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Abstract

Multiple benchmarks have been developed to assess the alignment between deep1

neural networks (DNNs) and human vision. In almost all cases these benchmarks2

are observational in the sense they are composed of behavioural and brain re-3

sponses to naturalistic images that have not been manipulated to test hypotheses4

regarding how DNNs or humans perceive and identify objects. Here we intro-5

duce the toolbox MindSet: Vision, consisting of a collection of image datasets6

and related scripts designed to test DNNs on 30 psychological findings. In all7

experimental conditions, the stimuli are systematically manipulated to test spe-8

cific hypotheses regarding human visual perception and object recognition. In9

addition to providing pre-generated datasets of images, we provide code to regen-10

erate these datasets, offering many configurable parameters which greatly extend11

the dataset versatility for different research contexts, and code to facilitate the12

testing of DNNs on these image datasets using three different methods (similar-13

ity judgments, out-of-distribution classification, and decoder method), accessible14

at https://github.com/ValerioB88/mindset-vision. We test ResNet-15215

on each of these methods as an example of how the toolbox can be used.16

1 Introduction17

Deep neural networks (DNNs) provide the best solution for visual identification of objects short of18

biological vision, and many researchers claim that DNNs are the best current models of human vision19

and object recognition [70, 79, 120, 38, 53]. Key evidence in support of this claim comes from the20

finding that DNNs perform the best on various behavioural and brain benchmarks. In the case of21

behavioural benchmarks, models are assessed on how well they account for human (or macaque)22
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errors in classifying a large set of objects [91, 108, 60], or how well they predict human similarity23

judgements [84, 12]. In the case of brain benchmarks, models are assessed with regard to how well24

they predict brain recordings (e.g., single-cell responses or fMRI data) in response to a set of objects25

[96, 97, 60, 4]. The general assumption is that the better a model does at predicting the data, the more26

similar the model is to biological vision. For instance, the Brain-Score benchmark is described as “a27

composite of multiple neural and behavioural benchmarks that score any [artificial neural network]28

on how similar it is to the brain’s mechanisms for core object recognition” [96]29

A common feature of most benchmark studies is that they treat the to-be-predicted data as observa-30

tional. That is, there is rarely an attempt to predict the impact of experimental manipulation designed31

to test specific hypotheses about how human or machine vision works. Rather, observers perform32

a single task over a set of images that satisfies some general criterion, such as objects presented in33

isolation [69], in naturalistic contexts [84, 12, 4, 60], or on a range of arbitrary backgrounds [30, 96].34

This approach is problematic because it is possible to make good predictions on these datasets even35

when models identify objects in a qualitatively different way from monkeys or humans [41]. For36

example, if the images contain multiple diagnostic cues for object classification (e.g., shape and37

texture both predict object category), then good predictions might be driven by different features than38

those that drive human object recognition – that is, predictions might be driven by confounds. For39

example, a DNN that classifies objects by texture might still be able to predict brain activations in a40

visual system that classifies objects by shape.41

The standard way to rule out confounds in order to determine causal relations (e.g. inferring that42

DNNs learn brain-like representations) is to carry out experiments designed to rule out confounds43

as the basis of making good predictions. In fact, there is a large literature in psychology describing44

experiments designed to test specific hypotheses about how human vision works, but surprisingly,45

this literature is often ignored when modellers compare DNNs to biological vision. Bowers et46

al.[28] reviewed a wide range of psychological phenomena that current DNNs either fail to capture47

or that have yet to be considered. Furthermore, when researchers do consider the psychological48

literature when making claims regarding DNN-human similarities, the models are rarely subject49

to the kind of “severe” tests that are required to make any strong conclusions, that is tests that are50

likely to challenge claims in case they are false. Instead, strong conclusions are often drawn based on51

superficial similarities [26].52

There are at least four (related) reasons for this. First, many researchers in computer science53

and computational neuroscience may be unfamiliar with the rich set of experiments carried out54

in psychology that manipulate independent variables to better understand human vision, memory,55

language, etc. Those who are aware of these studies might find it challenging to engage with them,56

as psychological datasets are not readily available in formats that the community is accustomed to57

working with. Second, it is not always obvious how one should test a model against psychological58

data. Hence, it may be easier to focus on improving performance on the current benchmarks, and this59

may have discouraged researchers from exploring data from psychology. A third potential reason is60

an overall skepticism towards psychological results, a sentiment that may reflect the well-documented61

replication crisis in psychology [7]. Forth, there is a strong bias to look for DNN-human similarities62

and downplay the differences [26], and severely testing on psychological data might not result in63

similarities. However, characterizing these failures provides key insights into the ways DNNs need to64

be improved when modelling biological vision.65

Here we present MindSet: Vision, a toolbox aimed at facilitating testing DNNs on visual psychological66

phenomena by addressing all the problems presented above: our main contribution is to provide a67

large, easily accessible, parameterized, set of 30 image datasets (and related scripts to re-generate68

and modify them) accounting for a wide array of well-replicated visual experiment and phenomena69

reported in psychology. Our stimuli cover aspects of low and mid-level vision (including Gestalt70

phenomena), visual illusions, and object recognition tasks. We provide a high-level descriptions of71

the visual phenomena in the main text (Section 2) and more detailed descriptions in the Appendix72

(A). To facilitate experimentation across a variety of scenario, each dataset can be easily regenerated73

across different configurations (image size, background colour, stroke colour, number of samples,74
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etc.). To address the difficulty in testing DNNs on these stimuli, we provide scripts for using one (or75

more) of three methods: Similarity Judgment Analysis, Decoder Approach, and Out-of-Distribution76

classification (Section 3). We provide examples illustrating how to use these scripts with a classic77

feed-forward CNN (ResNet-152), and an extensively documented code (Section 4).78

With MindSet: Vision, we aim to bridge the gap between computational modeling and psychological79

research, bringing experimental studies that manipulate independent variables to the forefront of80

developing and evaluating of DNN models of human vision. We also hope this initiative will drive81

further interest in other areas of human psychology, such as memory, language, and speech perception82

when attempting tounderstand and replicate human-like intelligence in machines.83

1.1 Related Work84

Several recent studies share some similarities with our project: [119] introduced a new dataset85

containing five types of visual illusions falling into two categories: color constancy and geometrical86

illusions. The authors formulated four tasks specifically designed to examine the performance87

of Visual Language Models, finding low alignment with human responses. [75] developed the88

Good Gestalt datasets, consisting of six types of datasets covering several types of Gestalt grouping89

principles, including Closure, Continuity, and Proximity, aimed at testing a Latent Noise Segmentation90

Network. Similarly, [50] developed the model-vs-human benchmark that compares ANN-human91

classification errors on various ‘out-of-distribution’ datasets composed of naturalistic images that92

were modified in various ways, including low-level feature manipulations of contrast and spatial93

frequency, as well as higher-level manipulations, such as generating silhouettes and sketches of94

images. Evans et al. [44] used a dataset of silhouettes, line-drawings, and contours, to investigate95

robustness to these stimuli in DNNs pretrained on CIFAR-10, and Baker et al. [10] employed a96

dataset of line drawings and silhouettes from ImageNet classes to investigate model robustness to97

local versus global features. In comparison to these works, we present a toolbox to test DNNs98

on visual psychological effects, investigating not only a much richer set of visual phenomena, but99

providing the code base to regenerate images in batches, changing the parameters, and testing each100

one of them on a variety of methods.101

2 Datasets102

We have included datasets from experiments that characterize a wide range of visual phenomena,103

ranging from low- to high-level vision. We grouped the datasets (indicated in bold) into 3 broad104

categories (see following Sections) as illustrated in Figure 1. Each dataset comprised multiple105

sub-conditions designed to test DNN-human similarities, and in some cases, image datasets used to106

train decoders, as described in Section 3.3.107

While most of the stimuli are created by us, in a few instances we incorporate stimuli from external108

sources (when needed, permission was obtained from the authors). In all cases, the stimuli have109

been integrated into a versatile framework which offers significant flexibility in adjusting parameters110

such as image size, background, stroke colour, and more, to allow their application to a variety111

of models and methodologies. Given the extensive range of datasets provided, we only offer a112

brief summary for each in the article, and provide more details in Appendix A, including details113

about the suggested way to test each dataset, and the expected result for model-human perceptual114

alignment. All resources are open-source and freely available under the MIT license at https:115

//github.com/ValerioB88/mindset-vision.116

2.1 Low and Mid-Level Vision117

A fundamental low-level vision phenomena is captured by Weber’s Law [112], which states that118

the minimum physical change of a stimulus on some dimension (e.g., its size) that is noticeable to119

an observer is a constant ratio of the original stimulus value on this dimension. For example, it is120
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Figure 1: Comprehensive overview of the ‘MindSet: Vision’ datasets, arranged in three main
categories. Each panel represents a distinct dataset, which is further divided into conditions. The
images provide examples from these conditions, generated with default parameters.

equally easy to distinguish between line lengths of 1 and 2 cms and between 2 and 4 cms. We created121

a dataset that can be used to assess this relation for both line length and stimulus intensity.122
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Human perception is also sensitive to various Emergent Features in which simple image features123

interact to generate “Gestalts" [85]. The dataset is comprised of a set of dots arranged in such a way124

as to induce the emergent feature of proximity, orientation, and linearity [86, 22]. Another Gestalt125

effect is manifest in the Crowding/Uncrowding phenomenon. In crowding, the ability to identify126

an object is compromised by the presence of nearby objects or visual patterns, but in uncrowding,127

object identification is improved when additional objects or visual patterns are added to the scene and128

grouped such that they are segregated from the target. We adapt the dataset from [40] so that many129

crowding conditions with several different shapes can be investigated.130

Human perception is highly sensitive to non-accidental image features, that is features that are largely131

invariant to changes in viewpoint when projected on to the retina [16], as opposite to accidental132

features (e.g., degree of curvature) in which the projected image varies with viewpoint. Human vision133

is known to be more sensitive to changes in images that alter non-accidental compared to accidental134

properties [5, 6]. We use two datasets to examine model sensitivity to these features: one with 3D135

geons [5] and another with 2D line segments (based on [71]). Similarly, we present a dataset to136

compare Relational Changes with Coordinate changes between object parts. DNNs are commonly137

insensitive to relational change, even after being explicitly trained on these relations [77], whereas138

human perception is highly sensitive to relational changes [64].139

To identify partly occluded objects, the human visual system groups contours and surfaces through140

an amodal completion process [81]. The Amodal Completion dataset (based on [93]) enables the141

investigation of these processes using images with shapes that are either occluded, unoccluded, or142

“notched”. These latter shapes are unoccluded but notched in such a way as to maintain a high degree143

of feature similarity with their occluded counterparts.144

With the Decomposition dataset we provide a mean to test the extent to which DNNs group object145

parts in a human-like fashion. We designed familiar and unfamiliar objects composed of two conjoined146

parts that undergo what humans would perceive as a “natural” or “unnatural” break (inspired by147

[65]). In the same work, [65] showed that VGG-16 trained on ImageNet did not possess human-like148

sensitivity to images that could be interpreted as 3D-shapes by using a set of stimuli based on [42].149

Accordingly, we reconstructed this Depth Drawings dataset.150

2.2 Visual Illusions151

Visual illusions are not mere curiosities, but often arise from adaptive perceptual processes [56].152

Detailed computational models of multiple illusions have been advanced that provide theoretical153

insights into the mechanisms that underlie them (e.g. [58]). We provide datasets exploring illusions154

related to size perception, orientation, and lightness contrast.155

Several illusions relate to size perception. In the Müller-Lyer illusion[35], arrow-like segments156

at the ends of equal-length lines impact our perception of length. In the Ponzo illusion[88], two157

equal-length horizontal lines cross a pair of converging lines. In this configuration, the top line looks158

longer, an illusion often explained as related to the process of inferring depth. In the Ebbinghaus159

illusion[2], the size of a circle is perceived differently depending on the size of surrounding circles.160

Similarly, in the Jastrow illusion[66, 35], a specific arrangement of identical objects affects our161

perception of their relative size. For all these illusions, we provide both an illusory condition and a162

condition in which all elements of the original illusion are “scrambled up”, so that a decoder can be163

trained to predict a specific feature (e.g. the size of the centre circle in the Ebbinghaus illusion) and164

subsequently tested on illusory configurations.165

In the Tilt illusion[52], the orientation of a central grating is perceived as being repulsed from or166

attracted to the orientation of a surrounding grating. In this case, we provide conditions with either167

central or background gratings (configurations which do not support the illusion in humans and could168

be used for training a decoder), and a condition with both (eliciting the illusion in humans) for testing169

the model. Another orientation illusion is the Thatcher Effect [105]. This is a phenomenon where170

local changes in facial features (like inverted eyes or mouth) are less noticeable when the entire face is171

upside down, highlighting our sensitivity to orientation in face perception. An interesting unresolved172
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issue is the extent to which this inversion effect is specific to faces [25, 115]. Together with a dataset173

of faces and their Thatcherized version, we also include a dataset of Thatcherized Words, that is a174

dataset of images containing words in which one or more letters are rotated by 180 degrees [115].175

The lightness contrast effect[109] and the Adelson Checker shadow[1] illusions reveal how our176

visual system perceives color and lightness based on context. We provide a Grayscale Shapes177

dataset to train a decoder to output estimates of lightness at a given location of an image (indicated178

by a small white arrow). After training, the network is presented with test images that induce illusions179

and help assess whether DNNs show similar effects by pointing the arrow at the relevant parts of the180

images (see Section C.2.6 for a detailed description of this approach).181

It is important to note that there is no accepted account for some of the illusions described above.182

However, even when we have no good understanding of the functional role or the mechanism that183

drives an illusion, a DNN model of human vision should show similar effect. Indeed, understanding184

the conditions under which DNNs show an illusion may advance our understanding of why the185

phenomenon is observed in humans. There are now several articles exploring such illusions in various186

types of DNNs trained in different ways, with some highlighting similarities (e.g., [14, 103, 111])187

others reporting mixed or discrepant results (e.g., [55, 110, 119]); for a review of the relevant findings,188

see [67].189

2.3 Shape and Object Recognition190

DNN object recognition is much more sensitive than human vision to distributional shifts from the191

training set. For instance, humans can easily identify line drawings the first time they are exposed192

to them [62], whereas DNNs perform poorly under these conditions [45] and need to be trained on193

line drawings in order to recognize them at human levels [99]. We have included the line drawing194

and silhouettes datasets (from [10, 8]) and also manipulated them in various ways to construct195

additional datasets. The line drawings were converted into dotted contours (Dotted line drawings),196

line segments (Segments line drawings) [18], or “texturized” (Texturized line drawings). The197

texturized images are composed of oriented lines/characters applied to either/both the background198

or/and the inside area of the line drawing. In all these cases, the resulting images are easily identifiable199

by human observers due to various Gestalt rules that organize the image features into boundaries.200

We also apply the same texturization technique outlined above on unfamiliar “blob”-like shapes201

(Texturized Unfamiliar dataset). Human observers have no difficulty matching a novel “blob”202

object to its texturized counterpart. In addition, we provide a dataset of fragmented images based on203

[9] in which the global features of silhouettes or line drawing are modified by reflecting the top part of204

an object along its vertical axis, leaving the local features mostly unchanged (Global Modifications205

dataset). Human performance on these stimuli is greatly reduced but typically DNN performance206

is largely unchanged, suggesting that human vision is more sensitive to global object structure and207

DNN vision is more sensitive to local features.208

The Embedded Shapes Dataset (inspired by [36]) provides another condition that greatly impacts209

on human perception, by embedding geometric shapes within complex arrays of lines in ways that210

camouflage the original shape. We include both the original images from [36] and a procedurally211

generated dataset in which random polygons are embedded into a configuration that makes recognition212

challenging for humans.213

The human visual system supports object recognition following a wide variety of transformations214

[104, 24]. Importantly, this extends to cases in which an object has only been viewed at one pose.215

Previous works suggest a complex link between DNN pretraining and their object recognition216

capabilities under object transformations [20, 21]. To test whether DNNs share these capacities, we217

provide a dataset in which translations, plane rotations, and scale changes (2D Transformations)218

are applied to line drawings. To test for Viewpoint Invariance (e.g. the ability to recognize an219

object from a new viewpoint after a rotation in depth) we adapt the ETH-80 dataset, [32] allowing for220

controlled variation in azimuth and inclination.221
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Finally, we provide a dataset to test whether DNNs possess the ability to solve a basic form of visual222

reasoning task, namely, the Same/Different task. Drawing from [89], our dataset comprises images223

composed of pairs of objects, which may be identical or different. These images are organized into224

ten conditions that vary in their visual form, such as ‘filled polygons’, ‘open squares’, and ‘colored225

shapes’. While humans effortlessly accomplish this task across all conditions without training, DNNs226

often struggle when the training and test images come from different conditions.227

3 Testing methods.228

Each dataset is designed to align with at least one of three methods of testing, but other approaches229

can be used as well. We discuss further possibilities in Appendix B.230

3.1 Out-of-Distribution Classification231

In this approach, a DNN pretrained on one dataset is tested on a new dataset composed of out-of-232

distribution images taken from the trained classes (e.g., a DNN pre-trained on ImageNet is tested on233

line drawings taken from the same categories). This approach is well suited for most of the Shape234

and Object Recognition datasets that use images from ImageNet categories modified in such a way235

that human observers have no trouble recognizing them, even without training. We provide scripts to236

test a wide variety of vision models.237

3.2 Similarity Judgment Analysis238

This method involves assessing the pairwise similarity of activation patterns in DNNs (using a239

Cosine Similarity or an Euclidean Distance metric) evoked by pairs of images and comparing these240

similarities to human performance. This method has been used to assess how well DNNs capture241

human similarity judgments [84] and response times to identify target stimuli from foils [22]. It is242

often useful to carry out these analyses across multiple layers of DNNs given that some psychological243

phenomena are known to manifest at earlier or later stages of visual processing. A DNN mimicking244

human perception should show relevant similarity effects at the relevant layers. One key advantage of245

this approach is that it can be applied to novel images that cannot be classified by a DNN.246

To illustrate, we applied this method to the Texturized Unfamiliar dataset (Figure 2). The human247

visual system groups elements in a scene by texture [13] and classify objects by their shapes [16].248

Accordingly, texturized versions of the same shape should be judged as more similar than texturized249

versions of different shapes. To explore if DNNs exhibit similar behaviour, we input pairs of images250

into a ImageNet pre-trained ResNet-152 and, for each pair, we computed the Euclidean Distance251

between their internal activations at every processing level. A human-like response is indicated by a252

smaller distance for pairs of the same compared to different shapes. ResNet-152 exhibited a weak253

manifestation of this pattern in the early layers, a reduced effect in the later layers, and no effect in254

the output layer. By contrast, the human visual system supports similarity judgements on the basis of255

shape-based representations that are computed following the early stages of visual processing.256

3.3 Decoder Method257

In this method a small, often single-layer, “decoder” network is attached to a layer of a frozen DNN258

and trained on a task designed to reveal how the DNN encodes a specific type of information. For259

instance, a frozen DNN might be presented with a set of images that contain a target object varying260

in size, colour, and orientation, and a decoder is trained to output the value of one or more of these261

properties at a given layer. We provide scripts for both classification and regression training, and262

scripts to train and test a series of five decoders at varying levels of a ResNet-152 model. Although263

these scripts are tailored to ResNet-152, they can easily be used as a template to streamline the264

adaptation of this technique for different networks.265

To illustrate, consider the Ebbinghaus Illusion. The Ebbinghaus dataset we provide consists of three266

conditions: two illusory conditions in which a red centre circle (at different radii) is surrounded by267
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either small or large white circles (flankers) in a configuration that, in humans, induces a biased268

size estimation of the centre circle: the circle appears larger when surrounded by small flankers,269

everything else being equal. Another condition again contains a red centre circle of different sizes,270

but the surrounding circles are placed randomly on the canvas so that they would not elicit any271

illusion on a human observer. We use the latter condition to train decoders attached to a ImageNet272

pre-trained ResNet-152 model with frozen weights. The task consists of estimating the size of the273

centre circle. After training, we feed the illusory images to the decoders. For a network to exhibit the274

Ebbinghaus visual illusion, the size of the centre circle should be overestimated for small flankers and275

underestimated for big flankers. We did not find this pattern in ResNet-152 and, indeed, no significant276

difference across prediction errors for the different conditions was observed (result for one decoder277

shown in Figure 2).278

Figure 2: Depiction of two of the three proposed methods of evaluating DNNs in the context of two
representative datasets. The first method, out-of-distribution classification, is not depicted here. The
Similarity Judgment Analysis (top panel) involves feeding pairs of images to DNNs and comparing
the elicited internal representations. We illustrate this method via the ‘Texturized Unfamiliar’ dataset,
showing that the network possesses human-like responses in earlier layers which diminish in the
later ones. The Decoder Method (bottom panel) involves training and testing a simple linear layer
attached to different stages of a frozen network. In the given example, we assess the response to the
Ebbinghaus illusion. Our findings indicate an absence of illusory perception. Both examples use an
ImageNet pre-trained ResNet-152.

4 Code and Resources279

We provide both ready-to-use datasets and scripts to generate them with varying parameters. Most of280

the ready-to-use datasets’ size span to around 5,000 images per condition, and larger dataset can easily281

be generated using the provided scripts. To separate code and configuration, each dataset generation282

script relies on a configuration file, consisting of a plain-text file in TOML format specifying all283

the available parameters for that dataset. Some parameters are used across most datasets, such as284

image size, background colour, and number of samples. Other parameters are dataset-specific, for285

example the size and distance of dots in the Dotted line drawing dataset. For convenience, the same286

configuration file can specify the configuration for multiple (or all) datasets, so that they can be287

generated in batches. The “default” configuration file we used to generate the ready-to-use versions is288

included, which can be used as a template. The output of each script is the dataset itself (with several289

sub-conditions depending on the dataset) together with a CSV annotation file, containing the path290

and parameters of each generated image.291
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We also provide the code and utilities to evaluate DNNs using the three methods noted above.292

Each method is highly configurable through TOML files, with options including the type of data-293

augmentation to apply, the network architecture, the metric to use for the similarity judgments and294

more. Users have the flexibility to choose specific factors from this file for analysis, extending beyond295

the factors that we deemed the most relevant for each task. For example, in the script testing the296

Ebbinghaus Illusion used for Section 3.3, a decoder is trained to predict the normalized size of the297

centre circle. However, a different research goal might involve predicting the size of the flankers.298

This can be achieved by simply specifying the corresponding column (‘NormSizeFlankers’) in the299

annotation file, without needing to re-generate the dataset or change the code.300

Each method produces a pandas DataFrames [78] as its output, which can be independently analyzed.301

Additionally, supplementary files containing simple tests and comparisons that serve as a springboard302

for further and more detailed analysis are automatically generated. Comprehensive documentation303

for every configurable option across all datasets and methods. Additionally, we offer guidance on the304

general usage of various scripts and utilities through several examples and multiple README files305

on the GitHub page.306

5 Limitations307

While MindSet: Vision offers a valuable resource for exploring visual psychological phenomena using308

deep neural networks , there are several limitations to consider. Firstly, our focus is primarily on visual309

tasks that do not involve high levels of reasoning and are not directly connected with other areas of310

cognition such as language and memory. Secondly, the methodology for comparing DNN performance311

to human participants often allows only for qualitative comparisons, as quantitative comparisons may312

not be feasible with the current analysis methods. Lastly, while we have selected phenomena based313

on well-replicated and famous visual experiments, there may be additional phenomena that are not314

covered by our selection. These limitations underscore the need for further research and development315

in the field of computational modeling of human vision to address these gaps and enhance the utility316

of MindSet: Vision as a comprehensive toolbox for studying visual perception.317

6 Conclusion318

There is much interest in DNNs as models of human vision, but relatively little research is concerned319

with how DNNs capture key psychological findings. When DNNs are tested against key psychological320

findings, they often fail [27]. And when they do succeed, it is often because the DNNs have not been321

severely tested [26]. In our view, to better characterize DNN-human alignment, and to build better322

DNN models of human vision, it is necessary to systematically test models against key experiments323

reported in psychology. The MindSet: Vision dataset is designed to facilitate this.324

Currently it is quite common to rank models in term of how well they perform across several datasets325

or tasks. For example, the Brain-Score benchmark [96] provides an overall leaderboard that scores any326

DNN in terms of how good they are at explaining neural activity variance for core object recognition,327

and the “model-vs-human” benchmark [50] ranks and scores models in terms of their behavioural328

overlap with humans in identifying a range of out-of-distribution object datasets. We do not propose329

to rank models in this way as each experiment in MindSet: Vision tests a specific hypothesis regarding330

how DNNs and humans perceive and encode visual inputs. It makes little sense to provide a score331

that averages across qualitatively different hypotheses. By making stimuli underlying psychological332

experiments more accessible, easy to generate, configure, and modify, and by providing ready-to-use333

scripts to test existing models, we hope that the MindSet: Vision toolbox encourages computational334

modelling researcher to focus on testing their models on key experiments rather than competing on335

observational datasets that do not support any conclusions regarding the mechanistic similarity of336

DNNs and brains.337
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sented as illustrations of how the datasets could be tested with our suggested methodologies,680

and are not intended as benchmarks.681

(a) Did you include the code, data, and instructions needed to reproduce the main experi-682

mental results (either in the supplemental material or as a URL)? [Yes] Provided code683

in GitHub repo contains details instruction to replicate the exemplary results presented684

in this work.685

(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they686

were chosen)? [Yes] We used .toml file which contains parameters for each dataset687

generation process and each methodology, so that full replicability is ensured.688

(c) Did you report error bars (e.g., with respect to the random seed after running experi-689

ments multiple times)? [Yes] see 2.690

(d) Did you include the total amount of compute and the type of resources used (e.g., type691

of GPUs, internal cluster, or cloud provider)? [N/A]692

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...693

(a) If your work uses existing assets, did you cite the creators? [Yes] Creators are cited694

within the main text, and in the codebase in each file using their assets. All used assets695

are either publicly available under CC or we obtained the explicit permission from the696

authors.697

(b) Did you mention the license of the assets? [Yes]698

(c) Did you include any new assets either in the supplemental material or as a URL? [Yes]699

We provide Kaggle links for two different versions of the datasets, and a GitHub repo700

to regenerate the datasets.701

(d) Did you discuss whether and how consent was obtained from people whose data you’re702

using/curating? [Yes] in Section 2.703

(e) Did you discuss whether the data you are using/curating contains personally identifiable704

information or offensive content? [No] data are programmatically generated, and705

their material is not offensive nor contains identifiable information.706

5. If you used crowdsourcing or conducted research with human subjects... The datasets are707

ideally used to test psychological phenomena observed and studied in human subjects, but708

we did not directly conduct any research with humans participants.709

(a) Did you include the full text of instructions given to participants and screenshots, if710

applicable? [N/A]711

(b) Did you describe any potential participant risks, with links to Institutional Review712

Board (IRB) approvals, if applicable? [N/A]713

(c) Did you include the estimated hourly wage paid to participants and the total amount714

spent on participant compensation? [N/A]715
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Appendices716

A General Dataset Info717

A.1 Pre-Generated Datasets718

In the pre-generated dataset, we use 224x224 pixel images, and a variable number of samples719

depending on the task and condition (see section below on the number of samples). However, image720

size and dataset sizes are parameters that the user can easily modify if needed. The images in the721

datasets all have 3 channels (RGB). For almost all datasets, the user can specify the background color722

(either a uniform value, or request a different RGB value for every image), whether to use antialiasing,723

and the size of the item in the image relative to the whole canvas.724

A.2 Data Augmentation725

We do not apply any affine transformation or other data augmentation techniques during the dataset726

generation phase. For instance, in the majority of Shape and Object Recognition datasets, a sample727

typically comprises a modified line drawing or silhouette centrally positioned on a canvas without728

rotation. We deliberately avoid creating replicas of the same sample with additional transformations.729

This approach prevents unnecessary expansion of the dataset’s size, as most popular deep learning730

libraries allow for an easy application of data augmentation. Furthermore, our testing methods731

allow for the application of affine transformation during testing through the configuration file, again732

avoiding the need to generate pre-augmented datasets.733

A.3 Number of Samples and procedural generations734

Some datasets contain a fixed and limited number of samples. For example, the “NAP vs MP: line735

segments” dataset, recreating the stimuli used in [72], contains 3 conditions with 26 items each. This736

can be potentially expanded by changing the line stroke, the background color, or by applying dataset737

augmentation separately. For other datasets much larger samples with extremely low probability of738

repetition are easily constructed. For example, most Visual Illusions contain a “scrambled” condition739

in which the elements of the illusions are presented “scrambled up” on the canvas, with varying740

positions and orientation of each different element. A virtually limitless number of samples can be741

generated for these conditions, which is important since they are often used for training decoders. The742

pre-generated dataset typically includes approximately 5,000 samples for these conditions. For users743

requiring larger sample sizes, they can generate the dataset by changing the configuration argument744

relative to sample size (e.g., num_samples_scrambled) depending on their needs.745

B Other Testing Methods746

The datasets featured in MindSet: Vision are suitable for a range of experimental approaches beyond747

the ones suggested in Section 3. For example, the relational reasoning capabilities needed to solve the748

Same/Different task could be tested by training a network (which does not need to be pre-trained) on749

one or a few of the ten available conditions in the Same/Different dataset, and then testing the network750

on the remaining conditions (as in [89]). In a similar vein, the 2D transformations and Viewpoint751

datasets could be approached by training a network on certain transformations/viewpoints and then752

testing it on the others, as demonstrated in [20].753

Another method that extends beyond our provided scripts is to input images into Multimodal Large754

Language Models (LLMs) and query them about what they see [119]. Assuming that the language755

output of the LLM provides a reliable window into its perceptual processes, this approach allows for756

an interactive examination of the LLM’s understanding of the images.757

Our preliminary investigations with GPT-4 reveal that while these models are proficient at recognizing758

silhouettes and line drawings, they struggle with textured representations of familiar objects. For759
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example, a textured image of a banana was misidentified as either a crescent moon or a pair of760

scissors, and an airplane was mistaken for a butterfly. Moreover, we found instances in which GPT-4761

is influenced from images it has previously processed, that is prior exposure to an image can lead762

the model to incorrectly identify later, differently textured images as the same as the initially viewed763

object. For instance, when the model is first presented with the silhouette of a banana, followed by a764

textured depiction of an airplane, it sometimes erroneously classifies the airplane as a banana.765

Figure 3: Samples of GPT4 responses after being prompted by different images from our silhouettes
and texturized datasets, each time spawning a new conversation. The model accuracy drops signifi-
cantly with texturized images.

C Detailed Datasets Information766

Below we provide more details about the various conditions included in MindSet: Vision and their767

relevance to understanding human vision. We also highlight the most important parameters for each768

dataset. For a complete list, refer to the generated HTML page2 which additionally contains several769

samples for each condition and each dataset when generated using default parameters.770

C.1 Low and Mid-level vision771

There is no sharp dividing line between early and middle visual processing, but early vision extracts772

low level feature information (i.e., color and luminance contrasts, the orientation of bar and edge773

segments, and contour segments) from the retinal image. By contrast, mid level vision encodes more774

abstract aspects of shape, such as surfaces and parts of objects, in an increasingly viewpoint invariant775

manner. This is where representations of 2D and 3D shapes, material properties, and coherence of the776

substances and surfaces in the world are computed. That is, mid-level vision builds representations of777

the distal world from the proximal stimulus. This is an ill-posed problem, and accordingly, various778

heuristics (such as Gestalt perceptual grouping cues) are employed to provide the best estimate of the779

distal world. Illusions are striking examples of failures to correctly encode the distal world from the780

proximal stimulus. The experiments we include in MindSet: Vision largely focus on mid-level vision.781

C.1.1 Weber Law782

Psychological Significance. The Weber Law (or Weber-Fechner Law) quantifies the psychophysical783

relation between changes in the world and changes in perception. The law states that the minimum784

physical change of a stimulus on some dimension (e.g., its size) that is perceptible to an observer is a785

constant ratio of the original stimulus value on this dimension. For example, it is easy to distinguish786

between line lengths of 1 and 2 cm, but difficult to distinguish between lines of length 100 and 101787

cm, despite the fixed difference in length (1 cm). To make the latter distinction equally salient, the788

two stimuli should be 100 and 200 cm (a fixed ratio of 2). Although Weber’s Law breaks down at789

extreme values, this relationship applies to a wide range of dimensions, from weight, length, size,790

2https://bit.ly/mindsetvision-datasets
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brightness, and even numbers. Weber’s Law reflects the more general observation that perception is791

often based on relative rather than absolute encoding of stimulus dimensions. Importantly, Weber’s792

Law is often manifest in early visual areas [61], and indeed, in some cases, at the level of the retina793

[11, 49, 107].794

Jacob et al. [65] reported that the convolutional DNN VGG-16 showed a human-like Weber Law795

effect when encoding line-lengths. However, the authors only observed Weber’s Law for line lengths796

in the late convolutional layers of the network, did not assess whether discrimination was a constant797

ratio of the original stimulus (they employed a weaker test), and failed to observe a reliable effect for798

image intensity.799

Dataset. Images in this dataset are composed of a simple horizontal white line with varying length800

and brightness values. Configurable parameters include line width, min/max values for length and801

brightness. To assess DNNs sensitivity to Weber’s Law, a similarity judgment analysis assesses802

whether the relative change in the perception of these stimuli (as measured by the level of unit803

activation in the inner layers of a pre-trained DNN) adheres to a logarithmic relationship with the804

stimulus strength (e.g. line length).805

C.1.2 Crowding / Uncrowding806

Psychological Significance. Our ability to identify objects is impaired by the presence of nearby807

objects and shapes, a phenomenon called crowding. At the same time, in some conditions, the808

inclusion of additional surrounding objects makes the identification of the target easier, a phenomenon809

called uncrowding. This is illustrated in Figure 4, in which participants are asked to perform a810

vernier discrimination task by deciding whether the top vertical line from a pair of vertical lines811

is shifted to the left or right. When these lines are surrounded by a square rather than presented812

by themselves performance is impaired. However, the inclusion of additional squares dramatically813

improves performance. This is thought to reflect a Gestalt process in which the squares are grouped814

together and then processed separately from the vernier [95]. Standard DNNs are unable to explain815

uncrowding [39, 47], but the DNNs inspired by the LAMINART model of Grossberg and colleagues816

[90] designed to support grouping processes can capture some aspects of uncrowding.817

Figure 4: Illustration of the Crowding and Uncrowding effect. a. Observers perform a vernier
discrimination task. A standard approach consists of measuring the vernier offset for which observers
correctly discriminate in 75% of the trials. With the vernier alone, the offset is quite small. b. When
a square is added the performance drastically drops (that is, the threshold-offset increases). This is
the classic crowding effect. c. Adding more flankers increases performance again. This is referred
to as uncrowding. d. The magnitude of crowding and uncrowding effects is contingent upon both
short-range and long-range spatial interactions between visual elements. Furthermore, the specific
characteristics and spatial positioning of flanker stimuli play a crucial role in modulating these effects.
For example, the performance drops again for the depicted pattern.

Dataset. Based on [39], with code adapted with authors’ permission. Images are composed of a818

‘vernier’ stimulus (two parallel line segments with some offset) placed either inside or outside a set of819

random flankers (squares, circles, hexagons, octagons, stars, diamonds). Each configuration has from820

1 to 7 columns and from 1 to 3 rows of flankers with a variety of same/different shape patterns used.821

The vernier can be left/right oriented. The suggested method for this dataset (as per [39]) consists822

of attaching a decoder at several stages of a pre-trained DNN. The decoder is trained and tested823

on a classification task to discriminate between left/right types of vernier but, significantly, during824

training, the vernier and the flankers were non-overlapping, whereas during test, the vernier was often825

placed inside one of the shapes, allowing the measuring of (un)crowding effect through change in826

classification accuracy across test conditions. A model with human-like visual characteristics should827
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match human perception with regards to both crowding and uncrowding effects, following the pattern828

in [39, 40]. Users can specify whether the size of the flankers varies or is fixed across samples.829

C.1.3 Emergent features830

Psychological Significance. Emergent features provide a compelling example of “the whole is831

different than the sum of its parts”. Pomerantz and colleagues [85, 87] relied on a simple visual832

search paradigm where participants were asked to identify a target amongst foils. They devised833

several different types of target and foil stimuli, but the simplest were composed of dot patterns as834

depicted below. Participants viewed a set of 4 panels, each of which contained a single dot. Three of835

these panels were identical (dots were in the same location) and one outlier panel (where the dot was836

in a different location). The task was to identify the outlier panel as quickly as possible. In the single837

dot condition, the outlier was simply the panel with a dot in a unique position. In the critical emergent838

feature condition(s), a dot (or more) was added to the single dot images as context. The context dot(s)839

was in the same location in all panels. Because these added dot(s) were identical in all four panels,840

there were no new features that could be used to facilitate the identification of the outlier other than841

configural “emergent” features. For example, in the top row of Figure 5, the extra dot (depicted in the842

middle column) produces the emergent feature of “orientation”, and in the bottom row, the extra dot843

produces the emergent feature of proximity. The critical finding was that participants could identify844

the location of the outlier panel more quickly in the emergent compared to the baseline condition.845

That is, the “whole” was more discriminable than the sum of its parts.846

Figure 5: Schematic of the generation procedure for producing a set of dotted stimuli. Starting with a
pair of images in which the only discriminant feature is the location of a dot (Base Pair), an additional
dot is added, yielding the Emergent Feature of proximity or orientation. The Emergent Feature of
linearity is obtained by adding a dot to the orientation pair. Notice that the added dot is the same to
both elements of the pair so it does not add on its own any discriminative features, but it generates
additional features in relation with the surrounding dots.

Biscione and Bowers [22] carried out a series of studies assessing whether DNNs were sensitive to a847

range of emergent features that facilitated human performance, including testing DNNs on the dot848

stimuli illustrated in Figure 5. We observed that DNNs did show some sensitivity to some of the849

emergent features, but only at the later layers of the network. This is problematic given that these850

emergent features are thought to be computed relatively early in the visual system, such that they851

support rapid “pop out” search.852

Dataset. Adapted from [22]. The dataset consisted of sets of paired images. Each set includes four853

conditions: a base condition (single dots), and composite conditions (orientation, proximity, and854

linearity). The ‘single dots‘ condition consists of paired images in which each image contains a855

single dot placed at a different location. In the composite conditions, one or more dots are added to856

both images of the base condition, in the same locations, in such a way that it would elicit different857

emergent properties when combined with the original single dots. In the orientation and proximity858

conditions, the added dot results in different orientation/proximity features. In the linearity condition859

(generated by adding a dot to the orientation condition), the added dot would either be placed on a860

straight line with the other two dots or on a different path. Each dot was constrained to be located861

at a distance of at least 20 pixels from one another, and 40 pixels from the border. By computing862
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the difference in similarity scores between each composite condition and the base condition, we can863

compute how much each emergent feature impairs/facilitates distinction of the additional dots. For864

example, if the average ‘orientation‘ pair is found to be easier to distinguish (through a similarity865

analysis of the internal activations of the network) than the pairs from the ‘single dot‘ condition,866

then we can infer that the network is sensitive to orientation (as the additional dot in the orientation867

condition was not-diagnostic, e.g. the same for both images in each pair). The same comparison with868

the ‘single dot‘ pairs can be performed for the proximity and linearity conditions. The overall pattern869

of similarity scores should match human results, in which the highest effect is obtained through the870

feature of proximity, followed by linearity, and then orientation [85, 22].871

C.1.4 Decomposition872

Psychological Significance. The visual system represents objects in terms of their parts, separating873

regions at points of deep concavity [63]. Perceptually, searching for an object broken into its natural874

parts among a set of unsegmented versions of the same object is significantly more challenging than875

locating the same object when it is segmented at points that do not correspond to its natural divisions.876

In other words, a segmentation at natural points preserves the basic parts which make up the object877

and therefore make the segmented version more similar to the uncut object when compared to an878

’unnatural’ segmentation. There is good evidence that this occurs relatively early in visual processing879

[117]. To assess whether DNNs encode objects into parts in a similar manner, Jacob et al. [65]880

compared the internal representations of a base object composed of two parts to two segmentations881

of the object, one natural and one unnatural. The assumption is that a natural segmentation of the882

image will be encoded in a more similar way to the whole object (the segmented images maintain the883

integrity of parts that compose the complete object). However, they reported that the VGG-16 did not884

show this pattern, suggesting that DNNs do not encode objects by their parts, or at least, not in a way885

similar to humans.886

Figure 6: The dataset features base images depicting two objects in contact at a single point. It
includes two variations: natural and unnatural splits. In natural splits, the objects are separated,
while in unnatural splits, the division occurs within an object itself. Identifying differences between
base images and unnatural splits is simpler than distinguishing between base and natural splits. The
dataset presents examples with both familiar and unfamiliar shapes, showcasing the diversity in object
recognition challenges.

Dataset. The dataset consists of a variation of the images used in [65]: instead of a single object887

composed of two parts, we used two objects joined at a single point of contact. There are three888

‘split’ conditions and two ‘familiarity’ conditions. The ‘split’ conditions are: ‘no split‘ in which two889

parts are touching at one point but not overlapping; ‘natural split‘, in which two parts are separated;890

‘unnatural split‘ in which the two parts are touching each other as in the ‘no split‘ condition, but one891

of the parts is ‘cut’ and separated from the rest. The items are silhouettes uniformly coloured on892

a uniform background, and they can be either familiar or unfamiliar shapes. The familiar shapes893
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consist of the following objects: circle, square, rectangle, triangle, heptagon, and a 50-degree arc894

segment; the unfamiliar shapes consist of blob-like objects. Within each familiar/unfamiliar condition,895

all possible combinations of two shapes are used (e.g. a triangle with a rectangle). Configuration896

parameters include the distance between pieces in the ‘unnatural split’ and ‘natural split’ conditions,897

the colour of items, and the number of different blob-like objects to use for the unfamiliar condition.898

Following the test from [65], similarity judgments between pairs composed of base samples and899

natural/unnatural splits can be computed for an ImageNet pre-trained network. To match human900

perception, the natural split samples should have internal representations that are closer to the base901

samples than the unnatural split samples. This should apply regardless of whether the shapes are902

familiar or unfamiliar.903

C.1.5 Encoding relations between object parts904

Psychological Significance. Humans not only encode objects in terms of their parts, but also the905

relations between parts which are essential for object recognition [16]. Early evidence for this was906

reported by [64] who trained participants to identify a small set of artificial stimuli in which they907

could easily manipulate relations between parts. Two types of changes were introduced to create foils908

for the base stimuli. First, a coordinate change in which relations between parts were maintained909

but the position of a part of the object was changed. And second, a relational change in which there910

was a categorical change in relations between object parts. They reported that participants were911

much more likely to mistake foil objects for the base object when the relations between object parts912

were maintained than when the relations changed (coordinate vs relational change in Figure 7). By913

contrast, [77] showed that two standard convolutional networks are completely insensitive to these914

relational features, treating Relational and Coordinate foils equally similar to the Basis objects.915

Figure 7: Reproduction of stimuli used in [64]. Starting with a base shape, the Relational Change
variant was created by moving one part of the base object up or down (red dashed circle). The move
was chosen to change the categorical above/below relation between the circled part and the part to
which it is attached. The coordinate change variant was created by moving the whole horizontal
(red circled) segment up or down, together with the part moved in the relational change. This
resulted in no categorical relations change. Therefore, the perceived difference between a base
and its relational-change pair is greater than the perceived difference between the corresponding
base-coordinate change pair.

Dataset. We recreated images originally contained in [64], Experiment 5, using white strokes on a916

uniform background. To compare to human perception, similarity judgments can be computed from917

pre-trained DNNs by sequentially inputting pairs of images composed of a base shape and either their918

corresponding coordinate or relational change. A pattern that mirrors human perception would result919

in greater similarity between the base shapes and their coordinate modifications foils as opposed to920

their relational change foils.921
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C.1.6 Encoding of 3D shapes922

Psychological Significance. The human visual system builds 3D representations of images for the923

sake of object recognition [43, 74], and some perceptual illusions of size, such as the Ponzo illusion924

described below, are thought to be a by-product of computing depth information. By contrast, there925

is little evidence that DNNs infer 3D structure from the 2D images they process. For example, [65]926

tested VGG-16 on three pairs of objects developed by [42]: a pair of objects composed of three927

segmented lines (base pair in Figure 8) are transformed in two different ways (V1 and V2), each928

time adding the same configuration to both elements of the base pair. Humans were assessed in how929

quickly they could discriminate the two V1 images and the two V2 images. Discrimination was930

highly improved for the V2 pair, but not for the V1 pair, most likely the result of enhanced 3D cues931

in the V2 stimuli.932

In contrast, Jacob et al. [65] obtained no evidence that VGG-16 was better at discriminating the base933

pair, suggesting a failure to encode their 3D structure.934

Figure 8: Illustration of the 3D Drawing dataset stimuli. One where segmented lines (Base shapes)
are augmented with contextual features to clearly form distinguishable 3D shapes (V2), and another
where the additions do not contribute as strongly to depth perception, making shape discrimination
challenging (V1). Importantly, the identical contextual features applied to each pair highlight that
enhanced discrimination stems solely from the perceived depth, rather than the features themselves.

Dataset. We recreated stimuli appearing in [42], using white strokes on a uniform background. Using935

the similarity judgment method on pre-trained DNNs, a perception akin to humans would result in a936

significantly lower similarity for the V2 pair compared to both the base and V1 images.937

C.1.7 Amodal completion938

Psychological Significance: The visual system needs to identify partly occluded objects in the 3D939

world. A key part of the solution for humans is an amodal completion process in which a surface940

representation of the occluded object is completed behind the occluder. This process is called amodal941

because the visual system builds complete surface forms of occluded objects without generating942

a visible experience of the missing shape. Amodal completion occurs early in the visual system,943

perhaps as early as V1 [81]. Various compelling perceptual effects are associated with amodal944

completion (for review, see [80]). Here we include the materials of [93] who showed that humans945

quickly and automatically encode the shape of partially occluded objects in a visual search task.946

Amongst the various conditions in their experiments, two illustrate the point most clearly. In the947

’Target - Notched square’ and ’Target - notched circle’ conditions, participants searched for a notched948

black square or notched white circle, respectively, among full black square and white circle distractors.949

None of the objects overlapped in this condition. In the ‘Occlusion’ condition participants were again950

searching for notched squares and circles, but in this case notched squares and circles touched to951

give the impression of occlusion. Search was significantly faster in the ‘Notched’ condition when952

compared to the ‘Occlusion’ condition. This is because in the ‘Occlusion’ condition the notched953

squares were perceived as full squares occluded by white disks due to amodal completion. This made954
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the notched black squares much more difficult to find among full black squares. The same was true955

for the notched white circles in the occlusion condition. This pattern of results suggests that the956

notched square in the ’Occlusion’ condition was encoded as a square early in visual processing (fast957

visual search is typically characterized as pre-attentive). Jacob et al. [65] reported that the DNN958

VGG-16 network pre-trained on ImageNet failed to show any evidence for amodal completion with959

these stimuli.960

Figure 9: Illustration of the Occluded Shape stimuli as used in [93]. The experiment compares three
conditions: a baseline condition with squares and disks with no occlusion, an occlusion condition
in which one object obscures part of the other, and a notched condition in which the occluded part
of the object in occlusion condition is removed. This turns the notch into a distinctive feature and
effectively creates a differently perceived shape despite the visible parts being the same as in the
occlusion condition. The finding that notched circles and squares are more easily identified than
occluded circles and squares is taken to reflect amodal completion.

Dataset. We generated samples that look like the stimuli used in [93]. We generated samples for the961

distractors (‘unoccluded’), ‘occlusion’, and ‘notched’ conditions, with either the square occluding962

the circle or vice versa. The occluding shape is placed at a variety of degrees from the occluded963

shape. Each occluded image has a corresponding notched image (that is, using the same shape964

configurations) so that they can be directly compared. The unoccluded condition is generated by965

using a non-occluded sample in which the occluding shape is moved radially away from the occluded966

shape, maintaining the same orientation.967

To align with human similarity judgments as measured in [93], a DNN should yield internal activations968

that result in higher similarity scores for distractor (unoccluded) versus occluded samples (where969

amodal completion generates representations of the full shape of the notched stimuli), compared to970

those for (distractor) unoccluded versus notched samples.971

C.1.8 Non-accidental and Metric Properties for Geons and line stimuli972

Psychological Significance: Human object recognition is highly sensitive to non-accidental properties973

(NAPs) of an object, that is, visual features that are invariant over rotations in depth. NAPs are974

hypothesized to be critical for representing object parts such as Geons [16]. For example, curvature975

(as opposed to a stright line) is a NAP because a curved object in the 3D world will project a curved976

image on a 2D retina when viewed from most orientations apart from rare “accidental” viewpoints,977

as when a curve projects a straight contour. NAPs are distinguished from metric properties (MP),978

features of objects that change continuously with variations over depth orientation when projected on979

the retina. For example, a curved object in the world will project different degrees of curvature on the980

retina depending on its orientation to the viewer. A variety of research highlights how human vision981

is more sensitive to changes in images that alter NAPs (e.g., a change from a curve to straight line)982

compared to MPs (e.g., changes in degree of curvature) [16]. [71] provided evidence that several983

DNNs are also more sensitive to image manipulations that alter NAPs, although the effects were most984
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pronounced in later layers of the networks whereas sensitivity to NAP is thought to occur relatively985

early in human visual processing to encode object parts.986

Datasets. We have included images of both 2D line segments based on [71], and 3D Geon stimuli987

originally used in [68] and obtained from 3 to assess the degree in which DNNs are sensitive to NAP988

vs MP changes. In the case of the Geon stimuli, we have provided a version with shade (as in [72]), a989

version in which no shades are present and the outline is highlighted, and a version in which only990

the silhouettes are shown, as one concern with the shaded version is that the similarity judgements991

produced by DNNs may reflect differences in shades as opposed to shape. For each Geon or line992

segment, a feature dimension (such as the curvature of a Geon) is altered from a singular value (e.g.993

straight contour with 0 curvature) to two different values (e.g. slightly curved or very curved). The994

‘reference‘ condition includes items with the intermediate feature value; in this example, the slightly995

curved geon. The ‘MP change‘ condition consists of items with a greater non-singular value; in996

this case, the greater curvature geon. Finally, the ‘NAP change‘ condition includes items with the997

singular value; the straight contour geon from this example. A human-like similarity judgment would998

correspond to higher similarity between the reference object to the MP variants than the NAP variants999

(that is, NAP changes are easier to discriminate). [71] provides a more detailed description of human1000

performance through reaction times that can be directly compared to similarity judgments in DNNs1001

(where higher reaction times correspond to lower similarity).1002

C.2 Visual Illusions1003

There is now a growing number of articles exploring various illusions in various different types of1004

DNNs trained in different ways. Some of these highlight similarities with human perception (e.g.,1005

[14, 103, 111]) while others report mixed or discrepant results (e.g., [55, 54, 110, 119]. For a review1006

of various findings see [67]). The conditions in which DNNs ’experience’ human-like illusions may1007

provide insights into why humans experience these phenomena. For instance, [55] found that various1008

brightness and color illusions can be induced in CNNs trained for image denoising, image deblurring,1009

and computational color constancy. They argue that these illusions are a byproduct of biological1010

processes designed to improve efficiency of low-level visual processes. In addition, Storrs et al.1011

[103] found that unsupervised (as opposed to supervised) learning led DNNs to factorize images into1012

encoding of reflectance and illumination that resulted in a human-like perceptual illusion of gloss.1013

Here we consider several classic size, lightness, and orientation illusions.1014

C.2.1 Müller-Lyer illusion1015

Psychological Significance. The Müller-Lyer illusion is perhaps the most famous of all illusions.1016

There is no agreed-upon explanation of the effect but the fact that it is observed across species,1017

including fish [101], suggests that it reflects something basic about the architecture of the visual1018

system rather than the training environment. Ward [110] reported that VGG-19 showed the illusion1019

(to a rough approximation), although they only reported the effect at the final stage of the network. A1020

similar result was reported by [118] who reported more robust effects in the higher levels of VGG-191021

and ResNet-101.1022

Dataset. The Müller-Lyer illusion stimuli were generated in one of two ‘illusory’ configurations1023

(with inward or outward ‘fins’) or in a ‘scrambled’ configuration. In the latter, the fins are arranged1024

randomly in the canvas, separated from the line segment. In all three conditions, we vary the1025

line length, the position of the line, and the angle of the fins. A method to test whether a DNN1026

is susceptible to this illusion involves training a set of decoders to predict the line length in the1027

scrambled condition set. These decoders are then tested on the illusory conditions. A human-like1028

response would be evidenced by a consistent pattern of both overestimating the line length in the1029

outward illusory condition and underestimating it in the inward illusory condition. Additionally, the1030

illusory effect should be larger for more acute fin angles.1031

3https://geon.usc.edu/ ori
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C.2.2 Ponzo illusion1032

Psychological Significance. In this classic illusion, two identical horizontal lines cross a pair of1033

converging lines, a configuration similar to railway tracks. In this configuration, the top line looks1034

longer. The standard explanation is that the visual system assumes that the converging lines are1035

receding in depth and that the upper horizontal line is further away. Given that the two lines project1036

the same length on the retina, the visual system assumes that the upper line must be longer. That is,1037

the illusion is a by-product of the visual system attempting to compute size constancy. Interestingly,1038

there is good evidence that the Ponzo illusion [59], and related size illusions [102], alter the activation1039

in V1, although this may reflect top-down activation from higher-level visual areas [31]. [110] failed1040

to observe a Ponzo effect in VGG-19.1041

Dataset. Two target lines (red and blue) are placed across a railway track pattern. In the illusory1042

condition, the target lines have the same length (varying across samples). In the scrambled condition,1043

the target lines have different length, are still placed horizontally one on top of the other, but all the1044

other segments are randomly placed across the canvas. We include a third condition in which the1045

railway track pattern is used with target lines which differ in length. The railway track pattern for the1046

illusory and different lengths conditions is composed of converging segments (with a varying degree1047

of convergence), and horizontal segments (randomly placed at different horizontal positions). For all1048

three conditions, the user can specify the number of horizontal segments to use.1049

The suggested way to test whether DNNs perceive the Ponzo Illusion consists of training a set of1050

decoders on the scrambled condition, to predict either the length of the target lines or a function of the1051

length (for example, the difference between the top and the bottom line lengths). Then the decoders1052

can be tested on the illusory condition. The different lengths condition could be used as a further1053

way of analysing the decoders response. To match human perception, a decoder should overestimate1054

the length of the top target line (or underestimate the length of the bottom line, or output a positive1055

difference in top minus bottom line length, depending on the training setup) in the illusory condition1056

(where the two target lines have the same length).1057

C.2.3 Ebbinghaus (or Titchener) illusion.1058

Psychological Significance: In this classic illusion, the perceived size of a central circle is altered1059

by the size of surrounding circles. There is evidence that the illusion distorts the perception of size1060

but not action ([2, 114]; but see [48]) and there is evidence that this illusion is mediated by relatively1061

low-level (preattentive) vision [29]. Again, there are different explanations for the phenomena [92].1062

[110] failed to observe this effect in VGG-19.1063

Dataset. A red target circle is surrounded by a fixed number of white circles (flankers) on a uniform1064

background. In the two illusory conditions (‘big’ and ‘small’ flankers) the flankers surround the target1065

circle, and they all have the same size within each sample. In the scrambled condition the target circle1066

is placed in the center, but white circles with random sizes are randomly placed on the canvas. Across1067

illusory samples, we varied the radii of the flankers, the radius of the target circle, the displacement1068

of the flankers around the target. To measure illusory effects in DNNs, decoders can be trained on1069

estimating the circle size or radius in the scrambled condition, and tested on the big/small flankers1070

condition. Human-like perception should induce overestimating in the small flankers condition and1071

under-estimating in the big flankers condition (see example in Figure 2).1072

C.2.4 Jastrow Illusion1073

Psychological Significance: In the Jastrow Illusion [66], two identical-sized curved segments are1074

perceived as different sizes when one is placed above the other in certain configurations. There are1075

multiple explanations for the phenomenon, but perhaps the simplest explanation is that it is a form of1076

a contrast effect. The length of the concave edge of the upper object in a Jastrow configuration is1077

much shorter than the convex edge of the bottom object, and this contrast drives the perception of1078

size when the edges are closely aligned [94]. Rhesus monkeys do not appear to be affected [3], nor1079
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do humans when assessed on grasping behavior [82]. As far as we are aware, no one has reported1080

whether DNNs show a similar pattern.1081

Dataset. We used a red and a blue arc shape, either one on top of the other at the centre of the1082

canvas (‘illusory’ and ‘different lengths’ conditions) or randomly placed in the canvas with a random1083

orientation (‘scrambled’ condition). In the scrambled and different lengths conditions the two shapes1084

have different sizes. The size is the same (thus eliciting the illusion) in the illusory condition. To1085

estimate DNNs susceptibility to the illusion the same approach as the Ponzo Illusion can be used.1086

C.2.5 Tilt illusion1087

Psychological Significance: In the tilt illusion, a central grating’s orientation is perceived as being1088

repulsed from or attracted to the orientation of a surrounding grating. A wide variety of mechanistic1089

accounts of the illusion have been proposed (for review see [33]), and it is argued to be an adaptive1090

feature rather than a bug of a visual system optimized for contour detection [98]. There is evidence1091

that the illusion reflects processes in V1 [100]. Linsley, et al. [73] reported that a recurrent DNN1092

optimized for contour detection produces a tilt illusion.1093

Dataset. We provide one illusory condition, in which an oriented grating pattern is presented within1094

a circular mask (‘center grating’) and a differently oriented grating is placed as the background1095

(‘context’ grating); and two non-illusory conditions: one in which the background is uniformly1096

colored and only a center mask contains the oriented grating pattern; and vice versa. The samples1097

are varied in their orientation and spatial frequency of the gratings, and in the size of the central1098

grating. Our suggested approach to test whether a DNN perceives the tilt illusion is to train a decoder1099

to estimate the orientation of the center grating, and test it on the illusory condition to check whether1100

the presence of a context affects performance. In particular, the decoder should present the largest1101

repulsive bias at around 20° and an attractive bias at around 70°-80°. Plus, the attractive effect should1102

be much smaller than the repelling effect, and larger for matching center-surround gratings spatial1103

frequencies. [113].1104

C.2.6 Lightness Illusions1105

Lightness refers to our perception of the reflective surface of an object (a stable property of an object)1106

whereas brightness is a measure of the amount of light reflected from an object, something that is1107

affected by both reflectance as well as the lighting source. We include two famous illusions related to1108

lightness: the Lightness Contrast Illusion and the Adelson Checker Shadow Illusion. However, to1109

facilitate testing for these and other lightness-related effects, we created an additional dataset called1110

‘Grayscale shapes’. The purpose of this dataset is not to elicit any illusion in humans or in DNNs1111

but to train a network (or, with our suggested method, a decoder attached to a network) to output the1112

grayscale value of a target pixel.1113

Grayscale shapes Dataset. Each image is composed of 20 overlapping items amongst the following1114

types of shapes (circle, circle sector, circle segment, ellipse, rectangle with straight and rounded1115

corners, heptagon, irregular polygon composed of a random number of edges from 3 to 10). Position,1116

dimension, orientation, and grayscale colour value are randomized for each shape. We place 20 items1117

to be sure that most space in the canvas is filled by an item, but that only a few of them are fully1118

visible. This results in a chaotic canvas with many different shapes with varying grayscale colours1119

but with coherent patterns (as opposed to, for example, having each pixel of a different random1120

grayscale value). In order to target a specific pixel to be predicted by the decoder, a small white1121

vertical arrow (the ‘marker’) of fixed size is placed randomly on the canvas. The arrow points to the1122

pixel whose value can be used for prediction. Notice that while the images are commonly normalized1123

from -1 to 1 before being fed into the network, the targeted pixel value to predict is in the 0-255 range.1124

Once a trained decoder reaches the desired level of accuracy, it can be tested on other configurations1125

by simply adding the white arrow ‘marker’ into any image. We call this network with the decoder1126

attached the color-picker. We can then test whether an illusory configuration impacts performance1127

of the color picker by placing a white arrow marker at several points of the illusory image and check1128
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whether the output is biased in a human-like fashion. This is the approach we use in the Lightness1129

Contrast Effect and Adelson Checker Shadow Illusion.

Figure 10: Samples of five images from the grayscale dataset, used to train a color-picker, as detailed
in the text.

1130

C.2.7 Lightness Contrast effects1131

Psychological Significance: In the Lightness Contrast effects our perception of two identical central1132

gray patches is altered by their surround, such that a patch surrounded by a dark background is1133

perceived as lighter, and the patch surrounded by a light background is perceived as darker. The1134

standard explanation of this is that lightness perception is the product of the relative brightness1135

of surfaces across a boundary given that this ratio will remain constant regardless of the general1136

illumination, allowing lightness (and color) constancy. However, in the lightness contrast context,1137

the mechanism designed to produce lightness constancy results in the central grey squares being1138

perceived differently. These computations are thought to occur in the primary visual cortex [76].1139

Some DNNs can achieve color constancy [46] and other forms of constancy [103] under some1140

conditions, although there remain questions as to whether this is achieved in a human-like manner.1141

There are also computational theories of the lightness contrast effect [57], but we are not aware of1142

any demonstrations that DNNs support this effect.1143

Dataset. The dataset consists of the standard Lightness Contrast configuration: square within a1144

uniform canvas of different grayscale values. The user can specify the grayscale value of the center1145

square, which is kept fixed, while the value of the background is varied. Importantly, each sample1146

is replicated many times with the white arrow marker placed at different locations in the canvas. A1147

color picker network can then be queried for the grayscale value at different locations in order to1148

measure whether the perceived value of the central square is affected by its surroundings.1149

C.2.8 Adelson checker shadow illusion1150

Psychological Significance: In this classic illusion [1], two squares on a checkerboard are perceived1151

to have different reflectance due to one being in shadow and the other in light, despite being the same1152

brightness. This phenomenon is explained with the ability of the human brain to perceive reflectance1153

of a surface as invariant under variation of brightness. In this illusion, the patches inside and outside1154

the shadow reflect the same brightness, and accordingly, the visual system assumes the patch in the1155

shadow must be lighter.1156

Dataset. This dataset simply consists of the Adelson Checker Shadow illusory image replicated1157

many times, grayscaled, with a white arrow systematically placed at different locations of the canvas,1158

covering the whole checkerboard. A color-picker network (that is a decoder trained to predict the1159

value of a marked pixel, e.g. trained on the Grayscale shape dataset, see Section C.2.6) is queried at1160

all locations. Critically, the color-picker will show illusory perception if the pixels in the two target1161

patches are seen as two different colours. In particular the pixels of the unshaded patch should be1162

seen as darker than the shaded patch by the network.1163
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C.2.9 Thatcher Illusion1164

In this illusion the eyes and mouth of upright faces are inverted to produce a grotesque image of1165

a person. The distinction between a normal face and a distorted face is highly salient. However,1166

when faces are upside down, the distortions are much less salient. This effect was originally reported1167

on images of Margret Thatcher, thus the name of the illusion. This effect is sometimes claimed1168

to be more dramatic for faces compared to other categories, lending support to the hypothesis that1169

face processing is special [25]. Other researchers claim that similar effects are observed for other1170

types of objects [115]. Jacobs et al. [65] demonstrated that CNNs trained to identify faces exhibit a1171

Thatcher-like effect, though they did not assess whether this effect extends to other object categories1172

[65]. The extent to which this effect is specific to faces or can be generalized to non-face objects1173

remains a subject of debate (e.g., see [116, 15, 34]). To test DNN sensitivity to the Thatcher Effect for1174

both faces and non-face dataset, we provide both a Thatcherized dataset of faces and a Thatcherized1175

dataset of words (in which individual letters are rotated).1176

Face Dataset. We provide a small dataset of celebrity faces using a subset of CelebA4, but the user1177

can specify any folder containing images of faces. Each image is resized according to parameters1178

specified by the user and then reoriented into both an upright and a 180-degree inverted configuration.1179

Furthermore, it is either ’Thatcherized’ or remains unaltered. To ‘Thatcherize’ an image we compute1180

landmarks of the eyes and mouth, compute the bounding rectangle for each, and rotate them around1181

their centre of mass. Blurring on the edge is applied to minimize artefacts. To assess the susceptibility1182

of DNNs to the Thatcher effect in faces, we propose a similarity judgment analysis. This involves1183

comparing the perceived similarity between each upright face and its Thatcherized counterpart, as1184

well as each inverted face with its Thatcherized version. To align with human perception, the latter1185

comparison is expected to yield a higher similarity score than the former.1186

Word Dataset. We employ a collection of 1000 English words or artificially generated sequences of1187

random letters. All entries are uniformly presented in uppercase, covering a range from 3 to 8 letters1188

in length. Following [116], to simulate the Thatcher Effect for words, we rotate one or more letters1189

by 180 degrees. To increase variability, each word is displayed in one of ten different fonts, with1190

variable font sizes, and includes jitter for each letter. The configurable parameters include the number1191

of words, the exact or range of letter counts per word, the number or range of letters to be rotated, the1192

font size, the level of jitter, and whether to use random strings or English words.1193

C.3 Shape and object recognition1194

A key feature of human vision is that we identify objects largely based on their shape. For example,1195

we can easily identify line drawings of objects with no colour and texture [19]. To measure shape1196

bias in DNNs there is now a benchmark that tests models on “style transfer” images composed of the1197

shape of one category and the texture of another [51]. Many DNNs, including DNNs that perform at1198

the top of the leaderboard on Brain-Score, rely primarily on non-shape features, as they classify the1199

images based on their texture rather than shape. More recent DNNs trained on much larger datasets1200

have started to show a more human-like shape bias [37], but there are many additional attributes of1201

human shape perception that need to be accounted for by any DNN model of human vision.1202

C.3.1 Identifying line drawings, dotted line drawings, silhouettes, and image segments1203

Psychological Significance: Humans can often identify line drawings of objects as quickly and1204

accurately as photographs, highlighting the importance of shape for object identification [19]. Inter-1205

estingly, a child who had never previously been exposed to line drawings can readily identify them,1206

showing that there is no need to be trained on line drawings to identify them [62]. By contrast, DNNs1207

need to be trained on line drawings in order to recognize them at human levels [99]. Similarly, humans1208

can easily identify silhouettes of objects, whereas DNNs again struggle (although interestingly, they1209

do better with silhouettes compared to line drawings; [10]).1210

4https://mmlab.ie.cuhk.edu.hk/projects/CelebA.html
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In addition, by exploiting the Gestalt principle of good continuation, humans can recognise line1211

drawings with modified local features when the global shape is left intact. In our experiments, we1212

modified line drawings in three ways: by replacing the continuous line with dots; by replacing1213

continuous lines with segments; and by texturizing them. These images are easily identifiable, and1214

accordingly, DNNs should be able to identify these out-of-distribution images.1215

Line drawings dataset. We use the line-drawing stimuli from [10], consisting of 36 classes from1216

ImageNet (one line-drawing per class). The line-drawings are white stroke on a uniform canvas1217

(black by default). We used this dataset to build the Dotted line drawings and Image Segments1218

datasets. In the former case, the user can specify the dot size and the distance between dots. In the1219

latter case, we have generated complementary images that have complementary segments removed1220

(see Figure 11). That is, each line segment in one image is absent in the other, and together the image1221

is complete. These stimuli are generated by overlapping a grid on the line drawing and deleting1222

complementary sections. The user can specify the grid orientation, the distance between each grid1223

row and column, and thickness of each cell. Participants find these images trivial to identify, and1224

accordingly, DNNs should also. Importantly, humans find complementary images like these hard1225

to distinguish, and indeed, complementary images produce equivalent priming to repeated images,1226

highlighting how the visual system treats them as equivalent [17]. This would also be the case if1227

complementary dots were removed for the dotted line drawings. Thus a second approach to compare1228

humans to DNNs is through a similarity judgment analysis across complementary images, which1229

should return very high similarity value in some hidden layers of DNN.1230

Figure 11: Example of the complementary segment dataset. Each linedrawing results in two images
with complementary segments removed. The resulting samples are very difficult to discriminate for
humans [17].

There are many datasets of line drawings available, and the user can specify any folder containing line1231

drawings, to generate a dotted/segmented dataset. The line drawings are expected to be composed of a1232

black stroke on a white background, but can otherwise be of any shape, and the line drawing folder is1233

expected to contain sub-folders for each class (e.g. ‘airplane’) which can contain multiple line drawing1234

instances for that class (this follows the standard structure used in many deep learning libraries for1235

image classification, e.g. the ImageFolder dataset in PyTorch). Our script will automatically convert1236

the image to a white stroke over a uniform background (black by default).1237

Silhouette dataset. For the Silhouette dataset, we use samples from [8] (9 classes from ImageNet,1238

each containing 40 samples). As before, the user can specify any folder containing silhouettes. Alter-1239

natively, the user can also specify a folder containing line-drawings (following the same constraints1240

as above), which will be converted into silhouettes. Again, humans find these images easy to identify,1241

so models should as well.1242

C.3.2 Identifying familiar and unfamiliar images defined by texture boundaries1243

Psychological Significance: The human visual system can group elements in scenes based on texture,1244

with texture regions defined by the similarity of their elements. This is an example of a Gestalt1245

principle (Similarity) contributing to object recognition [13]. One way this manifests is through the1246

ability to identify familiar (texturized objects) and perceive unfamiliar (texturized unfamiliar) by1247

their texture.1248
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Datasets: Familiar and Unfamiliar Texturized Objects. We provide a dataset of familiar texturized1249

objects by using line drawings from [10] as base items. For unfamiliar shapes, we generated1250

silhouettes of blob-like objects. For the pre-generated datasets, the texturization consists of masking1251

the internal contour of a line drawing/silhouette with a pattern of a repeated character with a1252

randomized font size, rotated by a random degree. The character is randomly selected from letters,1253

digits, or punctuation, and we kept the background uniformly colored. When generating images, the1254

user can also specify the texturization of the background as well, although we have found that doing1255

so will turn object recognition from trivial to challenging, depending on the selected character.1256

The same approach is used for the unfamiliar shapes. In this case, the user can specify the number of1257

blobs to generate and texturize. For both familiar and unfamiliar datasets, the user can specify how1258

many texturization samples to generate for each input image.1259

To measure alignment with human visual perception, the different datasets require a different approach.1260

For familiar shapes, DNNs can be tested by simply assessing classification accuracy. For unfamiliar1261

shapes, a similarity analysis can be carried out. For example, a DNN should find a blob and its1262

texturized counterpart more similar than a blob and a differently texturized blob (see example in1263

Figure 2).1264

C.3.3 Identifying Embedded Shapes1265

Psychological Significance: The Embedded Figures Test (EFT, [36]) is a widely utilized tool in1266

research exploring individual differences in perception, with a particular emphasis on studies of1267

autism spectrum disorder, and as a measure of local versus global perceptual style [83]. Subsequently,1268

[36] developed a set of stimuli in which several Gestalt grouping principles were manipulated in1269

order to create increasingly difficult matching to sample tasks. They found that the principle of1270

good continuation (operationalized in terms of the number of continued lines from the original1271

shape) impacted performance the most. Each target shape was integrated into four distinct contexts,1272

each exhibiting a progressive increase in the number of lines extending from the target shape into1273

its surroundings. The higher the number of lines extending the shape, the lower the performance,1274

highlighting human susceptibility to camouflage and the role of Gestalt organisation principles in1275

camouflage.1276

Dataset. We used the dataset from [36] who developed simple stimuli in which background lines1277

camouflaged geometric shapes to various extent (Figure 12). Importantly, different embeddings have1278

different levels of continued lines from the original shape, which strongly affects human performance.1279

Furthermore, we developed our version by generating 5 irregular polygons, embedding them in a1280

set of lines, some random and some extending directly from the polygon’s edges (similarly to the1281

original dataset). Many camouflaging samples can then be procedurally generated from each polygon.1282

Training decoders to classify the simple geometric forms provides one way to assess the impact1283

of embedding shapes on DNNs. Decoders would be trained on simple shapes (either our irregular1284

polygons or the original shapes from [36]) and would then be tested on the embedded version. A1285

DNN with a human-like perceptual system should show reduced ability to identify the shapes, with1286

the level of impairment being a function of the amount of lines originating from the polygon (as1287

in [36]. Notice in this case, human alignment requires a degradation of performance after image1288

alteration.1289

C.3.4 Sensitivity to Global Shapes1290

Psychological Significance: Human object recognition relies more heavily on global shape repre-1291

sentations than on local features, whereas there is evidence that DNNs rely more heavily on local1292

features [10], even when trained to have a shape bias [8]. In [8], humans and DNNs were presented1293

with silhouette stimuli in their normal format, fragmented, or in a ‘Frankenstein’ format where most1294

of the local features are preserved but the overall configuration of the image was distorted. That is,1295

the authors modified global shape while maintaining most of the local features. In particular, the1296

‘fragmented‘ condition (see Figure 13) divides the shape into two distinct, yet adjacent, entities while1297
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Figure 12: Illustration of one set of items from the embedded shape dataset. These are the stimuli
recreated based on [106]. A basic shape is camouflaged using a variety of horizontal and vertical
line, and extending the segments composing the shape. We also provide a variation of this dataset in
which, given a set of polygons, camouflaged versions are procedurally generated.

preserving the local characteristics of the object. The “Frankenstein” scenario involves adjusting the1298

upper section back into alignment with the lower half, so that the bottom and top halfs are mirror1299

reversed. This method keeps the object intact as a single entity. Human performance was much1300

reduced in both the Fragmented and Frankenstein conditions, but DNNs performed similarly in the1301

Whole and Frankenstein conditions, highlighting the importance of the local features and the lack of1302

weighting for more global features in driving their performance. Attempts to train networks to focus1303

on the more global aspects of the images failed.1304

Dataset. We provide both the dataset extracted directly from [8] and a a version in which the1305

fragmented and Frankenstein versions are automatically generated from any silhouettes or line1306

drawing samples. The [8] dataset contains 9 classes from ImageNet, each containing 40 samples. A1307

network with visual capabilities aligned with a humans’ should suffer from performance degradation1308

in both fragmented and Frankenstein condition, which can be measured through classification accuracy1309

(as usual, with a network pretrained on ImageNet or some other image dataset).1310

Figure 13: Example of a stimulus and its transformed version, following [8].

C.3.5 Invariance to Object Transformation1311

Psychological Significance. Humans possess the remarkable ability to recognize objects despite1312

the different retinal images the objects project depending on changes in size, orientation, lighting,1313

and placement [104]. This is performed on-line: an object, once seen in a new or altered form, can1314

typically be recognized instantly in subsequent exposures at different angles, without further training.1315

This capability applies irrespective of the object’s familiarity [24, 23]. Previous work [20, 21] found1316

that none of the 7 tested classic visual DNNs possess on-line invariance architecturally (that is:1317

training an object at a viewpoint would not automatically support object recognition at a different1318

viewpoint, even for simple affine transformations such as translation). However, this ability could be1319

induced by pre-training the model on the specific transformation of interest, and this would transfer1320
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to unfamiliar classes. For example, a network pretrained to classify images in which the objects are1321

randomly rotated, develop on-line invariance to rotation, even for novel objects and novel classes.1322

This partially extends even in transformation of viewpoint, in which the object is rotated in depth.1323

Datasets: 2D Affine Transformations and Viewpoint Transformations. We provide a separate1324

dataset for affine transformations (rotation in picture plane, translation, scale, and shear) and viewpoint1325

invariance (rotation in depth). The configurable parameters allow for a fine-grained analysis of the1326

effect of each transformation. For each transformation dimension, the user can chose one or multiple1327

ranges of training and testing. As in the previous datasets, the user can specify any folder containing1328

line-drawings or silhouettes (or any image with a clear contour on a white background). For the1329

viewpoint invariance dataset, we use the ETH-80 dataset [32]5, which contains 8 categories (apples,1330

cars, cows, cups, dogs, horses, pears and tomatoes), each consisting of 10 object instances, and each1331

object captured from 41 different viewpoints. For the pre-generated dataset, we avoided including1332

views straight from the top. The configurable parameters allow the user to generated dataset only1333

within a specific azimuth and inclination range.1334

For both the 2D transformation and viewpoint datasets, there are several ways to test whether a DNNs1335

possess online invariance to transformation. First, a DNNs (not necessarely pretrained) could be1336

trained on un-transformed images (e.g. with the object always in the center, unrotated, unscaled, or1337

from a standard viewpoint). It could then be tested on various transformations of these objects. This1338

could be used to establish whether the network is architecturally invariant to some transformations.1339

Several pre-training steps could be used to test how the training environment affects performance.1340

Another approach avoids training on the target classes (either because we want to test a pretrained1341

network without altering its weights, or because we want to test the network on unfamiliar classes):1342

a similarity judgments analysis is performed on transformed versions of the same object, and is1343

compared to the similarity of different objects. A human-like DNN will have internal activations1344

that are more similar for same objects across transformations, than for different objects. This is the1345

approach used in [20] and [21].1346

C.3.6 Same/Different Task1347

Psychological Significance. Human shape representations not only support object recognition but1348

also a wide variety of additional functions, including visual reasoning. Perhaps the simplest form of1349

visual reasoning is tested in the same/different task – judging whether two shapes are identical apart1350

from their spatial location. Although DNNs can solve the same/different task when training and test1351

images are highly similar to one another, performance drops when training/test images are dissimilar1352

[89]. By contrast, humans can make same/different judgements for any visual patterns as long as they1353

are perceptible.1354

Same/Different Dataset. The dataset was extracted from [89]. This dataset is composed of 101355

conditions. Each image consists of two items placed randomly on the canvas. The two items can be1356

either the same shape or a different shape and cannot overlap. Each condition consists of a different1357

type of item used. By default, the items are composed of white strokes with no fill on a black1358

background. See Figure 14 for a summary of all the conditions.1359

The suggested testing methodology for this condition is slightly different than all other methods, and1360

consists of training a DNN (not necessarily pre-trained) on a subset of conditions, and testing it on a1361

different subbset (as in [89]).1362

5https://github.com/chenchkx/ETH-80/tree/master
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Figure 14: Illustration of the ten conditions used for the Same/Different task. Two items can be either
the same or different shapes up to translation. For the ‘straight lines’ condition, the “same/different”
dimension considered is the line orientation (with length kept fixed).
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