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ABSTRACT

World models constitute a powerful and versatile tool for decision-making.
Through their ability to predict future states of the world, they can replace en-
vironments for safe and fast simulation, and/or be leveraged for search at decision
time. Advances in generative modeling have led to the development of new world
models, that operate in visual environments with challenging dynamics. However,
recurrent methods lack visual fidelity, and autoregressive approaches scale poorly
with visual complexity. Inspired by the recent success of diffusion models for
image generation, we introduce Diffusion World Models (DWM), a new approach
to world modeling that offers a favorable trade-off between speed and quality.
Through qualitative and quantitative experiments in a 3D videogame, real-world
motorway driving, and RL environments, we show that Diffusion World Models
are an excellent choice for simulating visually complex worlds.

1 INTRODUCTION

Learning a model of how an environment works has become central in the development of competent
agents. World models can be used to augment real-world experience, generating fictional trajectories
that improve the sample-efficiency of reinforcement learning (RL) agents (Hafner et al., 2023; |Wu
et al., 2023). They also allow an agent to explicitly reason about the future consequences of its
actions, enabling planning and search (Schrittwieser et al.,|2020). In addition to agent-centric uses,
these models could lead to entirely new kinds of experiences, such as in gaming (Kim et al., 2020).

While world models offer numerous possibilities for simulating environments and improving decision-
making, developing accurate models for complex domains remains an open challenge. A world model
should ideally satisfy many desiderata: consistency over extended periods of time, internalization of
sophisticated dynamics, handling of visually challenging observations, and adaptation to new policies.
These requirements situate the design of effective world models at the intersection of a large number
of learning problems such as memory, reasoning, vision, and continual learning.

Current world models are built using the previous generation of image synthesis methods — autoen-
coders map image observations to a low-dimensional latent state, where recurrent or transformer
architectures model the environment’s transition dynamics (Hafner et al.,|[2023; Micheli et al., 2022).
However, these approaches have several drawbacks: recurrent architectures have limited expres-
sivity since they do not model the joint distribution over future latent states. On the other hand,
autoregressive transformers do model the joint distribution, but become prohibitively slow in visually
challenging environments, as more tokens are required to encode frames and the attention mechanism
scales quadratically with sequence length.

This paper takes inspiration from work in generative modeling for images and videos, where diffusion
models have emerged as the favored approach (Dhariwal & Nichol, 2021; |Ho et al.,2022a). We show
how diffusion models can be adapted to world modeling. Having navigated a large space of denoising
objectives, architectures, conditioning mechanisms and sampling schemes, we introduce Diffusion
World Models (DWM), a new approach to world modelling that is able to effectively condition on
both previous observations and actions, while allowing accurate and fast sampling.

We evaluate DWM’s ability both to learn complex worlds from offline datasets, and to train RL agents
in imagination. Experiments are performed across several environments: Atari games (Bellemare
et al., [2013), a first-person shooter video game (Pearce & Zhu, 2022), and real-world motorway
driving (Santana & Hotz, 2016). Compared to existing world models DreamerV3 (Hafner et al.,[2023)
and 1RIS (Micheli et al., [2022)), DWM offers better visual fidelity at competitive sampling speeds.
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Figure 1: Overview of the diffusion world model (DWM) generating the next obseryation — the
process starts from pure noise, 6t0+1 ~ N(0,1), and ends with a clean observation, 6;1. At each
denoising timestep 7 = 1, ..., 7T, the model Dy generates a less noisy observation given the current
version, and is conditioned on previous observations 0;_ g1, ..., 0. and actions a;_g+1,. .., Q.
The generated next observation is coherent with the current scene, and reflects the last action ay, here
FIRE in the game CS:GO.

2 RELATED WORK

World models. [Ha & Schmidhuber]|(2018) introduced the template for modern world models. They
used a VAE to map image observations into a compact latent space, where the dynamics were modeled
using an RNN. Successive generations of Dreamer agents improved on this approach, with recurrent
state-space models (Hafner et al.} 2020a), discretized and predictable latent representations
let al., [2020b), and more universal design choices (Hafner et al., [2023). A recent alternative approach
trains a discrete autoencoder and autoregressive transformer. Dynamics learning is framed as a
sequence modeling problem, with the transformer predicting a sequence of image tokens quantized

by the autoencoder (Micheli et al.,[2022} Robine et al., 2023). The present work continues the search
for sound modeling choices, proposing diffusion models for the first time in this application.

Image & video generation. The last decade saw the leading technique shift from GANs (Goodfellow
let al.l 2014} [Vondrick et al., [2016), to modeling individual pixels autoregressively using RNNs
or CNNs (Van Den Oord et al., |2016; [Van den Oord et al., [2016), to learning compressed latent
representations with discrete autoencoders and modeling with autoregressive transformers (Esserf
let al., 2021} [Yan et al.}[2021)), to diffusion models (Dhariwal & Nichol, [2021}[Ho et al.|[2022a). Our
work shows how this final advancement, diffusion models, can also bring benefits to world models.

Diffusion models. These were introduced by [Sohl-Dickstein et al.| (2015), followed by several

important refinements including a practical objective (Ho et al.,[2020), faster samplers (Song et al.|

20204), and conditioning techniques (Ho & Salimans|[2022). Many large-scale models have centered
around text conditioned images (Saharia et al., [2022; Rombach et al., [2022), or video (Ho et al.|

20224} [Singer et al.,[2022; [Ramesh et al., [2022} |Voleti et al.,2022). Most work on video diffusion
models generates a set of consecutive frames simultaneously (Section[d) or by flexibly generating
and conditioning on frames not in an autoregressive order Harvey et al.|(2022). In contrast to this, a
key requirement in our work is that frames must be generated autoregressively, as an agent’s action
should causally affect each subsequent frame. This necessitates innovation in our model’s design.

Diffusion & RL. Janner et al. (2022) first showed that diffusion models could be effective in RL
domains, by generating entire trajectories of states and actions. A large amount of follow up work
has explored this further in environments with low-dimensional state spaces, e.g. (Ajay et al.,
Wang et al., 2022). Regarding image observations, [Pearce et al.| (2023) applied diffusion models to
imitate human behavior, showing that diffusion could effectively condition on image observations.
used diffusion models as a replacement for hand-crafted data augmentation schemes.
They incorporated image observations by diffusing data in the low-dimensional latent space of a
pretrained encoder. Our work is the first to use diffusion for efficient closed-loop interaction with an
agent, as in model-based RL, and the first to diffuse pixels of image observations in RL settings.
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Figure 2: Example trajectories sampled from diffusion world models in the environments tested in
this paper; 2D Atari games, a modern 3D first-person shooter, and real-world motorway driving.

3 BACKGROUND

3.1 WORLD MODELING

We consider a standard 7-tuple Partially Observable Markov Decision Process (POMDP),
(S, A, T,R,Q,0,7), where S is a set of states, A a set of actions, T the transition function de-
scribing p(s¢+1 | st,a:), R : S x A — R the reward function, ) the set of observations, O the
observation probabilities conditioned on the state, p(0y4+1|s¢+1), and v € [0, 1) is the discount factor.

We consider an agent acting in the environment in a closed loop. At each timestep ¢, it receives an
image observation, o; € R wx3 "and reward, r;, and selects an action via its policy, a; ~ 7(-),
with a; € A. Assuming access to observations but not states, the task of the world model is to
predict p(0;41|0¢:t—p, a¢.¢— ), by implicitly inferring both the state transition function and the
emission probabilities of observations. It conditions on a history of length H to alleviate the partial
observability of the environment.

There is ongoing debate about whether pixel-perfect predictions are required for world models.
Hafner et al. (2020b) argue that they need only model task-relevant information, which necessarily
leads to limited image predictions. In this work our goal is to learn task-agnostic world models that
model the function, p(0¢11|0¢.+—H, an.t— g ), at high visual fidelity. We believe that our goal will
ultimately be useful in the pursuit of more general agents. As an example of this, some environments
evaluated in Section [5] provide no explicit reward or discount factor, but this philosophy nevertheless
allows us to train world models.

3.2 LIMITATIONS OF CURRENT WORLD MODELS

The design of current state-of-the-art world models have several limitations. The typical blueprint
consists of two components. An autoencoder maps image observations to a low-dimensional, often
discrete, latent state, Enc : o; — z; € Z, where, Z = {1,..., N}¥, is the set of K-tuples taken
from a set of cardinality N. Recurrent or transformer architectures then model the environment’s
transition dynamics, p(Z;1|2¢, a;). These can be decoded to image space, Dec : Z; 11 — 0411 € Q.
Numerous popular works follow this template (Ha & Schmidhuber| 2018; [Hafner et al., 2020b}
Micheli et all,[2022)), with various choices of autoencoder, dynamics model, and training objective.

1) Latent bottleneck size. The number of tokens in the latent representation, K, causes a fundamental
trade-off — too low and it does not contain sufficient information to capture the visual complexity
of the environment, too high and the latent dynamics models struggle and sampling time slows
when modeling the joint distribution (Micheli et al.,[2022). Diffusion world models avoid this issue
by implicitly absorbing the encoder, decoder and dynamics models into a single architecture, that
operates in pixel space without requiring a latent bottleneck.
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2) Latent sampling. In order to model the joint distribution of the latent observation, autoregressive
techniques can be used (Micheli et al.,[2022), but this creates a sampling time complexity that’s linear
in the number of forward passes, O(K ), for which the attention mechanism scales quadratically
O((HK)?). To alleviate this, some works sample latent dimensions simultaneously and indepen-
dently, allowing for faster O(1) sampling (Ha & Schmidhuber, 2018} Hafner et al.,|2020b; [2023), but
at the cost of this coarse assumption. Methods like MaskGIT (Chang et al., 2022), falling in between
autoregressive and independent sampling, are beginning to be explored (Yan et al., 2023). Diffusion
world models allow sampling from the joint distribution in a way that depends on the number of
denoising steps, O(T ), rather than the number of tokens K, offering a more graceful way to trade-off
sampling quality and speed, that is not baked in the model’s architecture.

3) Complexity. Having two components requires either two separate training procedures (Micheli
et al.,[2022), or end-to-end optimization with multi-objective losses and backpropagation of gradients
through sampling (Hafner et al.,2023). In contrast to these, diffusion world models offer a single
end-to-end architecture using only a standard MSE diffusion loss.

4 METHOD

4.1 DIFFUSION MODELS

Diffusion models (Sohl-Dickstein et al., 2015) are a class of generative models inspired by non-
equilibrium thermodynamics that learn to generate samples by reversing a noising process. While
several flavors of diffusion models have been proposed (Ho et al.||2020; Song et al.,[2020aib), our
work uses the formulation proposed in Karras et al.|(2022), described below, which we found more
robust than classical DDPM (Ho et al., [2020).

Assuming access to samples from a data distribution, y ~ p(y), the goal is to learn to recover these
samples from degraded versions, x = y + o¢, where, € ~ N (0,1) is Gaussian noise, and 0 € R
controls the level of degradation, sampled from some distribution, o ~ ppeise(0). Concretely, we
train a model, Dy, with the denoising objective,

L(0) = Eyeo [IIDo(y + o€, 0) =y ] M

Karras et al.|(2022) parameterize Dy as the weighted sum of the degraded input and the prediction of
a neural network, Fy,

Dy (x, U) = cuip(0) T + cour(0) Fo (cin(o) x, U). 2)

The conditioners, c¢iy, con : R — R, are selected to keep the network’s input and output at unit
variance for a given noise level o, and cqp : R — R is given in terms of ¢ and the standard deviation
of the data distribution, Oy, Cskip(0) = 02010/ (T2t + T°)-

Combining these equations provides insight into the training objective of Fy,

£00) = By [ | By (6a(0) (v + 00).0) — — S0 s o) ] )

2 2
Cout(0 Ogaa T O

Neural network prediction
Neural network training target
The network training target adaptively mixes signal and noise depending on the degradation level,
0. When o >> 04aa, We have, cuip(0) = 0, and the training target for Fy is dominated by the clean
signal, y. Conversely, when the noise level is low, o ~ 0, we have, cskip(a) ~ 1, and the target is
dominated by the noise, e. This approach yields a more robust training objective than DDPM, where
the model always has to estimate the noise, which is trivial when the level of noise is high.

While the above description formulates the diffusion process in terms of a continuous value o, at
sampling time a discrete schedule o (7) is used, with o(7) > --- > ¢(2) > o(1).

4.2 DIFFUSION WORLD MODELS

To extend the unconditional generative model of Section[d.T to world modeling, we need to condition
the denoising model, Dy, on a window of past observations and actions, as illustrated in FigureE
— ultimately the neural network takes the form, Fj (cm(a) (Ot41 + 0€),0,044—m,a:.+— ). While
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the requirements of such a model overlaps with those in the video generation literature, there are
important differences in model functionality introduced by the world modeling scope that require
several design changes compared to typical video diffusion.

Requirement 1 — Generation must be autoregressive. To be used interactively with an agent, a
world model must autoregressively generate the next observation, with a causal dependency on each
selected action. This differs from video generation, where frames may be generated simultaneously
(Ho et al., 2022b), in blocks (Voleti et al.|[2022), or in an arbitrary order (Harvey et al., 2022).

Requirement 2 — Each generated frame conditions on an action. In video generation, usually a
single conditioning variable is common to all frames of a video, such as a text description. In world
modeling, a new action is provided at each time step.

Requirement 3 — Sampling speed should be minimized. Whilst fast sampling is desirable for
video generation, it is even more critical in world modeling, as it bottlenecks how fast agents train in
imagination. Real-time generation is also a prerequisite for new user experiences (Kim et al., 2020).

4.2.1 ARCHITECTURE

The first of these requirements, autoregressive generation, requires conditioning on H previous
frames. We considered two architectures to achieve this — summarized in Figure [3]

Frame-stacking. The simplest way to condition on previous observations is by concatenating

the previous H frames together with the next noised frame, cat [f)g_)l, Oty ...,0t_p+1], wWhich is
compatible with a standard U-Net (Ronneberger et al.l 2015). This architecture is particularly
attractive due to its lightweight construction, requiring minimal additional parameters and compute
compared to typical image diffusion.

Cross-attention. The U-Net 3D (Ho et al., 2022bis a leading architecture in video diffusion (also
in Figure[3). This inspired us to design and test a cross-attention architecture, formed of a core U-Net,
that only receives a single noised frame as direct input, but which cross-attends to the activations of a
separate history encoder network. This encoder is a lightweight version of the U-Net architecture
— parameters are shared for all H encoders, and each receives the relative environment timestep
embedding as input. The final design differs from the U-Net 3D which diffuses all frames jointly,
shares parameters across networks, and uses self-, rather than cross-, attention.

4.2.2 ACTION CONDITIONING & SAMPLING

In addition to observations, world models must condition on actions. After being embedded through
a linear layer, these are concatenated or summed with the embedding of the noise level, o, and input
to the network through adaptive group normalization (AdaGN) Dhariwal & Nichol| (2021).

Similar to text-to-image models, at training we optionally mask out the observation and action inputs
with some probability (typically 0.2). By learning to generate observations with masked actions, the
model must implicitly learn the data-generating policy. Once trained, the diffusion models are capable
of being run both conditionally as a world model, and also unconditionally in video generation mode.

Training a diffusion model with masked actions also allows the option of using classifier-free guidance
(CFG) (Ho & Salimans| 2022) when sampling. CFG has been a core innovation for text-conditioned
generations, and we hypothesized that it might also be useful to focus the generations of DWM on
the specific input action sequence. CFG works by combining conditional and unconditional network
predictions in a weighted sum, for some CFG weight w > 0,

(14 w)Fp(6741,0,001—m,at—n) — wFp(6],1,0,00¢—5). 4)
When w = 0, vanilla conditional generation is performed, and w > 0 up-weights the conditioning.
4.3 LEARNING IN IMAGINATION

World models are frequently used to improve sample efficiency of RL methods, where an agent is
trained in the imagination of a world model using the Dyna framework (Sutton, [1991).

'https://github.com/lucidrains/video-diffusion-pytorch
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Figure 3: We tested two architectures for diffusion world models which condition on previous image
observations in different ways. To illustrate differences with typical video generation models, we
also visualize a U-Net 3D which diffuses a block of frames simultaneously.

Step 1. The RL agent collects experience in the real environment.

Step 2. This real experience is used to improve the world model.

Step 3. The RL agent is improved using fictional trajectories generated by the world model.
Step 4. Return to step 1.

We largely follow the RL setup used in a recent leading world model, IRIS: the actor-critic network
is parameterized by a shared CNN-LSTM with policy and value heads, and the training objectives
are REINFORCE with value baseline for the policy, and the Bellman error with A-target for the value
function. Full details can be found in Micheli et al. (2022)).

5 EXPERIMENTS

Our experiments investigate the below questions.

Q1) How effective is DWM at improving sample efficiency for RL agents? We study this in a
subset of Atari games, comparing to recent world models performing strongly in this domain.

Q2) Do diffusion world models scale to more complex environments? To understand the generality
of DWM beyond 2D Atari games, we train it to model a modern 3D game, and in real-world driving.
Q3) Can diffusion world models learn from offline and online data? In the complex environments,
DWM learns from fixed offline datasets, while int Atari it uses online data collection.

Q4) How does visual quality and sampling speed compare to other world models? As well as
qualitative evaluations, we apply metrics from the video generation literature to evaluate the visual
quality of imagined trajectories. We further report the sampling speed of various world models.
Q6) How do critical hyperparameters affect performance of diffusion world models? We ablate
several key hyperparameters including architecture, number of sampling steps, and CFG.

5.1 WORLD MODELS OF COMPLEX 3D ENVIRONMENTS

5.1.1 ENVIRONMENTS, BASELINES, METRICS

Our later Atari experiments will evaluate the utility of DWM in simpler environments for the purpose of
training RL agents, trained online — a classic use of world models. In contrast, this set of experiments
explores the value of DWM in modeling visually complex environments, by directly evaluating the
visual quality of the trajectories they generate. We use two environments.

CS:GO environment. ‘Counter-Strike: Global Offensive’ is one of the world’s most popular video
games in player and spectator numbers. It was introduced as an environment for RL research by
Pearce & Zhu|(2022)°l We use the 3.3 hour dataset (190k frames) of high-skill human gameplay,
captured on the ‘dust_2’ map, which contains observations and actions (mouse and keyboard) captured
at 16Hz. We use 2.6 hours (150k frames) for training and 0.7 hours (40k frames) for evaluation. We
resize observations to 64 x 64 pixels. We use no augmentation.

https://github.com/TeaPearce/Counter-Strike_Behavioural_Cloning
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Table 1: Results for 3D environments. Metrics are borrowed from the video generation literature.
We compare real trajectories with generated trajectories of image observations, conditioned on a real
sequence of actions, and an initial set of H = 6 observations.

— CS:GO — Driving Sample rate Parameters
Method FID, FVD| LPIPS| FID| FVD| LPIPS| (Hz) T (#)
DreamerV3 106.8  509.1 0.173 167.5 7337 0.160 266.7 181M
IRIS (K = 16) 24.5 110.1 0.129 51.4 368.7 0.188 4.2 123M
IRIS (K = 64) 22.8 85.7 0.116 443 276.9 0.148 1.5 111M
DWM frame-stack (ours) 9.6 34.8 0.107 16.7 80.3 0.058 7.4 122M
DWM cross-attention (ours)  11.6 81.4 0.125 35.2 299.9 0.119 2.5 184M

Motorway driving environment. We use the dataset from Santana & Hotz (2016 which contains
camera and metadata captured from human drivers on US motorways. We select only trajectories
captured in daylight, and exclude the first and last 5 minutes of each trajectory (typically traveling
to/from a motorway), leaving 4.4 hours of data. We use five trajectories for training (3.6 hours) and
two for testing (0.8 hours). We downsample the dataset to 10Hz, resize observations to 64 x64, and
for actions use the (normalized) steering angle and acceleration. During training, we apply data
augmentation of shift & scale, contrast, brightness, and saturation, and mirroring.

Metrics. To evaluate the visual quality and temporal consistency of generated trajectories, we use
Fréchet Video Distance (FVD) (Unterthiner et al., [2018) as implemented by [Skorokhodov et al.
(2022ﬂ This is computed between 1024 real videos (taken from the test set), and 1024 generated
videos, each 16 frames long (1-2 seconds). Models condition on H = 6 previous real frames, and the
real action sequence. On this same data, we also report the Fréchet Inception Distance (FID) (Heusel
et al., 2017), which measures the visual quality of individual observations, ignoring the temporal
dimension. For these same sets of videos, we also compute the LPIPS loss (Zhang et al., [2018)
between each pair of real/generated observations (Yan et al., 2023). Sampling rate describes the
number of observations that can be generated, in sequence, by a single A6000 GPU, per second.

Baselines. We compare against two state-of-the-art world model methods; DreamerV3 (Hafner
et al.| 2023)) and RIS (Micheli et al.|[2022), adapting the original implementations to our offline set
up. We ensured baselines used a similar number of parameters to DWM. Two variants of IRIS are
reported; image observations are discretized into K = 16 tokens (as used in the original work), or
into K = 64 tokens (achieved with one less down/up-sampling layer in the autoencoder), which
provide the potential for modeling higher-fidelity visuals.

Compute. All models (baselines and DWM’s) were trained for 120k updates with a batchsize of 64,
on up to 4x A6000 GPUs. Each training run took between 1-2 days.

5.1.2 RESULTS

Table[I reports metrics on the visual quality of generated trajectories, along with sampling speeds,
for the frame-stack and cross-attention DWM architectures, compared to baseline methods. DWM
outperforms the baselines across all visual quality metrics. This validates the results seen in the wider
video generation literature, where diffusion models currently lead (Section[2). The simpler frame-
stacking architecture performs better than cross-attention, something surprising given the prevalence
of cross-attention in the video generation literature — we believe the inductive bias provided by
directly feeding in the input, frame-wise, may be well suited to autoregressive generation.

In terms of sampling speed, DWM frame-stac (with sampling steps 7 = 20) is faster than IRIS
(K = 16). IRIS suffers a further 2.8 x slow down for the K = 64 version, verifying that sample time
for autoregressive models is determined by the number of tokens K. On the other hand, DreamerV3
sampling speed is an order of magnitude faster — this derives from its independent, rather than joint,
sampling procedure, and the flip-side of this is the low visual quality of its trajectories.

*https://github.com/commaai/research
‘nttps://github.com/universome/stylegan-v
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Table 2: Returns and human normalized scores at 100k frames for IRIS, DreamerV3, and DWM.

Return Human normalized score
Game Human IRIS DreamerV3  DWM (ours) IRIS DreamerV3  DWM (ours)
Asterix 8503.3 854 932 4200.6 0.078 0.087 0.481
Boxing 12.1 70 78 1.7 5.825 6.491 0.133
Breakout 30.5 84 31 71.1 2.858 1.018 2410
Kangaroo 3035.0 838 4098 25104 0.263 1.357 0.824
Krull 2665.5 6616 7782 42342 4.700 5.792 2.470
Qbert 13455.0 746 3405 2721.7 0.0438 0.244 0.192
RoadRunner  7845.0 9615 15565 20357.0 1.226 1.986 2.598
UpNDown 11693.2  3546.2 N/A 3198.9 0.270 N/A 0.239

Figure [2 shows selected examples of the trajectories produced by DWM in CS:GO and motorway
driving. The trajectories are plausible, often even at time-horizons of reasonable length. In CS:GO,
the model accurately generates the correct geometry of the level as it passes through the doorway
into a new area of the map. In motorway driving, a car is plausibly imagined overtaking on the left.
In the supplement, we provide short 16-frame videos generated by each DWM and baseline, as used
in the quantitative evaluations. Visual inspection agrees with the ordering of the quantitative metrics;
DWM frame-stack > DWM cross-attention ~ IRIS 64 > IRIS 16 > DreamerV3.

Whilst the above experiments use real sequences of actions from the dataset, we also investigated
how robust WM was to novel, user-input actions. Figure|[8|shows the effect of the actions in motorway
driving — conditioned on the same H = 6 real frames, we ask WM to generate trajectories conditioned
on five different action sequences. In general the effects are as intended, e.g. steer straight/left/right
moves the camera as expected. However, when ‘slow down’ is input, the model predicts that the traffic
ahead has come to a standstill, and the distance to the car in front decreases. But in the real world,
slowing down should increase the distance to the car in front! Figure[7]shows similar sequences for
CS:GO. For the common actions (mouse movements and fire), the effects are as expected, though
they are unstable beyond a few frames, since such a sequence of actions is unlikely to have been seen
in the demonstration dataset. We note that these issues — the causal confusion and instabilites — are a
symptom of training the model on offline data, rather than being an inherent weakness of DWM.

Table[3 provides ablations for DWM. The number of sampling steps, 7, allows a trade-off between
visual quality and sampling speed — Figure[6] visualizes trajectories for various values of 7. Employing
CFG for action conditioning was not helpful — even at low weight values, w > 1.0, and with static
thresholding, it led to over-saturated images that interacted badly with autoregressive sampling.

5.2 REINFORCEMENT LEARNING IN ATARI ENVIRONMENTS

5.2.1 ENVIRONMENTS, BASELINES, METRICS

A key application of world models consists in training RL agents with simulated trajectories (Sutton,
1991), thereby greatly reducing the total number of interactions with the actual environment. Atari
games (Bellemare et al.| [2013) are often used to evaluate the sample-efficiency of RL algorithms
(Kaiser et al.,[2019;|Yarats et al.,|[2021; Schwarzer et al., 2021;|Ye et al., 2021; Micheli et al., 2022;
Hafner et al., 2023), where a constraint of only 100k actions per environment is imposed to agents, a
500 fold decrease compared to the usual frames budget for Atari environments (Mnih et al.,2015). In
terms of human gameplay, this limitation translates to roughly 2 hours of game time.

In this sample-efficient RL setting, we consider eight environments evaluating a wide range of
capabilities: Asterix, Boxing, Breakout, Kangaroo, Krull, Qbert, RoadRunner, UpNDown. For
baselines, we again use DreamerV3 and IRIS, both developed for the purpose of training RL agents in
the imagination of their world models. We note other approaches have reached superior results, such
as the model-free BFF (Schwarzer et al., |2023) or the model-based EfficientZero (Ye et al.,|2021).

We report the usual metrics for Atari games — reward and the human normalized score,

score_agent—score_random .
Score_human—score random’ where score_random corresponds to a random policy, and score_human

corresponds to human players with two hours of experience (Wang et al., 2016).
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Diffusion world model

t=8

Figure 4: Imagined trajectories in Atari by DWM and IRIS. In Breakout (left), while DWM accurately
models a single block being broken, IRIS lacks the visual fidelity for this, and makes several mistakes
(highlighted in red). In Asferix (right), the two red sprites are accurately modeled by DWM (highlighted
in green), but erroneously disappear from view with IRIS’s prediction. See the supplementary material
for playable world models and videos of long-term open-loop generations.

5.2.2 RESULTS

Table displays results for DWM frame-stack, averaged over three training runs, each evaluated over
100 episodes following training. We also report published results for IRTS and DreamerV3.

After only two hours of real-time experience, DWM achieves a superhuman score on Breakout, Krull,
and RoadRunner, and outperforms both baselines on Asterix and RoadRunner. DWM bests IRIS on
4/8 games, and it bests DreamerV3 on 3/8 games.

Figure [d shows trajectories imagined by IRIS and DWM in Breakout and Asterix. In order to avoid
prohibitive sampling speeds, IRIS uses a small number of tokens to encode frames, which results in
erroneous predictions. Some bricks are hallucinated or missing in Breakout and enemies are mistaken
for rewards in Asterix. On the other hand, DWM perfectly predicts future frames. Surprisingly, IRIS
outperforms DWM in Breakout, even though its imagined trajectories are consistently worse than
DWM’s. We hypothesize that in this game, the ability to accurately predict the movement of the ball
is essential and other game dynamics are not as important. On the other hand, disappearing enemies
or mistaking enemies for rewards has a dramatic effect on the RL training, which explains the large
gap in performance between DWM and IRIS on Asferix.

IRIS and DreamerV3 deliver strong results on Boxing, but DWM falls short on that particular game.
One potential explanation would be that DWM’s short-term memory makes it difficult to recreate the
movement patterns of the opponent, hence the policy cannot exploit these behaviors.

6 CONCLUSION

We proposed DWM, a diffusion-based world model for simulating complex worlds. Through ex-
periments in 3D environments, we showed that DWM provides a visual fidelity superior to existing
methods, while maintaining competitive sampling rates. Through experiments in Atari games, we
also demonstrated DWM’s potential as a surrogate environment for the development of RL agents.

Currently, DWM conditions only on a few previous observations and actions, making it most useful in
environments where most of the state information is captured by a short-term memory. Designing
an architectural prior capable of handling worlds where long-term memory is paramount could be
explored in the future. Another interesting line of research would be to bridge the gap between offline
and online datasets. The former provide large amounts of data in real-world settings, while the latter
provide state coverage tailored to an RL agent.
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