic Acceptability (Grammar). We sample 3,000 examples from GLUE-X for each OOD dataset
and ensure that in-context samples are extracted from different domains of test sets. In total, Super-
Context contains 43,728 instances on NLU for ChatGPT and 37,438 instances for Llama2-7B-chat.
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Table 2: The table vividly displays the GLUE-X metrics garnered by diverse methods across 15
unique OOD datasets. ‘AVG’ denotes the average results across these 15 OOD datasets.

Model SST-2 MNLI QNLI RTE MRPC QQP STS-B CoLA Avg
OOD OOD OOD OOD OOD OOD OOD OOD OOD

Human Performance 97.69 91.80 92.33 91.12 83.50 79.13 92.62 66.47 86.83

ELECTRA-large 94.84 87.30 82.66 78.45 63.60 78.08 80.74 40.29 79.86

ChatGPT 94.83 41.54 81.82 68.56 60.23 43.23 72.61 39.05 66.67
ChatGPT (+16-shot) 94.72 64.24 74.14 68.34 60.91 74.24 64.60 47.15 72.28
ChatGPT (+BM25) 94.84 64.19 74.00 60.31 64.29 68.35 65.22 42.50 71.69
SuperContext (w/o confidence) 94.84 77.21 82.66 78.45 63.60 78.08 80.74 40.29 78.43
SuperContext (+interpreter) 94.84 80.73 83.81 78.60 64.26 77.80 76.15 39.47 78.77
SuperContext (zero-shot) 95.19 87.24 82.91 78.71 63.87 78.65 78.75 41.47 80.05
ELECTRA-large 95.42 87.29 82.69 78.84 37.59 77.18 80.74 45.73 76.84

Llama2-chat 90.56 34.30 66.85 60.77 36.20 51.57 37.12 6.94 55.92
Llama2-chat (+16-shot) 94.72 48.20 67.70 61.62 35.72 59.15 18.01 11.52 58.54
Llama2-chat (+BM25) 92.87 48.14 68.48 59.40 37.08 58.24 39.19 10.57 59.69
SuperContext (zero-shot) 94.95 85.45 81.60 78.39 36.70 61.79 45.67 40.84 73.89
SuperContext (w/o confidence) 94.29 76.68 82.66 78.46 43.41 78.17 80.74 40.26 75.68
SuperContext (16-shot) 95.45 87.14 82.17 79.07 54.63 77.18 80.74 45.47 79.08

Baselines. For NLU, we consider two in-context learning methods as baselines for ChatGPT (Ope-
nAI, 2023a) and Llama2-7B-chat (Touvron et al., 2023), namely 16-shot ICL and BM25. The
16-shot ICL indicates the method that randomly extracts few-shot examples from the in-domain
dataset as the demonstration prompt. While “+BM25” represents the dynamic in-context examples
selection method using BM25 to select the top 16 examples that are similar to the test case. We
also present the ablation that leverages SuperContext with the optional interpretation prompt, shown
as “+interpretor”. The variants of the backbone model are kept the same between ChatGPT and
Llama2, namely “+BM25” and “+16-shot”. Due to the relatively low instruction following ability
of Llama2-7B-chat, the “+interpretor” is not explored in experiments of Llama2-7B-chat. Due to
the difference in the instruction-following ability between the ChatGPT and Llama2-7B-chat, we in-
sert the 16-shot in-context examples appended with the prediction and confidence of SLMs, namely
SuperContext (16-shot). Human performance is extracted from GLUE (Wang et al., 2019).

Evaluations. Different from NLU, the question-answering task is evaluated by the hold-out test.
The in-context examples are extracted from the training set and LLMs are evaluated on the validation
set. We establish the baseline by using “cluster+filter” method. In particular, we adopt MiniLM
(Wang et al., 2020) to encode the training examples and build a union-find set. Then, we use the
cluster and filter pipeline to retrieve the most relevant examples with the test sample as in-context
demonstrations for ChatGPT. For Llama2-7B-chat, we adopt two fine-tuned methods as baselines
using multi-turn and single-turn tuning on 1.2 epochs, respectively. Notably, the total length of the
prompt is controlled under 4,096, limited by Llama2.

3.2 NLU RESULTS

Overall Performance. The comprehensive results of natural language understanding tasks under the
OOD evaluation are meticulously outlined in Table 2. Generally, SuperContext emerges as a domi-
nant force, showcasing an elevated average result compared to both SLM (80.05% vs. 79.86%) and
LLM (80.05% vs. 66.67%), underscoring the preeminent performance of SuperContext. Our exper-
imental venture utilizing ELECTRA-large (334M Para.) to bolster Llama2-7B-chat’s performance
not only transcends ChatGPT (16-shot) (79.08% vs. 72.28%) but also parallels the SuperContext
based on ChatGPT (79.08% vs. 80.05%), indicating its substantial capacity to markedly diminish in-
ference costs. It is noteworthy that the data size used for ChatGPT and Llama2-7B-chat is different,
leading to different results of SLMs (ELECTRA-large).

With the help of 16-shot in-context learning, the performance of ChatGPT can be improved from
66.67% to 72.28%, but still much lower than SuperContext (80.05% vs. 72.28%). The comparison
between the in-context learning paradigm and our method proves that our method can outperform
16-shot in-context learning with a much shorter input sequence length (∼30 times).
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Table 3: Results of ChatGPT and Llama2-7B-chat, and their variants on SQuAD 2.0. EM indicates
the exact match and valid EM only accounts for the exact match of valid JSON. ACC No indicates
the accuracy for no-answer questions and ACC accounts for the accuracy of has-answer questions.

Model Valid JSON EM Valid EM ACC. No. ACC. Has.

SuperContext (zero-shot) 85.18 57.68 57.81 54.65 60.71
ChatGPT (cluster+filter) 94.47 49.31 48.81 24.22 74.48
ChatGPT (16-shot) 99.49 44.69 44.52 13.22 76.25
ChatGPT 96.97 55.82 54.76 32.35 79.35
SuperContext (16-shot) 41.73 47.91 43.27 63.65 32.12
Fine-tuned multi-turn 96.40 25.70 26.66 10.47 40.16
Fine-tuned single-turn 97.17 47.22 48.60 39.44 55.02
Llama2-7B-chat (16-shot) 28.50 37.56 5.32 58.99 6.08
Llama2-7B-chat 40.09 46.48 40.13 3.72 31.87

We also present the results of SuperContext with the prompt of the interpreter, which requires LLM
to recall influential in-context examples and output rationales when making the predictions, indi-
cating as SuperContext (+interpreter). To better understand the benefits of including the model
confidence in the prompt, we present the results of SuperContext (w/o confidence). By comparing
the results of SuperContext w/ and w/o confidence, we observe that including model confidence can
bring significant improvements in the average performance for both ChatGPT and Llama2. Mean-
while, we find that for QNLI and QQP, Llama2 without the SLM’s confidence achieves the best
performance among several methods. Our results also indicate that the interpreter can not bring sig-
nificant benefits when compared to SuperContext in most of the tasks, except a slight improvement
can be achieved on QNLI. It can be because the explain-then-predict prompt (Wang et al., 2022a)
may not be suitable for incorporating with SuperContext, leading to information overload.

Llama2-7B-chat. In addition to ChatGPT, we offer the comparison between SuperContext and
several baselines based on the open-source model. Experimental results show that SuperContext
with 16-shot in-context examples achieves the best results on seven of eight tasks included in GLUE-
X compared to Llama2-7B-chat under the same setting without the help of the small model (79.08%
vs. 58.54%). It is interesting to see that it outperforms ELECTRA-Large in terms of the average
performance (79.08 vs. 76.84). Such a huge performance increase indicates that SuperContext
improves the NLU capability of both Llama2-7B-chat and ELECTRA-large simply and effectively.
In addition, we find that using BM-25 to retrieve the most relevant 16-shot examples of the test case
is useful for improving the in-context learning performance (59.69% vs. 58.54%).

Task-level Analysis. On the task level, we observe that both ChatGPT and Llama2 show a relatively
lower accuracy than the expectation on multiple tasks, including OOD evaluation on MNLI, MRPC,
and QQP. For example, the original ChatGPT and Llama2-7B-chat can only achieve 41.54% and
34.30% on MNLI, respectively. With the help of SuperContext, MNLI-OOD results can be improved
to 87.24% and 87.14% on ChatGPT and Llama2-chat, respectively. For STS-B which is a textual
similarity task, we find that the original Llama2-chat model performs poorly with or without in-
context learning and the zero-shot performance of Llama-2-chat is significantly lower than ChatGPT
(37.12% vs. 72.61%). Notably, although the zero-shot performance of SuperContext based on
Llama2-7B-chat is lower than ChatGPT using the same setting on all tasks, SuperContext based on
16-shot Llama2-7B-chat can even beat SuperContext based on zero-shot ChatGPT in multiple OOD
tasks, including SST-2, RTE, STS-B, and CoLA, representing the efficacy of our method not only
for proprietary LLMs but also for relatively small-scale models, Llama2-7B-chat.

3.3 QA RESULTS

The fact-conflicting of LLMs is considered a core issue in LLMs because it is challenging for users
to be aware of and may pose misinformation dissemination. We evaluate LLMs’ ability towards
minimizing the hallucination on the QA task based on SQuAD 2.0 (Rajpurkar et al., 2018), which
is a suitable testbed since it can be addressed using both discriminative and generative manners.

Results of ChatGPT. The results are presented in Table 3. We find that although the original Chat-
GPT can achieve the highest accuracy for deterministic questions (79.35%), the exact match (EM)
and accuracy for open questions can be significantly improved by SuperContext. In particular, the
accuracy for no answer questions can be improved from 32.35% (ChatGPT) to 54.65% (SuperCon-
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text), indicating the huge benefits. Besides, we find that even with the careful design of in-context
learning prompts and filter methods, SuperContext still outperforms two in-context learning variants
in terms of all metrics, indicating that pure in-context learning without fine-tuning LLMs brings no
benefit to the QA task. Furthermore, SuperContext even outperforms the fine-tuned method in a
multi-turn setting on all metrics. We believe that such a huge performance benefit (54.65% vs.
13.22%) compared to the traditional 16-shot in-context method when answering no answer ques-
tions (“ACC.NO.”) proves that results achieved by discriminative models are effective enough to
reduce the hallucination.

Results of Llama2-7B-chat. We observe that the fine-tuned methods can significantly improve the
rate of valid JSON. In particular, the fine-tuned single-turn method improves the valid JSON of
the original Llama2-chat from 40.09% to 97.17% and achieves the best performance for valid EM
(48.6%) and accuracy for has-answer questions (55.02%). Despite fine-tuned methods outperform-
ing the original Llama2-chat and the in-context learning version, SuperContext achieves the best
performance in terms of the EM and accuracy for no-answer questions. We observe that the original
Llama2-7B-chat model struggled with format adherence and hallucinations, especially in answering
no-answer questions. This is reflected in the notably low score of 3.72. In other words, it can-
not output “I don’t know” when the question is unanswerable. However, when applying in-context
learning with a mix of no-answer and has-answer instances, we noticed an improvement in handling
no-answer questions, though this came at the cost of reduced accuracy in has-answer questions.

4 ANALYSIS AND DISCUSSION

4.1 REVERSED PREDICTIONS

Table 4: Statistics of reversed predictions. “%Re-
versed” denotes the percentage of LLMs’ predic-
tions that differ from the predictions of SLMs.
“Reversed Acc.” is short for the possibility of the
reversed predictions that from incorrect to correct.

Method %Reversed Reversed Acc.

SuperContext (ChatGPT) 3.02% 57.88%
SuperContext (Llama2-7B-chat) 0.50% 52.13%

As displayed in Table 4, we study the differ-
ence between the final prediction of LLMs and
the prediction of SLMs. The detailed task-level
performance is shown in the Appendix. The re-
sults demonstrate that predictions of 3.02% in-
stances have been overridden during the infer-
ence face of ChatGPT by using SuperContext.
57.88% of them have been corrected, indicating
that the reference generated by SLMs brings
positive benefits for improving the NLU capability of LLMs. SuperContext on Llama2-7B-chat
exhibits a relatively lower possibility of reversing the prediction of SLMs (0.5%), yet also inspires
LLMs to correct SLMs’ predictions in a more accurate direction than the random guess (52.13%).

4.2 INTERPRETATION ANALYSIS

In addition to the prediction results, we are also interested in understanding the reason behind the re-
sult that SuperContext significantly outperforms the traditional in-context learning method. We aim
to answer this question from two aspects, how LLMs recall already learned concepts and rationale
from pre-training (Han et al., 2023; Gu et al., 2023) and why it fails in the OOD setting.

Learning from In-context Demonstrations. We explore how language models use long contexts.
Figure 3 shows the influence of demonstrations during the inference stage, where the y-axis indicates
how many times ChatGPT and InstructGPT take the ith in-context example as the emphasized one
towards the prediction. The x-axis is sorted by the order of occurrence of in-context examples over
8 natural language understanding tasks. As shown in the figure, both ChatGPT and InstructGPT
show a significant occurrence times difference among in-context examples. In particular, ChatGPT
with 16-shot examples shows a trend of decreasing attention with the order of appearance. For
example, the second in-context example has been paid attention to over 35,000 times while the last
example only receives around 5,000 times attention. In terms of InstructGPT, we observe distinctive
U-shaped occurrence times, which can be visualized in Figure 3(b). We find that the model tends
to pay attention to the beginning or the end of the input context (in-context examples), and the
attention significantly degrades in the middle of long contexts. This observation is consistent with
the findings of (Liu et al., 2023) on the use of long contexts when performing downstream tasks,
which suggests that model performance significantly degrades when models must access relevant
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(b) Interpretation results of InstructGPT.

Figure 3: Counting the times of 16-shot in-context examples that have been considered as the influ-
ential examples over 8 NLU tasks, sorting by order of occurrence.

0.5 0.6 0.7 0.8 0.9 1.0
Confidence

0

5000

10000

15000

20000

25000

30000

Q
ua

nt
ity

50

60

70

80

Pe
rf

or
m

an
ce

Quantity
Performance

(a) The calibration laws of ChatGPT.
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(b) The calibration laws of Llama2-7B-chat.

Figure 4: The correlation between the SLM confidence and LLM performance evaluated on the
GLUE-X benchmark. The dark green line represents the normalized performance of LLMs using
SuperContext corresponding with the right y-axis while the light green bar indicates the volume of
instances with the specific confidence interval corresponding with the left y-axis.

information in the middle of long contexts and provide a new perspective for future long-context
models. We also collect the sentence-level rationale generated by LLMs when making predictions,
and count for the word frequency for each task of GLUE-X based on ChatGPT, aiming to provide
the internal causes of OOD generalizability. However, the rationale is generated by LLMs and thus
may contain hallucinations, which should be treated with caution and just for reference.

4.3 THE EFFECT OF SLM CONFIDENCE

Since we rely on the complementarity between SLMs and PLMs, SLMs must convey its certainly in
task knowledge and uncertainly in domain knowledge to PLMs. The confidence score in the design
serves a crucial role in such communication channels. We show the correlation between the confi-
dence of SLMs and the prediction performance of LLMs. As shown in Figure 4, both ChatGPT and
Llama2-7B-chat demonstrate a positive correlation between SLMs’ confidence and LLM’ perfor-
mance, representing a high consistency between those models. The x-axis represents the confidence
interval covering from 0.4-1.0, for example, 0.5 indicates the instances with the prediction confi-
dence between 0.4-0.5. It is noteworthy that the confidence is computed by the zero-shot test based
on SLMs trained on unseen domains, which indicates that high confidence requires a decent gener-
alization ability of small models. We speculate that SuperContext shows superior performance than
both SLMs and LLMs since it leverages the benefits of high consistency in discriminative models
and the complementarity property of recent generative models. Besides, such a positive calibration
law underscores the importance of involving both prediction and confidence in the prompt design
of SuperContext. The data statistic of data quantity shows that most instances included in GLUE-X
receive the highest confidence interval from 0.9 to 1.0, and this part of the data can be predicted
with significantly higher accuracy than others. By comparing the experimental results of GPT-3.5
and Llama2-7B-chat, we find that when the confidence is more than 0.6, the average performance
of GPT-3.5 is substantially better than Llama2-7B-chat.
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5 RELATED WORK

In-context Learning. Scaling up pre-trained language models stimulates the in-context learning
ability is first introduced by GPT-3 (Brown et al., 2020), introducing the potential to accurately
comprehend instructions and complete complex tasks with no supervision (Chowdhery et al., 2022;
OpenAI, 2023b; Sun et al., 2023a). As evidenced by previous work (Shwartz et al., 2020; Nye
et al., 2021; Perez et al., 2021), the ICL performance can be significantly enhanced by incorporating
auxiliary knowledge or reasoning instructions in a prompt, such as Chain-of-Thought (COT) (Wei
et al., 2022) and Tree-of-Thoughts (TOT) (Yao et al., 2023). However, such a multi-step reasoning
process could be tedious and expensive to use (assuming we perform ICL for GPT-4), whereas our
method is cost-efficient since the supervised knowledge occupies only a short length in the prompt.

There is a line of work for improving the in-context learning performance by either constructing
demonstrations (Arora et al., 2022; Si et al., 2022; Lyu et al., 2022; Gu et al., 2023; Ye et al., 2023;
Dhuliawala et al., 2023) or framing an exploration of example selection methods (Wu et al., 2023;
Wang et al., 2023b; Sun et al., 2023a; Agrawal et al., 2022; Wang et al., 2022c;b; Lu et al., 2022;
Wang et al., 2023c) and even order (Lu et al., 2021; Zhao et al., 2021; Liu et al., 2021; 2023). The
contrastive decoding method (Li et al., 2023b) considers the assistance smaller language model but
requires external computation. Differently, SuperContext demonstrates its superior performance on
OOD test data in a cost-effective manner.

Our work is also connected with work focusing on understanding and explaining in-context learning
from different perspectives, including the implicit Bayesian Inference (Xie et al., 2021), pre-training
data (Han et al., 2023; Pan et al., 2023), and information compression (Wang et al., 2023a; Wu et al.,
2023). Different ways of understanding ICL in realistic NLP tasks have been proposed before (Min
et al., 2022; Dong et al., 2022; Wang et al., 2023b), the interpretation part in SuperContext aims to
answer how LLMs recall in-context examples and output rationale.

Knowledge in Context. Using external knowledge as auxiliary information to assist LLMs in pro-
viding truthful and timely responses represents an emerging solution (Mialon et al., 2023; Xiao
et al., 2023) in recent. Traditional retrieve-based methods (Rubin et al., 2021; Ni et al., 2021; King
& Flanigan, 2023) require a knowledge retriever as the prior step for guiding the generation of
responses. Besides, the external knowledge source could extend beyond local documents to encom-
pass the entire Internet (Ni et al., 2021; Gao et al., 2023). In addition, LLMs can leverage spe-
cial plug-ins to improve their capabilities, such as Toolformer (Schick et al., 2023) and LangChain
(Chase, 2022) for calling external APIs, and HuggingGPT (Shen et al., 2023) for using models.

Previous work either relies on web information and search engines for gaining external knowledge
(Yu et al., 2023) or accomplishes planning tasks outside the NLP scope. (Xu et al., 2023a) evaluates
the efficacy of small language models as plug-ins under an in-domain setting using GLUE and
lacks an interpretation part to explain the reasons. SuperContext shares a conceptual similarity with
SuperICL (Xu et al., 2023a) and HuggingGPT (Shen et al., 2023) in leveraging language model
architectures. However, the key distinction lies in our approach’s application and analysis under
out-of-distribution (OOD) conditions, a less explored area in the existing literature.

6 CONCLUSION AND FUTURE WORK

We constructed SuperContext, an SLM-LLM interaction framework using supervised knowledge for
making LLMs better in-context learners in the OOD natural language understanding benchmark and
text generation settings. Our goal is to improve the generalizability and factuality of LLMs using
cost-efficient, task-specific, and generalizable SLMs. Results on 8 NLU tasks and 1 generation task
show that (1) current in-context learning methods still lag much behind humans towards the OOD
evaluation of NLU and hold-out test of QA; (2) the traditional in-context learning paradigm faces the
forgetting problem and is limited by the input sequence length; (3) SuperContext can bring decent
performance benefit compared to few-shot in-context learning and outperform original SLMs and
LLMs with both zero-shot and few-shot settings. In the future, we anticipate expanding the scope
of SuperContext to cover additional text generation tasks and exploring its effectiveness in various
real-world applications.
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during Natural Language Understanding (NLU) and Question Answering (QA) tasks, thereby en-
hancing the safety of the LLMs. Notably, all of datasets involved in this work belong to the publicly
available detasets, and thus do not contain any personal privacy data.
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of ChatGPT and Llama2. Nevertheless, a plethora of recently proposed models, such as GPT-4,
PaLM, Falcon, and Claude, beckons for comprehensive analysis. This work does not involve any
commercial competition and belongs to non-profit research.
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A ADDITIONAL RESULTS: GENREALIZABILITY

We provide full experimental results in Table 5. Different from Table 2, which demonstrates the
average result of each task included in GLUE-X, we present a fine-grained analysis to show the
efficacy of our method and differences among tasks. In particular, it is interesting to see that with
the help of SuperContext, both ChatGPT and Llama2-7B-chat surpass the supervised task-specific
model, ELECTRA, in terms of higher average performance, indicating that SuperContext introduces
the benefits of complementarity to enhance the generalizability of LLMs’ towards the NLU tasks.
Such a task-level analysis also sheds light on future work to design task-specific methods.

Table 5: Performance evaluation of SuperContext and several baselines based on GLUE-X dataset.
The table showcases the detailed evaluation results of SLMs, LLMs, and SuperContext. C. is short
for ChatGPT and L. represents Llama2-7B-chat.

ID OOD Ours (C.) ELECTRA (C.) ChatGPT (16) ChatGPT ELECTRA (L.) Llama2 Ours (L.)

SST2 IMDB 93.97 94.87 94.03 93.63 94.97 91.48 94.97
SST2 YELP 97.30 96.63 97.00 96.87 97.39 95.63 97.53
SST2 Amazon 95.87 95.37 94.99 94.33 95.84 94.76 95.84
SST2 Flipkart 93.60 93.50 92.84 94.50 93.49 89.59 93.45

CoLA Grammar 41.47 40.29 47.15 39.05 45.73 11.52 45.47

MRPC QQP 55.06 54.36 66.77 69.94 27.66 32.97 57.22
MRPC Twitter 72.68 72.83 55.05 50.52 47.52 38.46 52.04

QQP MRPC 80.17 79.56 79.49 42.04 80.74 17.99 80.74
QQP Twitter 77.13 76.59 68.99 44.41 78.94 70.35 78.94

MNLI MNLI mis 88.67 89.13 64.77 43.85 75.42 47.94 75.42
MNLI SNLI 85.80 85.47 63.70 39.23 89.13 56.30 89.10

RTE HANS 72.87 72.87 58.20 56.73 85.45 40.10 85.18
RTE SCITAIL 84.55 84.02 62.54 80.38 73.68 60.07 74.34

QNLI NewsQA 82.91 82.66 74.14 81.82 84.00 63.17 83.79

STS-B SICK 78.75 80.74 64.60 72.61 82.69 67.69 82.17

GLUE-X AVG. 80.05 79.86 72.28 66.67 76.84 58.53 79.08

B TASK-LEVEL STATISTICS OF REVERSED PREDICTIONS

We present the detailed analysis of predictions of ELECTRA-large reversed by ChatGPT and
Llama2-7B-Chat, along with the number of test instances for each task in Table 6. In general, we
observe that ChatGPT demonstrates a superior ability to reverse predictions of ELECTRA-Large
compared to Llama2-7B-chat, aiming to correct errors when making OOD predictions on NLU
tasks. On the other hand, ChatGPT exhibits higher accuracy in making modifications that override
classification results compared to Llama2-7B-chat.

The OOD testing on QNLI is perceived by both models to contain the highest proportion of data
that should have the final decision overridden. Specifically, 15.11% of the test data is amended by
ChatGPT, while 2.49% of the data is reversed by Llama2-7B during the inference stage. Naturally,
for tasks with relatively lower error rates, such as SST-2 and MNLI, the probability of the models
making modifications is also low. This underscores the significant ability of larger models to evaluate
the predictions and confidence levels of task-specific fine-tuned models.

In terms of the Reversed Accuracy (where the probability of random guess is 50%) as shown in
Table 6, we find that ChatGPT exhibits a higher correction accuracy than random guessing on seven
out of eight tasks. In contrast, Llama2-7B-chat is capable of reversing predictions in only six out of
the eight tasks and surpasses random guesses in only half of the tasks.

C ADDITIONAL RESULTS OF CALIBRATION LAWS

We supplement the results of the calibration laws with two additional model groups, namely
ELECTRA-large and InstrutGPT, in Figure 5. Consistent with ChatGPT and Llama2-7B-chat,
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Table 6: The detailed statistics of reversed predictions on each task of GLUE-X. “%Reversed”
denotes the percentage of predictions of LLMs that differ from the predictions of SLMs. “Reversed
Acc.” is short for the possibility of the reversed predictions that from incorrect to correct. “%Error”
is the error rate of the ELECTRA-large baseline. “#Instances” is the total number of test samples.

Model Metric SST2 MNLI QNLI RTE MRPC QQP STS-B CoLA

ChatGPT

%Error 5.16 12.70 17.34 21.55 36.40 21.92 19.26 59.71
%Reversed 0.81 1.10 15.11 3.92 1.40 1.92 8.27 2.87
Reversed Acc. 71.13 42.42 50.81 53.93 82.14 68.70 53.23 74.42
#Instances 12,000 6,000 2,866 4,862 6,000 6,000 3,000 3,000

Llama2-7B-Chat

%Error 4.58 12.71 17.31 21.16 62.41 22.82 19.26 54.27
%Reversed 0.04 0.28 2.49 0.87 2.05 0 0 0.25
Reversed Acc. 80.00 23.53 39.44 65.85 88.98 0 0 16.77
#Instances 10,549 5,996 2,849 4,738 2,604 5,326 3,000 2,376
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(a) The calibration laws of ELECTRA-
large.
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(b) The calibration laws of InstructGPT.

Figure 5: The calibration laws of ELECTRA-large and InstructGPT between the confidence and
performance evaluated on the GLUE-X benchmark. The dark green line represents the LLMs’ per-
formance using SuperContext corresponding with the right y-axis while the light green bar indicates
the volume of instances with the specific confidence interval corresponding with the left y-axis.

both ELECTRA-large and InstructGPT exhibit a positive correlation between confidence and per-
formance. Distinctively, the curve for InstrutGPT demonstrates more pronounced fluctuations, es-
pecially when the confidence is relatively low.

D DETAILED PROMPT DESIGNS

We present the detailed prompt designs for each task, using SST-2, CoLA, and SQuAD2.0 as demos.

D.1 NATURAL LANGUAGE UNDERSTANDING

SST-2
SST-2: You are tasked with predicting the sentiment of a given sentence
as either ’positive’ or ’negative’. Use the prediction from the
pre-trained model (334M Parameters) fine-tuned on a sentiment analysis
dataset as a reference to aid your judgment.

Test Case: Sentence: "[Input]" Model’s Prediction: Model’s Confidence:

Please provide your analysis using the format below and then give your
final prediction:

1. Influence Degree: On a scale of 0 to 1 (in increments of 0.1), how
much did the fine-tuned model’s prediction influence your judgment? 2.
Critical Features: Identify the specific word or phrase in the test case
that played a pivotal role in your prediction of sentiment analysis.

After analyzing, please provide your final prediction.
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CoLA
CoLA: You are tasked with predicting the sentiment of a sentence’s
grammar as either ‘acceptable’ or ‘unacceptable’. Use the prediction
from the pre-trained model (334M Parameters) fine-tuned on a grammar test
dataset as a reference to aid your judgment.

+ Test case: \[Test case]" Model’s Prediction: Model’s Confidence:

Please provide your analysis using the format below and then give your
final prediction:

1. Influence Degree: On a scale of 0 to 1 (in increments of 0.1), how
much did the fine-tuned model’s prediction influence your judgment?

2. Critical Features: Identify the specific word or phrase in the test
case that played a pivotal role in your grammar-acceptable prediction.

After analyzing, please provide your final prediction.

D.2 QUESTION ANSWERING

SQuAD 2.0
SQuAD 2.0: <s>[INST] <<SYS>> You are a helpful, respectful and honest
assistant. Always answer as helpfully as possible, while being safe.
Your answers should not include any harmful, unethical, racist, sexist,
toxic, dangerous, or illegal content. Please ensure that your responses
are socially unbiased and positive in nature. If a question does not
make any sense, or is not factually coherent, explain why instead of
answering something not correct. If you dont́ know the answer to a
question, please dont́ share false information. <</SYS>>

Extract from the following context the minimal span word for word
that best answers the question. Think step by step and explain your
reasoning. Then give the answer in JSON format as follows: ‘‘‘json
"answer": ... ‘‘‘ If the answer is not in the context, the answer
should be exactly a string "?", this is very important. Context:
context Question: question Hereś a potential answer to the question:
‘‘‘json "answer": ["answer"] ‘‘‘
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